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Abstract. We study a new framework for designing differentially private (DP) mechanisms
via randomized graph colorings, called rainbow differential privacy. In this framework,
datasets are nodes in a graph, and two neighboring datasets are connected by an edge. Each
dataset in the graph has a preferential ordering for the possible outputs of the mechanism,
and these orderings are called rainbows. Different rainbows partition the graph of connected
datasets into different regions. We show that if a DP mechanism at the boundary of such
regions is fixed and it behaves identically for all same-rainbow boundary datasets, then a
unique optimal (ϵ, δ)-DP mechanism exists (as long as the boundary condition is valid) and
can be expressed in closed-form. Our proof technique is based on an interesting relationship
between dominance ordering and DP, which applies to any finite number of colors and
for (ϵ, δ)-DP, improving upon previous results that only apply to at most three colors
and for ϵ-DP. We justify the homogeneous boundary condition assumption by giving an
example with non-homogeneous boundary condition, for which there exists no optimal DP
mechanism.
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1. Introduction

Differential privacy (DP) is a general framework that aims to limit the statistical capability of
a curious analyst, irrespective of its computational power, in determining whether or not the
data of a specific participant was used in response to its query1 [2, 3]; see [4] for a treatment
of the subject and [5] for a survey. Recently, DP is applied in the 2020 US Census [6], as
well as by Apple, Google, and Microsoft [7–9].

DP imposes constraints on all neighboring datasets, which traditionally differ only in
data from one participant. These constraints are relative (specified as ratios of mechanism
probability distributions), local (specified for neighboring datasets), and dataset-independent
(agnostic to the underlying data distribution or structure) [4], contributing to the success of
DP. However, many DP implementations are agnostic to the actual dataset at hand, which is
nonadaptive and undesirable [10]. Majority of output perturbation DP mechanisms consider
the worst-case query sensitivity between any two neighboring datasets to determine the scale
of noise [4]. This approach is pessimistic and can negatively affect the query utility [10].

Several solutions are available that improve the query utility. For instance, noise
calibration was proposed in [11] to smooth the sensitivity, but a chosen utility level is then
not guaranteed and the mechanism suffers from a heavy tail that leads to outliers. Another
direction is to relax the DP constraints [10,12,13]. For example, [10] proposed individual -DP
that defines DP constraints only for given datasets and their neighbors. The individual-DP
framework destroys the group DP, i.e., DP constraints for non-neighboring datasets are no
longer valid.

Recently, [14] proposed a method to design dataset-dependent DP mechanisms for binary-
valued queries that guarantee optimal utility without weakening the original DP constraints;
see also [15]. In the model in [14], each dataset has a true query value (e.g., blue or red) and
is represented as a node on a graph with edges, representing neighboring datasets. Moreover,
they consider DP mechanisms which act homogeneously at the boundary datasets.2 They
then show how these initial constraints can be optimally extended in closed-form for all other
datasets, where the probability of giving the truthful query response is maximized by taking
into account the distance to the boundary.

The framework in [14] was generalized in [16] by increasing the number of possible
query outputs to three (e.g., blue, red, and green that represent majority votes among
three choices). This extension is challenging in several ways. In the binary case, the
optimal probability assignment for one color (e.g., blue) automatically determines the whole
mechanism. In the multi-color case, this is not possible. Thus, a preferential order of colors
at each dataset is assumed to solve this problem, in which a mechanism is defined to be
better than another if the preferred colors are output with larger probabilities. When there
are at most three colors, it is shown that for a DP mechanism that is homogeneous at the
boundary, at most one optimal ϵ-DP mechanism exists, for which a closed-form expression is
also given. This result recovers the binary case of [14] as a special case.

1.1. Main Contributions. In this work, we significantly improve [16] by providing a new
proof technique that allows us to extend the results to any number of colors and any (ϵ, δ)-DP
requirements. We show that given a valid boundary homogeneous DP mechanism, at most

1DP variants assuming a finite computational power for the adversary have been studied in works
including [1] but are not within the scope of our work.

2Boundary datasets are neighbors whose true query value is different from each other.
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one optimal (ϵ, δ)-DP mechanism exists, for which we provide a closed-form expression. Our
results recover the result of [16], in which there are three colors and δ = 0. We note that
our definition of optimality of a mechanism is through dominance ordering (see Definition 3
below), while in [16], optimality is defined through lexicographic ordering. Because dominance
ordering is stronger than lexicographic ordering (i.e., x ⪯ y in dominance ordering implies
x ⪯ y in lexicographic ordering, but two elements comparable in lexicographic ordering are
not necessarily comparable in dominance ordering), our optimality result is strictly stronger
than [16] even in the ternary and δ = 0 case.

