Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy
Main Article Content
Abstract
We give a simple, computationally efficient, and node-differentially-private algorithm for estimating the parameter of an Erdos-Renyi graph---that is, estimating p in a G(n,p)---with near-optimal accuracy. Our algorithm nearly matches the information-theoretically optimal exponential-time algorithm for the same problem due to Borgs et al. (FOCS 2018). More generally, we give an optimal, computationally efficient, private algorithm for estimating the edge-density of any graph whose degree distribution is concentrated in a small interval.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.