Differentially Private Set Union
Main Article Content
Abstract
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i \subseteq U$ of items. We want an ($\epsilon$,$\delta$)-differentially private algorithm which outputs a subset $S \subset \cup_i W_i$ such that the size of $S$ is as large as possible. The problem arises in countless real world applications; it is particularly ubiquitous in natural language processing (NLP) applications as vocabulary extraction. For example, discovering words, sentences, $n$-grams etc., from private text data belonging to users is an instance of the set union problem.Known algorithms for this problem proceed by collecting a subset of items from each user, taking the union of such subsets, and disclosing the items whose noisy counts fall above a certain threshold. Crucially, in the above process, the contribution of each individual user is always independent of the items held by other users, resulting in a wasteful aggregation process, where some item counts happen to be way above the threshold. We deviate from the above paradigm by allowing users to contribute their items in a {\em dependent fashion}, guided by a {\em policy}. In this new setting ensuring privacy is significantly delicate. We prove that any policy which has certain {\em contractive} properties would result in a differentially private algorithm. We design two new algorithms for differentially private set union, one using Laplace noise and other Gaussian noise, which use $\ell_1$-contractive and $\ell_2$-contractive policies respectively and provide concrete examples of such policies. Our experiments show that the new algorithms in combination with our policies significantly outperform previously known mechanisms for the problem.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.