At its core, our proof uses an interesting relationship between DP and dominance ordering.
Namely, for any ϵ, δ ≥ 0 and any distribution P on an ordered set V, there exists a unique
distribution Q that is (ϵ, δ)-close to P and that dominates any other distribution Q′ that is
(ϵ, δ)-close to P ; see Section 4 below for more details. Finally, we justify the homogeneous
boundary condition assumption by presenting an example with a non-homogeneous boundary
condition, such that valid DP mechanisms exist, but no DP mechanisms are optimal; see
Example 1 below.

1.2. Organization of the Paper. In Section 2, we introduce the setting for rainbow
DP. In Section 3, we show that to construct optimal DP mechanisms for general graphs
under homogeneous boundary conditions, it suffices to do so for a special class of graphs
called line graphs. Furthermore, we show that an optimal DP mechanism may not exist for
non-homogeneous boundary conditions, and discuss the relationship between our optimality
condition and that of previous work [16]. In Section 4, we construct optimal DP mechanisms
for line graphs. In Section 5, we give explicit formulas for the optimal rainbow DP mechanism
and present several examples. In Section 6, we summarize our results, discuss related
approaches and possible further directions.

1.3. Notation. All logarithms in this paper are natural logarithms unless otherwise noted.
For a non-negative integer n, we use [n] to denote the set {1, . . . , n}. For two integers n ≤ m,
we use [n : m] to denote the set {n, . . . ,m}. For two distributions P,Q on a measurable
space X , we define their total variation (TV) distance as

TV(P,Q) = sup
S

|P (S)−Q(S)|, (1.1)

where S goes over measurable subsets of X .

2. Rainbow Differential Privacy

We denote by (D,∼) a family of datasets together with a symmetric neighborhood relationship,
where d, d′ ∈ D are neighbors if d ∼ d′. We consider a finite output space V. Each dataset
d ∈ D has an ordered preference for the elements of V, captured by what we call a rainbow
that represents each preference order.

Definition 1. Let V be a finite output space. A rainbow on V is a total ordering of V.
We denote a rainbow as a permutation vector c ∈ Sym(V), where Sym(V) is the set of all
permutations of V.
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(b) The boundary rainbow graph.

Fig. 1. A rainbow graph and its corresponding boundary graph. A vertex
represents a dataset and its neighboring datasets are connected by an edge.
The function output space is represented by three colors blue, red, and
green. Each dataset has a color preference, represented by the ordering
inside the vertex. For instance, vertex d1 prefers blue to red and red to
green. We call each such color ordering a rainbow. A DP mechanism is then
a probability distribution over colors for every vertex. In (B), we show the
boundary rainbow graph of the rainbow graph shown in (A), as described in
Definition 8 below. In Theorem 3 we show how, for homogeneous boundary
conditions (defined in Definition 6 below), optimal (ϵ, δ)-DP mechanisms on
(A) can be retrieved from optimal ones on (B). For example, for rainbow
c = (red, green, blue), the vertex (c, 0) in the boundary rainbow graph
corresponds to datasets d4, d9 in the original rainbow graph because they
are on the boundary of Bc in the original graph. There is an edge between
(c = (red, green, blue), 0) and (c′ = (red, blue, green), 0) in the boundary
rainbow graph, because there is an edge (d9, d13) in the original rainbow
graph, with i ∈ Bc, m ∈ Bc′ .

The preference of a dataset is captured by the preference function f : D → Sym(V)
that assigns a rainbow to each dataset d ∈ D. Thus, if f(d) = (blue, red, green), then it
means that the dataset d ∈ D prefers blue to red and red to green. Moreover, the goal is
to construct a random function M : D → V that, for each dataset d ∈ D, randomly puts
out an element of V such that for a given DP constraint a pre-specified utility function is
maximized. As commonly done in the DP literature, we refer to the random function as a
mechanism. A mechanism is DP if the distribution of its output on neighboring datasets are
approximately indistinguishable, as we formalize next.

Definition 2 ([4]). Let ϵ, δ be non-negative real numbers with δ ≤ 1. For two distributions
P and Q on V , we say P and Q are (ϵ, δ)-close if for any S ⊆ V , we have P (S) ≤ eϵQ(S) + δ
and Q(S) ≤ eϵP (S) + δ. A mechanism M : D → V is called (ϵ, δ)-DP if for any d ∼ d′, the
distributions of M(d) and M(d′) are (ϵ, δ)-close. If M is (ϵ, 0)-DP, then we also say it is
ϵ-DP. We denote the set of all (ϵ, δ)-DP mechanisms by M.

