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Abstract. We give simpler, sparser, and faster algorithms for differentially private fine-
tuning of large-scale pre-trained language models that achieve the state-of-the-art privacy
versus utility tradeoffs on many standard NLP tasks. We propose a meta-framework for
this problem, inspired by the recent success of highly parameter-efficient methods for fine-
tuning. Our experiments show that differentially private adaptations of these approaches
outperform previous private algorithms in three important dimensions: utility, privacy,
and the computational and memory cost of private training. On many commonly studied
datasets, the utility of private models approaches that of non-private models. For example,
on the MNLI dataset we achieve an accuracy of 87.8% using RoBERTa-Large and 83.5%
using RoBERTa-Base with a privacy budget of ϵ = 6.7. In comparison, absent privacy
constraints, RoBERTa-Large achieves an accuracy of 90.2%. Our findings are similar for
natural language generation tasks. Privately fine-tuning with DART, GPT-2-Small, GPT-
2-Medium, GPT-2-Large, and GPT-2-XL achieve BLEU scores of 38.5, 42.0, 43.1, and 43.8
respectively (privacy budget of ϵ = 6.8, ¶ = 1e-5), whereas the non-private baseline is 48.1.
All our experiments suggest that larger models are better suited for private fine-tuning;
while they are well known to achieve superior accuracy non-privately, we find that they
also better maintain their accuracy when privacy is introduced.
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1. Introduction

Deep learning models are well known to leak sensitive information about the dataset when
trained using conventional methods (Shokri et al., 2017; Carlini et al., 2019, 2021). To combat
this issue, models can instead be trained to guarantee differential privacy (DP) (Dwork et al.,
2006b), a strong notion of data privacy which limits the influence of any individual training
point on the final model. While DP is one of the few approaches capable of providing
machine learning models with rigorous privacy guarantees, it generally comes at a cost in
terms of test accuracy. One oft-cited explanation is that the constraint of DP necessitates
much more training data (Tramèr and Boneh, 2021; Feldman, 2020; Brown et al., 2021).
Unfortunately, more training data may be hard to acquire, particularly in settings where
privacy is a concern.

Parallel to these developments, Transformer-based (Vaswani et al., 2017) large language
models (LLMs), including the BERT (Devlin et al., 2019; Liu et al., 2019) and GPT (Radford
et al., 2018, 2019; Brown et al., 2020) families, have enabled significant progress in natural
language processing, achieving state-of-the-art accuracy in almost every task considered.
These models are first pre-trained on an extremely large and diverse public dataset. The
weights are then fine-tuned for each task of interest using a much smaller task-specific
dataset. For example, a single pre-trained GPT-family model may be fine-tuned for various
downstream tasks, such as email reply suggestion, sentence completion in text editors,
language translation, and more. This two-stage paradigm can naturally be adapted to solve
tasks in private learning, automatically addressing the aforementioned data shortage issue
via the massive scale of the public pre-training dataset. One may pre-train the model on
public data as usual,1 but then fine-tune the model privately.

Despite the success of these models, task-specific fine-tuning introduces a number
of technical challenges. In the non-private setting, the immense size of LLMs makes it
impractical to fine-tune the full model and store a separate copy of the parameters for
hundreds of downstream tasks. Things only get worse with privacy, which leads to overheads
in terms of running time, memory usage, and most importantly, accuracy. The magnitude
of noise introduced to a model due to DP grows as the model size increases (Bassily et al.,
2014; Abadi et al., 2016; Bun et al., 2014), which can overwhelm any signal for larger models.
A recent line of work in the non-private literature has proposed parameter-efficient methods
to alleviate the issues of storage and computational cost for fine-tuning (Houlsby et al., 2019;
Li and Liang, 2021; Aghajanyan et al., 2021; Hu et al., 2022; Mahabadi et al., 2021). The
main focus of our work is to explore parameter-efficiency in the context of private learning.

1.1. Our Contributions. Our primary contribution is to show that advanced parameter-
efficient methods can lead to simpler and significantly improved algorithms for private
fine-tuning. Our framework is illustrated in Figure 1. Our findings and contributions are
summarized as follows:

• State-of-the-art utility and privacy. Empirical evaluation of our algorithms reveals
that they achieve state-of-the-art accuracy versus privacy tradeoffs, improving upon the
previous best (Yu et al., 2021b). More importantly, for many fine-tuning tasks, the utility

1Despite the fact that the pre-training data is public, there may nonetheless be privacy concerns related
to personal or copyrighted data. However, since these pre-trained models have already been released, any
associated privacy loss has already been incurred.

2https://gluebenchmark.com/leaderboard
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Figure 1. An illustration of our framework
First, the model is pre-trained on a large, public dataset. Next, new parameters are introduced and privately
fine-tuned on a smaller, private task-specific dataset. The original parameters are frozen during this process.
Finally, the fine-tuned new parameters may be released publicly and plugged-in to the model for downstream
tasks, while still preserving privacy of the private dataset.

of models trained with DP approaches that of non-private models. For example, privately
fine-tuning RoBERTa-Large on the MNLI data set (Williams et al., 2018), we achieve
an accuracy of 87.8% with a privacy budget of (ϵ = 6.7, ¶ = 1e-6). Without privacy
guarantees, RoBERTa-Large achieves an accuracy of 90.2% (GPT-3 is known to achieve
91.7% (Hu et al., 2022)); see Table 1 for a summary. We also explore private natural
language generation tasks, fine-tuning GPT-2 models on the E2E dataset (Novikova et al.,
2017). Again, the utility approaches non-private levels; we achieve a ROUGE-L score of
67.8 with GPT-2-Large and (ϵ = 6.0, ¶ = 1e-5), compared to 72.0 without privacy.

• Larger models are better. Prior work has consistently shown that larger language
models achieve better accuracy for downstream tasks. Our results give evidence that
this phenomenon extends to the private setting. For example, on the MNLI dataset,
RoBERTa-Base achieves an accuracy of 83.5% (versus 87.6% non-privately, a drop of
4.1%) whereas RoBERTa-Large achieves an accuracy of 87.8% (versus 90.2% non-privately,
a drop of 2.4%), both under a privacy budget of (ϵ = 6.7, ¶ = 1e-6). Similarly, privately
fine-tuning (using LoRA (Hu et al., 2022)) on DART (ϵ = 6.8, ¶ = 1e-5), GPT-2-Medium

Table 1. Accuracy of fine-tuning for downstream tasks, RoBERTa-Large (in %).

