Privacy via the Johnson-Lindenstrauss Transform
Main Article Content
Abstract
Suppose that party A collects private information about its users, where each user's data is represented as a bit vector. Suppose that party B has a proprietary data mining algorithm that requires estimating the distance between users, such as clustering or nearest neighbors. We ask if it is possible for party A to publish some information about each user so that B can estimate the distance between users without being able to infer any private bit of a user. Our method involves projecting each user's representation into a random, lower-dimensional space via a sparse Johnson-Lindenstrauss transform and then adding Gaussian noise to each entry of the lower-dimensional representation. We show that the method preserves differential privacy---where the more privacy is desired, the larger the variance of the Gaussian noise. Further, we show how to approximate the true distances between users via only the lower-dimensional, perturbed data. Finally, we consider other perturbation methods such as randomized response and draw comparisons to sketch-based methods. While the goal of releasing user-specific data to third parties is more broad than preserving distances, this work shows that distance computations with privacy is an achievable goal.
Article Details
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.