A Latent Class Modeling Approach for Generating Synthetic Data and Making Posterior Inferences from Differentially Private Counts
Main Article Content
Abstract
Several algorithms exist for creating differentially private counts from contingency tables, such as two-way or three-way marginal counts. The resulting noisy counts generally do not correspond to a coherent contingency table, so that some post-processing step is needed if one wants the released counts to correspond to a coherent contingency table. We present a latent class modeling approach for post-processing differentially private marginal counts that can be used (i) to create differentially private synthetic data from the set of marginal counts, and (ii) to enable posterior inferences about the confidential counts. We illustrate the approach using a subset of the 2016 American Community Survey Public Use Microdata Sets and the 2004 National Long Term Care Survey.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.
Funding data
-
U.S. Census Bureau
Grant numbers 1333LB19P00000172 -
National Science Foundation
Grant numbers SES-1534433;SES-1131897;DGE-1144860