Method MNLI SST-2 QQP QNLI Avg. Trained params

Non-private SOTA2 92.3 97.5 90.9 96.7 94.4 N/A
Non-private fine-tuning 90.2 96.4 92.2 94.7 93.4 100%
Our results (ϵ = 6.7) 87.8 95.3 87.4 90.8 90.3 0.94%

Our results achieve accuracy comparable to full fine-tuning non-privately, while simultaneously
guaranteeing differential privacy and modifying less than 1% of the parameters. We choose
¶ = 1× 10−5 for SST-2 and QNLI and ¶ = 1× 10−6 for MNLI and QQP due to their dataset
sizes. Implementation details are in Section 4.1. The non-private SOTA results are obtained
from fine-tuning a model with 5.4B parameters.



4 YU ET AL

Table 2. Fine-tuning GPT-2 models on the DART dataset.

Model BLEU (DP) BLEU (non-private) Drop due to privacy

GPT-2-Medium 42.0 47.1 5.1
GPT-2-Large 43.1 47.5 4.4
GPT-2-XL 43.8 48.1 4.3

We observe that larger models have better utility, both in absolute numbers, and in
terms of preserving non-private utility. DP parameters are (ϵ = 6.8, ¶ = 1e-5).

achieves a BLEU score of 42.0 (versus 47.1 non-privately, a drop of 5.1) while GPT-2-XL
achieves a BLEU score of 43.8 (versus 48.1 non-privately, a drop of 4.3), see Table 2.
Observe that utility improves with model size in two ways: both in terms of absolute
numbers, as well as the drop incurred due to privacy. While the power of large models has
been established in the non-private setting, we find this phenomenon quite surprising under
DP. There is often a tension when choosing private model architectures; larger models
may have higher capacity but necessitate the introduction of more noise. Consequently,
smaller and simpler private models achieve better accuracy in several settings (Papernot
et al., 2019; Tramèr and Boneh, 2021). In contrast, our experiments show that fine-tuning
the biggest models achieves the best accuracy,3 which we consider to be one of our main
findings.

• Simpler, sparser, and faster. Beyond accuracy concerns, DP requirements also
lead to significant overheads in terms of computation and memory usage. The large
number of parameters contributes to the high cost of training LLMs, and things get
worse under privacy, which has been documented to increase training time by up to two
orders of magnitude (Carlini et al., 2019; Subramani et al., 2021). The parameter-efficient
approaches we employ partially offset the issue overheads present; as we only update a
small fraction of the total number of parameters, training becomes considerably more
computationally and memory efficient. Furthermore, as in the non-private setting, this
framework leads to a modular design, where a single large pre-trained model can be
augmented with lightweight modifications for each individual downstream task.

To the best of our knowledge, we are the first to fine-tune GPT-2-XL using differential
privacy. GPT-2-XL is the largest model (with 1.5B parameters) trained thus far using
DP. Given our state-of-the-art results for a variety of standard NLP tasks using advanced
fine-tuning techniques, we believe that our paper will serve as a benchmark for further work
in this direction. For example, the best average accuracy achieved by the prior work of Yu
et al. (2021b) on four standard NLP tasks in Table 1 is 83.9% using ϵ = 8 (and the same
¶ as in Table 1), whereas we can achieve an average accuracy of 90.3% using ϵ = 6.7 by a
combination of better algorithms, larger models, and new privacy accounting techniques.

Finally, though recently considered elsewhere (see Section 5), we put further focus on the
framing of public pre-training and private fine-tuning as an important conceptual direction
in DP deep learning.

3An alternative perspective is that what we currently think of as “large” language models are relatively
small, and we are yet to reach the point where the benefits of model size on accuracy are outweighed by the
drawbacks.
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2. Preliminaries and Prior Algorithm Baselines

Recall the formal definition of differential privacy.

Definition 2.1 (Differential Privacy (DP) (Dwork et al., 2006b,a)). A randomized algorithm
A is (ϵ,¶)-differentially private if for any two neighboring datasets D and D′, which differ
in exactly the data pertaining to a single user, and for all sets S of possible outputs:
Pr[A(D) ∈ S] f eϵ Pr[A(D′) ∈ S] + ¶.

Two datasets D, D′ are neighboring datasets if they differ in exactly one sample. In
this paper, we use the add-remove neighboring relation, i.e., D can be transformed into D′

by adding/removing one sample. We review prior techniques for private fine-tuning.

2.1. Full Fine-tuning via DPSGD. To train a machine learning model with privacy, the
most popular algorithm is the celebrated DP stochastic gradient descent (DPSGD) (Song
et al., 2013; Bassily et al., 2014; Abadi et al., 2016)4. This optimization method serves as
a drop-in replacement for SGD, augmenting it with the addition of per-example gradient
clipping and Gaussian noise addition steps. These two steps serve to limit and mask the
contribution of a single example. Two key points to note are that a) per-example gradient
clipping incurs significant computational and memory overheads in most implementations,
and b) noise introduced due to privacy grows as the square-root of the number of model
parameters. With this tool in place, the most basic fine-tuning strategy is to train all
parameters using DPSGD.

2.2. Reparametrized Gradient Perturbation. To mitigate the limitations of DPSGD,
a recent work of Yu et al. (2021b) introduced an elegant method called reparametrized
gradient perturbation (RGP). RGP exploits the implicit low-rank structure in the gradient
updates of SGD to substantially improve upon DPSGD. Specifically, they reparametrize each
layer’s weight matrix W into LR+ W̃ , where L and R are low-rank gradient-carrier matrices
and W̃ is the residual weight. The authors show that one can obtain a low-dimensional
projection of W ’s gradient by taking gradients only of the low-rank matrices L and R (and

not the high-rank W̃ ). Privacy is introduced by clipping and noising these low-dimensional
gradients of L and R. While this low-dimensional projection loses some of the signal in W ’s
gradient, it turns out to contain enough to still achieve high accuracy. At the same time,
the low-dimensional gradients alleviate the aforementioned issues related to privatization,
significantly reducing the memory consumption and noise introduced. Although RGP uses
a low-rank update at each step, we empirically verify that its accumulated update is not
of low stable rank and hence can not be compressed into small plug-in modules. Possible
reasons include: 1) the low-rank subspaces of RGP are different at different updates; 2) the
accumulated update of RGP contains all the added noises, which are of high stable rank.

