Differentially Private Ordinary Least Squares

Main Article Content

Or Sheffet


Linear regression is one of the most prevalent techniques in machine learning; however, it is also common to use linear regression for its explanatory capabilities rather than label prediction. Ordinary Least Squares (OLS) is often used in statistics to establish a correlation between an attribute (e.g. gender) and a label (e.g. income) in the presence of other (potentially correlated) features. OLS assumes a particular model that randomly generates the data, and derives t-values - representing the likelihood of each real value to be the true correlation. Using t-values, OLS can release a confidence interval, which is an interval on the reals that is likely to contain the true correlation; and when this interval does not intersect the origin, we can reject the null hypothesis as it is likely that the true correlation is non-zero.
Our work aims at achieving similar guarantees on data under differentially private estimators. First, we show that for well-spread data, the Gaussian Johnson-Lindenstrauss Transform (JLT) gives a very good approximation of t-values; secondly, when JLT approximates Ridge regression (linear regression with l2-regularization) we derive, under certain conditions, confidence intervals using the projected data; lastly, we derive, under different conditions, confidence intervals for the "Analyze Gauss" algorithm of Dwork et al (STOC 2014).

Article Details

How to Cite
Sheffet, Or. 2019. “Differentially Private Ordinary Least Squares”. Journal of Privacy and Confidentiality 9 (1). https://doi.org/10.29012/jpc.654.

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.