The performance of a mechanism is measured via a utility function U : M → R, where
U [M] ≥ U [M′] means that the mechanism M outperforms M′. In this work, we consider
utility functions that agree with the preference function f : D → Sym(V), i.e., it is preferable
for a dataset d ∈ D to output a color it prefers according to its rainbow f(d) ∈ Sym(V).
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Definition 3. Let ⪯ be the dominance ordering on the probability simplex

∆(V) = {x ∈ [0, 1]|V| : x1 + · · ·+ x|V| = 1}, (2.1)

i.e., for x, y ∈ ∆(V), x ⪯ y if and only if x1 + · · ·+ xk ≤ y1 + · · ·+ yk for all 1 ≤ k ≤ |V|.
For every mechanism M ∈ M and dataset d ∈ D, let M⃗(d) ∈ ∆(V) be the vector with
coordinates M⃗(d)k = P[M(d) = f(d)k]. Then, a mechanism M ∈ M dominates another
mechanism M′ ∈ M (denoted by M ⪰ M′) if for every dataset d ∈ D, M⃗(d) ⪰ M⃗′(d).
Moreover, we say a utility function U : M → R is order reasonable if whenever a mechanism
M ∈ M dominates another mechanism M′ ∈ M, we have U [M] ≥ U [M′].

The notion of domination in Definition 3 induces a partial order on the set M of all
(ϵ, δ)-DP mechanisms. When a mechanism M dominates M′, it means that M outperforms
M′ for any order reasonable utility. In this setting, we say that a mechanism is optimal if no
other mechanism dominates it.

An interesting subclass of order reasonable utility functions is the set of functions U of

the form U [M] = E

[∑
d∈D

ud(M(d))

]
, where the expectation is taken over the randomness of

the output of the DP mechanism and where ud(·) is a monotone function for all d ∈ D in the
sense that ud(f(d)i) ≥ ud(f(d)i+1) for 1 ≤ i ≤ |V| − 1.

As in [14], we represent a family of datasets together with their neighboring relation
(D,∼) by a simple graph, where the vertices are the datasets in D and there is an edge
between d, d′ ∈ D if and only if they are neighbors, i.e., d ∼ d′.

Definition 4 ([14]). A morphism between (D1,
1∼) and (D2,

2∼) is a function

g : (D1,
1∼) → (D2,

2∼) (2.2)

such that d
1∼ d′ implies in either g(d)

2∼ g(d′) or g(d) = g(d′) for every d, d′ ∈ D1.

An example of a morphism is shown in Fig. 1 above. A morphism g : (D1,
1∼) → (D2,

2∼)
allows to transport (ϵ, δ)-DP mechanisms from its codomain to its domain.

Theorem 1 ([14]). Let g : (D1,
1∼) → (D2,

2∼) be a morphism and M2 : D2 → V be an
(ϵ, δ)-DP mechanism on (D2,

2∼). Then, the mechanism M1 : D1 → V given by the pullback
operation M1 = M2 ◦ g is an (ϵ, δ)-DP mechanism on D1.

3. Optimal Rainbow Differential Privacy Mechanisms

In [14], DP schemes were interpreted as randomized graph colorings. In that setting, each
dataset’s preference was characterized by a single color. In general, for larger output
spaces, each dataset has a corresponding rainbow according to its ordering preference. Thus,
we call the triple (D,∼, f) a rainbow graph, where D is the family of datasets, ∼ is the
neighborhood relationship, and f : D → Sym(V) is the preference function. We say a
morphism g : (D1,

1∼, f1) → (D2,
2∼, f2) is rainbow-preserving if f1 = f2 ◦ g. Indeed, the

morphism in Fig. 1 above is rainbow-preserving. We consider the following topological
notions.
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d1 d2

d5

d4 d3

Fig. 2. Illustration of the rainbow graph in Example 1. We use blue, red,
green to represent the choices 1, 2, 3 respectively.

Definition 5. Let (D,∼, f) be a rainbow graph. Then, for every c ∈ Sym(V), we denote
Bc = {d ∈ D : f(d) = c}. The interior of Bc is the set

(Bc)◦ =
{
d ∈ Bc : d ∼ d′ ⇒ d′ ∈ Bc

}
(3.1)

and its boundary is the set

∂Bc = Bc − (Bc)◦. (3.2)

We next study optimal DP mechanisms given a rainbow boundary condition. Since
dominance (between DP mechanisms) is a partial order, there exists at most one optimal DP
mechanism. In the binary case, it is known that when there exists a valid DP mechanism
on the boundary, then there exists an optimal DP mechanism on the whole graph [14].
Surprisingly, this is no longer the case when there are more than two colors, as shown in the
following example.

Example 1. Let D = {d1, d2, d3, d4, d5}, with neighboring relations d1 ∼ d2 ∼ d3 ∼ d4 ∼
d5 ∼ d1. Let eϵ = 2, δ = 0. Suppose the output space V = {1, 2, 3}, and the preference
function f(di) = (1, 2, 3) for 1 ≤ i ≤ 4 and f(d5) = (1, 3, 2). Consider the rainbow
c = (1, 2, 3). Then Bc = {d1, d2, d3, d4} with boundary ∂Bc = {d1, d4} and interior vertices
(Bc)◦ = {d2, d3}. Suppose the boundary condition is such that M(d1) = (0.2, 0.1, 0.7) and
M(d4) = (0.4, 0.1, 0.5). We claim that under this setting, there exist valid DP mechanisms,
but there is no optimal DP mechanism.