4Following Abadi et al. (2016), our implementation of DP-SGD uses shuffle data instead of Poisson
sampling to enforce stochasticity. However, the privacy analysis in Abadi et al. (2016) uses Poisson sampling.
Shuffle data is easier to implement but using it would create a mild discrepancy with the privacy analysis.
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3. Our Approach

3.1. A Meta-framework. We introduce our approach as a meta-framework for private
deep learning, which abstracts the key principles of recent fine-tuning methods.

Suppose f(WPT;x) is a pre-trained model where WPT are the pre-trained weights and
x is any input. We create a new fine-tuning model

fFT(WPT, ¹;x) (3.1)

which incorporates additional trainable parameters ¹, where dim(¹) j dim(WPT). That is,
the number of new parameters in ¹ is a small fraction of the original number of parameters
in the pre-trained weights WPT. Fine-tuning is done by running DPSGD on the additional
parameters ¹, while freezing the weights of pre-trained model WPT. The new parameters
are initialized to ¹0 such that

fFT(WPT, ¹0;x) = f(WPT;x). (3.2)

The initialization condition (3.2) is very important, as it ensures that fine-tuning starts at
the pre-trained model and improves it by modifying the parameters ¹. Most fine-tuning
methods are additive and have the following special form:

fFT(WPT, ¹;x) = f(WPT + Ã(¹);x), (3.3)

i.e., they modify the pre-trained weights by adding a correction term Ã(¹) parametrized by
¹.

Recent work in the non-private literature has described concrete instantiations of this
framework (Houlsby et al., 2019; Mahabadi et al., 2021; Hu et al., 2022), which (crucially)
are effective when dim(¹) j dim(WPT). In the non-private setting, such reparametrizations
are useful for reducing the computation and memory required for fine-tuning, and enable
lightweight and plug-in modifications to the base model for different downstream tasks.
At the same time, they maintain (or sometimes surpass) the accuracy achieved by full
fine-tuning.

We give some intuition as to why parameter-efficient methods could be more effective
for private fine-tuning especially when private datasets are small. For simplicity, we assume
that the fine-tuning method is additive as in (3.3), such that the fine-tuned weights WFT =
WPT +Ã(¹). We can imagine that WFT lies on a manifold passing through WPT of very small
dimension (equal to the dimension of ¹) compared to the dimension of WPT. Even if the
parameters ¹ are very noisy due to the noise added during DPSGD, we will always stay in
this manifold. In particular, we are not disturbing the pre-trained weights in most directions
(those orthogonal to the manifold near WPT). If we run DPSGD on all the weights instead,
then we add noise in all directions, thus potentially unlearning the knowledge learned during
pre-training, especially in low data regimes; see the discussion in Section 4.3 for more on
this.

Besides substantial gains in the accuracy, the above method of reparametrization has
several other advantages:

• A single pre-trained model such as BERT or GPT is generally applied to hundreds of
downstream tasks via fine-tuning. Private fine-tuning using previous methods requires
updating all parameters and storing a different copy of the fine-tuned model per task.
This creates substantial overheads for storing and deploying, which can be very expensive
in practice. On the other hand, the reparametrization (3.1) means that we only need to
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store a single pre-trained model that can be shared across many downstream tasks. Each
downstream task requires only a small number of new parameters that can be plugged in.

• Differentially private training requires computing and storing per-example gradients, which
increases the memory footprint. In our approach, however, learning is done in a much
lower dimension, hence saving on the memory cost as compared to prior works.

• Finally, we expect that (3.1) also gives a more communication-efficient method of fine-
tuning in distributed settings such as federated learning, due to the significantly smaller
number of parameters learned during fine-tuning.

3.2. Instantiating the Meta-framework. In this section, we discuss a few ways to
instantiate our meta-framework. This list is non-exhaustive, but it covers the methods we
employ in our experiments.

3.2.1. Fine-tuning via Low-Rank Adaptation. Low-Rank Adaptation (LoRA) (Hu et al.,
2022) is an additive fine-tuning scheme as defined in (3.3). For each dense weight matrix
W i

PT
of size a× b in the pre-trained network, we add a low-rank correction term LiRi, i.e.,

W i = W i
PT + LiRi, (3.4)

where Li ∈ R
a×r, Ri ∈ R

r×b are new trainable parameters. Hu et al. (2022) apply this
reparameterization only to query and value weights in the Transformer attention blocks, and
freeze all other weights. The rank r is typically chosen to be small, e.g., r = 4, 16, 64. Since
most parameters in Transformer architectures are dense weight matrices, choosing a small r
results in a nearly square-root reduction in the number of parameters.

3.2.2. Fine-tuning via Adapters. Houlsby et al. (2019) propose adapter-based fine-tuning,
in which we modify the architecture of the pre-trained model by adding new “adapter”
layers after each attention and feed-forward layer. Adapter layers are bottleneck layers with
residual connections. Specifically, given an input x, an adapter layer A performs

A(x) = U(Ä(D(x))) + x, (3.5)

where U is an up-projection affine linear map, D is a down-projection affine linear map, and Ä

is a non-linear activation function such as the Gaussian error Linear Unit (GeLU) (Hendrycks
and Gimpel, 2016). If x has dimension d, then U ∈ R

d×r, D ∈ R
r×d for some r j d. Thus,

the number of introduced parameters is significantly less than the number of parameters in
the pre-trained model. When fine-tuning, the parameters of the original model are frozen, and
only parameters of the adapter layers (without bias terms), as well as layer normalizations,
are modified. Note that fine-tuning with adapters is not an additive fine-tuning framework
as in (3.3), but is captured by the broader framework in (3.1).
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Table 3. Memory and speed comparison for RoBERTa-Large.

Method Memory (GB) Speed (seconds per epoch)

Full fine-tuning (DPSGD) 27.9 715
RGP 9.1 296
DP LoRA 6.1 271

The rank is chosen as r = 16 for RGP and LoRA. The speed is measured by the
wall-clock time for training one epoch of the SST-2 dataset on a single Tesla V100
GPU with gradient accumulation for batch size 2000. The memory column shows
the memory cost fo stroing both the model and gradients.

