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Abstract. Synthetic control is a causal inference tool used to estimate the treatment
effects of an intervention by creating synthetic counterfactual data. This approach combines
measurements from other similar observations (i.e., donor pool) to predict a counterfactual
time series of interest (i.e., target unit) by analyzing the relationship between the target and
the donor pool before the intervention. As synthetic control tools are increasingly applied
to sensitive or proprietary data, formal privacy protections are often required. In this
work, we provide the first algorithms for differentially private synthetic control with explicit
error bounds. Our approach builds upon tools from non-private synthetic control and
differentially private empirical risk minimization. We prove upper and lower bounds on the
sensitivity of the synthetic control query and provide explicit error bounds on the accuracy
of our private synthetic control algorithms. We show that our algorithms produce accurate
predictions for the target unit and that the cost of privacy is small. Finally, we empirically
evaluate the performance of our algorithm, and show favorable performance in a variety of
parameter regimes, as well as provide guidance to practitioners for hyperparameter tuning.

1. Introduction

The fundamental problem of causal inference introduced in Rubin (1974) is that for an
individual unit, we can only observe one of the relevant outcomes – with a particular
treatment or without. To estimate the (causal) effect of a treatment, one has to produce a
counterfactual of the control arm, which is typically done at a population- and distributional-
level via randomized control trials (RCTs) and A/B testing, yielding average treatment
effects. However, controlled trials are often impossible to implement, and only observational
data are available. Synthetic control is a powerful causal inference tool to estimate the
treatment effect of interventions using only observational data. It has been used both at an
aggregate population level (e.g., countries/cities/cohorts of patients etc.), as well as at an
individual unit level (Shen et al., 2024), and has been called “arguably the most important
innovation in the policy evaluation literature in the last 15 years” (Athey and Imbens, 2017).
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Recently, synthetic control has increasingly been used in clinical trials where running a
randomized control trial presents logistical challenges (e.g., rare diseases) or ethical issues
(e.g., oncology trials enrolling patients for placebos with life-threatening diseases) (Thorlund
et al., 2020). Synthetic control has been successfully used to achieve regulatory approval
for new medical treatments for lung cancer (Petrone, 2018) and rare forms of leukemia
(Gökbuget et al., 2016), where RCTs would otherwise have been impossible. Since these
synthetic control analyses are deployed in real-world medical applications, preserving privacy
of sensitive patient data is paramount.

Differential privacy by Dwork et al. (2006) has emerged as the de facto gold-standard
in privacy-preserving data analysis. It is a mathematically rigorous parameterized privacy
notion, which bounds the maximum amount that can be learned about any data donor
based on analysis of her data. Differentially private algorithms have been designed for a
wide variety of optimization, learning, and data-driven decision-making tasks, and have
been deployed in practice by several major technology companies and government agencies.
Despite the growing maturity of the differential privacy toolkit, the pressing need for a
private synthetic control solution has thus far gone unaddressed.

Our work provides the first differentially private algorithms for synthetic control with
mathematically provable accuracy and privacy guarantees.

1.1. Our Contributions. Our main contributions are the first algorithms for differentially
private synthetic control (Algorithm 2 and 3). These two algorithms naturally extend existing
non-private techniques for synthetic control by first privately estimating the regression
coefficients f̂ that relate a (target) pre-intervention observation of interest ypre to other
similar (donor) observations Xpre. This is done using output perturbation and objective
perturbation techniques for differentially private empirical risk minimization (ERM) by
Chaudhuri et al. (2011) and Kifer et al. (2012). The algorithm then combines the private

regression coefficients f̂ with privatized post-intervention donor observations X̃post (also via

output perturbation) to predict the post-intervention target outcome ŷpost = X̃⊤
postf̂ .

Our main results are theoretical guarantees on privacy and accuracy for each algorithm.
For privacy (Theorems 3.1 and 3.4), although our algorithmic techniques rely on existing
approaches, prior results on privacy do not apply in our setting. DP methods add noise
that scales with the sensitivity of the function being computed, which is defined as the
maximum change in the function’s output that can be caused by changing a single donor’s
data. However, synthetic control performs a regression in a vertical way, treating each time
point, rather than each donor’s data, as one sample – thus, the transposed setting changes
the definition of neighboring databases, completely altering the impact of a single donor’s
data. The majority of our privacy analysis is devoted to computing sensitivity of this new
method.

We also provide accuracy guarantees for each algorithm (Theorems 3.2 and 3.5), bounding
the root mean squared error (RMSE) of the algorithm’s output compared to the post-
intervention target signal. Our bounds are comparable to those for non-private synthetic
control (e.g., Amjad et al. (2018)), and in Section 5.1.1, we explicitly show that the cost
of privacy in synthetic control is O(1/ϵ). That is, the RMSE of our algorithm relative to
a non-private version is only greater by a factor of O(1/ϵ), which is unavoidable in most
analysis tasks. To better interpret our bounds in terms of natural problem parameters such
as number of samples and length of observations, we also provide Corollaries 5.5 and 7.2,
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which give explicit closed-form upper bounds on the RMSE under mild assumptions on the
underlying data distribution.

1.2. Synthetic Control. Synthetic control (SC) was originally proposed to evaluate the
effects of intervention by creating synthetic counterfactual data. Its first application was
measuring the economic impact of the 1960s terrorist conflict in the Basque Country, Spain
by combining GDP data from other Spanish regions prior to the conflict to construct a
synthetic GDP dataset for the Basque Country in the counterfactual world without the
conflict (Abadie and Gardeazabal, 2003). Synthetic control has since been applied to a
wide array of topics, such as estimating the effect of California’s tobacco control program
(Abadie et al., 2010), estimating the effect of the 1990 German reunification on per capita
GDP in West Germany (Abadie et al., 2015), evaluating health policies (Kreif et al., 2016),
forecasting weekly sales at Walmart stores (Amjad et al., 2019), and predicting cricket score
trajectories (Amjad et al., 2019).

The core algorithm of synthetic control lies in finding a relationship between the target
time series (e.g., GDP of the Basque Country) and the donor pool (e.g., GDP of other
Spanish regions). The original method by Abadie and Gardeazabal (2003) used linear
regression with a simplex constraint on the weights: the regression coefficients should be
non-negative and sum to one. Since its first introduction, the synthetic control literature has
evolved to include a richer set of techniques, including tools to deal with multiple treated
units (Abadie and L’Hour, 2021; Dube and Zipperer, 2015), to correct bias (Abadie and
L’Hour, 2021; Ben-Michael et al., 2021), to use Lasso and Ridge regression instead of linear
regression with simplex constraints (Doudchenko and Imbens, 2016; Amjad et al., 2018),
and to incorporate matrix completion techniques (Athey et al., 2021; Amjad et al., 2018,
2019). See Abadie (2021) for a detailed survey of these techniques.

The most relevant extension for our work is robust synthetic control (RSC) by Amjad
et al. (2018), which comprises of two steps: first de-noising the data via hard singular value
thresholding (HSVT), and then learning and projecting via Ridge regression. It assumes a
latent variable model and applies HSVT before running the regression, which reduces the
rank of the data and makes synthetic control more robust to missing and noisy data. RSC
also relaxes the simplex constraints on the regression coefficients and applies unconstrained
Ridge regression. Because of the de-noising step, robust synthetic control can be viewed as
an instantiation of principal component regression (PCR), and the possibility of differentially
private PCR has been briefly discussed by Anish Agarwal and Song (2021). However, no
formal algorithm or analysis has been put forth. We are the first to design and analyze
differentially private algorithms for synthetic control.

1.3. Differentially Private Empirical Risk Minimization. Chaudhuri et al. (2011) first
proposed methods for differentially private empirical risk minimization (ERM) for supervised
regression and classification. Our first algorithm uses the output perturbation method by
Chaudhuri et al. (2011), which first computes coefficients to minimize the loss function
between data features and labels, and then perturbs the coefficients using a high-dimensional
variant of the Laplace Mechanism by Dwork et al. (2006). Our second algorithm uses the
objective perturbation method by Chaudhuri et al. (2011) and Kifer et al. (2012), which
adds noise directly to the loss function and then exactly optimizes the noisy loss. This
method tends to provide better theoretical accuracy guarantees but requires the loss function



4 S.RHO, R.CUMMINGS, AND V. MISRA

to satisfy additional structural properties. These methods were later extended by Bassily
et al. (2014) to include gradient perturbation in stochastic gradient descent, which uses
a noisy version of randomly sampled points’ contribution to the gradient at each update.
This technique provides tighter error bounds, assuming Lipschitz convex loss and bounded
optimization domain. Wang et al. (2017) followed up with a faster gradient perturbation
algorithm that provided a tighter upper bound on error and lower gradient complexity.

Although the framework of Chaudhuri et al. (2011) is more general, the analysis and
applications focused only on methods for binary classification. The analysis was later
extended to include Ridge regression by Cummings et al. (2015), which we use in our
algorithms. Our algorithms for differentially private synthetic control apply differentially
private ERM methods to a Ridge regression loss function. However, synthetic control applies
regression in the transposed dimension of the data (i.e., along columns rather than rows of
the database), while privacy protections are still required along the rows, which requires
novel analysis to ensure differential privacy and accuracy.

2. Model and Preliminaries

In this section, we first present our synthetic control model (Section 2.1), and then provide
relevant background on synthetic control (Section 2.2) and differential privacy (Section 2.3).

2.1. Our Model. Our model follows the synthetic control framework illustrated in Figure
1. We consider a database X ∈ Rn×T , also called the donor pool. The donor pool X consists
of n time series, each observed at times t = 1, . . . , T . We denote the column vectors of X as
x1, · · ·xT ∈ Rn, where each xt contains observations from all donor time series at time t.
We assume an intervention occurred at a known time T0 + 1 < T . The first T0 columns of
X are collectively referred to as Xpre, and the remaining T − T0 columns from data after
the intervention are collectively denoted Xpost, respectively corresponding to the pre- and
post-intervention donor data. We are also given a target unit y ∈ RT , which can be divided
as ypre = (y1, . . . , yT0) and ypost = (yT0+1, . . . , yT ).

Figure 1: General data structure for synthetic control. The donor pool (X) and the target
unit (y) are divided into pre- and post-intervention periods. Synthetic control
first performs a vertical regression using the pre-intervention column vectors xt

as features for the label yt for t ∈ [T0] to estimate regression coefficients f̂ , and
then uses this to project the post-intervention column vectors and predict ŷpost.
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The underlying assumption is that time series in the donor pool that behave similarly
to y before the intervention will remain similar after the intervention. In this paper, we
adopt the latent variable model used by Amjad et al. (2018) for the underlying distribution
of the data. Our donor data and target data are noisy versions of the true signal (denoted
M and m respectively), and can be written as follows:

X =M + Z, y = m+ z, (2.1)

where Z ∈ Rn×T is a noise matrix where each element is sampled i.i.d. from some distribution
with zero-mean, σ2-variance, and support [−s, s], and z ∈ RT is a noise vector with elements
sampled from the same distribution.

The signals M and m can be expressed in terms of a latent function g:

Mi,t = g(θi, ρt) ∀i ∈ [n], t ∈ [T ], mt = g(θ0, ρt) , ∀t ∈ [T ],

where θi and ρt are latent feature vectors capturing unit i’s and time t’s intrinsic charac-
teristics, respectively. We note that if the intervention is effective, one would expect to
see a change in ρt before and after T0. We make no assumptions on the latent function g,
except in Sections 5.2 and 7.2, where we assume M is low rank, i.e., rank(M) = k for some
k ≪ min{n, T}.

Finally, we assume a linear relationship between the features of Mi,t and the label mt at
all times t ∈ [T0]; that is, there exists an f ∈ Rn such that,

mt =

n∑
i=1

Mi,tfi, for all t ∈ [T0]. (2.2)

We assume that all entries of X, M , y, and m lie in a bounded range, which we rescale
to [−1, 1] WLOG, and that f has ℓ1-norm bounded by 1, as is standard in the synthetic
control literature (Abadie and Gardeazabal, 2003). Formally, we assume:

|xi,t| ≤ 1, |Mi,t| ≤ 1 ∀t ∈ [T ], i ∈ [n], |yt| ≤ 1, |mt| ≤ 1 ∀t ∈ [T ],

and ||f ||1 =
n∑

k=1

|fk| ≤ 1.
(2.3)

2.2. Synthetic Control. The goal of synthetic control is to predict ypost given X and
ypre. The general approach, outlined in Algorithm 1, is to first use the pre-intervention

data D1 := (Xpre,ypre) to learn an estimate f̂ of the true coefficient vector f . For each

t ∈ [T0], the column vector xt = (X1,t, · · · , Xn,t)
⊤ is treated as a feature vector for label

yt. This setup distinguishes synthetic control from the classic regression setting, as the
regression is performed vertically rather than horizontally. The estimate f̂ is then used
along with the post-intervention donor data to predict the counterfactual outcome of the
target: ŷpost = X⊤

postf̂ , where ŷt = x⊤
t f̂ ∀t ∈ {T0 + 1, · · · , T}.

When synthetic control is used for evaluating treatment effects, it is assumed that
the target received a different treatment from the donor pool, and the goal is to predict
the counterfactual outcome under the alternative treatment. In this case, the treatment
effect is evaluated as the difference between the observed ypost and the counterfactual
prediction ŷpost. Even if no intervention occurred at time T0 + 1 (or if the target received
the same treatment as the donor pool), synthetic control can also be used to predict future
observations of the target time series. In the absence of treatment, the causal estimand
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Algorithm 1: Synthetic control framework (X,ypre, T0, J)

Data: Divide X into pre- and post-intervention observations

X = (Xpre, Xpost) =


x1,1 · · · x1,T0

...
. . .

...
xn,1 · · · xn,T0


x1,T0+1 · · · x1,T

...
. . .

...
xn,T0+1 · · · xn,T




Step 1: Learn regression coefficients

f̂ = argmin
f∈Rn

J(f ;Xpre,ypre)

Step 2: Predict ypost via projection

ŷpost = X⊤
postf̂ ∈ RT−T0

ŷpost − ypost is expected to be zero, and hence this test can be used to measure accuracy of
the synthetic control prediction. This practice is also known as a placebo test and serves as
a popular tool to apply to the donor pool to verify eligibility of applying synthetic control to
a given dataset. While the former task is the more common use-case for synthetic control,
we focus our attentions in this work on the latter, in order to cleanly evaluate accuracy of
our algorithms’ predictions without confounding treatment effects.

The original synthetic control work by Abadie and Gardeazabal (2003) learned regression

coefficients using ordinary linear regression with a simplex constraint on f̂ , i.e., f̂i ≥ 0 ∀i ∈ [n]

and
∑

i∈[n] f̂i = 1. Later works by Amjad et al. (2018, 2019); Doudchenko and Imbens (2016);

Ben-Michael et al. (2021) used penalties such as LASSO, Ridge, and elastic net regularizers.
In this work, we use Ridge regression (with empirical loss L(f ;X, y) = 1

T0
||y − X⊤f ||22

and an ℓ2 regularizer r(f) = λ
2T0

||f ||22) to estimate f̂ , which corresponds to the following
regularized quadratic loss function:

J(f ;D) = L(f ;Xpre,ypre) + r(f) =
1

T0

T0∑
t=1

(yt − xt
⊤f)2 +

λ

2T0
||f ||22. (2.4)

Robust synthetic control (RSC) by Amjad et al. (2018) extends this framework to include
a data pre-processing step to denoise X using hard singular value thresholding (HSVT).
RSC first performs singular value decomposition on X, and truncates all singular values
below a given threshold to be 0. This serves to reduce the rank of X before the learning
and prediction steps are performed.