First, we define two valid DP mechanisms M1 and M2. Let M1(d2) = M1(d3) =
(0.4, 0.2, 0.4), M2(d2) = (0.4, 0.1, 0.5), and M2(d3) = (0.7, 0.05, 0.25). It is straightforward
to verify that M1 and M2 are both valid DP mechanisms. Suppose, for the sake of
illustrating a contradiction, that M3 is an optimal DP mechanism. Because M3 ⪰ M1,
we have M3(d2) ⪰ M1(d2). Because of the boundary condition M(d1) = (0.2, 0.1, 0.7), we
must have M3(d2) = M1(d2). Because M3 ⪰ M2, we have M3(d3) ⪰ M2(d3). Because of
the boundary condition M(d4) = (0.4, 0.1, 0.5), we must have M3(d3) = M2(d3). So we
have fully determined M3. However, M3 is not a valid DP mechanism because M3(d2)2 >
eϵM3(d3)2 + δ. Thus, there exists no optimal DP mechanism.

The main issue in the above example is that the boundary condition is not homogeneous.
That is, the conditions on datasets d1 and d4 are different. We next define a homogeneity
condition for DP mechanisms, generalizing [14] to non-binary functions.

Definition 6. A mechanism M : D → V is boundary homogeneous if, for every rainbow
c ∈ Sym(V), it holds that any two boundary datasets d, d′ ∈ ∂Bc satisfy the condition
P[M(d) = v] = P[M(d′) = v] for every v ∈ V.
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We next provide our main result, which shows that under a valid homogeneous boundary
condition, there exists a unique optimal DP mechanism and this optimal DP mechanism can
be expressed in closed form.

Theorem 2. Let (D,∼, f) be a rainbow graph and, for every rainbow c ∈ Sym(V) and
d ∈ ∂Bc, let m⃗c ∈ ∆(V) be a fixed homogeneous boundary condition. Suppose that the
boundary condition is valid, i.e., for every pair d ∼ d′ ∈

⋃
c∈Sym(V) ∂B

c, we have that m⃗f(d)

and m⃗f(d′) are (ϵ, δ)-close to each other. Then, there exists a unique optimal (ϵ, δ)-DP
mechanism satisfying the boundary condition.

Proof of Theorem 2 and description of the optimal DP mechanism is delayed to Section 4
below. We next define the notion of a line graph, which is used in the proof.

Definition 7. Let c ∈ Sym(V) be a rainbow and n ∈ N. The (c, n)-line is the rainbow graph
(D,∼, f) with datasets D = [0 : n], neighboring relation i ∼ j if |i− j| = 1, and preference
function f(d) = c for every d ∈ D. Dataset 0 ∈ D is considered the boundary of the line.

The other new notion we need for the proof of Theorem 2 is that of the boundary rainbow
graph of a rainbow graph, defined next.

Definition 8. Let (D,∼, f) be a rainbow graph. We define its boundary rainbow graph
(D∂ ,

∂∼, f∂) as follows. For c ∈ Sym(V), let

dc = max
d∈D:f(d)=c

dist(d, ∂Bc), (3.3)

where we define dist(x, S) = miny∈S dist(x, y). That is, dc is the maximum distance of a
dataset with preference c to the boundary ∂Bc. Let D∂ = {(c, i) : c ∈ Sym(V), i ∈ [0 : dc]}
and f∂((c, i)) = c. Define (c, i)

∂∼ (c, i + 1) for i ∈ [0 : dc − 1], and (c, 0)
∂∼ (c′, 0) (for

c, c′ ∈ Sym(V ) and c ̸= c′) if there exists d ∈ Bc, d′ ∈ Bc′ such that d ∼ d′. In other words,
for each preference c there is a chain with dc + 1 vertices, with (c, 0) being the head and
(c, dc) being the tail. There is an edge between two heads (c, 0), (c′, 0) if and only if there
are two adjacent datasets, one with preference c, the other with preference c′.

Note that the boundary rainbow graph is a union of (c, dc)-lines for c ∈ Sym(V ) with a
few possible additional edges between the endpoints {(c, 0) : c ∈ Sym(V)}; see Fig. 1 above.
Therefore, the boundary rainbow graph consists of a series of line graphs, each for a different
rainbow occurring in the original graph. We define the boundary morphism g∂ : D → D∂ by
sending d ∈ D to (f(d), dist(d, ∂Bf(d))) ∈ D∂ . We now show that optimal mechanisms for
boundary-homogeneous rainbow graphs can be obtained by pulling them back via Theorem 1
from their boundary rainbow graphs.