3.2.3. Fine-tuning via Compacter. The recent work of Mahabadi et al. (2021) introduces
Compacters (Compact adapters), a method which further improves the parameter efficiency
of adapters. This is done by replacing the dense matrices in the up-projection U and
down-projection D by tensor products of smaller matrices, thus reducing the number of
trainable parameters. Specifically, they replace the dense matrix Mℓ in the adapter layer ℓ

by a low-rank parameterized hypercomplex multiplication (LPHM) layer, i.e., each dense
matrix Mℓ ∈ R

a×b is expressed as

Mℓ =
n
∑

i=1

Ai ¹
(

Sℓ
iT

ℓ
i

)

(3.6)

where Ai ∈ R
n×n, Sℓ

i ∈ R
a/n×k, T ℓ

i ∈ R
k×b/n and ¹ is the matrix Kronecker product. Note

the matrices Ai are not indexed by the layer ℓ because these matrices are shared among all
the adapter layers. Since each adapter layers has two dense matrices (one for up-projection
and one for down-projection), if there are L adapter layers, this reduces the number of
parameters from L(2ab) to L(2(a + b)k) + n3. In practice, a and b are chosen to be either
the model dimension d or the intermediate representation dimension r in the adapters, n is
typically chosen to be a small constant such as n = 2, 4, 8, 12 and k is chosen to be 1.

3.2.4. Why Does Parameter-Efficient Tuning Work? Theoretical explanation of the success
of parameter-efficient fine-tuning methods is an active area of research in deep learning.
Indeed, since trends have consistently shown that model accuracy increases with size, how
can one achieve competitive accuracy while fine-tuning less than 1% of the parameters?
One popular hypothesis is intrinsic dimensionality (Li et al., 2018), which posits that the
minimum number of parameters needed to train a machine learning model may be much less
than the total number of model parameters. Aghajanyan et al. (2021) explore this hypothesis
in the context of fine-tuning LLMs, showing that one can achieve most of their accuracy by
training only a very small number of parameters (chosen via a random projection). Perhaps
surprisingly, they find that as the model size increases, intrinsic dimension decreases in the
limit exhibiting zero-shot learning. While we did not explore this hypothesis in the context
of DP due to computational restrictions, we believe it may be an interesting lens through
which one can understand the effectiveness of private parameter-efficient fine-tuning.
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3.3. Comparision with Baseline Algorithms. We highlight some key algorithmic differ-
ences between our proposed methods and the baselines of full fine-tuning and RGP.

• DPSGD and RGP both require updating all parameters of the pre-trained model, whereas
our proposed methods update only a tiny fraction (between 0.05% and 1%). The rightmost
columns of Tables 4 and 5 list the number of parameters trained by these algorithms.

• RGP performs a low-rank decomposition of weight matrices which is very similar to LoRA,
though there are subtle differences. Recall that in RGP, at the beginning of each iteration
t, the historical weight matrix Wt−1 is decomposed to find a low-rank product LR. The
gradients computed on L and R are then projected back to the full parameter space to
perform the descent step. Hence, RGP does not keep the pre-trained weights frozen during
the learning process.

LoRA can be viewed as a simplification of RGP. LoRA reparametrizes WFT := WPT+LR,
where the pre-trained weight matrix WPT is frozen during training. Hence, compared to
RGP, LoRA eliminates the decomposition and the projection to the full parameter space at
each iteration, simplifying the implementation and reducing the running time and memory
cost. This is summarized in Table 3. We observe that DP LoRA reduces the memory
cost by about 33% and the training speed by 8%. As we will see, this simplification also
results in improved utility.

• Neither full fine-tuning nor RGP fall into our meta-framework described by (3.1). Thus,
if a pre-trained model is to be applied to several downstream tasks, one must store a
separate set of weights for each task, incurring a significant memory cost and losing the
plug-in functionality. In contrast, our methods are much more lightweight.

4. Experiments

We experimentally evaluate our methods for DP fine-tuning to demonstrate their utility,
privacy, and parameter-efficiency. We investigate both language understanding and text
generation tasks, using RoBERTa and GPT-2 models, to establish that our techniques are
applicable to a variety of tasks and model architectures.5

4.1. Fine-Tuning for Language Understanding Tasks. We first compare our methods
with state-of-the-art fine-tuning algorithms using models from the BERT family, which was
used in the prior work (Yu et al., 2021b). Specifically, we use RoBERTa models (Liu et al.,
2019), which are pre-trained on public data collected from the web. RoBERTa-Base has
125M parameters and RoBERTa-Large has 355M parameters. We fine-tune the pre-trained
models on four tasks: MNLI, QQP, QNLI and SST-2 from the GLUE benchmark (Wang
et al., 2019), following Yu et al. (2021b).

Implementation Details: For fine-tuning with adapters, we may choose the interme-
diate representation dimension r, shared across all adapter layers. Similarly, for fine-tuning
with Compacter, we can choose both the intermediate representation dimension r and the
Kronecker product kernel dimension n in (3.6). For LoRA fine-tuning, we add bottleneck
branches for both the attention layers and the feedforward layers, which differs slightly from
the addition of bottleneck branches for only the Wq and Wv matrices of the attention layers
as done by Hu et al. (2022). Given the same bottleneck representation dimension r in (3.4),

5Code for our experiments is available at https://github.com/huseyinatahaninan/

Differentially-Private-Fine-tuning-of-Language-Models.
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Table 4. Accuracy for fine-tuning downstream tasks with RoBERTa-Base (in %)

Method MNLI SST-2 QQP QNLI Avg. Trained params

Full6
w/o DP 87.6 94.8 91.9 92.8 91.8

100%
DP 53.1 82.6 74.4 63.9 68.5

LoRA w/o DP 87.5 95.1 90.8 93.3 91.7 0.24%
RGP7 DP 80.1 91.6 85.5 87.2 86.1 100%
Adapter DP 83.4 92.5 85.6 87.5 87.3 1.40% (r = 48)
Compacter DP 82.6 92.3 84.7 85.1 86.2 0.055% (r = 96, n = 8)
LoRA DP 83.5 92.2 85.7 87.3 87.2 1.86% (r = 16)

The privacy parameters are ϵ = 6.7, and ¶ = 1× 10−5 for SST-2 and QNLI and 1× 10−6 for MNLI
and QQP. Bold indicates the best accuracy with DP. Numbers for non-private fine-tuning are from
Liu et al. (2019).

Table 5. Accuracy for fine-tuning downstream tasks with RoBERTa-Large (in %)

Method MNLI SST-2 QQP QNLI Avg. Trained params
Full w/o DP 90.2 96.4 92.2 94.7 93.4 100%
LoRA w/o DP 90.6 96.2 91.6 94.9 93.3 0.23%
RGP DP 86.1 93.0 86.7 90.0 88.9 100%
Adapter DP 87.7 93.9 86.3 90.7 89.7 1.31% (r = 48)
Compacter DP 87.5 94.2 86.2 90.2 89.5 0.053% (r = 96, n = 8)
LoRA DP 87.8 95.3 87.4 90.8 90.3 1.74% (r = 16)

The privacy parameters are ϵ = 6.7, and ¶ = 1× 10−5 for SST-2 and QNLI and ¶ = 1× 10−6 for
MNLI and QQP. Bold indicates the best accuracy with DP. Numbers for non-private fine-tuning are
from Liu et al. (2019).

our new implementation uses twice as many trainable parameters as the original paper, and
achieves some improvements for learning with DP. We perform privacy accounting using the
PRV Accountant from Gopi et al. (2021), which currently provides the tightest bounds.

