Numerical Composition of Differential Privacy
Main Article Content
Abstract
We give a fast algorithm to optimally compose privacy guarantees of differentially private (DP) algorithms to arbitrary accuracy. Our method is based on the notion of \emph{privacy loss random variables} to quantify the privacy loss of DP algorithms.
The running time and memory needed for our algorithm to approximate the privacy curve of a DP algorithm composed with itself $k$ times is $\tilde{O}(\sqrt{k})$. This improves over the best prior method by Koskela et al. (2021) which requires $\tilde{\Omega}(k^{1.5})$ running time. We demonstrate the utility of our algorithm by accurately computing the privacy loss of DP-SGD algorithm of Abadi et al. (2016) and showing that our algorithm speeds up the privacy computations by a few orders of magnitude compared to prior work, while maintaining similar accuracy.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.