Theorem 3. Let (D,∼, f) be a rainbow graph and M∂ : D∂ → V be the optimal (ϵ, δ)-DP
mechanism on its boundary rainbow graph subject to fixed boundary probabilities. Then,
the pullback M = M∂ ◦ g∂ , where g∂ is the boundary morphism, is the optimal boundary
homogeneous (ϵ, δ)-DP mechanism subject to the same boundary probabilities.

Proof. From Theorem 1, it follows that the morphism g∂ : D → D∂ induces an (ϵ, δ)-DP
mechanism on D defined by M∂ ◦ g∂ . This mechanism is clearly boundary homogeneous.
Let M be a valid (ϵ, δ)-DP mechanism satisfying the boundary condition. We prove that
M ⪯ M∂ ◦ g∂ .
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Let Bc ⊆ D be the subset of datasets with the same preference function. Let d0 be
the closest dataset in ∂Bc to d ∈ Bc. Let G = {d, ddist(d,∂Bc)−1, . . . , d0} be a set of datasets
which forms a shortest path from d to d0. Since g∂ |G is injective, it has a left inverse, which
we denote as h : g∂(G) → G. However, h is a morphism and, therefore, from Theorem 1,
M◦ h is an (ϵ, δ)-DP mechanism on D∂ . Then, since M∂ is the optimal mechanism on D∂ ,
it follows that M∂ |g∂(G) is the optimal mechanism on g∂(G). Thus,

−−−−−→
M∂ ◦ g∂(d) ⪰ M⃗(d).

Because the choice of d is arbitrary, we obtain M ⪯ M∂ ◦ g∂ , as desired.

Since a boundary rainbow graph consists of a series of line graphs, the problem of finding
optimal mechanisms can be reduced to finding them for line graphs, which is discussed in
the next section after comparing the two orderings considered.

4. Optimal Differentially Private Mechanisms for Line Graphs

In this section, we derive optimal DP mechanisms for line graphs and use this to prove
Theorem 2, and describe optimal DP mechanisms for general graphs. In this section, we use
the shorthand q := |V|.

Theorem 4. For any (c, n)-line graph (D,∼, f) with boundary condition m⃗, i.e.,

P[M(0) = k] = mk for all 1 ≤ k ≤ q, (4.1)

there exists a unique optimal DP mechanism. Furthermore, under the unique optimal DP
mechanism, M(d), 1 ≤ d ≤ n, has distribution T d

ϵ,δ(m⃗), where Tϵ,δ : ∆(V) → ∆(V) maps
p ∈ ∆(V) to p′ ∈ ∆(V) defined as follows:

p′k = s′k − s′k−1, (4.2)

where we have

s′k = min{1,min{eϵsk, 1− e−ϵ(1− sk)}+ δ} for 1 ≤ k ≤ q. (4.3)

In the above, s0 = s′0 = 0 and sk =
∑

1≤i≤k pi for 1 ≤ k ≤ q.

We next describe the main results we require to prove Theorem 4, whose proof is given
at the end of this section. Theorem 4 is used to prove Theorem 2, whose proof is also given
at the end of this section. Now, without loss of generality, we assume that c = (1, . . . , |V|),
and V = {1, . . . , q}. Our key lemma is the following.

Lemma 1. Given a distribution p ∈ ∆(V), p′ = Tϵ,δ(p) is the unique distribution such that
(1) p′ is (ϵ, δ)-close to p;
(2) for any p′′ that is (ϵ, δ)-close to p, we have p′ ⪰ p′′.

Proof. We claim that p′ defined above satisfies both conditions of Lemma 1.
Step 0. We verify that p′ is a valid distribution. Because sq = 1, we have s′q = 1.

Because sk is monotone increasing in k and both functions eϵx and 1 − e−ϵ(1 − x) are
monotone increasing in x, s′k is monotone increasing in k. So p′ is a valid distribution.

Step 1. We verify that p′ is (ϵ, δ)-close to p. We define another distribution p̃. Let

s̃k = min{eϵsk, 1− e−ϵ(1− sk)} for 1 ≤ k ≤ q (4.4)

and

p̃k = s̃k − s̃k−1. (4.5)
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Note that p̃ is a valid distribution and TV(p̃, p′) ≤ δ. It suffices to prove that p̃ is (ϵ, 0)-close
to p.

We first prove that for any 1 ≤ k ≤ q, we have

e−ϵpk ≤ p̃k ≤ eϵpk. (4.6)

Note that (eϵsk−(1−e−ϵ(1−sk))) is monotone increasing in k. So there exists k0 ∈ {0, . . . , q}
such that

s̃k =

{
eϵsk if k ≤ k0,
1− e−ϵ(1− sk) if k ≥ k0 + 1.