Hyperparameter choice: Given the large number of hyperparameter choices, e.g., the
intermediate representation dimension, learning rate, weight decay, privacy delta, and model
size, an exhaustive grid search over all hyperparameters is expensive, due to the model sizes.
Our hyperparameter choices are informed by prior work and are as follows. For privacy
parameters, we use ¶ = 1 × 10−5 for SST-2 and QNLI and ¶ = 1 × 10−6 for MNLI and
QQP due to their dataset sizes, and use noise multipliers 0.92, 0.83, 0.66 and 0.65 for SST-2,
QNLI, QQP and MNLI, respectively, which is the same as Yu et al. (2021b)8. The clipping
threshold of per-example gradients is 10 for all methods. For adapters and Compacter, we
follow suggestions in the original papers and choose r from a set {16, 48, 96} and n from a
set {4, 8, 12}. For LoRA, we choose the best-performing rank r from the set {4, 16, 48, 64}.
The best performing hyperparameters are noted in Tables 4 and 5. We use batch size 2000

6A concurrent work by Li et al. (2022b) shows DP full fine-tuning can be significantly improved with
carefully chosen hyperparameters. See Section 4.3 for a detailed discussion. We note that in this paper we
use the same hyperparameters for all the algorithms.

7We report RoBERTa-Base numbers from https://github.com/dayu11/

Differentially-Private-Deep-Learning, by the authors of Yu et al. (2021b). Though the paper
itself only reports results on BERT-Base, we cite their paper to also reference the RoBERTa numbers.

8In Appendix A, we evaluate the proposed framework with various choices of privacy parameters.
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and train with half-precision for 20 epochs. We use the optimizer AdamW (Loshchilov and
Hutter, 2019) with weight decay 1e-2 and search over four learning rates {5e-4, 1e-3, 2e-3,
5e-3}. In Appendix B, we show the proposed algorithms perform well for a wide range of
hyperparameters. Due to computational constraints, we cannot repeat all the experiments
with different random seeds. To assess the influence of randomness, we fine-tuned the
RoBERTa-Large model on the SST-2 dataset with five different random seeds. We use
LoRA and choose the best performing hyperparameters. The test accuracy of five runs is
95.5%, 95.5%, 95.3%, 95.2%, and 94.9%. The average accuracy is 95.28% and the standard
deviation of test accuracy is 0.22%. The variation in test accuracy is small and does not
impact our main findings.

Results: We report the prediction accuracy on four tasks in Tables 4 and 59. Our
experiments using RoBERTa-Base serve as a direct comparison to the work of Yu et al.
(2021b) who only trained the base model, whereas RoBERTa-Large experiments demonstrate
the significance of using larger models. We could not report the numbers for full fine-tuning
using DPSGD on RoBERTa-Large due to running time and memory costs; see the discussion
at the end of this section. We summarize our key findings:

• On all datasets, our methods achieve the best accuracy while training a only tiny fraction
of parameters; larger models give significant improvements.

• Noticeable improvements in the privacy parameter ϵ versus Yu et al. (2021b) are primarily
due to new privacy accountants based on Fourier-based numerical composition (Koskela
et al., 2020, 2021; Gopi et al., 2021); we use the PRV Accountant from Gopi et al. (2021)
since it is the most efficient.

• Private adapters provide the best average performance for RoBERTa-Base, whereas LoRA
outperforms all other methods for RoBERTa-Large.

4.2. Fine-tuning for Natural Language Generation (NLG). Next, we study private
fine-tuning for text generation problems using the GPT-2 series of models on the End-
2-End (E2E) NLG challenge (Novikova et al., 2017) and DART (Nan et al., 2021), two
primary benchmarks used in recent works on non-private fine-tuning (Hu et al., 2022; Li and
Liang, 2021). We use GPT-2-Small (117M parameters), GPT-2-Medium (345M parameters),
GPT-2-Large (774M parameters), and GPT-2-XL (1.5B parameters).10 To the best of our
knowledge, we are the first to privately fine-tune for E2E-DART or fine-tune GPT-2-XL. The
purpose of this section is not to evaluate various fine-tuning algorithms, but to show that
private fine-tuning is competitive with non-private fine-tuning for text generation problems.
Due to the high cost of training, we report experimental results only for fine-tuning (private
and non-private) with LoRA. We think that all fine-tuning methods in this paper should
achieve comparable accuracy.

E2E NLG challenge: The E2E dataset was introduced by Novikova et al. (2017),
and contains template-like information in the restaurant domain to be mapped to natural
language with end-to-end training. The dataset consists of 42K training samples, 4.6K
validation samples, and 4.6K test samples.

9Since the original appearance of this paper, several subsequent works also conduct experiments on the
GLUE benchmark (Bu et al., 2022, 2023; He et al., 2023). In Appendix D, we compare DP LoRA fine-tuning
with the results in two representative subsequent works. The results in the subsequent works further confirm
the main findings in this paper.

10https://huggingface.co/transformers/model_doc/gpt2.html.
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Table 6. Metrics on the E2E NLG task. Non-DP results from Hu et al.
(2022), except for GPT-2-XL, which was not reported in the paper. We
ran GPT-2-XL with hyperparameters presented in Hu et al. (2022). Bold
indicates the best accuracy with DP. DP parameters are (ϵ = 6.0, ¶ = 1e-5).
Val perp stands for validation perplexity.

Method Val perp BLEU NIST MET ROUGE-L CIDEr
GPT-2-Small + DP 4.51 63.8 7.19 39.5 67.5 1.87
GPT-2-Medium + DP 4.02 65.5 8.45 42.7 67.9 2.23
GPT-2-Large + DP 3.87 66.7 8.63 44.0 67.8 2.33
GPT-2-XL + DP 3.79 66.1 8.53 43.0 68.1 2.28
GPT-2-Medium 3.19 70.4 8.85 46.8 71.8 2.53
GPT-2-Large 3.06 70.4 8.89 46.8 72.0 2.47
GPT-2-XL 3.01 69.4 8.78 46.2 71.5 2.49

DART: DART was introduced as an open-domain data-to-text dataset by Nan et al.
(2021). The dataset consists of 62K training samples, 6.9K validation samples, and 12K test
samples. In comparison to E2E, the dataset is larger and the task is more challenging.