Beyond this theoretical framework, there exist other challenges in adapting SC algorithms
to practice. For example, the selection of appropriate donors and predictors (features) plays
a significant role in the performance of synthetic control. Optimizing this decision process is
an actively evolving research area, and there is presently no universally adopted algorithm for
donor and feature selection. In practice, it is customary to rely on extensive domain-specific
expertise for these decisions. The intricacies of donor and feature selection in practice are
beyond the scope of our present focus, and we leave these practical challenges to future
work.
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2.3. Differential Privacy. Differential privacy, suggested by Dwork et al. (2006), ensures
that changing a single user’s data will have only a bounded effect on the outcome of an
algorithm. Specifically, it ensures that the distribution of an algorithm’s output will be
similar under two neighboring databases that differ only in a single data record. In the
synthetic control setting, where the analysis goal is to predict the post-intervention target
unit ypost using the donor pool X and its relationship to ypre, we aim to protect privacy of
data records in X but not ypre, since the target will know their own pre-intervention data.
Note that this is similar to the notion of joint differential privacy by Kearns et al. (2014),
where personalized outputs to each user need not be private with respect to their own data,
only to the data of others. Thus databases D = (X,y) and D′ = (X ′,y) are considered
neighboring in our setting if X and X ′ differ in at most one row and have the same target
unit y.

Definition 2.1 (Differential privacy (Dwork et al., 2006)). A randomized algorithm M with
domain D is (ϵ, δ)-differentially private for all S ⊆ Range(M) and for all pairs of neighboring
databases D,D′ ∈ D,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ,

where the probability space is over the internal randomness of the mechanism M. If δ = 0,
we say M is ϵ-differentially private.

Definition 2.2 (ℓ2 sensitivity). The ℓ2 sensitivity of a vector-valued function f , denoted
∆f , is the maximum ℓ2-norm change in the function’s value between neighboring databases:

∆f = max
D,D′ neighbors

||f(D)− f(D′)||2.

A common method for achieving ϵ-differential privacy for vector-valued functions is the
high-dimensional Laplace Mechanism by Chaudhuri et al. (2011), which privately evaluates
a function f on a dataset D by first evaluating f(D) and then adding a Laplace noise

vector v sampled according to density p(v; a) ∝ exp
(
− ||v||2

a

)
, with parameter a = ∆f

ϵ . Note

that this is an extension of the (single-dimensional) Laplace Mechanism by Dwork et al.
(2006) which would add Laplace noise with parameter ∆f/ϵ to achieve ϵ-DP for real-valued
queries. Alternatively, one can add Gaussian noise of mean 0 and standard deviation at
least

√
2 ln(1.25/δ)∆f/ϵ to achieve (ϵ, δ)-DP.

Differential privacy is robust to post-processing, meaning that any downstream compu-
tation performed on the output of a differentially private algorithm will retain the same
privacy guarantee. DP also composes, meaning that if an (ϵ1, δ1)-DP mechanism and an
(ϵ2, δ2)-DP mechanism are performed on the same database, then the entire process is
(ϵ1 + ϵ2, δ1 + δ2)-DP.

3. Differentially Private Synthetic Control (DPSC) Algorithms

In this section, we present two algorithms for differentially private synthetic control, DPSCout

(Algorithm 2) and DPSCobj (Algorithm 3). Similar to non-private synthetic control al-
gorithms (e.g., Algorithm 1), both algorithms are divided into two high-level steps: first
the algorithm learns an estimate of the regression coefficients f , and then it uses these
coefficients to predict the post-intervention target unit ypost. To ensure differential privacy
of the overall algorithm, both of these steps must be performed privately. The second step
remains the same for both, and only the first part differs: DPSCout adds privacy noise
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directly to the output of the algorithm (output perturbation), whereas DPSCobj perturbs
the objective function and minimizes the noisy loss function (objective perturbation). In
the following subsections, we present and explain both algorithms.

3.1. DPSC via Output Perturbation DPSCout. Our first algorithm is DPSCout (Algo-
rithm 2), which utilizes output perturbation to achieve differential privacy. The learning step
of this algorithm formalizes synthetic control as an instance of empirical risk minimization
with the Ridge regression loss function given in Equation (2.4). This enables us to apply
the Output Perturbation method by Chaudhuri et al. (2011) for differentially private ERM,
instantiated as the high-dimensional Laplace Mechanism. The algorithm first learns the
optimal (empirical risk minimizing) non-private regression coefficients f reg as in Algorithm
1. It then samples a noise vector v from a high-dimensional Laplace distribution with
parameter ∆f reg/ϵ1, as described in Section 2.3. Finally, the privatized regression coefficient
vector is fout = f reg + v.

The prediction step uses this coefficient vector to predict ypost. A simple approach would

be to directly predict ŷpost = X⊤
postf

out; however, this approach would not provide privacy
for the post-intervention donor data Xpost. Instead, we again apply the high-dimensional
Laplace Mechanism to privatize Xpost by adding a noise matrix W sampled from a high-
dimensional Laplace distribution with parameter ∆Xpost/ϵ2. The privatized version of donor

data is X̃post = Xpost+W , which is then used along with the privatized regression coefficients

to produce the private prediction of the post-intervention target unit: yout = X̃⊤
postf

out.

Algorithm 2: DPSC via Output Perturbation, DPSCout(Xpre, Xpost,ypre, λ, ϵ1,
ϵ2)

Step 1: Learn regression coefficients
1a. Learn the regression coefficient f reg using Ridge regression with parameter
λ ≥ 0:

f reg = argmin
f∈Rn

1

T0
||ypre −X⊤

pref ||22 +
λ

2T0
||f ||22.

1b. Let a = ∆freg

ϵ1
= 4T0

√
8+n

λϵ1

1c. Sample v ∈ Rn according to pdf p(v; a) ∝ exp
(
− ||v||2

a

)
1d. Let fout = f reg + v

Step 2: Predict ypost via projection

2a. Let b = 2
√
T−T0
ϵ2

2b. Sample each entry of W ∈ Rn×(T−T0) i.i.d. according to pdf

p(W ; b) ∝ exp

(
−||W ||F

b

)
2c. Let X̃post = Xpost +W

2d. Output yout = X̃⊤
postf

out.

The entire algorithm is then (ϵ1 + ϵ2, 0)-differentially private by composition of these
two steps. We remark that the algorithm does not output fout, simply because this vector
is typically not of interest in most synthetic control problems, and is instead considered
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only an intermediate analysis step. However, this vector could be output if desired with no
additional privacy loss because Step 1 of the DPSCout algorithm is ϵ1-differentially private
(Theorem 4.1), and this privacy loss is already accounted for in the composition step.

We provide two main results on the privacy and accuracy of DPSCout. First, Theorem
3.1 shows that our algorithm is differentially private. Although our algorithm relies on
algorithmic techniques by Chaudhuri et al. (2011) for differentially private ERM, the vertical
regression setup in synthetic control requires novel sensitivity analysis for f reg, which
constitutes the bulk of the work required to prove Theorem 3.1. Theorem 3.2 shows that our
DPSCout algorithm produces an accurate prediction of the post-intervention target unit,
as measured by the standard metric (e.g., Amjad et al. (2018)) of root mean squared error
(RMSE) with respect to the true signal vector m. In Section 5.2, we also extend Theorem
3.2 to to remove the dependence on distributional parameters and provide an expression of
RMSE that depends only on the input parameters, under some mild additional assumptions
on the distribution of data. Full proofs for Theorems 3.1 and 3.2 are respectively presented
in Sections 4 and 5.

Theorem 3.1. DPSCout of Algorithm 2 is (ϵ1 + ϵ2, 0)-differentially private.

Theorem 3.2. The estimator yout output by Algorithm 2 satisfies:

RMSE(yout) ≤ ||Mpost||2√
T − T0

(
E[||f reg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
,

where ||f reg||∞ ≤ ψ for some ψ > 0, and RMSE is the average root mean squared error of
the estimator, defined as RMSE(yout) = 1√

T−T0
E[||yout −mpost||2].

Remark 3.3. The accuracy bound grows as O(n), which is shown to be necessary in
Section 4.1.1. While this might be undesirable in most other learning domains, n does not
grow with the problem size in synthetic control settings for a few reasons. Typically, M is
assumed to be a low-rank matrix and hence X is approximately low rank (Amjad et al.,
2018, 2019). This is not only an assumption, but true in most cases (Udell and Townsend,
2019). Therefore, there exists a saturation point where adding additional donors does not
meaningfully improve accuracy. In practice, donors must be carefully selected to maintain
the low rank condition. Finding a way to select appropriate donors remains an active area
of research in synthetic control (Abadie et al., 2010; Dube and Zipperer, 2015). Additionally,
synthetic control should be viewed as a regression problem with T0 data points in Rn, so n
is the dimension of the data rather than the number of samples. The remaining dependence
of the accuracy guarantee on T0 can be handled by setting λ = O(T0) (see Section 5.1.1 for
details).

3.2. DPSC via Objective Perturbation DPSCobj. We next present our second algorithm
for differentially private synthetic control, DPSCobj (Algorithm 3), based on objective
perturbation. While Step 2 remains unchanged relative to Algorithm 2, Step 1 is modified
to perturb the objective function itself and then exactly optimize the perturbed objective,
instead of first computing the optimal non-private coefficients and then adding noise.
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Objective perturbation has been shown to outperform output perturbation in the standard
private ERM setting when the loss function is strongly convex (Chaudhuri et al., 2011).

The algorithm augments the objective function with two terms. The first is an additional
regularization term to ensure λ+∆

T0
-strong convexity (compared to λ

T0
as the regularization

term of Algorithm 2). The ∆ parameter is tuned by the algorithm to ensure that it can
still satisfy (ϵ1, δ)-DP in Step 1, even when ϵ1 is small. The second is the noise term b⊤f to
ensure privacy, where b is sampled from a high-dimensional Laplace distribution if (ϵ, 0)-DP
is desired (i.e., if δ = 0), and from a multi-variate Gaussian distribution if (ϵ, δ)-DP is desired
(i.e., if δ > 0).

The algorithm then exactly optimizes this new objective function, where the noise term
b ensures that this minimization satisfies differential privacy. Although the algorithmic
procedure in Step 1 is similar to that of Objective Perturbation algorithms for DP-ERM by
Chaudhuri et al. (2011) and Kifer et al. (2012), the sensitivity and privacy analysis again
requires substantial novelty because the definition of neighboring databases is different, and
previous work cannot be immediately applicable to the transposed regression setting. Finally,
Algorithm 3 maintains the same Step 2 process as Algorithm 2 to predict ypost, based on

fobj computed from Step 1. Algorithm 3 is (ϵ1 + ϵ2, δ)-differentially private by composition
of privacy guarantees from these two steps.

DPSCobj requires an additional parameter c that is used in the analysis to bound

the maximum absolute eigenvalue of 2(X ′
preX

′⊤
pre −XpreX

⊤
pre), which is closely related to

||∇L(f)||2. Because Xpre and X ′
pre are neighboring databases, then the matrix of interest

will only have one column and one row that are non-zero. In our setting, we use the fact
that all entries of X are bounded between −1 and 1 to derive an upper bound on this matrix
and its eigenvalues. In general, an analyst can use domain expertise or prior knowledge of
the data distribution to choose an appropriate value of c. Additional details and guidance
for choosing c can be found in Appendix A.

We provide two main results on the privacy and accuracy of DPSCobj . First, Theorem
3.4 shows that our algorithm is differentially private. To prove privacy of Step 1, we must
consider two cases based on the value of ∆, where ∆ adds additional strong convexity to the
loss function if it is needed. The privacy budget must be allocated differently within the
analysis in the two cases of ∆ = 0 and ∆ > 0.

Theorem 3.5 shows thatDPSCobj produces an accurate prediction of the post-intervention

target unit, as measured by RMSE between its output yobj and the target unit’s post-
intervention signal vector mpost. As with DPSCout, we also extend Theorem 3.5 in Section
7.2 to provide an explicit closed-form bound on RSME that does not depend on the distri-
butional parameters. Full proofs for for Theorems 3.4 and 3.5, along with their extensions,
are respectively presented in Sections 6 and 7.

Theorem 3.4. DPSCobj of Algorithm 3 is (ϵ1 + ϵ2, δ)-differentially private.

Theorem 3.5. The estimator yobj output by Algorithm 3 satisfies:

RMSE(yobj) ≤ ||Mpost||2√
T − T0

(
E[||(f reg − f)||2] + 2

λ+∆E[||b||2] + 1∆ ̸=0

(
1
λ + 1

λ+∆

)
2T 2

0

√
n
)

+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ + 2

λ+∆E[||b||2] + 1∆ ̸=0

(
1
λ + 1

λ+∆

)
2T 2

0

√
n
)
,
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Algorithm 3: DPSC via Objective Perturbation DPSCobj(Xpre, Xpost, ypre, λ, ϵ1,
ϵ2, δ, c)

Step 1: Learn regression coefficients

if ϵ1 > log(1 + 2c
λ + c2

λ2 ) then

1a. Let ϵ0 = ϵ1 − log(1 + 2c
λ + c2

λ2 ) and ∆ = 0

else
1b. ϵ0 =

ϵ1
2 and ∆ = c

e(ϵ1/4)−1
− λ

end

if δ > 0 then

1c. Sample b ∈ Rn according to N (0, β2In), where β =
4T0

√
8+n

√
2 log 2

δ
+ϵ0

ϵ0

else

1d. Sample b ∈ Rn according to pdf p(b;β) ∝ exp
(
− ||b||2

β

)
, where

β = min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
}

end

1e. Learn the regression coefficient fobj using parameter λ ≥ 0

fobj = argmin
f∈Rn

1

T0
||ypre −X⊤

pref ||22 +
λ+∆

2T0
||f ||22 +

1

T0
b⊤f .

Step 2: Predict ypost via projection

2a. Let b = 2
√
T−T0
ϵ2

2b. Sample each entry of W ∈ Rn×(T−T0) i.i.d. according to pdf

p(W ; b) ∝ exp

(
−||W ||F

b

)
2c. Let X̃post = Xpost +W

2d. Output yobj = X̃⊤
postf

obj

where ||f reg||∞ ≤ ψ for some ψ > 0, and E[||b||2] =

√
nT04

√
8+n

√
2 log 2

δ
+ϵ0

ϵ0
for Gaussian

noise (δ > 0 case) and E[||b||2] = min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace noise (δ = 0 case),

and ϵ0, and ∆ are computed internally by the algorithm.

As in Section 3.1, we remark that while the accuracy bound of Theorem 3.5 grows as
O(n), in our setting, n does not typically grow substantially with the problem size, both in
theory (Amjad et al., 2018, 2019) and in practice (Udell and Townsend, 2019).

3.3. Comparison between DP-ERM and DPSC. Before proving our main privacy
and accuracy theorems in the following sections, we first briefly compare the results of
DP-ERM by Chaudhuri et al. (2011) with our approach. Consider a Ridge regression task
in p-dimensional space with q samples (i.e., covariates xk ∈ Rp and labels yk ∈ R, ∀k ∈ [q]).
The regression coefficient f ∈ Rp is learned by a standard empirical risk minimization
process with a regularizer λ||f ||22.
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In the traditional regression setup where the privacy goal is to protect one sample xk—
corresponding to one individual’s data—the sensitivity of the regression task is ∆f = 2

qλ

in Chaudhuri et al. (2011). It does not depend on the dimension p, and the sensitivity
decreases as the number of samples q increases. Intuitively, adding or removing one person’s
data should exhibit a diminishing marginal effect on the final model f as the training sample
size grows.