(4.7)

Then,
(1) for all k ≤ k0, we have

p̃k = eϵ(sk − sk−1) = eϵpk;

(2) for all k ≥ k0 + 2, we have

p̃k = (1− e−ϵ(1− sk))− (1− e−ϵ(1− sk−1)) = e−ϵpk;

(3) for k = k0 + 1, we have

p̃k = (1− e−ϵ(1− sk))− eϵsk−1 ≤ eϵsk − eϵsk−1 = eϵpk

and

p̃k = (1− e−ϵ(1− sk))− eϵsk−1

≥ (1− e−ϵ(1− sk))− (1− e−ϵ(1− sk−1))=e−ϵpk.

This proves that p̃ is (ϵ, 0)-close to p.
Step 2. We next prove that for any p′′ that is (ϵ, δ)-close to p, we have p′ ⪰ p′′. Because

p′′ is (ϵ, δ)-close to p, there exists a distribution p♯ such that TV(p′′, p♯) ≤ δ and that p♯ is
(ϵ, 0)-close to p. Let s♯ be the prefix sum of p♯ and s′′ be the prefix sum of p′′.

For any 1 ≤ k ≤ q, taking S = {1, . . . , k} in the DP condition (Definition 2) on (p, p♯),
we obtain

s♯k ≤ eϵsk. (4.8)

Taking S = {k + 1, . . . , q}, we have

s♯k ≤ 1− e−ϵ(1− sk). (4.9)

Thus, we have s♯k ≤ s̃k. Furthermore, because TV(p′′, p♯) ≤ δ, we have

s′′k ≤ min{1, s♯k + δ} ≤ min{1, s̃k + δ} = s′k. (4.10)

Because k can be any integer between 1 and q, this proves that p′ ⪰ p′′.

Lemma 2. Tϵ,δ preserves dominance ordering, i.e., p ⪰ p′ =⇒ Tϵ,δ(p) ⪰ Tϵ,δ(p
′).

Proof. This holds because min{1,min{eϵx, 1 − e−ϵ(1 − x)} + δ} is a monotone increasing
function in x.
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Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Let M be the DP mechanism defined as in the theorem statement. By
Lemma 1 part (1), M is an (ϵ, δ)-DP mechanism. Now let us prove its optimality. Let M′

be another (ϵ, δ)-DP mechanism with the same boundary condition.
Let us use induction on d to prove that M(d) ⪰ M′(d) for all d ∈ [0 : n]. Because of

the boundary condition, we have M(0) = M′(0). In particular, M(0) ⪰ M′(0). This is
the base case of our induction. Now suppose that we have proved M(d) ⪰ M′(d) for some
d ∈ [0 : n− 1]. Then

M(d+ 1) = Tϵ,δ(M(d)) ⪰ Tϵ,δ(M′(d)) ⪰ M′(d+ 1), (4.11)

where the first step is by definition of M, the second step is by Lemma 2 and induction
hypothesis, the third step is by Lemma 1. This completes the induction. Therefore M(d) ⪰
M′(d) for all d ∈ [1 : n].

Using Theorem 4, we next prove Theorem 2.

Proof of Theorem 2. The proof is straightforwardly obtained by combining the results of
Theorems 3 and 4. Theorems 3 shows that to construct an optimal DP mechanism for a
general graph under a homogeneous boundary condition, it suffices to construct an optimal
DP mechanism for the boundary rainbow graph, which is achieved by Theorem 4.

By expanding the proof of Theorem 2, we can describe the optimal DP mechanism for
general graphs as follows. For any c ∈ Sym(V), d ∈ Bc, let m⃗c be the boundary condition.
Define m̃c ∈ ∆(V) as m̃c

i = m⃗c
c(i) for 1 ≤ i ≤ q. This is a permuted version of m⃗c such

that the preference order is (1, . . . , |V|). Then the optimal DP mechanism is given by
P[M(d) = c(k)] =

(
T
dist(d,∂Bc)
ϵ,δ (m̃c)

)
k
, for 1 ≤ k ≤ q.

5. Designing the Optimal Differentially Private Mechanism

In this section, we discuss how to design optimal DP mechanisms. Throughout, we consider
a (c, n)-line with c = (1, . . . , |V|) and boundary condition m⃗ ∈ ∆(V), i.e., P[M(0) = k] = mk.
The case c ̸= (1, . . . , |V|) can be handled by performing a permutation, as in the end of
Section 4. For t ∈ [n], the distribution of M(t) can be straightforwardly computed using
the definition of Tϵ,δ (see Theorem 4 above). In fact, it can be expressed in an even more
explicit form, as we explain below.