We use standard metrics such as BLEU, ROUGE-L, etc., used in (Hu et al., 2022) for
measuring the quality of predictions.

Hyperparameter choice: For LoRA, we choose the bottleneck rank r = 4 in (3.4)
and fine-tune Wq and Wv matrices of the attention layers as in the original paper. The
fractions of trainable parameters are 0.12%, 0.11%, 0.09%, and 0.07% for GPT-2-Small,
GPT-2-Medium, GPT-2-Large, and GPT-2-XL, respectively. We optimize using AdamW
with learning rate 4e-4, weight decay 1e-2 and train our models for 20 epochs. We use batch
size 128 for the experiments on E2E and batch size 256 for the experiments on DART. We
take the gradient clipping parameter to be 1.0 and the noise multiplier to be 0.6 for the
accountant in Gopi et al. (2021), achieving ϵ = 6.0, ¶ =1e-5 on E2E and ϵ = 6.8, ¶ =1e-5 on
DART.

Results: The results of our experiments are summarized in the Table 6 and 7, which
reiterate the main themes of our work: private fine-tuning with parameter-efficient approaches
perform close to their non-private counterparts and show consistent improvement in the
utility as model size increases. Note that on E2E dataset, although the validation perplexity
improves as the model becomes larger, the metrics seem to saturate going from large to
XL for both private and non-private cases. On the other hand, for DART dataset both
validation perplexity and the metric improve as the model size increases.

4.3. How Bad is DP Full Fine-tuning? A concurrent work by Li et al. (2022b) shows
that the performance of DP full fine-tuning is sensitive to hyperparameter choices, and
that using a larger batch size and training with full-precision significantly improves the
performance of full fine-tuning. We note that Li et al. (2022b) also propose Ghost Clipping,
which is a novel clipping method that makes DP full fine-tuning more efficient. Without such
techniques, it is impossible to do extensive hyperparameter tuning for DP full fine-tuning
with limited compute. Due to compute limitations, we only did limited hyperparameter
search and the hyperparameter sweep is the same for all the algorithms. This suggests that
parameter-efficient methods may be more robust to the choice of hyperparameters. With



DIFFERENTIALLY PRIVATE FINE-TUNING OF LANGUAGE MODELS 13

Table 7. Metrics on the DART dataset. Non-DP results from Hu et al.
(2022), except for GPT-2-XL, which was not reported in the paper. We
ran GPT-2-XL with hyperparameters presented in Hu et al. (2022). Bold
indicates the best accuracy with DP. DP parameters are (ϵ = 6.8, ¶ = 1e-5).
Val perp stands for validation perplexity. Unlike all other metrics, lower
measurements in the TER metric indicate better performance of the model.

Method Val perp BLEU MET TER
GPT-2-Small + DP 3.82 38.5 0.34 0.53
GPT-2-Medium + DP 3.30 42.0 0.36 0.51
GPT-2-Large + DP 3.10 43.1 0.36 0.5
GPT-2-XL + DP 3.00 43.8 0.37 0.5
GPT-2-Medium 2.67 47.1 0.39 0.46
GPT-2-Large 2.89 47.5 0.39 0.45
GPT-2-XL 2.83 48.1 0.39 0.46

the hyperparameters and setup of Li et al. (2022b) , we are able to reproduce their results.
Moreover, we also get improvements around 1% for our algorithms. We report the new
findings in Appendix C. In the new experiments, the gap between DP full fine-tuning and
parameter-efficient methods on GLUE tasks is within 3% on average, which is much smaller
than the gap in Table 4.

5. Related Work

5.1. More on DP learning: Some work studies private language models on more traditional
architectures such as LSTMs (Hochreiter and Schmidhuber, 1997), either training with
DPSGD (McMahan et al., 2018; Carlini et al., 2019) or related heuristics (Ramaswamy
et al., 2020). Though pre-training on public data is suggested (McMahan et al., 2018),
public data appears to only be used in one of these works for honest hyperparameter
selection (Ramaswamy et al., 2020). A few more recent works consider training LLMs with
DP. Anil et al. (2022) privately train BERT-Large from scratch, compared to our work which
focuses on private fine-tuning. (Hoory et al., 2021; Basu et al., 2021) perform private full
fine-tuning of BERT models. Hoory et al. (2021) achieve accuracy which is comparable to the
non-private model, but additionally supplement the public pre-training data with additional
domain-relevant material, while we use off-the-shelf pre-trained models. Basu et al. (2021)
observe significant drops in utility, compared to our parameter-efficient methods which do
not. While Kerrigan et al. (2020) consider public pre-training and private fine-tuning, their
experiments are on much smaller architectures (i.e., feedforward networks with three hidden
layers). A simultaneous work of Ginart et al. (2022) investigates private prediction (rather
than learning) for next-token prediction. A subsequent work by Senge et al. (2021) also
investigates the effect of private fine-tuning on various NLP tasks.

Our investigation fits more broadly into a line of work employing public data for private
data analysis. Some works on image classification consider pre-training on a large public
dataset and fine-tuning on a smaller private dataset (Abadi et al., 2016; Papernot et al.,
2019; Tramèr and Boneh, 2021; Luo et al., 2021). In particular, Luo et al. (2021) investigate
the role of parameter efficiency in private fine-tuning ResNet models, and propose strategies
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to choose which parameters to fine-tune. One line of work uses unlabeled public data to
train a student model (Papernot et al., 2017, 2018; Bassily et al., 2018), including one work
simultaneous to our own for natural language generation Tian et al. (2022). Another recent
idea uses a small amount of public data to identify a lower-dimensional subspace of the
gradients in which to perform private descent (Zhou et al., 2021; Yu et al., 2021a; Kairouz
et al., 2021). A simultaneous work of Amid et al. (2022) uses public data in the mirror
map for a private mirror descent algorithm. Finally, other works (both theoretical and
experimental) investigate the role of public data in private query release, synthetic data
generation, and prediction (Ji and Elkan, 2013; Beimel et al., 2016; Alon et al., 2019; Nandi
and Bassily, 2020; Bassily et al., 2020a,b; Liu et al., 2021).