On the other hand, in our transposed setting of synthetic control, the privacy goal is to
protect the i-th entry of each xk (i.e., an individual’s data are spread across all samples), the

sensitivity is ∆f = 4q
√
8+p
λ (Lemma 4.2). In this setting, each dimension of the coefficient

f captures how important the corresponding donor is for explaining the target; hence the
impact of changing i-th person’s data will have a significant impact on the i-th dimension of
f , regardless of the number of individuals in the donor pool. This difference is at the crux
of why it is more difficult to guarantee privacy in the transposed setting of synthetic control,
relative to the standard regression setting.

4. Privacy Guarantees of DPSCout

In this section, we will prove Theorem 3.1, that DPSC is (ϵ1 + ϵ2, 0)-differentially private.

The proof relies on the privacy of fout in the learning phase, and then X̃post in the prediction
phase. At a high level, fout is ϵ1-DP through a (non-trivial) application of the Output
Perturbation algorithm by Chaudhuri et al. (2011). The non-triviality comes from the vertical
regression used in synthetic control, rather than the horizontal regression classically used
in empirical risk minimization (as illustrated in Figure 1), which requires novel sensitivity
analysis of the function f reg. In the prediction phase, we must show that sufficient noise
is added to ensure X̃post is an ϵ2-DP version of Xpost. The final privacy guarantee of yout

comes from post-processing and composition of these two private estimates.

4.1. Privacy of f out. Let us begin by proving that fout is ϵ1-DP.

Theorem 4.1. Step 1 of Algorithm 2 that computes fout is (ϵ1, 0)-differentially private.

It might seem that Theorem 4.1 should follow immediately from the privacy guarantees
of Output Perturbation by Chaudhuri et al. (2011). Indeed, Theorem 6 in Chaudhuri
et al. (2011) states that a similar algorithm is (ϵ, 0)-DP under certain technical conditions.
However, the proof of this result relies on sensitivity analysis of classical empirical risk
minimization (see Corollary 8 in Chaudhuri et al. (2011)) which does not hold in the synthetic
control setting. The crux of the difference comes from the vertical regression (i.e., along
the columns) of synthetic control as illustrated in Figure 1, while privacy must still be
maintained along the rows. Thus the sensitivity of f reg to changing in a single donor row
is fundamentally different from the sensitivity in a standard empirical risk minimization
setting, as explained in Section 3.3. See Remark 4.6 for a more technical exploration of
this difference. Additionally, while the ERM framework by Chaudhuri et al. (2011) is fully
general, their results (including Theorem 6 and Corollary 8) apply only to the problem
setting of binary classification via logistic regression, by assuming a specific loss function L
in the analysis.

Instead, we prove Theorem 4.1 primarily using first-principles (i.e., direct sensitivity
analysis and the Laplace Mechanism in Dwork et al. (2006), which also underpins the results
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in Chaudhuri et al. (2011)) starting with Lemma 4.2. The proof of Lemma 4.2 and Theorem
4.1 will be augmented with one intermediate result for output perturbation by Chaudhuri
et al. (2011) that does apply to our setting, and one fact from Cummings et al. (2015), which
extended the binary classification result of Chaudhuri et al. (2011) to the Ridge regression
loss function that we use.

Lemma 4.2. The ℓ2 sensitivity of f reg is

∆f reg ≤ 4T0
√
8 + n

λ
.

To prove Lemma 4.2, we will first use the following lemma from Chaudhuri et al. (2011),
which bounds the sensitivity of f reg as a function of the strong convexity parameter of the
loss function L.

Lemma 4.3 (Chaudhuri et al. (2011), Lemma 7). Let G(f) and g(f) be two vector-valued
functions, which are continuous, and differentiable at all points. Moreover, let G(f) and
G(f) + g(f) be λ-strongly convex. If f1 = argminf G(f) and f2 = argminf G(f) + g(f),
then

∥f1 − f2∥2 ≤
1

λ
max
f

∥∇g(f)∥2.

We instantiate this lemma by defining

G(f) = L(f ,D) and g(f) = L(f ,D′)− L(f ,D), (4.1)

for two arbitrarily neighboring databases D,D′ and defining the following two maximizers:

f1 = argminL(f ,D) = argminG(f) and f2 = argminL(f ,D′) = argminG(f)+g(f).

Then,
∆f reg = max

D,D′ neighbors
∥f1 − f2∥2.

To apply Lemma 4.3, we must show that G(f) and g(f) are continuous and differentiable.
G(f) is simply the Ridge regression loss function, which is known to be continuous and
differentiable (Hastie et al., 2009). Since g(f) is the difference between two continuous and
differentiable functions, then it is also continuous and differentiable (Boyd and Vandenberghe,
2004). We must also show strong convexity of G(f) and G(f) + g(f). The following lemma
from Cummings et al. (2015) immediately gives that these two functions are both strongly
convex.

Lemma 4.4 (Cummings et al. (2015), Lemma 32). The Ridge regression loss function with
regularizer λ

2T0
is λ

T0
-strongly convex.

Thus by Lemmas 4.3 and 4.4, the sensitivity ∆f reg = maxD,D′ neighbors ∥f1 − f2∥2 ≤
T0
λ maxf ∥∇g(f)∥2. All that remains is to bound ∥∇g(f)∥2. A proof of the following lemma
is deferred to Appendix B.

Lemma 4.5. Let g(f) = L(f ,D′)−L(f ,D) for two arbitrarily neighboring databases D,D′.
Then,

max
f

∥∇g(f)∥ ≤ 4
√
8 + n.
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Remark 4.6. If we were instead considering simple linear regression in the classical setting
(i.e., as in Chaudhuri et al. (2011)) using T0 data points with n dimensional features, g(f)
would only contain one term in the difference between the losses, namely, the one data point
(xi, yi) that differs across the two neighboring databases. This yields

g(f) =
1

T0
((x′

i − xi)
⊤f − (y′i − yi))

2

with gradient

∇g(f) = 2

T0
((x′

i − xi)(x
′
i − xi)

⊤f − (y′i − yi)(x
′
i − xi)),

which can be bounded by O( 1
T0
). This result does not depend on the dimension of the

features (n) and only depends on the number of data points (T0).
However, in synthetic control, terms do not cancel as neatly across neighboring databases,

and instead,

g(f) =
1

T0

T0∑
t=1

[(
x⊤
t f − yt

)
+
(
x⊤
t f − xi,tfi + x′i,tfi − yt

)]
(x′i,t − xi,t)fi.

Through a more involved analysis of this expression, we get the bound of Lemma 4.5, which
depends on n, rather than T0.

Using these lemmas, we can now bound the sensitivity of our query, to complete the
proof of Lemma 4.2.

∆f reg = max
D,D′ neighbors

||f(D)− f(D′)||2 ≤ max ||f1 − f2|| ≤
4T0

√
8 + n

λ
. (4.2)

Theorem 4.1 then follows from the privacy guarantee of the high-dimensional Laplace
Mechanism instantiated with the appropriate sensitivity value.

4.1.1. Dependence on n. One might wonder whether the asymptotic dependence on n and
T0 in the sensitivity is necessary. In practice, one should set λ = O(T0) (as discussed in
greater detail in Section 5.1.1), so the dependence on T0 will not affect the accuracy of the
algorithm. However, as we show next in Lemma 4.7, the dependence on n is asymptotically
tight.

Lemma 4.7. The ℓ2 sensitivity of f reg is ∆f reg = Ω(
√
n).

Proof. Consider two neighboring databases (X, y) and (X ′, y), where y = 1 ∈ RT0 , X ∈
Rn×T0 has all entries 1/n, except the first row, which is all 1s. Neighboring database X ′

differs from X only in the first row, which is instead all 0s, and all other entries and 1/n.
The dimensions in this example are chosen to be T0 = n, and we choose λ = 2T0, so that
the regularization coefficient is 1.

Computing the minimizers of the loss functions under each neighboring database using
the closed-form expression yields f reg = (XX⊤ + I)−1Xy with first coordinate equal to

n2

n2+2n−1
, and all other coordinates are n

n2+2n−1
, and f reg ′ = (X ′X ′⊤ + I)−1X ′y with first
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coordinate 0 and all other coordinates −n
1−2n . This yields ℓ2 difference of,

||f reg − f reg ′||2 =

√(
n2

n2 + 2n− 1

)2

+ (n− 1)

(
n3

(n2 + 2n− 1)(1− 2n)

)2

= Θ(
√
n).

Since we have a pair of neighboring databases with ℓ2 distance in their output of Θ(
√
n),

then the sensitivity of f reg cannot be o(
√
n).

Remark 4.8. We note that while the example in Lemma 4.7 is mathematically valid, such
a degenerate case where all the donors are identical except for one person and the (exact)
rank of the donor matrix is 1 is unlikely to happen in practical settings. Thus suggests that
with additional domain knowledge on the selection criteria for donors, practitioners may be
able to reduce the sensitivity and thus add less noise for privacy in special restricted cases
of interest.

4.2. Privacy of X̃post and yout. Next we move to privacy of X̃post and its role in ensuring
privacy of yout.

Lemma 4.9. The computation of X̃post in Step 2 of Algorithm 2 is (ϵ2, 0)-differentially
private.

X̃post is privatized through a simple application of the Laplace Mechanism of Dwork et al.
(2006). Thus to prove Lemma 4.9, we need only to bound the sensitivity of Xpost to show
that the algorithm adds sufficient noise. We first note that the Frobenius norm of a matrix
X ∈ Rn×(T−T0) is equal to the ℓ2 norm of the equivalent flattened vector X ∈ Rn(T−T0)

(Horn and Johnson, 2012). Thus implementing the matrix-valued Laplace Mechanism with
noise parameter calibrated to the ℓ2 sensitivity of the flattened matrix-valued query over ϵ
will ensure (ϵ, 0)-differential privacy.

Lemma 4.10. The ℓ2 sensitivity of flattened Xpost is 2
√

(T − T0).

Proof. Changing one donor unit in Xpost can change at most T − T0 entries in the matrix.
Since all entries in Xpost are bounded in [−1, 1], each data point can change by at most
2 between two neighboring databases. Thus viewing Xpost as a flattened matrix, this will

change the ℓ2-norm of Xpost by at most 2
√
(T − T0).

Finally, we can combine Theorem 4.1 and Lemma 4.9 to complete the proof of Theorem
3.1. The estimates fout and X̃post are together (ϵ1 + ϵ2, 0)-differentially private by DP
composition, and then yout is (ϵ1 + ϵ2, 0)-differentially private by post-processing. We note
that if one wanted to publish fout, this would not incur any additional privacy loss.

5. Accuracy Guarantees of DPSCout

In this section we will analyze the accuracy of DPSCout. We first prove Theorem 3.2,
restated below for convenience.
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Theorem 3.2. The estimator yout output by Algorithm 2 satisfies:

RMSE(yout) ≤ ||Mpost||2√
T − T0

(
E[||f reg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
,

where ||f reg||∞ ≤ ψ for some ψ > 0, and RMSE is the average root mean squared error of
the estimator, defined as RMSE(yout) = 1√

T−T0
E[||yout −mpost||2].

This theorem gives bounds on the predicted post-intervention target vector yout, as
measured by RMSE. This result is stated in full generality with respect to the distribution
of data and the latent variables, and thus the bound depends on terms such as ||Mpost||2,2
and E[||f reg − f ||2]. This is consistent with comparable bounds on the RMSE of robust
synthetic control by Amjad et al. (2018) that also depended on these terms (although the
stated bounds in Amjad et al. (2018) suppress dependence on n). Section 5.1 provides a
proof of this main result, with omitted detailed deferred to Appendix B.

Analysts may still wonder about the full asymptotic performance of DPSCout algorithm.
To this end, in Section 5.2, we additionally derive closed-form bounds for these distribution-
dependent terms (under some mild assumptions). We present Corollary 5.5, which gives a
bound on RMSE of yout that depends only on input parameters of the algorithm and the
model.

5.1. Accuracy of post-intervention prediction yout. We will prove Theorem 3.2 by
showing that the prediction vector yout output by DPSCout in Algorithm 2 is close to the
true values, as measured by Root Mean Squared Error (RMSE), defined as follows:

RMSE(yout) =
1√

T − T0
E[||yout −mpost||2]. (5.1)

We note that while it may seem most natural to bound the difference between yout and
ypost, we instead use mpost for two reasons. Firstly, ypost may not even match ypre due to
the intervention. Secondly, mpost captures the true signal that we are trying to estimate,
which is the counterfactual outcome without the intervention.

We begin by bounding the expected ℓ2 difference between yout and mpost. Using the
fact that

yout = X̃⊤
postf

out = (X⊤
post +W⊤)(f reg + v),

and that Xpost =Mpost + Zpost (by Equation (2.1)) and m =M⊤
postf (by Equation (2.2)),

we can expand the expectation as follows:

E[||yout −mpost||2] (5.2)

= E[||(X⊤
post +W⊤)(f reg + v)−M⊤

postf ||2]

= E[||(M⊤
post + Z⊤

post +W⊤)(f reg + v)−M⊤
postf ||2]

≤ E[||M⊤
post(f

reg − f)||2 + ||(Z⊤
post +W⊤)f reg||2 + ||(M⊤

post + Z⊤
post +W⊤)v||2]

= E[||M⊤
post(f

reg − f)||2] + E[||(Z⊤
post +W⊤)f reg||2] + E[||(M⊤

post + Z⊤
post +W⊤)v||2]

(5.3)
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We next proceed to bound each of the terms in Equation (5.2) separately, making use of
the following submultiplicative norm property, which holds for any matrix A and vector x:

||Ax||2 ≤ ||A||2||x||2 ≤ ||A||F ||x||2, (5.4)

where ||A||2 = ||A||2,2 is the spectral norm of A, ||A||F is the Frobenius norm of A, and
||x||2 is the ℓ2 norm of x.

We also know the distribution of the norms of noise terms v and W that were added to
preserve privacy, because they were constructed explicitly within Algorithm 2:

E[||v||2] =
4T0

√
8 + n

λϵ1
and E[||W ||F ] = b =

2
√
T − T0
ϵ2

. (5.5)

Using these facts, we can obtain bounds for the three terms in Equation (5.2). A
complete proof of Lemma 5.1 can be found in Appendix B.2.

Lemma 5.1. The three terms in Equation (5.2) can be bounded as follows:

E[||M⊤
post(f

reg − f)||2] ≤ ||Mpost||2,2 · E[||f reg − f ||2],

E[||(Z⊤
post +W⊤)f reg||2] ≤

√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
, and

E[||(M⊤
post + Z⊤

post +W⊤)v||2] ≤
(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4T0

√
8 + n

λϵ1
.

Applying the bounds of Lemma 5.1 to Equation (5.2) yields,

E[||yout −m||2] ≤ ||Mpost||2,2 · E[f reg − f ||2] +
√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
+

(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4T0

√
8 + n

λϵ1

≤ ||Mpost||2,2
(
E[f reg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
Combining this with Equation (5.1) gives the desired bound for Theorem 3.2:

RMSE(yout) ≤ ||Mpost||2,2√
T − T0

(
E[||f reg − f ||2] +

4T0
√
8 + n

λϵ1

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
.
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5.1.1. Cost of privacy in synthetic control. To understand the additional error incurred due
to privacy, compare the bound of Theorem 3.1 to the RMSE of the equivalent non-private
prediction, yreg = X⊤

postf
reg.

