Manipulation Attacks in Local Differential Privacy
Main Article Content
Abstract
Local differential privacy is a widely studied restriction on distributed algorithms that collect aggregates about sensitive user data, and is now deployed in several large systems. We initiate a systematic study of a fundamental limitation of locally differentially private protocols: they are highly vulnerable to adversarial manipulation. While any algorithm can be manipulated by adversaries who lie about their inputs, we show that any noninteractive locally differentially private protocol can be manipulated to a much greater extent---when the privacy level is high, or the domain size is large, a small fraction of users in the protocol can completely obscure the distribution of the honest users' input. We also construct protocols that are optimally robust to manipulation for a variety of common tasks in local differential privacy. Finally, we give simple experiments validating our theoretical results, and demonstrating that protocols that are optimal without manipulation can have dramatically different levels of robustness to manipulation. Our results suggest caution when deploying local differential privacy and reinforce the importance of efficient cryptographic techniques for the distributed emulation of centrally differentially private mechanisms.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.
Funding data
-
National Science Foundation
Grant numbers CCF-1718088;CCF-1750640;CNS-1816028;CCF-1763786 -
Alfred P. Sloan Foundation
-
Google