Since the initial appearance of our paper, private fine-tuning (of language models and
beyond) has become perhaps the standard paradigm for doing private machine learning in
many settings (Bu et al., 2022; Wu et al., 2024; Du et al., 2023; Pelikan et al., 2023). He
et al. (2023) explored larger-scale settings, including private fine-tuning of GPT-3. Other
works have investigated private fine-tuning of language models with the addition of model
compression (Mireshghallah et al., 2022), and for synthetic data generation with a focus on
the quality of the downstream data (Yue et al., 2022; Kurakin et al., 2023). Turning to vision
models, Golatkar et al. (2022); De et al. (2022); Mehta et al. (2023); Berrada et al. (2023)
show that privately fine-tuning ResNets and Vision Transformers can provide high utility on
benchmarks including CIFAR-10 and ImageNet, the latter of which was previously thought
to be intractable under privacy constraints. Impressive qualitative improvements have also
been shown for generative models (Ghalebikesabi et al., 2023; Harder et al., 2023; Wu
et al., 2023). Some works (Li et al., 2022a; Ganesh et al., 2023) try to provide explanations
as to why public pre-training is so valuable for private ML. See Cummings et al. (2024)
(particularly Section 3.1) for more coverage of recent work using public data in private ML.

Some subsequent works have also been critical of directions we explore in this paper.
Brown et al. (2021) highlight the difficulty of capturing the general concept of privacy via
the semantics of differential privacy. Tramèr et al. (2022) argue that most private ML works
which employ public pre-training are simplistic in their treatment of privacy semantics
(which reductively treat data as either public or private) and limited in their choice of
evaluation datasets.

5.2. More on Fine-tuning: There exist other parameter-efficient tuning methods which
we did not evaluate in our work. Some of these include random subspace projection
(exploiting intrinsic dimensionality (Li et al., 2018; Aghajanyan et al., 2021)), prefix and
prompt tuning (Li and Liang, 2021; Lester et al., 2021), tuning only biases (Cai et al.,
2020; Ben Zaken et al., 2022), and other architecture variants including Adapters (Pfeiffer
et al., 2021; Rücklé et al., 2021). Other works investigate lightweight methods for adapting
language models to different tasks (e.g., Dathathri et al. (2020)). An interesting direction
for future work is to see whether parameter-efficient tuning approaches specifically designed
for the private setting can achieve higher utility. We also mention zero-shot learning, in
which no task-specific dataset is required and thus perfect privacy is achieved. Currently,
zero-shot approaches achieve low utility compared to fine-tuning, though it is possible that
future models may narrow this gap.
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6. Conclusion

So far, DP deep learning has focused on training models from scratch. The spectacular
success of transfer learning in real-world applications, however, shows that private fine-tuning
is an equally pertinent problem to study and deserves more attention. We show that by
combining recent advances in NLP, parameter-efficiency, privacy accounting, and using larger
models, one can privately fine-tune models whose utility approaches that of non-private
models. We hope our work inspires more study on the core problem of private fine-tuning,
which we believe to be a central direction for research in private machine learning, leading
to more interaction between the LLM and DP communities.
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Appendix A. Experiments with Different Privacy Parameters

Now we test our framework under different privacy constraints. Specifically, we run LoRA
on the language understanding tasks with various choices of privacy parameters ϵ and ¶. We
consider both RoBERTa-Base and RoBERTa-Large.



DIFFERENTIALLY PRIVATE FINE-TUNING OF LANGUAGE MODELS 23

Table 8. Test accuracy for fine-tuning RoBERTa-Large with different pri-
vacy parameters. The number of training samples is denoted by n. The
values of Ã are noise multipliers. Numbers in the parentheses are the changes
compared to the results in Table 5 (ϵ = 6.7, ¶ = Θ(1/n)).

Taks Ã ¶ = 1/n ¶ = 1/10n ¶ = 1/100n ¶ = 1/1000n Accuracy (in %)

MNLI 1.88 ϵ = 1 ϵ = 1.35 ϵ = 1.49 ϵ = 1.61 86.8 (-1.0%)

QQP 1.88 ϵ = 1 ϵ = 1.40 ϵ = 1.54 ϵ = 1.67 85.2 (-2.2%)

QNLI 3.01 ϵ = 1 ϵ = 1.48 ϵ = 1.64 ϵ = 1.79 88.0 (-2.8%)

SST-2 3.63 ϵ = 1 ϵ = 1.47 ϵ = 1.64 ϵ = 1.80 93.1 (-2.2%)

MNLI 0.91 ϵ = 3 ϵ = 4.12 ϵ = 4.51 ϵ = 4.89 87.4 (-0.4%)

QQP 0.93 ϵ = 3 ϵ = 4.10 ϵ = 4.49 ϵ = 4.86 86.8 (-0.6%)

QNLI 1.29 ϵ = 3 ϵ = 4.45 ϵ = 4.90 ϵ = 5.33 89.9 (-0.9%)

SST-2 1.52 ϵ = 3 ϵ = 4.37 ϵ = 4.83 ϵ = 5.25 94.1 (-1.2%)

For the RoBERTa-Large model, we set ϵ = 1 and 3 with ¶ being the same as those in
Section 4. We use the PRV accountant (Gopi et al., 2021). After getting the noise multipliers,
we also reduce the value of ¶ and report the corresponding value of ϵ. The hyperparameters
are the same as those in Section 4. We run experiments on all four tasks, i.e., MNLI (n ∼

392k), QQP (n ∼ 364k), QNLI (n ∼ 104k), and SST-2 (n ∼ 67k). We use the official splits
of validation and test sets. MNLI and QNLI are tasks that assess a model’s capability to
perform natural language inference. Given two sentences, the task in MNLI is to determine
if the second sentence is an entailment, contradiction, or neutral with respect to the first
sentence. Given one premise and one question, the task in QNLI is to determine whether
the question can be answered by the premise. The task in QQP is to predict whether two
questions are duplicated. The task in SST-2 is to perform sentiment analysis of sentences
from movie reviews.

We report the results in Table 8. The performance of our framework is decent even with
very tight privacy budgets. For instance, with ϵ < 2 and ¶ = 1/1000n, the accuracy gap
between the non-private baseline is only 3.8 for MNLI and 2.1 for SST-2.

For the RoBERTa-Base model, we try various choices of ϵ. The values of ϵ are chosen
from [0.1, 0.5, 1, 3, 5, 8, 12]. All other settings are the same as those in Section 4. We run
experiments on the MNLI and SST-2 datasets. The results are presented in Figure 2.
Our framework performs well for a wide range of ϵ. We note that our algorithm achieves
meaningful accuracy even for very tight privacy parameters ϵ = 0.5 and 1. Such values of ϵ
are rarely explored when training deep models with differential privacy.