RMSE(yreg) =
1√

T − T0
E[||X⊤

postf
reg −m||2]

=
1√

T − T0
E[||(M⊤

post + Z⊤
post)f

reg −M⊤
postf ||2]

≤ 1√
T − T0

E[||M⊤
post(f

reg − f)||2 + ||Z⊤
postf

reg||2]

≤ ||Mpost||2,2√
T − T0

(E[||f reg − f ||2]) +
√
nψ ·

√
nσ2 (5.6)

Lemma 5.6 in the next section shows that E[||f reg − f ||2] = O(
√
n). Then the first term of

Equation (5.6) can be easily bounded using the following fact,

||Mpost||2,2 ≤ ||Mpost||F ≤
√
n(T − T0),

so
||Mpost||2,2√

T−T0
≤

√
n. Thus we see that RMSE(yreg) = O(n).

Comparing Equation (5.6) with the bound on RMSE(yout) in Theorem 3.1, we observe
that the additional terms induced by privacy are:

||Mpost||2,2√
T − T0

4T0
√
8 + n

λϵ1
+

4T0
√
(8 + n)nσ2

λϵ1
+

√
2nψ

ϵ2
+

4T0
√

2(8 + n)

λϵ1ϵ2
. (5.7)

Then, using the fact that
||Mpost||2,2√

T−T0
≤

√
n and setting ϵ := ϵ1 = ϵ2 and λ = O(T0),

Equation (5.7) can be bounded by,

4T0
√
(8 + n)n

λϵ
+

4T0
√
(8 + n)nσ2

λϵ
+

√
2nψ

ϵ
+

4T0
√

2(8 + n)

λϵ2
= O

(
n

ϵ
+

√
n

ϵ2

)
= O

(n
ϵ

)
,

for ϵ ≥ 1/
√
n. Thus we conclude that the cost of privacy in the DPSCout algorithm is at

most a factor of O(1ϵ ). The restriction to ϵ ≥ 1√
n
is consistent with standard practice in

both theoretical and practical deployments of differential privacy, and thus is effectively
without loss.

5.2. Closed-form bound on RMSE of Output Perturbation. In this section, we
impose assumptions on the underlying data distribution to extend Theorem 3.2 to provide
an explicit closed-form bound on the RMSE. Throughout this section, we make the following
three mild assumptions of the distribution of X, which are required to achieve this closed-form
expression:

Assumption 5.2. Xpre takes values in a k-dimensional subspace E for some small k ≪
min{n, T0}.

Assumption 5.3. The distribution of Xpre over E is isotropic, hence the covariance matrix
Cov(Xpre) = Σ = PE where PE is an orthogonal projection matrix onto E.

Assumption 5.4. The distribution of xt ∈ Rn is supported in some centered Euclidean ball
with radius O(

√
k).
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These assumptions are only slightly stronger than those commonly made in theory
(Amjad et al., 2018, 2019) and that typically hold in practice (Udell and Townsend, 2019).
The first assumption means that Xpre is low rank. Assuming Xpre to be approximately
low rank is a common practice in synthetic control literature (Amjad et al., 2018, 2019).
Indeed, most large matrices in practice are approximately low-rank (Udell and Townsend,
2019). Hence, we only further assume that it is exactly rank k for some small k. The
second assumption allows us to apply useful mathematical properties: ||PE ||2 = 1 and
trace(PE) = k. Then, E[XpreX

⊤
pre] = trace(Σ) = k and, using Markov’s inequality, we know

that most of the distribution mass should be within a ball of radius
√
m for m = O(k).

Hence, the third assumption asserts that not most but all the probability mass should lie
within that ball, i.e., ||X||2,2 = O(

√
k) almost surely.

Corollary 5.5 provides a closed-form bound on the RMSE of yout under these assumptions.

Corollary 5.5. If Assumptions 5.2, 5.3, and 5.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with

probability at least 1− n−t2, if T0 ≥ C(t/ξ)2k log n, we have

RMSE(yout) ≤
√
n

(
(
√
2nσ2 +

√
2nσ2s2 )T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

+
4T0

√
8 + n

λϵ1

)

+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

4T0
√
8 + n

λϵ1

)
.

To derive Corollary 5.5 from Theorem 3.2, we only need to derive and apply bounds on
||Mpost||2,2 and E[||f reg − f ||2]. As before, we bound the first term using

||Mpost||2,2 ≤ ||Mpost||F ≤
√
n(T − T0),

and thus
||Mpost||2,2√

T−T0
≤

√
n. Therefore, the key step is to bound E[||f reg−f ||2]. The following

lemma provides the required bound on this term to prove Corollary 5.5. The remainder
of this section will be devoted to providing a proof sketch for Lemma 5.6. A full proof is
presented in Appendix B.3.

Lemma 5.6. Let f reg = (XpreX
⊤
pre +

λ
2T0

I)−1Xpreypre be the Ridge regression coefficients

and let f be the true coefficients. If Assumptions 5.2, 5.3, and 5.4 hold, then for all ξ ∈ (0, 1)

and t ≥ 1, with probability at least 1− n−t2, if T0 ≥ C(t/ξ)2k log n, then,

E[||f reg − f ||2] ≤
(
√
2nσ2 +

√
2nσ2s2)T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

.

Proof sketch of Lemma 5.6. First we can expand E[||f reg − f ||2]:
E[||f reg − f ||2] = E[||f reg − E[f reg] + E[f reg]− f ||2]

≤ E[||f reg − E[f reg]||2] + E[||E[f reg]− f ||2]
= E[||f reg − E[f reg]||2] + E[||Bias(f reg)||2]. (5.8)

We can bound these two terms separately as:

Bias(f reg) ≤ λ

2T0
||(XpreX

⊤
pre +

λ

2T0
I)−1||2,2 and

E[||f reg − E[f reg]||2] ≤ E[||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 · ||Xprezpre −XpreZ

⊤
pref ||2].
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This can be combined back with Equation (5.8) to yield,

E[||f reg − f ||2] ≤ E[||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 · (||Xprezpre −XpreZ

⊤
pref ||2 +

λ

2T0
)]. (5.9)

Next, we use our assumptions on the data distribution to prove the following lemma about
||(XpreX

⊤
pre +

λ
2T0

I)−1||2,2.

Lemma 5.7. If Assumptions 5.2, 5.3, and 5.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with

probability at least 1− n−t2, if T0 ≥ C(t/ξ)2k log n, then,

||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 ≤

1

(1− ξ)T0 +
λ

2T0

.

To prove Lemma 5.7, we use the following lemma about concentration of random
matrices.

Lemma 5.8 (Vershynin (2010), Corollary 5.52). Consider a distribution in Rn with covari-
ance matrix Σ, and supported in some centered Euclidean ball whose radius we denote

√
m.

Let T0 be the number of samples and define the sample covariance matrix ΣT0 = 1
T0
XX⊤.

Let ξ ∈ (0, 1) and t ≥ 1. Then with probability at least 1− n−t2,

If T0 ≥ C(t/ξ)2||Σ||−1
2,2m log n then ||ΣT0 − Σ||2,2 ≤ ξ||Σ||2,2,

where C is an absolute constant.

We instantiate Lemma 5.8 using our assumptions that ||Σ||2,2 = ||PE ||2,2 = 1 and the

distribution is supported within some centered Euclidean ball with radius
√
O(k) to get

that with probability at least 1 − n−t2 and T0 ≥ C(t/ξ)2k log n,

|| 1
T0
XpreX

⊤
pre − Σ||2,2 ≤ ξ.

We then use this to show that

||XpreX
⊤
pre − T0I||2,2 ≤ ξT0,

and thus all eigenvalues of (XpreX
⊤
pre − T0I) must be at most ξT0, so

(1− ξ)T0 ≤ λmin(XpreX
⊤
pre) ≤ (1 + ξ)T0.

Finally, we can complete the proof of Lemma 5.7, by observing that,

||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 =

1

|λmin(X⊤X) + λ
2T0

|
≤ 1

(1− ξ)T0 +
λ

2T0

.

Returning to Equation (5.9), we can use this bound—along with the model properties
specified in Equation (2.1) that each element of z and Z has mean 0, variance σ2, and
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support [−s, s]—to obtain the desired bound:

E[||f reg − f ||2] ≤
1

(1− ξ)T0 +
λ

2T0

E[||Xprezpre −XpreZ
⊤
pref ||2 +

λ

2T0
]

≤ 1

(1− ξ)T0 +
λ

2T0

(
(
√
nT0 +

√
nT0s2)E[||zpre − Z⊤

pref ||2] +
λ

2T0

)
≤ 1

(1− ξ)T0 +
λ

2T0

(
(
√
nT0 +

√
nT0s2)

√
2T0σ2 +

λ

2T0

)

≤
(
√
2nσ2 +

√
2nσ2s2)T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

.

6. Privacy Guarantees of DPSCobj

In this section, we prove Theorem 3.4, that DPSCobj is (ϵ1 + ϵ2, δ)-differentially private.
This proof relies on composition of the (ϵ1, δ)-DP learning step and the (ϵ2, 0)-DP prediction
step. The prediction step is identical to that of Algorithm 2, so the privacy of this step
follows immediately from Lemma 4.9 (that X̃post is computed in an (ϵ2, 0)-DP manner) and

post-processing on the DP output of Step 1. All the remains to be shown is that fobj is
computed in an (ϵ1, δ)-DP manner (Theorem 6.1), and then Theorem 3.4 will follow by basic
composition.

Theorem 6.1. Step 1 of Algorithm 3 that computes fobj is (ϵ1, δ)-differentially private.

At a high-level, the privacy of fobj comes from a carefully modified instantiation of the
Objective Perturbation algorithms of Chaudhuri et al. (2011) and Kifer et al. (2012), with
novel sensitivity analysis, again due to the transposed regression setting of synthetic control
(i.e., along columns not rows), where privacy is still required along the rows.

More formally, we start with the standard Ridge regression objective function J(f), that
can be separated into the MSE loss function L(f) and the regularization term r(f) = λ

2T0
||f ||22

as follows:

J(f) = L(f) + r(f) =
1

T0
||ypre −X⊤

pref ||22 +
λ

2T0
||f ||22.

The Objective Perturbation method modifies J(f) by adding two terms: an additional
regularization term and a noise term to ensure privacy:

Jobj(f) = J(f) +
∆

2T0
||f ||22 +

1

T0
b⊤f = L(f) + λ+∆

2T0
||f ||22 +

1

T0
b⊤f ,

where b is a random vector drawn from a high-dimensional Laplace distribution if δ = 0,
and from a multivariate Gaussian distribution if δ > 0.

Notice that Jobj(f) is strongly convex (for any ∆ ≥ 0) and differentiable. Hence, for
any given input dataset D = (Xpre, ypre) and any fixed parameters (λ, ϵ1, ϵ2, δ), there exists

a bijection between a realized value of the noise term b and fobj := argminf J
obj(f) given
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that realized b.1 We can then use this bijection to analyze the distribution over outputs on
neighboring databases via the (explicitly given) noise distribution.

To observe this bijection concretely, let b(α;D) be noise value that must have been
realized when database D was input and α = argminf J

obj(f) was output. We can derive a

closed-form expression for b(α;D) by computing the gradient of Jobj(f), which should be
zero when evaluated at f = α since α is defined to be the minimizer of Jobj(f):

∇Jobj(f)
∣∣
f=α

= ∇L(α) +∇r(α) +
∆

T0
α+

b(α;D)

T0

!
= 0.

Rearranging the equation yields

b(α;D) = − (T0∇L(α) + T0∇r(α) + ∆α) .

Now, consider two arbitrary neighboring databases D and D′ and an arbitrary output
value α. Similar to Chaudhuri et al. (2011), we can use, e.g., Billingsley (1995) to express
the ratio of the probabilities of outputting α on neighboring D and D′ as:2

Pr(fobj = α | D)

Pr(fobj = α | D′)
=

Pr(b(α;D))

Pr(b(α;D′))

|det(∇b(α;D′))|
|det(∇b(α;D))|

:= Γ(α) · Φ(α; ∆),

where we define Γ(α) := Pr(b(α;D))
Pr(b(α;D′)) and Φ(α;∆) := |det(∇b(α;D′))|

|det(∇b(α;D))| . In the remainder of the

proof, we will bound Γ(α) ≤ eϵ0 and Φ(α;∆) ≤ eϵ1−ϵ0 so that the product is bounded by
eϵ1 .

The parameter ∆ serves a role to divide the ϵ1 budget between these two terms by
distinguishing between two cases. In the first case, ϵ1 is large enough that we can choose
∆ = 0 and still have some privacy budget (ϵ0) remaining to bound Γ(α). In the other case,
if ϵ1 is too small to bound Φ(α;∆) with ∆ = 0, then we divide the privacy budget equally
between bounding Γ(α) and Φ(α; ∆), and find an appropriate value for ∆ > 0.

First, we will show Φ(α; ∆) is upper bounded by eϵ1−ϵ0 .

Lemma 6.2. If ∆ = 0 and ϵ0 = ϵ1 − log(1 + 2c
λ + c2

λ2 ), or if ∆ = c
eϵ1/4−1

− λ and ϵ0 =
ϵ1
2 ,

then Φ(α; ∆) ≤ eϵ1−ϵ0.

Proof. We start with Lemma 6.3 (proved in Appendix C.1), which bounds Φ(α;∆) as a
function of λ, c, and ∆.

Lemma 6.3. For any ∆ ≥ 0, Φ(α; ∆) = |det(∇b(α;D′))|
|det(∇b(α;D))| ≤ (1 + c

λ+∆)2.

Next, we use this result to prove our desired bound that Φ(α; ∆) ≤ eϵ1−ϵ0 . We do this

by considering two cases. First, when ∆ = 0, then Φ(α;∆ = 0) ≤ 1 + 2c
λ + c2

λ2 ≤ eϵ1−ϵ0 by
design, where the first inequality comes from Lemma 6.3 and the second inequality comes

from the choice of ϵ0 = ϵ1− log(1+ 2c
λ + c2

λ2 ) when ∆ = 0. In the second case, ∆ = c
eϵ1/4−1

−λ.
Plugging this ∆ value into the bound of Lemma 6.3 gives Φ(α;∆) ≤ eϵ1/2 = eϵ1−ϵ0 , where
the second inequality come from our choice of ϵ0 = ϵ1/2.

1For a simple analogy, consider the one-dimensional Laplace Mechanism on query f and database x, which
outputs y = f(x) + Lap(∆f/ϵ). Given f and x, there is a bijection between noise terms and outputs since
the noise term must equal y − f(x).

2with abuse of notation to let Pr denote pdf for simplicity of presentation.
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Next, we bound Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) . Note that this term depends only on the noise

distribution, and not on the value of ∆. Algorithm 3 offers two options of noise distributions:
Laplace noise when δ = 0, and Gaussian noise when δ > 0.

In the case of Laplace noise, the bound that Γ(α) ≤ eϵ0 follows immediately from the
Laplace mechanism instantiated with privacy parameter ϵ0 and Lemma 4.5 to bound the
sensitivity. The following lemma is proved in Appendix C.2.

Lemma 6.4. When b is sampled according to pdf p(b;β) ∝ exp
(
− ||b||2

β

)
, where β =

min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
}, then Γ(α) = Pr(b(α;D))

Pr(b(α;D′)) ≤ eϵ0.

The two different β values come from two different upper bounds on the sensitivity, and
the minimum value will give a tighter bound.

In the case where δ > 0 and the Gaussian Mechanism is used, we cannot simply bound

Γ(α) = Pr(b(α;D))
Pr(b(α;D′)) with probability 1. Instead, the bound must incorporate the δ term to

bound Γ(α) with probability 1 − δ over the internal randomness of the algorithm, as in
Lemma 6.5, formally proven in Appendix C.3.

Lemma 6.5. When b ∼ N (0, β2In), where β =
4T0

√
8+n

√
2 log 2

δ
+ϵ0

ϵ0
, then

Γ(α) =
Pr(b(α;D))

Pr(b(α;D′))
≤ eϵ0

with probability at least 1− δ.