5.1. Special Case δ = 0. As a warm up, let us first consider the case δ = 0. By Theorem 4,
for the optimal DP mechanism, the distribution of M(t) is equal to T t

ϵ,δ(m⃗). For t ∈ Z≥0,
let st denote the prefix sum of T t

ϵ,δ(m⃗). By construction of the operator Tϵ,δ, we have
(1) if stk ≤ 1/(eϵ + 1), then

st+1
k = eϵstk;

(2) if stk ≥ 1/(eϵ + 1), then
st+1
k = 1− e−ϵ(1− stk).
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For 1 ≤ k ≤ q, define

τk =

⌊
max

{
−
log(s0k · (eϵ + 1))

ϵ
+ 1, 0

}⌋
. (5.1)

Then we have stk ≤ 1/(eϵ + 1) for t ≤ τk − 1 and stk ≥ 1/(eϵ + 1) for t ≥ τk. Thus, we obtain
as the solution

stk =

{
etϵs0k if t ≤ τk,

1− e−ϵ(t−τk)(1− sτkk ) if t ≥ τk + 1.
(5.2)

Then, we obtain P[M(t) = k] = stk − stk−1.
Note that in the case of three colors (q = 3), our expression recovers the one given in [16].

5.2. General Case δ > 0. Now, we consider the case δ > 0. The formula is slightly more
complicated, but the derivation method is similar. Recall that m⃗ is the boundary mechanism.
Let st denote the prefix sum of T t

ϵ,δ(m⃗). Define

ρ =
δ

eϵ − 1
. (5.3)

By construction of the operator Tϵ,δ, we have
(1) if stk ≤ 1/(eϵ + 1), then

st+1
k = min{1, eϵstk + δ}

which is equal to
st+1
k + ρ = min{eϵ(stk + ρ), 1 + ρ};

(2) if stk ≥ 1/(eϵ + 1), then

st+1
k = min{1, 1− e−ϵ(1− stk) + δ}

which is equal to

1− st+1
k + eϵρ = max{e−ϵ(1− stk + eϵρ), eϵρ}.

Define

τk =

max

 log
((

1
eϵ+1 + ρ

)
/
(
s0k + ρ

))
ϵ

+ 1, 0


 . (5.4)

Then we have stk ≤ 1/(eϵ + 1) for t ≤ τk and stk ≥ 1/(eϵ + 1) for t ≥ τk + 1. Solving this, we
obtain

stk =

{
min{1, etϵ(s0k + ρ)− ρ} if t ≤ τk,

min{1, 1 + eϵρ− e−ϵ(t−τk)(1− sτkk + eϵρ)} if t ≥ τk + 1.
(5.5)

Finally, we have P[M(t) = k] = stk − stk−1.
When δ = 0, our expressions reduce to the one we derived in Section 5.1.
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Fig. 3. The optimal (log(1.2), 0)-DP mechanism with homogeneous boundary
condition m⃗ = (0.0005, 0.0081, 0.1364, 0.2727, 0.5822). We have τ1 = 38, τ2 =
22, τ3 = 7, τ4 = 1, and τ5 = 0.

5.3. Numerical Results. We depict several examples for optimal DP mechanism designs
in Fig. 3, 4, and 5. In these examples, we consider |V| = 5, c = (1, . . . , 5), and ϵ = log 1.2.
We choose the boundary condition to be

m⃗ = (0.0005, 0.0081, 0.1364, 0.2727, 0.5822)

which corresponds to 0.0005 = 0.001× eϵ

1+eϵ , 0.0081 = 0.015× eϵ

1+eϵ , 0.1364 = 0.25× eϵ

1+eϵ ,
0.2727 = 0.5× eϵ

1+eϵ , and 0.5822 is 1 minus all the other values.
Fig. 3 illustrates the optimal (ϵ, δ)-DP mechanism for δ = 0. At integer t, the figure shows

T t
ϵ,δm⃗. At non-integer t, the values are interpolated using (5.2). By (5.2), we observe that

for fixed k, stk goes through a phase transition at τk. For t ≤ τk, stk increases exponentially
and for t ≥ τk, 1− stk decreases exponentially, respectively. By (5.1), τk is non-increasing in
k. Therefore, the probabilities P[M(t) = k] = stk − stk−1 goes through at most three phases
as t increases. We have the following results:
• in the first phase with t ≤ τk, stk and stk−1 both increase exponentially;
• in the second phase with τk ≤ t ≤ τk−1, stk−1 increases exponentially, while 1−stk decreases

exponentially;
• in the third phase with t ≥ τk−1, 1− stk and 1− stk−1 both decrease exponentially.
When τk = 0, the first phase is degenerate (i.e., has length 0); when τk = τk−1, the second
phase is degenerate; and when τk−1 = ∞ (i.e., s0k−1 = 0), the third phase is degenerate. In
Fig. 3, the first phase for k = 5 is degenerate (no phase transition), and the third phase for
k = 1 is degenerate.
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Fig. 4. The optimal (log(1.2), 10−3)-DP mechanism with homogeneous
boundary condition m⃗ = (0.0005, 0.0081, 0.1364, 0.2727, 0.5822). We have
τ1 = 25, τ2 = 20, τ3 = 7, τ4 = 1, and τ5 = 0.