Appendix B. On the Influence of Hyperparameters

Here we demonstrate that our algorithms perform well for a wide range of hyperparameters.
We study two hyperparameters that are directly related to the variance of noise: clipping
threshold and batchsize. The clipping threshold is chosen from [0.1, 1.0, 3.0, 5.0, 10.0] and
the batchsize is chosen from [200, 500, 1000, 2000, 4000]. We note that we keep the number
of updates the same as that in Section 4 when the batchsize is changed. We fine-tune the
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Figure 2. Test accuracy (in %) of fine-tuning the RoBERTa-Base model on
MNLI and SST-2 with various choices of ϵ.
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Figure 3. Test accuracy (in %) of fine-tuning RoBERTa-Base with differen-
tially private LoRA on the SST-2 dataset. Our algorithm performs well on a
wide range of hyperparameters.

RoBERTa-Base model with differentially private LoRA (r = 16) on the SST-2 dataset. The
results are presented in Figure 3. DP LoRA performs well for all the hyperparameters
considered. The gap between the best accuracy and the worst accuracy is only 2%.

Appendix C. Fine-Tuning for Language Understanding Tasks with Large

Batch Size and Full-Precision

Li et al. (2022b) show the performance of fine-tuning the full model is sensitive to the
choice of hyperparameters. They give a configuration which can significantly improve the
performance of full fine-tuning. In this section, we re-evaluate the tasks in Table 4 and 5
under the configuration in Li et al. (2022b).
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Table 9. Accuracy for fine-tuning downstream tasks with RoBERTa-Base
(in %). Experiments are run with full-precision. We also scale up the batch
size according to the dataset size compared to SST-2. The privacy parameters
are ϵ = 6.7, and ¶ = 1 × 10−5 for SST-2 and QNLI and 1 × 10−6 for MNLI
and QQP.

Method MNLI SST-2 QQP QNLI Average Accuracy

Full
w/o DP 87.6 94.8 91.9 92.8 91.8
DP 83.2 85.9 86.2 84.8 85.0

Adapter DP 84.6 92.9 87.4 89.2 88.5

LoRA DP 84.5 92.7 87.1 88.3 88.2

Table 10. Accuracy for fine-tuning downstream tasks with RoBERTa-Large
(in %). Experiments are run with full-precision. We also scale up the batch
size according to the dataset size compared to SST-2. The privacy parameters
are ϵ = 6.7, and ¶ = 1 × 10−5 for SST-2 and QNLI and ¶ = 1 × 10−6 for
MNLI and QQP.

Method MNLI SST-2 QQP QNLI Average Accuracy

Full
w/o DP 90.2 96.4 92.2 94.7 93.4
DP 86.4 90.9 87.5 89.4 88.6

Adapter DP 88.6 94.5 87.8 91.6 90.6
LoRA DP 89.0 95.3 88.4 92.4 91.3

The configuration in Li et al. (2022b) has two differences compared to that in Section 4.
The first difference is Li et al. (2022b) run experiments with full-precision while the experi-
ments in Section 4 use half-precision. Using half-precision is a common approach to speed
up NLP experiments (Ott et al., 2018). However, half-precision may incur underflow issue
which impacts the model performance (Micikevicius et al., 2018). The second difference
is they use larger batch size for larger datasets. For example, the batch size for MNLI is
roughly six times larger than the batch size for SST-2 in Li et al. (2022b). In Section 4, we
use the same batch size for all datasets.

We follow the above setup and re-evaluate DP-LoRA and DP-Adapter. The results
are in Table 9 and 10. The results of full fine-tuning with differential privacy are directly
adopted from Li et al. (2022b). The configuration in Li et al. (2022b) further improves the
strong results in Table 4 and 5. For example, we achieve 89.0% accuracy on the MNLI
dataset, which is only 1.2% lower than the accuracy without DP constraint. Moreover, the
benefit of the proposed framework over full fine-tuning is still clear. The average accuracy
of the proposed algorithms is ∼3% higher than that of full fine-tuning.

Appendix D. Comparisons with the Results in Subsequent Works

Since the original appearance of this paper, several subsequent works also conduct exper-
iments on the GLUE benchmark (Bu et al., 2022, 2023; He et al., 2023). In this section,
we compare our results with those in two representative works (Bu et al., 2022; He et al.,
2023). Bu et al. (2022) explore the limit of parameter-efficient fine-tuning by fine-tuning
only the bias-term parameters. Fine-tuning only the bias-term parameters does not require
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Table 11. Accuracy (in %) comparisons with the results in subsequent
works of the original appearance of this paper. The pretrained model is
RoBERTa-Base. The privacy parameters are ϵ = 6.7, and ¶ = 1 × 10−5 for
SST-2 and QNLI and ¶ = 1 × 10−6 for MNLI and QQP.

Method MNLI SST-2 QQP QNLI Average Accuracy
LoRA (Non-private) 87.5 95.1 90.8 93.3 91.7
LoRA 83.5 92.2 85.7 87.3 87.2
Bu et al. (2022) 82.6 92.4 83.4 86.5 86.2
He et al. (2023) 83.8 92.4 86.2 87.1 87.4

Table 12. Accuracy (in %) comparisons with the results in subsequent
works of the original appearance of this paper. The pretrained model is
RoBERTa-Large. The privacy parameters are ϵ = 6.7, and ¶ = 1 × 10−5 for
SST-2 and QNLI and ¶ = 1 × 10−6 for MNLI and QQP.

Method MNLI SST-2 QQP QNLI Average Accuracy
LoRA (Non-private) 90.6 96.2 91.6 94.9 93.3
LoRA 87.8 95.3 87.4 90.8 90.3
Bu et al. (2022) 87.6 94.5 86.5 91.0 89.9
He et al. (2023) 87.6 94.0 87.2 90.8 89.9

caching the activations during forward, and hence is more memory-efficient than other
parameter-efficient methods. He et al. (2023) employ an adaptive per-layer clipping method
that significantly improves the efficiency of DP training.

Table 11 and 12 present the results of fine-tuning RoBERTa-base and RoBERTa-large,
respectively. The results of LoRA fine-tuning are from Table 4 and 5. The new results in
Bu et al. (2022) and He et al. (2023) further confirm the two findings in this paper 1) DP
fine-tuning can achieve comparable accuracy as the non-private counterpart with a small
computational overhead, 2) the gap between private fine-tuning and non-private fine-tuning
diminishes as the pre-trained model becomes more powerful.

This work is licensed under the Creative Commons License Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Com-
mons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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