Finally, we combine the bounds on Φ(α; ∆) and Γ(α) to complete the proof. When δ = 0
with Laplace noise, Lemmas 6.2 and 6.4 combine immediately to give that Φ(α; ∆)Γ(α) ≤
eϵ1−ϵ0+ϵ0 = eϵ1 . When δ > 0 and Gaussian noise is used, we define G to be the good event
that Γ(α) ≤ eϵ0 , which we know from Lemma 6.5 will happen with at least probability 1− δ.
Then conditioned on G we have,

Pr(fobj = α | D,G)
Pr(fobj = α | D′,G)

= Γ(α) · Φ(α; ∆) ≤ eϵ0 · eϵ1−ϵ0 ≤ eϵ1 .

We can then use this fact to derive our desired (unconditioned) privacy bound:

Pr(fobj = α | D) = Pr(G) · Pr(fobj = α | D,G) + Pr(G) · Pr(fobj = α | D,G)

≤ eϵ1 Pr(G) · Pr(fobj = α | D′,G) + δ

≤ eϵ1 Pr(fobj = α | D′) + δ.

Hence, fobj in Algorithm 3 is (ϵ1, δ)-DP and the final output yobj is (ϵ1 + ϵ2, δ)-DP by
composition.

7. Accuracy Guarantees of DPSCobj

In this section we analyze the accuracy of DPSCobj . We first prove Theorem 3.5, restated
below for convenience.
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Theorem 3.5. The estimator yobj output by Algorithm 3 satisfies:

RMSE(yobj) ≤ ||Mpost||2√
T − T0

(
E[||(f reg − f)||2] + 2

λ+∆E[||b||2] + 1∆ ̸=0

(
1
λ + 1

λ+∆

)
2T 2

0

√
n
)

+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ + 2

λ+∆E[||b||2] + 1∆ ̸=0

(
1
λ + 1

λ+∆

)
2T 2

0

√
n
)
,

where ||f reg||∞ ≤ ψ for some ψ > 0, and E[||b||2] =

√
nT04

√
8+n

√
2 log 2

δ
+ϵ0

ϵ0
for Gaussian

noise (δ > 0 case) and E[||b||2] = min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace noise (δ = 0 case),

and ϵ0, and ∆ are computed internally by the algorithm.

This theorem gives bounds on the predicted post-intervention target vector yobj , as
measured by RMSE. Similar to Theorem 3.2, this result is stated in full generality with
respect to the distribution of data and the latent variables, and thus the bound depends
on terms such as ||Mpost||2,2 and E[||f reg − f ||2]. Section 7.1 provides a proof of this result,
with omitted detailed deferred to Appendix C.

Comparing the bound of Theorem 3.5 to that of Theorem 3.2 for output perturbation,
we see that the difference comes only from the respective terms E[||(f (out∨obj)−f reg)||2]. For
output perturbation, the error fout − f reg is simply the noise directly added to the output,

so the expected norm of the error is simply the expected norm of the noise, a = 4T0
√
8+n

λϵ1
.

For objective perturbation, the interpretation of this error terms is less straightforward,
and is instead bounded using Lemma 7.1. As a simple case for comparison, when ∆ = 0
and δ = 0 (i.e., using Laplace noise), the expected difference becomes E[||(fobj − f reg)||2] ≤
min{8T 2

0

√
8+n

λϵ0
, 2cT0

√
n

λϵ0
}. If the first term is the smaller of the two, then E[||(fobj − f reg)||2]

is bigger than E[||(fout − f reg)||2] because of the additional T0 factor, and since ϵ0 < ϵ1
(assuming the same ϵ1 values for comparison). If the second term is the minimum, then

the upper bound on error is larger under objective perturbation when c ≥ 2
√
8+n√
n

. In both

cases, this diverges from the conclusions when comparing these methods for the standard
ERM setting, where the objective perturbation is known to provide better performance than
output perturbation (Chaudhuri et al., 2011).

7.1. Accuracy of post-intervention prediction via objective perturbation yobj. We
will prove Theorem 3.5, which upper bounds the Root Mean Squared Error (RMSE) of yobj ,
defined as:

RMSE(yobj) =
1√

T − T0
E[||yobj −mpost||2].
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Using the facts that yobj = X̃⊤
postf

obj , X̃post = Xpost +Mpost + Zpost, and mpost = M⊤
postf

(by Equation (2.2)), we can bound the expectation as follows:

E[||yobj −mpost||2] = E[||X̃⊤
postf

obj −M⊤
postf ||2]

= E[||X̃⊤
postf

obj − X̃⊤
postf

reg + X̃⊤
postf

reg −M⊤
postf ||2]

= E[||(Mpost + Zpost +Wpost)
⊤(fobj − f reg) (7.1)

+ (Mpost + Zpost +Wpost)
⊤f reg −M⊤

postf ||2]

≤ E[||(Mpost + Zpost +Wpost)
⊤(fobj − f reg)||2]

+ E[||M⊤
post(f

reg − f)||2] + E[||(Zpost +Wpost)
⊤f reg||2], (7.2)

where the first equality is due to the definition of yobj , the second equality adds and subtracts
the same term, the third equality collects terms and plugs in the expression for X̃post, and
the final step is due to triangle inequality.

Lemma 5.1 already bounds the last two terms because they do not involve fobj and
Step 2 of Algorithms 2 and 3 are the same. Specifically, we know that,

E[||M⊤
post(f

reg − f)||2] ≤ ||Mpost||2,2E[||f reg − f ||2]

and E[||(Z⊤
post +W⊤

post)f
reg||2] ≤

√
nψ(

√
n(T − T0)σ2 +

2
√
T−T0
ϵ2

).
(7.3)

Thus we only need to bound the first term:

E[||(Mpost + Zpost +Wpost)
⊤(fobj − f reg)||2]

≤ E[||M⊤
post(f

obj − f reg)||2] + E[||(Zpost +Wpost)
⊤(fobj − f reg)||2]

≤ ||Mpost||2E[||fobj − f reg||2] + E[||Zpost +Wpost||2]E[||(fobj − f reg)||2]

≤ ||Mpost||2E[||fobj − f reg||2] + (
√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)E[||(fobj − f reg)||2], (7.4)

where the first step is simply triangle inequality, the second step is due to the independence
of Z,W and fobj , and the third step comes from the proof of Lemma 5.1 (see Appendix
B.2), where E[||Zpost +Wpost||2] was bounded as an intermediate step.

Thus we only need to derive a bound on E[||fobj − f reg||2], which we do in Lemma 7.1
(formally proven in Appendix C.4) to complete the proof.

Lemma 7.1. The ℓ2 distance between fobj and f reg satisfies:

E[||fobj − f reg||2] ≤
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n,

where b and ∆ are computed internally by Algorithm 3.
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Combining Equations (7.1), (7.3), and (7.4) with Lemma 7.1 completes the proof of
Theorem 3.5:

RMSE(yobj) ≤ ||Mpost||2√
T − T0

(
E[||(f reg − f)||2] + E[||(fobj − f reg)||2]

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ + E[||(fobj − f reg)||2]

)
≤||Mpost||2√

T − T0

(
E[||(f reg − f)||2] +

2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
+

(
√
nσ2 +

√
2

ϵ2

)(√
nψ +

2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
,

where E[||b||2] =
√
nβ =

√
nT0ζ

√
2 log 2

δ
+ϵ0

ϵ0
for Gaussian noise

and E[||b||2] = min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace noise.

7.2. Closed-form bound on RMSE of Objective Perturbation. Using similar analysis
as in Section 5.2, we can extend Theorem 3.5 to obtain the following closed-form accuracy
bound that depends only on explicit input parameters, under the same distributional
assumptions.

Corollary 7.2. If Assumptions 5.2, 5.3, and 5.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with

probability at least 1− n−t2, if T0 ≥ C(t/ξ)2k log n, we have

RMSE(yout) ≤
√
n

(
(
√
2nσ2+

√
2nσ2s2 )T0+

λ
2T0

(1−ξ)T0+
λ

2T0

+ 2
λ+∆E[||b||2] + 1∆ ̸=0

(
1
λ + 1

λ+∆

)
2T 2

0

√
n

)
+
(√

nσ2 +
√
2

ϵ2

)(√
nψ + 2

λ+∆E[||b||2] + 1∆ ̸=0

(
1
λ + 1

λ+∆

)
2T 2

0

√
n.
)
,

where ||f reg||∞ ≤ ψ for some ψ > 0, and E[||b||2] =

√
nT04

√
8+n

√
2 log 2

δ
+ϵ0

ϵ0
for Gaussian

noise (δ > 0 case) and E[||b||2] = min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} for Laplace noise (δ = 0 case),

and ϵ0 and ∆ are computed internally by the algorithm.

The additional terms that arise due to the noise required to guarantee differential privacy
in this setting, relative to the bound on RMSE(yreg) in Equation (5.6), are:

(
√
n+

√
nσ2 +

√
2

ϵ2
)

(
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n

)
+

√
2n

ϵ2
ψ. (7.5)

To analyze this expression in a simplified way, assume the regularization parameter
is λ = O(T0) so T0

λ = O(1), and that Laplace noise was used (i.e., δ = 0), so that

E[||b||2] = O(T0
√
n

ϵ0
). Then the first parenthesis of Equation (7.5) becomes O(

√
n+ 1

ϵ2
), the

second parenthesis becomes O(T0
√
n

ϵ0
+ T0

√
n), and the additive term becomes O(

√
n

ϵ2
). Since

ϵ0 < ϵ1, we replace ϵ0 by ϵ1 in the bounds. Then Equation (7.5) is O(T0n
ϵ1

+ T0
√
n

ϵ1ϵ2
) from

the product of two parentheses, and omitting the additive term, which is asymptotically
dominated by the others.
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Comparing to the cost of privacy in Output Perturbation in Corollary 5.5, we see that
the bound in Corollary 5.5 does not depend on T0. This additional dependence on T0 arises
for Objective Perturbation from the second parenthesis containing E[||b||2] and the indicator
function, which is absent in the output perturbation case.

8. Simulations and Guidance for Parameter Tuning

In this section, we present results on the empirical performance of both DPSCout and
DPSCobj . As a baseline, we compare against both our theoretical bounds in Theorems 3.2
and 3.5, and the empirical performance of the non-private synthetic control (Algorithm 1)
with a quadratic loss function. In our experiments, we vary the regularization parameter λ,
the number of donors n, the number of pre-intervention observations T0, and the privacy
parameter ϵ. For a fair comparison, we use δ = 0 for the objective perturbation, except in
Section 8.4 where the impact of δ is explored.

We observe that DPSCobj outperforms DPSCout for many but not all of the parameter
regimes considered, and that both methods provide better performance than their theoretical
bounds suggests. We also observe that choosing λ = T0 yields optimal or near-optimal
RMSE across as variety of parameter regimes, and that empirical performance of both
private methods improves as ϵ grows large.

8.1. Dataset and Performance Evaluation. We use synthetic datasets in our experi-
ments, which enables us to observe the impact of varying the relevant parameters in the
data and to match the modeling assumptions of Section 2.1. We use T0 ∈ {10, 50, 100}
and n ∈ {10, 50, 100} when generating the datasets, corresponding to both smaller and
larger number of donors and observations, and we always use T = T0 + 3, meaning that the
synthetic control algorithm must predict the next three data points in the donor pool.

The true signals M and m are generated according to a linear model with random slope,
formalized as:

Mi,t = θit and mt = θ0t, ∀i ∈ [n], t ∈ [T ],

where the θi are sampled i.i.d. from a truncated Gaussian with mean 4, variance 1, and
support [3, 5]. Elements of the noise terms Z and z are sampled i.i.d. from a truncated
Gaussian with mean zero, variance 0.1 and support [−1, 1]. Following Equation (2.1), the
donor and target data were respectively defined as X =M + Z and y = m+ z. Figure 2
shows an example synthetic dataset generated in this way, with the donor data in grey and
the target in red.

In each experiment for a fixed T0 and n, a single database was generated and then all
algorithms were run 500 times on each dataset. We evaluate post-intervention RMSE as the
accuracy measure of interest, as in our theoretical results. Error bands in all figures show
95% confidence intervals, taken over the randomness in data generation and the algorithms.

8.2. Optimizing regularization parameter λ. The first question we aim to address in
our experiments is the impact of the parameter λ on performance, and guidance for analysts
in their choice of optimal λ. In our first set of experiments, we fixed ϵ1 = ϵ2 = 50, T0 = 10,
and n = 10 – other values of ϵ and (T0, n) are considered respectively in Sections 8.4 and 8.5
– and empirically measured pre- and post-intervention RMSE as a function of λ.
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Figure 2: Illustration of example synthetic dataset generated with T0 = 10 and n = 10. The
target time series is in red, and the donor time series are all in grey.

Figure 3: Behavior of post-intervention RMSE over λ, tested on a synthetic datast with
T0 = 10, n = 10 for the synthetic control methods of non-private SC (blue),
DPSCout (green), and DPSCobj (orange).

Figure 3 shows the post-intervention RMSE of DPSCout, DPSCobj , and non-private syn-
thetic control as a function of λ, for values λ ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000}.
We observe that the performance of the three methods converges as λ grows large, but that
the RMSE of the private methods are larger than that of the non-private method for smaller
λ ≤ 20, with Objective Perturbation substantially outperforming Output Perturbation.

The U-shape of the curve for the private methods has a natural theoretical explanation:
smaller λ increases sensitivity and thus privacy noise and RMSE, while larger λ increases the
weight of the regularization term in the loss function, which will cause all three regularized
methods to converge to the same value. Later, in Section 8.5, we observe that the RMSE
of DPSC is minimized around λ = T0 for all four datasets of varying sizes (see Figure 10),
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which can aid the analyst in choosing an optimal λ. This is consistent with our theoretical
recommendations that λ should be O(T0).

Figure 4: Comparison of post-intervention RMSE in theory versus in practice, using
DPSCout (left) and DPSCobj (right) on a dataset of size n = 10, T0 = 10.

Figure 4 compares the empirical post-intervention RMSE of DPSCout and DPSCobj

with the theoretical RMSE bounds of Theorem 3.2 and 3.5 instantiated with the parameters
values used in our experiments. We observe that DPSCobj performs better than DPSCout

at smaller λ values, although performance of both algorithms converges when λ is large. We
also observe that the empirical performance of both algorithms is dramatically better than
the theoretical bounds predict, which suggests potential room for theoretical improvements.

8.3. Optimizing the budget split between Step 1 (ϵ1) and Step 2 (ϵ2). In this
subsection, we address the allocation of the privacy budget ϵ to the two algorithmic steps:
ϵ1 for Step 1 and ϵ2 for Step 2. In these experiments, we set λ = T0 based on the findings in
Section 8.2. We introduce the parameter ρ = ϵ1

ϵ1+ϵ2
, capturing the fraction of the budget

allocated to Step 1, and examine how the post-intervention RMSE changes with varying
ρ. Figures 5 and 6 present the results with the total privacy budget ϵ = ϵ1 + ϵ2 = 100 and
ϵ = 10, respectively, for ρ ∈ {0.05, 0.10, 0.15, . . . , 0.90, 0.95}.

Figure 5: Post-intervention RMSE of DPSCout (left), and DPSCobj (right) for varying ρ
with total privacy budget ϵ = 100, on synthetic datasets of varying sizes.

With a large privacy budget, such as ϵ = 100 (Figure 5), higher values of ρ yield lower
RMSE for both DPSCout and DPSCobj . RMSE slightly increases when ρ approaches one,
but this effect is very mild relative to the increase when ρ approaches zero. This observation
indicates that Step 1 is much more sensitive to noise than Step 2, and thus more of the
privacy budget should be allocated to ϵ1.
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Figure 6: Post-intervention RMSE of DPSCout (left), and DPSCobj (right) for varying ρ
and the total privacy budget ϵ = 10, tested on various synthetic datasets.