Secondly, Fig. 4 shows the optimal DP mechanisms with the same parameters as Fig. 3,
but with δ = 10−3. At integer t, the figure shows T t

ϵ,δm⃗. At non-integer t, the values are
interpolated using (5.5). From (5.5) we see that for fixed k, stk goes through a phase transition
at τk. For t ≤ τk, stk increases exponentially (with a drift); and for t ≥ τk, 1− stk decreases
exponentially (with a drift). The phase transition behavior is similar to the δ = 0 case.

Finally, Fig. 5 shows the optimal DP mechanisms with the same parameters as Fig. 3
and Fig. 4, but with δ = 0.01. In this case, the phase transitions happen earlier (i.e., the τ ’s
are smaller than previous examples).

6. Discussions

6.1. Contributions. In this paper, we presented optimal rainbow DP mechanisms given
valid homogeneous boundary conditions for any finite query output sizes by using a new
proof technique.

We remark that it is a priori not clear whether an optimal mechanism exists for either
homogeneous or non-homogeneous boundary conditions. In fact, our Example 1 shows
that there exist examples with an inhomogeneous boundary condition where there are valid
mechanisms but there is no optimal mechanism. Therefore, we believe it is an interesting
and non-trivial result to show that under homogeneous boundary condition, an optimal
mechanism exists, and it is optimal under a wide range of utility functions. Furthermore, we
give an explicit formula for the optimal mechanism. As shown in previous works [14, 16], as
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Fig. 5. The optimal (log(1.2), 0.01)-DP mechanism with the homogeneous
boundary condition m⃗ = (0.0005, 0.0081, 0.1364, 0.2727, 0.5822). We have
τ1 = 13, τ2 = 12, τ3 = 6, τ4 = 1, and τ5 = 0.

the number of colors grows, the complexity of the optimal DP mechanism also increases, and
it is a priori not clear whether the complexity will be out of reach as the number of colors
become larger. Our result shows that the answer is no, as we give a uniform treatment for
any number of colors.

6.2. Dataset dependency. Our mechanism is a dataset-dependent mechanism. In general,
dataset dependency is desirable from the perspective of DP mechanism design because it
allows more room for mechanism design and may lead to improved utility. In our rainbow DP
setting, a dataset-independent mechanism would be suboptimal because such a mechanism
will not be aware of whether a dataset is close to or far away from the boundary. A dataset-
dependent mechanism such as our optimal mechanism can be more aggressive when choosing
the output distribution for datasets far away from the boundary. Our result advocates using
data-dependent mechanisms in DP mechanism design.

6.3. Lexicographic vs. Dominance Ordering. In [16], optimal rainbow DP mechanisms
under lexicographic ordering are studied, while we focus on dominance ordering. We briefly
discuss the relationship between the two orderings.

On the probability simplex ∆(V), dominance ordering is strictly stronger than lexico-
graphic ordering. Therefore, a rainbow DP mechanism that is optimal under dominance
ordering is also optimal under lexicographic ordering. As we show in Theorem 2 above, under
homogeneous boundary conditions, there exists a unique optimal rainbow DP mechanism
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under dominance ordering, which implies the same result for lexicographic ordering. However,
under non-homogeneous boundary conditions, as we illustrate in Example 1 above, there exist
scenarios for which there is no optimal rainbow DP mechanism, under either lexicographic
ordering or dominance ordering. An interesting question is whether scenarios exist for which
there is an optimal rainbow DP mechanism under lexicographic ordering, but no optimal
mechanism under dominance ordering. Our efforts in this direction have not resulted in any
such scenario. We know that such an example, if it exists, should have a non-homogeneous
boundary condition. However, it seems difficult to control a DP mechanism to be optimal
under lexicographic ordering, unlike under dominance ordering.

6.4. Comparison with exponential mechanism. We compare the exponential mechanism
with our mechanism on the rainbow DP problem. First of all, because our mechanism is
optimal, any mechanism produced using the exponential mechanism cannot be better than
ours. So the crux of the question is whether our mechanism can be produced using the
exponential mechanism. We note that a dataset-independent version cannot produce our
mechanism, because our mechanism is dataset-dependent. If we consider dataset-dependent
versions, then the question is how to design the score function used in the exponential
mechanism. A clever design of the score function could give the same mechanism as ours,
but it seems that to find such a clever design, it is necessary to use proofs similar to ours,
rather than using the usual proof of utility for exponential mechanisms. Therefore, using
exponential mechanism in this setting seems to have little benefit.

It is an interesting question whether our mechanism can be applied to other problems
such as median queries. It might be related to a continuous generalization we will discuss
below. We would leave this direction for future work.

6.5. Further directions. A possible extension to our result is the case of continuous
alphabets (e.g., an interval [0, 1]). For example, when we have V = [0, 1] and smaller numbers
are preferred over larger numbers, we could replace dominance ordering with a suitable
generalization (e.g., first-order stochastic dominance [17]), for which case generalizations of
our main results (Theorems 2 and 4) are expected to hold. We leave this direction for further
research.
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