Comparative Study of Differentially Private Synthetic Data Algorithms from the NIST PSCR Differential Privacy Synthetic Data Challenge
Main Article Content
Abstract
Differentially private synthetic data generation offers a recent solution to release analytically useful data while preserving the privacy of individuals in the data. In order to utilize these algorithms for public policy decisions, policymakers need an accurate understanding of these algorithms' comparative performance. Correspondingly, data practitioners also require standard metrics for evaluating the analytic qualities of the synthetic data. In this paper, we present an in-depth evaluation of several differentially private synthetic data algorithms using actual differentially private synthetic data sets created by contestants in the recent National Institute of Standards and Technology Public Safety Communications Research (NIST PSCR) Division's ``"Differential Privacy Synthetic Data Challenge." We offer analyses of these algorithms based on both the accuracy of the data they create and their usability by potential data providers. We frame the methods used in the NIST PSCR data challenge within the broader differentially private synthetic data literature. We implement additional utility metrics, including two of our own, on the differentially private synthetic data and compare mechanism utility on three categories. Our comparative assessment of the differentially private data synthesis methods and the quality metrics shows the relative usefulness, general strengths and weaknesses, preferred choices of algorithms and metrics. Finally we describe the implications of our evaluation for policymakers seeking to implement differentially private synthetic data algorithms on future data products.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.
Funding data
-
National Institute of Standards and Technology
Grant numbers P19-774-0002;1333ND18DNB630011-1333ND19FNB775355