On the other hand, with a smaller privacy budget, such as ϵ = 10 (Figure 6), the RMSE
of DPSCobj had a significant spike somewhere between ρ = 0.5 and ρ = 0.8 for different
dataset sizes, while DPSCout was more consistent with the trends of ϵ = 100 in Figure 5.
The spikes in the RMSE of DPSCobj can be attributed to the first if clause of Algorithm 3
(Steps 1a and 1b) that set the privacy parameters ϵ1, ϵ0 and ∆. When ρ is low, the algorithm
is in the regime where ∆ > 0 (Step 1b, else clause) corresponding to insufficient ϵ1 for Step
1; once ρ is sufficiently large, the algorithm switches to the ∆ = 0 regime (Step 1a, if clause).
The observed spikes in RMSE correspond to these inflection points.

To provide a clearer visualization of this transition, Figure 7 displays the post-intervention
RMSE at the top and the corresponding ∆ value at the bottom for n = 10 (left), n = 50
(middle), and n = 100 (right). For the tested datasets and ρ values, the transition occurred
at ρ∗ ≈ 0.55, ρ∗ ≈ 0.70, and ρ∗ ≈ 0.75 when the number of donors was n = 10, n = 50, and
n = 100, respectively. When ρ < ρ∗, the algorithm set ∆ > 0; when ρ ≥ ρ∗, ∆ becomes
zero, causing the RMSE to temporarily spike on the boundary. The ρ∗ corresponding to
this transition can be analytically calculated as a function of λ and c, using the expressions
for ϵ1 in Step 1 of Algorithm 3. We recommend that practitioners calibrate the budget split
between ϵ1 and ϵ2 by avoiding the boundary value and choosing ρ slightly below it.

8.4. Effect of privacy parameters ϵ and δ. Next, we address the effect of ϵ in the
performance of both DPSCout and DPSCobj . In these experiments, we use λ = T0 based on
the findings in Section 8.2 and consider overall privacy budget ϵ = ϵ1+ ϵ2 with ϵ1 = ϵ2 = ϵ/2.
That is, the privacy budget is split evenly between the regression and projection steps in
both algorithms. Results are presented for ϵ ∈ {2, 4, 10, 20, 40, 100, 200}; stronger privacy
guarantees (i.e., ϵ ≤ 2) were tested but excluded from the plots due to substantially higher
RMSE values.

Figure 8 shows the post-intervention RMSE of DPSCout and DPSCobj . As is to be
expected, error diminishes with larger ϵ. We also continue to observe DPSCobj outperforming
DPSCout for most ϵ values, as in Section 8.2. DPSCout performs slightly better than
DPSCobj at ϵ = 2 in this dataset (T0 = 10 and n = 10); however, it is not the case for all
datasets (see, e.g., Figure 11 in Section 8.5).

For epsilon-regimes that are closer to the values chosen in practice (i.e., ϵ ≤ 4), the
empirical RMSE was too high for practical use. We suggest a few methods to remedy this
in future work. First, a rejection sampling step can be introduced between the learning
and projection steps of each algorithm that compares the noisy fout and the original
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Figure 7: Post-intervention RMSE of DPSCobj (top), and the ∆ value chosen internally by
DPSCobj (bottom) for varying ρ, tested on various synthetic datasets. Columns
represent the number of donors (n) in each dataset, where the number of pre-
intervention timepoints are fixed to T0 = 50.

f reg. This step must also be done differentially privately to maintain the overall privacy
guarantee. Additionally, our experiments only considered pure-DP with δ = 0; next we relax
to approximate-DP with δ > 0 and observe that this yields lower RMSE than δ = 0.

Keeping λ = T0 fixed, Figure 9 shows the post-intervention RMSE of DPSCobj with
Laplace noise (left) and with Gaussian noise (right, δ = 10−6). The top graphs present
results from three datasets with a fixed pre-intervention timepoints, T0 = 50, while the
bottom graphs display three datasets with a fixed number of donors, n = 50. In both sets
of graphs, noticeable improvements in RMSE are observed with Gaussian noise for most
epsilon values, particularly when ϵ < 10. The extent of this improvement remains relatively
consistent across varying n (top graphs). However, a more pronounced effect is evident
with larger T0, where the impact of Gaussian noise is more substantial. That is, we observe
that when T0 is fixed and n increases (top graphs), the order of the lines does not change
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Figure 8: Post-intervention RMSE of DPSCout (blue), and DPSCobj (red) for varying ϵ,
tested on a dataset with T0 = 10 and n = 10.

Figure 9: Post-intervention RMSE of DPSCobj with Laplace noise (left, δ = 0) and Gaussian
noise (right, δ = 10−6) as a function of ϵ on synthetic datasets of varying size.

significantly, indicating that performance is generally better when n is smaller. Conversely,
in the bottom graphs, the blue line (T0 = 10, n = 50) initially performed the best when
δ = 0 but is overtaken by other lines when allowing small δ > 0. This evidence suggests
meaningful empirical improvements can be obtained by setting a positive δ value, especially
when T0 is large.

8.5. Impact of database size parameters n and T0. Finally, we repeat the experiments
of Sections 8.2 and 8.4 with datasets of varying sizes. We consider nine synthetic databases
corresponding to combinations of T0 ∈ {10, 50, 100} and n ∈ {10, 50, 100},3 and evaluate the
post-intervention RMSE under varying λ and ϵ.

3We present the results for six datasets here, with comprehensive findings available in the appendix.
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Figure 10 displays the post-intervention RMSE of DPSCout (left) and DPSCobj (right).
The top row presents results for three datasets with a fixed T0 = 50, while the bottom
section presents results for another three datasets with a fixed n = 50. The optimal choice
of λ consistently remains approximately λ = T0 for both the top and bottom graphs, which
is most apparent for DPSCobj (right). In the top graphs with fixed T0 = 50, the RMSE
is minimized at approximately λ = 101.7 ≈ 50 for all three lines. On the bottom graphs,
as we increase T0 from 10 to 50 to 100, we observe that the λ that minimizes the RMSE
increases proportionally with T0, with the minimum occurring around the corresponding T0
value for each. This observation is more clear for DPSCobj , but it holds true for DPSCout

as well, albeit with a less visible U-shape due to the larger scale of the y-axis. In the case of
DPSCout, the optimal λ tends to be slightly larger than DPSCobj . Nevertheless, the choice
of λ = T0 remains approximately optimal, due to the flatter U-shape of the graph.

Figure 10: Post-intervention RMSE of DPSCout (left) and DPSCobj (right) as a function
of λ on synthetic datasets of varying size.

Figure 11 presents similar results but as a function of ϵ instead of λ as shown in Figure
10. Overall, we observe that the performance of DPSCobj (right) has less dependence on the
size of the dataset than DPSCout (left). For DPSCout, an increase in n (top) yields a larger
RMSE, which aligns with our theoretical analysis in Section 5.1.1, where we show that the
post-intervention RMSE of DPSCout is O(nϵ ). For DPSCobj , the theoretical accuracy bound
has additional dependency on T0 (Corollary 7.2), but we do not observe linear increases in
RMSE when n or T0 grow in these empirical results.

Overall, for ϵ ≥ 4, DPSCobj yields smaller RMSE than DPSCout for all datasets.
However, at the smallest value of ϵ = 2, DPSCout slightly outperforms DPSCobj on the
datasets with the smaller size of n = 10. This suggests that DPSCobj should be the preferred
algorithm, especially when n is large, although other parameters may be relevant in this
decision as well.
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Figure 11: Post-intervention RMSE of DPSCout (left) and DPSCobj (right) as a function
of ϵ on synthetic datasets of varying size.

9. Conclusion

As synthetic control is gaining popularity in medical applications where individual-level data
are used as inputs, there is a growing need for private tools for synthetic control. Synthetic
control performs regression in a vertical way, making each time point one sample, rather
than one user’s data point. Existing approaches for private regression or private empirical
risk minimization cannot be directly applied—the transposed setting changes the definition
of neighboring databases, altering the core sensitivity analysis needed for privacy.

This paper is the first to propose a differentially private versions of synthetic control
algorithm with theoretical bounds on privacy and accuracy. We provide algorithms based on
output perturbation and objective perturbation, and provide formal privacy and accuracy
guarantees for each. Our main technical contributions for both algorithms is a novel privacy
analysis of the sensitivity of regression in the transposed setting, which also impacted our
accuracy analysis and required novelty there as well. To enable practical use of our new
private tools, we also provide tighter closed-form accuracy bounded for both algorithms
under distributional assumptions, and guidance to practitioners for tuning the parameters
of each algorithms.

We perform empirical evaluation of our algorithms to validate their performance guar-
antees in a variety of parameter regimes, as well as provide guidance to practitioners for
hyperparameter tuning. We show that our algorithms perform even better than our theoreti-
cal bounds predict, which both suggests that our algorithms would perform well in practical
deployments, and leaves an opportunity for further theoretical improvements in future work.
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Appendix A. Guidance for choosing c

For an analyst to use the objective perturbation method, one needs to decide what value
to use for c. c is the bound for the maximum absolute eigenvalue of the matrix E =
2(X ′

preX
′⊤
pre−XpreX

⊤
pre), and a closed-form expression for E is given in Equation (C.1). Note

that E is symmetric and all entries are zero except for one row and one column. WLOG, let
the first column and row be the non-zero entries and call those entries E1, E2, · · · , En. That
is the matrix looks like:

E =


E1 E2 · · · En

E2 0 · · · 0
...

...
. . .

...
En 0 · · · 0


To find eigenvalues λ(E) of this matrix E, we want to solve E · v = λ(E)v for some

v ∈ Rn and λ(E) ∈ R. We obtain n equations:

E1v1 + E2v2 + · · ·+ Envn = λ(E)v1 (A.1)

and
Eiv1 = λ(E)vi , ∀i ∈ {2, · · · , n}.

By plugging in vi =
v1
λ Ei for all i ̸= 1 to Equation (A.1), we get

E1v1 + E2
2

v1
λ(E)

+ · · ·+ E2
n

v1
λ(E)

= λ(E)v1.

By removing v1 and rearranging for λ(E), this becomes a quadratic of λ(E).

λ(E)2 − E1λ(E)−
n∑

i=2

E2
i = 0.

Then, the two possible values for λ(E) are:

λ(E) =
E1 ±

√
E2

1 + 4
∑n

i=2E
2
i

2
.

Notice that the expression inside the square root is bigger than E1, and we assume that
E1 ≥ 0 without loss of generality. Then, the maximum absolute eigenvalue is

λ|max|(E) =
E1 +

√
E2

1 + 4
∑n

i=2E
2
i

2
.

Finally, we bound this by using the expression for E in Equation (C.1), where we see
E1 = 2(||x′

1||22 − ||x1||22) ≤ 2T0 (assuming E1 ≥ 0) and Ei = 2(x′
1 − x1)

⊤xi ≤ 4T0 for all
i ∈ {2, · · · , n}. Then, λ|max| ≤ (1 +

√
16n− 15)T0. Hence, choosing (c = 1 +

√
16n− 15)T0

is an option when the analyst does not have any knowledge other than T0 and n about the
dataset. This value could be further minimized when there is more information available
about the support of the dataset.
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Appendix B. Omitted Proofs for DPSCout

B.1. Proof of Lemma 4.5.

Lemma B.1. Let g(f) = L(f ,D′)−L(f ,D) for two arbitrarily neighboring databases D,D′.
Then,

max
f

∥∇g(f)∥ ≤ 4
√
8 + n.

Proof. We first re-arrange g(f) in a way that makes it easier to compute the gradient. Let i
be the index of the record that differs between D and D′.

g(f) = L(f ,D′)− L(f ,D)

=
1

T0

T0∑
t=1

[(
n∑

k=1

x′k,tfk

)
− yt

]2
− 1

T0

T0∑
t=1

[(
n∑

k=1

xk,tfk

)
− yt

]2

=
1

T0

T0∑
t=1

∑
j ̸=i

x′j,tfj

− yt + x′i,tfi

2

− 1

T0

T0∑
t=1


∑

j ̸=i

xj,tfj

− yt + xi,tfi


2

=
1

T0

T0∑
t=1

2
∑

j ̸=i

xj,tfj − yt

 (x′i,t − xi,t)fi + (x′
2
i,t − x2i,t)f

2
i


=

1

T0

T0∑
t=1

2
∑

j ̸=i

xj,tfj − yt

+ (x′i,t + xi,t)fi

(x′i,t − xi,t
)
fi

=
1

T0

T0∑
t=1

[(
x⊤
t f − yt

)
+
(
x⊤
t f − xi,tfi + x′i,tfi − yt

)]
(x′i,t − xi,t)fi (B.1)

The second equality comes from the definition of the Ridge regression loss function L; in
the third step we pull out the record i that differs between D and D′; the fourth step combines
the sums and cancels terms, including the observation that

∑
j ̸=i xj,tfj =

∑
j ̸=i x

′
j,tfj . The

final two steps also involve rearranging terms.
For notational ease, we define two additional terms,

Dt := x⊤
t f − yt and Et := (x′i,t − xi,t)fi.

Then, Equation (B.1) becomes

g(f) =
1

T0

T0∑
t=1

(2Dt + Et)Et.

We will take the partial derivatives of Dt and Et with respect to both fi (the index of
the data entry that differs between D and D′) and fj for j ≠ i, and then combine these to
arrive at the gradient of g(f):

∂Dt

∂fi
= xi,t;

∂Dt

∂fj
= xj,t;

∂Et

∂fi
= x′i,t − xi,t;

∂Et

∂fj
= 0.
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Now, we compute the derivative of g(f) with respect to fi.

∂g(f)

∂fi
=

1

T0

T0∑
t=1

{(
2
∂Dt

∂fi
+
∂Et

∂fi

)
Et + (2Dt + Et)

∂Et

∂fi

}

=
1

T0

T0∑
t=1

{
(x′i,t + xi,t)Et + (2Dt + Et)(x

′
i,t − xi,t)

}
=

1

T0

T0∑
t=1

{
2x′i,t(x

′
i,t − xi,t)fi + 2(x⊤

t f − yt)(x
′
i,t − xi,t)

}
=

1

T0

T0∑
t=1

2
(
x′i,tfi + x⊤

t f − yt

)
(x′i,t − xi,t) (B.2)

Next, we compute the derivative of g(f) with respect to fj where j is the index of

unchanged donors (j ̸= i). There are fewer term in this derivative because ∂Et
∂fj

= 0.

∂g(f)

∂fj
=

1

T0

T0∑
t=1

{(2xj,t)Et}

=
1

T0

T0∑
t=1

2xj,t(x
′
i,t − xi,t)fi (B.3)

Finally, we can use (B.2) and (B.3) to derive an upper bound for ||∇g(f)||2.

||∇g(f)||22 =
(
∂g(f)

∂fi

)2

+
∑
j ̸=i

(
∂g(f)

∂fj

)2

=

(
1

T0

T0∑
t=1

2
(
x′i,tfi + x⊤

t f − yt

)
(x′i,t − xi,t)

)2

+
∑
j ̸=i

(
1

T0

T0∑
t=1

2xj,t(x
′
i,t − xi,t)fi

)2

≤ 1

T0

T0∑
t=1

[
2(x′i,tfi + x⊤

t f − yt)(x
′
i,t − xi,t)

]2
+
∑
j ̸=i

[
1

T0

T0∑
t=1

[
2xj,t(x

′
i,t − xi,t)fi

]2]

=
1

T0

T0∑
t=1

4(x′i,tfi + x⊤
t f − yt)

2(x′i,t − xi,t)
2 +

∑
j ̸=i

4x2j,t(x
′
i,t − xi,t)

2f2i


=

4

T0

T0∑
t=1

(x′i,t − xi,t)
2

(x′i,tfi + x⊤
t f − yt)

2 +
∑
j ̸=i

x2j,tf
2
i


=

4

T0

T0∑
t=1

(x′i,t − xi,t)
2

[
(x⊤

t f − yt)
2 + 2x′i,tfi(x

⊤
t f − yt) +

n∑
k=1

x′
2
k,tf

2
i

]
(B.4)

The second equality comes from plugging in the partial derivatives computed in (B.2)
and (B.3), the following inequality comes from applying Jensen’s inequality, and the final
three steps come from rearranging, expanding, and simplifying terms.
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We can proceed by bounding the individual terms in (B.4) using the our modeling
assumptions of Equation (2.3), which give us that:

(x′i,t − xi,t)
2 ≤ 4, and (x⊤

t f − yt)
2 ≤ 4, and

2x′i,tfi(x
⊤
t f − yt) ≤ 4, and

n∑
k=1

x′
2
k,tf

2
i ≤ n.

Then ||∇g(f)||22 ≤ 128 + 16n and ||∇g(f)||2 ≤ 4
√
8 + n.

B.2. Proof of Lemma 5.1.

Lemma B.2. The three terms in Equation (5.2) can be bounded as follows:

E[||M⊤
post(f

reg − f)||2] ≤ ||Mpost||2,2 · E[||f reg − f ||2],

E[||(Z⊤
post +W⊤)f reg||2] ≤

√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
, and

E[||(M⊤
post + Z⊤

post +W⊤)v||2] ≤
(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4T0

√
8 + n

λϵ1
.

Proof. We prove these three bounds separately. Most steps follow from the sub-multiplicative
norm property of Equation (5.4) and the bounds on the noise terms of Equation (5.5).

First,

E[||M⊤
post(f

reg − f)||2] ≤ E[||Mpost||2,2 · ||f reg − f ||2]
≤ ||Mpost||2,2E[f reg − f ||2].

Next,

E[||(Z⊤
post +W⊤)f reg||2] ≤ E[||Zpost +W ||2 · ||f reg||2]

≤ E[||Zpost +W ||2 ·
√
n||f reg||∞]

≤ E[||Zpost +W ||2 ·
√
nψ]

≤
√
nψ · E[||Zpost||2 + ||W ||2]

≤
√
nψ · E[||Zpost||F + ||W ||F ]

≤
√
nψ
(√

n(T − T0)σ2 + b
)

≤
√
nψ

(√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
,

where the second step comes from the relationship between the ℓ2 norm and the ℓ∞ norm,
and the third step comes from our definition that ||f reg||∞ ≤ ψ for some ψ > 0.
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Finally,

E[||(M⊤
post + Z⊤

post +W⊤)v||2] ≤ E[||Mpost + Zpost +W ||2,2||v||2]
= E[||Mpost + Zpost +W ||2,2] · E[||v||2]

≤ E[||Mpost||2,2 + ||Zpost||2,2 + ||W ||2,2] ·
4
√
8 + n

λϵ1

≤ (||Mpost||2,2 + E[||Zpost||F + ||W ||F ]) ·
4
√
8 + n

λϵ1

≤
(
||Mpost||2,2 +

√
n(T − T0)σ2 +

2
√
T − T0
ϵ2

)
4
√
8 + n

λϵ1
,

where the second step holds because Zpost, W , and v are all independent of each other.

B.3. Proof of Lemma 5.6.

Lemma B.3. Let f reg = (XpreX
⊤
pre +

λ
2T0

I)−1Xpreypre be the Ridge regression coefficients

and let f be the true coefficients. If Assumptions 5.2, 5.3, and 5.4 hold, then for all ξ ∈ (0, 1)

and t ≥ 1, with probability at least 1− n−t2, if T0 ≥ C(t/ξ)2k log n, then,

E[||f reg − f ||2] ≤
(
√
2nσ2 +

√
2nσ2s2)T0 +

λ
2T0

(1− ξ)T0 +
λ

2T0

.

Proof. First we can expand E[||f reg − f ||2]:
E[||f reg − f ||2] = E[||f reg − E[f reg] + E[f reg]− f ||2]

≤ E[||f reg − E[f reg]||2] + E[||E[f reg]− f ||2]
= E[||f reg − E[f reg]||2] + E[||Bias(f reg)||2], (B.5)

where
Bias(f reg) = E[f reg]− f = −λ(XpreX

⊤
pre + λI)−1f .

Hence, we only need to bound the two terms: ||Bias(f reg)||2 and E[||f reg − E[f reg]||2],
which we do next. First,

||Bias(f reg)||2 = || − λ(XpreX
⊤
pre + λI)−1f ||2

≤ λ||f ||2||(XpreX
⊤
pre + λI)−1||2,2

≤ λ||(XpreX
⊤
pre + λI)−1||2,2,
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where the last inequality uses the fact that the ℓ1 norm of f is 1, which also upper bound
the ℓ2 norm. Next,

E[||f reg − E[f reg]||2]
= E[||f reg − (f +Bias(f reg))||2]

= E[||(XpreX
⊤
pre + λI)−1Xpreypre − f + λ(XpreX

⊤
pre + λI)−1f ||2]

= E[||(XpreX
⊤
pre + λI)−1Xpre(M

⊤
pref + zpre)− f + λ(XpreX

⊤
pre + λI)−1f ||2]

= E[||(XpreX
⊤
pre + λI)−1Xpre(X

⊤
pref − Z⊤

pref + zpre)− f + λ(XpreX
⊤
pre + λI)−1f ||2]

= E[||(XpreX
⊤
pre + λI)−1(XpreX

⊤
pre + λI)f − f

+ (XpreX
⊤
pre + λI)−1(Xprezpre −XpreZ

⊤
pref)||2]

= E[||(XpreX
⊤
pre + λI)−1(Xprezpre −XpreZ

⊤
pref)||2]

≤ E[||(XpreX
⊤
pre + λI)−1||2,2 · ||Xprezpre −XpreZ

⊤
pref ||2],

where the first four steps come respectively from plugging in expressions of E[f reg], {f reg

and Bias(f reg)}, ypre, and Mpre. The fifth and sixth steps come from rearranging and
canceling terms, and the final inequality comes from the submultiplicative norm property of
Equation (5.4).

Plugging everything back to (B.5) yields,

E[||f reg − f ||2] ≤ E[||f reg − E[f reg]||2] + E[||Bias(f reg)||2]

≤ E[||(XpreX
⊤
pre + λI)−1||2,2 · ||Xprezpre −XpreZ

⊤
pref ||2 + λ||(XpreX

⊤
pre + λI)−1||2,2]

= E[||(XpreX
⊤
pre + λI)−1||2,2 · (||Xprezpre −XpreZ

⊤
pref ||2 + λ)] (B.6)

Next, we use our assumptions on the data distribution to prove the following lemma
about ||(XpreX

⊤
pre + λI)−1||2,2.

Lemma B.4. If Assumptions 5.2, 5.3, and 5.4 hold, then for all ξ ∈ (0, 1) and t ≥ 1, with

probability at least 1− n−t2, if T0 ≥ C(t/ξ)2k log n, then,

||(XpreX
⊤
pre +

λ

2T0
I)−1||2,2 ≤

1

(1− ξ)T0 +
λ

2T0

.

Proof of Lemma 5.7. A key component of the proof of Lemma 5.7 is the following lemma
about concentration of random matrices.

Lemma B.5 (Vershynin (2010), Corollary 5.52). Consider a distribution in Rn with covari-
ance matrix Σ, and supported in some centered Euclidean ball whose radius we denote

√
m.

Let T0 be the number of samples and define the sample covariance matrix ΣT0 = 1
T0
XX⊤.

Let ξ ∈ (0, 1) and t ≥ 1. Then with probability at least 1− n−t2,

If T0 ≥ C(t/ξ)2||Σ||−1
2,2m log n then ||ΣT0 − Σ||2,2 ≤ ξ||Σ||2,2,

where C is an absolute constant.

To instantiate Lemma 5.8, we view the data Xpre as T0 samples corresponding to the
columns xt ∈ Rn, ∀t ∈ {1, 2, · · · , T0}. We use our assumptions that X takes values in
a k-dimensional subspace E, and Σ = PE where PE is the orthogonal projection from

Rn onto E. Then, the effective rank of Σ is r(Σ) = trace(Σ)
||Σ||2 = k by definition, because
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||Σ||2,2 = ||PE ||2,2 = σmax(PE) = λmax(PE) = 1, since eigenvalues of an orthogonal
projection matrix are either 0 or 1 as shown in Lemma 19 of Amjad et al. (2018). Then,
E[||X||22,2] = trace(Σ) = k||Σ||2,2 = k||PE ||2,2 = k. Using Markov’s inequality, most of the

distribution should be within a ball of radius
√
m where m = O(k). Finally, let us assume

that all the probability mass is within that ball, i.e., ||X||2,2 = O(
√
k) almost surely. Then,

Lemma 5.8 holds with T0 ≥ C(t/ϵ)2k log n samples. This is also noted in Remark 5.53 of
Vershynin (2010).

To translate this to our setting, we see that with probability at least 1 − n−t2 , if
T0 ≥ C(t/ξ)2k log n, then

|| 1
T0
XpreX

⊤
pre − Σ||2,2 ≤ ξ. (B.7)

Since Σ = PE is an orthogonal projection matrix, ||PE ||2,2 = 1. We apply triangle inequality
to obtain,

|| 1
T0
XpreX

⊤
pre − PE ||2,2 ≥

∣∣∣∣|| 1T0XpreX
⊤
pre||2,2 − ||PE ||2,2

∣∣∣∣ (B.8)

=

∣∣∣∣|| 1T0XpreX
⊤
pre||2,2 − 1

∣∣∣∣ ≥ || 1
T0
XpreX

⊤
pre − I||2,2. (B.9)

Combining this with Equation (B.7), we can bound

|| 1
T0
XpreX

⊤
pre − I||2,2 ≤ ξ, or equivalently, ||XpreX

⊤
pre − T0I||2,2 ≤ ξT0. (B.10)

We will use this latter expression to obtain a lower bound on the minimum singular value of
XpreX

⊤
pre, and then use it to bound ||(XpreX

⊤
pre + λI)−1||2,2 from above.

Note that since ||A||2,2 is the maximum singular value of matrix A, the upper bound of
ξT0 of Equation (B.10) should hold for all singular values of A. For symmetric matrices such
as XpreX

⊤
pre + T0I, the singular values are also the absolute values of its eigenvalues. This

means that all eigenvalues λ⋆ of XpreX
⊤
pre − T0I must satisfy |λ⋆(XpreX

⊤
pre − T0I)| ≤ ξT0.

Therefore, this bound must also hold for the smallest eigenvalue λmin(·):
|λmin(XpreX

⊤
pre − T0I)| ≤ ξT0

⇐⇒ |λmin(XpreX
⊤
pre)− T0| ≤ ξT0

⇐⇒ (1− ξ)T0 ≤ λmin(XpreX
⊤
pre) ≤ (1 + ξ)T0

By plugging in the lower bound on the minimum singular value of XpreX
⊤
pre, we arrive at

the desired bound to complete the proof of Lemma 5.7.

||(XpreX
⊤
pre + λI)−1||2 = σmax((XpreX

⊤
pre + λI)−1)

=
1

σmin(XpreX⊤
pre + λI)

=
1

|λmin(X⊤X) + λ|

≤ 1

(1− ξ)T0 + λ
.
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Returning to Equation (B.6), we can use this bound to obtain,

E[||f reg − f ||2] ≤ E[||(XpreX
⊤
pre + λI)−1||2,2 · (||Xprez −XpreZ

⊤f ||2 + λ)]

≤ 1

(1− ξ)T0 + λ
E[||Xprez −XpreZ

⊤f ||2 + λ] (B.11)

The expectation term in Equation (B.11) becomes,

E[||Xprezpre −XpreZ
⊤
pref ||2 + λ] = E[||(Mpre + Zpre)zpre − (M + Zpre)Z

⊤
pref ||2 + λ]

≤ E[||Mpre(zpre − Z⊤
pref)||2 + ||Zpre(zpre − Z⊤

pref)||2 + λ]

≤ ||Mpre||2,2E[||zpre − Z⊤
pref ||2] + E[||Zpre||2,2 · ||zpre − Z⊤

pref ||2] + λ

= ||Mpre||FE[||zpre − Z⊤
pref ||2] + E[||Zpre||F · ||zpre − Z⊤

pref ||2] + λ

≤
√
nT0E[||zpre − Z⊤

pref ||2] +
√
nT0s2E[||zpre − Z⊤

pref ||2] + λ

= (
√
nT0 +

√
nT0s2)E[||zpre − Z⊤

pref ||2] + λ,

where the first step is plugging in for Xpre, the second step is triangle inequality, the third
and fourth steps are due to the submultiplicative norm property, the fifth step comes from
the definition of the Frobenius norm, the fact that Mpre and Zpre are both of dimension
n× T0, and bounds on data entries. The final step collects terms.

Finally, we need only to obtain a bound on E[||zpre − Z⊤
pref ||2].

E[||zpre − Z⊤
pref ||2] ≤ E


√√√√ T0∑

t=1

(zt − Z⊤
t f)2


(a)

≤

√√√√ T0∑
t=1

E[(zt − Z⊤
t f)2]

=

√√√√ T0∑
t=1

E[z2t − 2ztZ⊤
t f + (Z⊤

t f)2]

(b)
=

√√√√ T0∑
t=1

(σ2 + E[(Z⊤
t f)2])

=

√√√√T0σ2 +

T0∑
t=1

E[
n∑

i=1

(zifi)2])
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(c)
=

√√√√T0σ2 +

T0∑
t=1

n∑
i=1

E[z2i f2i ])

=

√√√√T0σ2 +

T0∑
t=1

n∑
i=1

σ2f2i

=

√√√√T0σ2 +

T0∑
t=1

σ2||f ||22

(d)

≤

√√√√T0σ2 +

T0∑
t=1

σ2

=
√

2T0σ2

Inequality (a) is due to Jensen’s inequality. The step in (b) is because E[ztZ⊤
t f ] =

E[zt]E[Z⊤
t f ] = 0 by independence of noise terms. The step in (c) is by the same logic as

in (b), since all cross-terms fifj for i ̸= j are zero in expectation. Lastly, we bound the ℓ2
norm of f by ℓ1 norm instead in (d) (i.e., ||f ||2 ≤ ||f ||1 ≤ 1).

Hence,

E[||Xprezpre −XpreZ
⊤
pref ||2 + λ] ≤ (

√
nT0 +

√
nT0s2)

√
2T0σ2 + λ

= T0
√
2nσ2 + T0

√
2nσ2s2 + λ

Finally, combining this with Equation (B.11) gives the desired bound to complete the
proof of Lemma 5.6.

E[||f reg − f ||2] ≤
(
√
2nσ2 +

√
2nσ2s2)T0 + λ

(1− ξ)T0 + λ
.
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Appendix C. Omitted Proofs for DPSCobj

C.1. Proof of Lemma 6.3.

Lemma C.1. For any ∆ ≥ 0, Φ(α; ∆) = |det(∇b(α;D′))|
|det(∇b(α;D))| ≤ (1 + c

λ+∆)2.

Proof. Recall that b(α;D) is the noise value that must have been realized when database D
was input and α = argminf J

obj(f) was output. Since Jobj(f) is strongly convex for any
∆ and is differentiable, the closed-form expression for b(α;D) is derived by computing the
gradient of Jobj(f), which should be zero when evaluated at its minimizer f = α:

∇Jobj(f)
∣∣
f=α

= ∇L(α) +∇r(α) +
∆

T0
α+

b(α;D)

T0

!
= 0.

Rearranging the equation yields

b(α;D) = − (T0∇L(α;D) + T0∇r(α) + ∆α) .

For ease of notation, let A = −∇b(α;D) and E = ∇b(α;D)−∇b(α;D′). Then,

Φ(α; ∆) =
|det(∇b(α;D′))|
|det(∇b(α;D))|

=
|det(−∇b(α;D′))|
|det(−∇b(α;D))|

=
|det(A+ E)|

|det(A)|
.

By definition, A = −∇b(α;D) = T0(∇2L(α;D) + ∇2r(α)) + ∆In. Using the Hessians
∇2L(α;D) = 2

T0
XpreX

⊤
pre and ∇2r(α) = λ

T0
In, A can be expressed as

A = 2XpreX
T
pre + (λ+∆)In.

To express E succinctly, let neighboring databases D = (X, y) and D′ = (X ′, y) differ in the
j-th row. Then,

E = 2(X ′
preX

′⊤
pre −XpreX

⊤
pre) =


2(||x′

j ||22 − ||xj ||22) (j, j)

2(x′
j − xj)

⊤xi (j, i) or (i, j) , ∀i ∈ [n], i ̸= j

0 otherwise

(C.1)

where xi (resp. x′
i) denotes the i-th person’s data, which is the i-th row of Xpre (resp.

X ′
pre).
Note that all eigenvalues of A are at least λ+∆ > 0 (i.e., λmin(A) ≥ λ+∆) because

XpreX
⊤
pre is positive-semi-definite, and thus A is full rank. Also, rank(E) = 2. This allows

us to apply the following lemma.

Lemma C.2 (Chaudhuri et al. (2011), Lemma 2). If A is full rank and E has rank at most
2,

det(A+ E)− det(A)

det(A)
= λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E)λ2(A
−1E),

where λi(Z) is i-th eigenvalue of matrix Z.
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Let λ|max|(Z) = maxi |λi(Z)|, the maximum absolute of eigenvalue of matrix Z. Instan-
tiating Lemma C.2 yields:

Φ(α; ∆) =
|det(A+ E)|

|det(A)|

=

∣∣∣∣det(A+ E)− det(A)

det(A)
+ 1

∣∣∣∣
= |1 + λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E)λ2(A
−1E)|

≤ 1 + |λ1(A−1E)|+ |λ2(A−1E)|+ |λ1(A−1E)λ2(A
−1E)|

≤ 1 + 2λ|max|(A
−1E) + λ|max|(A

−1E)2,

where the first inequality is simply triangle inequality, and the second inequality bounds all
absolute eigenvalues by the maximum one λ|max|.

Assume that λ|max|(E) ≤ c for some constant c. Since E is a real-valued matrix, such a
finite c exist. In Algorithm 3, c is explicitly taken as an input parameter. Then,

λ|max|(A
−1E) ≤

λ|max|(E)

λmin(A)
≤ c

λ+∆
.

Finally,

Φ(α; ∆) ≤ 1+2λ|max|(A
−1E)+λ|max|(A

−1E)2 ≤ 1+
2c

λ+∆
+

c2

(λ+∆)2
≤
(
1 +

c

λ+∆

)2

.

C.2. Proof of Lemma 6.4.

Lemma C.3. When b is sampled according to pdf p(b;β) ∝ exp
(
− ||b||2

β

)
, where β =

min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
}, then Γ(α) = Pr(b(α;D))

Pr(b(α;D′)) ≤ eϵ0.

Proof. We can start by re-writing Γ(α) as follows, where the first line directly comes from
the pdf Pr(b;β), the second line is due to reverse triangle inequality, and the third line is
from the definition of b(α;D) and canceling terms that occur in both b(α;D) and b(α;D′):

Γ(α) = exp

(
− 1

β

∣∣ ||b(α;D)||2 − ||b(α;D′)||2
∣∣)

≤ exp

(
− 1

β
||b(α;D)− b(α;D′)||2

)
=exp

(
1

β
||T0∇L(α;D′)− T0∇L(α;D)||2

)
. (C.2)

Next, we can continue to bound Equation (C.2) in two different ways, corresponding to
the two possible values of β. The two values come from two different upper bounds on the
sensitivity, and the minimum value will give a tighter bound.
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The first upper bound uses Lemma 4.5, and its notation of g(f) = L(f ,D′)− L(f ,D)
for neighboring databases D,D′. Then we can bound:

(C.2) ≤ exp

(
1

β
||T0∇g(α)||2

)
≤ exp

(
1

β
4T0

√
8 + n

)
.

Hence, setting β ≥ 4T0
√
8+n

ϵ0
makes Γ(α) ≤ eϵ0 .

The second upper bound is based on c, and will yield a tighter bound when c is
small. Recall that matrix E is defined in Equation (C.1), and that c is the upper bound
λ|max|(E) ≤ c. By plugging in ∇L(α) = 1

T0

(
2XpreX

⊤
preα− 2Xpreypre

)
, we can alternatively

bound:

(C.2) = exp

(
1

β
||2(X ′

preX
′⊤
pre −XpreX

⊤
pre)α+ 2(Xpre −X ′

pre)ypre||2
)

≤ exp

(
1

β
||2(X ′

preX
′⊤
pre −XpreX

⊤
pre)α||2 +

1

β
||2(X ′

pre −Xpre)ypre||2
)

≤ exp

(
1

β
||Eα||2 +

4T0
β

)
≤ exp

(
1

β
||E||2,2||α||2 +

4T0
β

)
≤ exp

(
c
√
n+ 4T0
β

)
,

where the second step is due to triangle inequality, the third step is plugging in the definition
of E and bounding the second term based on the worst-case X ′

pre −Xpre, which is all zeros
with just one row with all 2’s, and worst-case ypre, which is all 1’s. The fourth step is the
submultiplicative property of operator norms, and the final step is due to the fact that
||E||2,2 = λ|max|(E) ≤ c and that all elements of α ∈ [−1, 1]n are bounded by 1. Then

setting β ≥ c
√
n+4T0

ϵ0
ensures Γ(α) ≤ eϵ0 .

If either of the above conditions on β holds, then Γ(α) ≤ eϵ0 as desired. Thus we can

choose β = min{4T0
√
8+n

ϵ0
, c

√
n+4T0

ϵ0
} that at least one will be satisfied. Taking the minimum

rather than just one allows for a lower β and hence lower noise magnitude, while still
satisfying the privacy requirement.

C.3. Proof of Lemma 6.5.

Lemma C.4. When b ∼ N (0, β2In), where β =
4T0

√
8+n

√
2 log 2

δ
+ϵ0

ϵ0
, then

Γ(α) =
Pr(b(α;D))

Pr(b(α;D′))
≤ eϵ0

with probability at least 1− δ.

The proof of Lemma 6.5 follows a similar structure to Lemma 14 of Kifer et al. (2012).
We include the full proof for completeness.
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Proof. Let the noise term b be sampled from a multivariate Gaussian distribution N (0, β2In),
and let D and D′ be two arbitrary neighboring databases. Let h(α) = b(α;D′)− b(α;D)
Then, we can express Γ(α) as,

Γ(α) =
exp(− ||b(α;D)||22

2β2 )

exp(− ||b(α;D′)||22
2β2 )

= exp(
1

2β2
(||b(α;D′)||22 − ||b(α;D)||22))

= exp(
1

2β2
(||b(α;D) + h(α)||22 − ||b(α;D)||22))

= exp(
1

2β2
(2⟨b(α;D), h(α)⟩+ ||h(α)||22)), (C.3)

where the first step is from the distribution of noise b, the final step is a binomial expansion
applied to norms.

Note that,

h(α) = b(α;D′)− b(α;D)

= T0(∇L(α;D)−∇L(α;D′))

= −T0∇g(α),

where g(α) = L(α,D′)− L(α,D), as defined in Equation (4.1). By Lemma 4.5, we know
that ||∇g(α)||2 ≤ 4

√
8 + n, so also

||h(α)||2 ≤ 4T0
√
8 + n. (C.4)

Similarly, because b is sampled from a multivariate Gaussian distribution N (0, βIn) and
sum of Gaussian variables is also Gaussian, then,

⟨b(α;D), h(α)⟩ ∼ N (0, β2||h(α)||22).
Since the exact distribution is known, we use a Gaussian tail bound to find a well-behaving
set of b.

Lemma C.5 (Chernoff bound for Gaussian, Wainwright (2019)). Let Z ∼ N (0, σ2). Then,
for all t > σ,

P [Z ≥ t] ≤ exp(− t2

2σ2
).

We instantiate Lemma C.5 with Z = ⟨b(α;D), h(α)⟩ and t = β||h(α)||2
√
2 log 2

δ . Note

that t > σ for any δ > 1/2. Then,

Pr

[
⟨b(α;D), h(α)⟩ ≥ β||h(α)||2

√
2 log

2

δ

]
≤ δ

2
,

which by Equation (C.4) implies that,

Pr

[
⟨b(α;D), h(α)⟩ ≥ β(4T0

√
8 + n)

√
2 log

2

δ

]
≤ δ

2
. (C.5)

Define a set of values of b, corresponding the the good event described by Equation

(C.5): GOOD = {b | ⟨b(α;D), h(α)⟩ ≤ β(4T0
√
8 + n)

√
2 log 2

δ}. By definition, Pr[b ∈
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GOOD] ≥ 1 − δ. That is, with probability at least 1 − δ, the noise vector b is in the
well-behaving set GOOD.

When b ∈ GOOD, then we can complete the bound on Γ(α) from Equation (C.3),
combining the bound on ||h(α)||22 from Equation (C.4):

Γ(α) = exp(
1

2β2
[2⟨b(α;D), h(α)⟩+ ||h(α)||22]) (C.6)

≤ exp

(
1

2β2
[2β(4T0

√
8 + n)

√
2 log

2

δ
+ (4T0

√
8 + n)2]

)
. (C.7)

Finally, the goal is to bound Γ(α) ≤ eϵ0 , in the case where b ∈ GOOD. Solving the
expression above for β yields

β ≥ 1

2

(4T0
√
8 + n)

√
2 log 2

δ

ϵ0
+

√
(4T0

√
8 + n)22 log 2

δ

ϵ20
+

(4T0
√
8 + n)2

ϵ0


=

1

2

(
4T0

√
8 + n

ϵ0

(√
2 log

2

δ
+

√
2 log

2

δ
+ ϵ0

))
(C.8)

Note that choosing

β ≥
(4T0

√
8 + n)

√
2 log 2

δ + ϵ0

ϵ0
satisfies the bound of Equation (C.8).

Thus Γ(α) ≤ eϵ0 , conditioned on b ∈ GOOD, which occurs with probability at least
1− δ.

C.4. Proof of Lemma 7.1.

Lemma C.6. The ℓ2 distance between fobj and f reg satisfies:

E[||fobj − f reg||2] ≤
2

λ+∆
E[||b||2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n,

where b and ∆ are computed internally by Algorithm 3.

Proof. Recall the objective functions Jobj and Jreg:

Jobj(f) = L(f) + λ+∆

2T0
∥f∥22 +

1

T0
b⊤f and Jreg(f) = L(f) + λ

2T0
∥f∥22,

with their respective minimizers fobj and f reg. Define another objective function J# and
its minimizer f#,

J#(f) = L(f) + λ+∆

2T0
∥f∥22

which is a noise-free variant of Jobj .
We will express the difference between f reg and fobj using f# as an intermediate value:

∥f reg − fobj∥2 = ∥f reg − f# + f# − fobj∥2 ≤ ∥f reg − f#∥2 + ∥f# − fobj∥2. (C.9)
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We will bound these two terms separately, starting with ∥f# − fobj∥2. It is known that Jobj

is (λ+∆
T0

)-strongly convex, and that the gradient of of Jobj evaluated at its minimizer fobj is
zero. Then by the definition of strong convexity,

∥f# − fobj∥22 ≤
(
Jobj(f#)− Jobj(fobj)

) 2T0
λ+∆

. (C.10)

We can proceed to bound the difference in the objective function Jobj at these two points:

Jobj(f#)− Jobj(fobj) =

(
J#(f#) +

1

T0
b⊤f#

)
−
(
J#(fobj) +

1

T0
b⊤fobj

)
=
(
J#(f#)− J#(fobj)

)
+

(
1

T0
b⊤f# − 1

T0
b⊤fobj

)
≤ 0 +

1

T0
∥b∥2∥f# − fobj∥2

where the inequality is due to the fact that J#(f#) ≤ J#(fobj), since f# is the minimizer
of J#.

Plugging this into Equation (C.10) gives

∥f# − fobj∥22 ≤
1

T0
∥b∥2∥f# − fobj∥2

2T0
λ+∆

,

or equivalently,

∥f# − fobj∥2 ≤ ∥b∥2
2

λ+∆
.

To bound the first term of Equation (C.9), we observe that if ∆ = 0, then J# = Jreg

and thus f# = f reg, so ∥f reg − f#∥2 = 0. Thus we only need to bound the distance when
∆ ̸= 0.

We can write f reg and f# using their closed-form expressions,

f reg = (XpreX
⊤
pre +

λ

2T0
I)−1Xpreypre and f# = (XpreX

⊤
pre +

λ+∆

2T0
I)−1Xpreypre,

and use these to bound the difference:

∥f reg − f#∥2 = ∥
(
(XpreX

⊤
pre +

λ

2T0
I)−1 − (XpreX

⊤
pre +

λ+∆

2T0
I)−1

)
Xpreypre∥2

≤
(
(∥(XpreX

⊤
pre +

λ

2T0
I)−1∥2 + ∥((XpreX

⊤
pre +

λ+∆

2T0
I)−1)−1∥2

)
∥Xpreypre∥2

(C.11)

The spectral norm of a general form ∥(XX⊤ + λI)−1∥2 can be bounded by the inverse
of minimum singular value of the matrix XX⊤ + λI, which is positive semi-definite and has
minimum singular value at least λ:

∥(XX⊤ + λI)−1||2 ≤
1

σmin(XX⊤ + λI)
≤ 1

λ
.
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Using this fact, we can further bound Equation (C.11) as,

∥f reg − f#∥2 ≤
(
2T0
λ

+
2T0
λ+∆

)
∥Xpreypre∥2

≤ 2T0

(
1

λ
+

1

λ+∆

)
||Xpre||F ||ypre||2

≤ 2T0

(
1

λ
+

1

λ+∆

)√
nT0

√
T0

=

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n.

Finally, we combine Equation (C.9) with bounds on both terms to yield:

E[∥f reg − fobj∥2] ≤ E[∥f# − fobj∥2] + 1∆ ̸=0E[∥f reg − f#||2]

≤ 2

λ+∆
E[∥b∥2] + 1∆ ̸=0

(
1

λ
+

1

λ+∆

)
2T 2

0

√
n.
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Appendix D. Additional Results from Simulations

In this section, we show the results from all nine synthetic datasets for Figures 9, 10, and 11.

Figure 12: Post-intervention RMSE of DPSCobj with Laplace noise (left, δ = 0) and
Gaussian noise (right, δ = 10−6) as a function of ϵ on synthetic datasets of
varying size.
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Figure 13: Post-intervention RMSE of DPSCout (left) and DPSCobj (right) as a function
of λ on synthetic datasets of varying size.
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Figure 14: Post-intervention RMSE of DPSCout (left) and DPSCobj (right) as a function
of ϵ on synthetic datasets of varying size.
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