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Abstract. Differential privacy is a widely accepted formal privacy definition that allows
aggregate information about a dataset to be released while controlling privacy leakage for
individuals whose records appear in the data. Due to the unavoidable tension between
privacy and utility, there have been many works seeking to relax the requirements of
differential privacy to achieve greater utility.

One class of relaxation, which is gaining support outside the privacy community, is
embodied by the definitions of individual differential privacy (IDP) and bootstrap differential
privacy (BDP). Classical differential privacy defines a set of neighboring database pairs
and achieves its privacy guarantees by requiring that each pair of neighbors be nearly
indistinguishable to an attacker. The privacy definitions we study, however, aggressively
reduce the set of neighboring pairs that are protected.

To a non-expert, IDP and BDP can seem very appealing because they echo the same types
of privacy explanations that are associated with differential privacy, and also experimentally
achieve dramatically better utility. However, we show that they allow a significant portion
of the dataset to be reconstructed using algorithms that have arbitrarily low privacy loss
under their privacy accounting rules.

With the non-expert in mind, we demonstrate these attacks using the preferred mech-
anisms of these privacy definitions. In particular, we design a set of queries that, when
applied to data protected by these mechanisms with high noise settings (i.e., with claims of
very low privacy loss), yield more precise information about the dataset than if they were
not protected at all. The specific attacks here can be defeated and we give examples of
countermeasures. However, the defenses are either equivalent to using differential privacy or
to ad hoc methods tailored specifically to the attack (with no guarantee that they protect
against other attacks). Thus, the defenses emphasize the deficiencies of these privacy
definitions.
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1. Introduction

Statistical agencies face the challenge of releasing data products that are detailed and
statistically useful while simultaneously meeting the legal and ethical obligations to protect
the confidentiality of individuals providing the data. Similarly, companies seek to gain a
competitive advantage by mining detailed information about their user bases while still
providing confidentiality guarantees to those users.

In some areas, differential privacy (Dwork et al., 2006b,a; Bun and Steinke, 2016;
Mironov, 2017; Dong et al., 2022) is gaining acceptance as a source of viable solutions
to these problems (Erlingsson et al., 2014; Bittau et al., 2017; Apple Differential Privacy
Team, 2017; Ding et al., 2017; Johnson et al., 2018; Machanavajjhala et al., 2008; U. S.
Census Bureau; Haney et al., 2017; Abowd, 2018). However, the use of differential privacy to
protect Census data has also drawn fierce criticism, most recently with a group of prominent
economists and statisticians calling for the Census Bureau to stop using it (Hotz et al.,
2022). Such reactions are often due to frustration with the tension between utility and
privacy. For example, differential privacy has many known mathematical lower bounds that
clearly delineate the accuracy with which information can be released at a given level of
privacy; see, for example, (Balcer and Vadhan, 2019; Vadhan, 2017; Hardt and Talwar, 2010;
McGregor et al., 2010; Dinur and Nissim, 2003; Kasiviswanathan et al., 2008; Abowd et al.,
2021; Steinke and Ullman, 2017).

One the one hand, similar restrictions (hence similar criticisms) would apply to any
method that protects confidentiality—producing “privacy-protected” data products that
allow arbitrary analyses to be conducted accurately will result in reconstruction of nearly all
of the underlying confidential data (Dinur and Nissim, 2003), and hence would provide no
confidentiality. However, the trade-off between privacy and utility in practical applications is
still very much an open question, and this has led to many relaxations of differential privacy;
see the survey by Desfontaines and Pejó (2020).

In this paper, we study (and develop attacks for) a type of privacy definition that
re-examines the concept of neighboring databases that is fundamental to differential privacy.
Informally, differential privacy seeks to ensure that a data release mechanism M behaves
“similarly” on databases D1 and D2 when they are “neighbors” of each other. Intuitively,
this means that M masks the differences between D1 and D2. Thus, if neighboring datasets
are defined to be all pairs of datasets that differ on the value of one record, this definition
provides plausible deniability: an attacker would not be able to determine the contents of
any target individual’s record since the behavior of M would be almost unrelated to the
actual contents of the record.

Relaxations of differential privacy that target the definition of neighbors seek to change
what a mechanism M attempts to hide. The particular class of relaxations (Soria-Comas
et al., 2017; O’Keefe and Charest, 2019) we are interested in, which we call empirical
neighbors, argue that if D1 and D2 are unrelated to the actual dataset Dact that will be
the input to M , why should M be designed to hide the differences between D1 and D2

(Soria-Comas et al., 2017; O’Keefe and Charest, 2019)? Instead, such proposed relaxations
try only to hide the differences between the actual dataset and some suitable alternatives.
For example, Individual Differential Privacy (IDP) (Soria-Comas et al., 2017) (not to be
confused with personalized differential privacy (Jorgensen et al., 2015; Ebadi et al., 2015))
defines two databases D1, D2 to be neighbors if one of them is the actual dataset Dact

owned by a statistical agency and the other can be obtained from Dact by modifying a single
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record. Their argument is that this is precisely what statistical agencies need because it
provides plausible deniability of any record in Dact (and hence any additional protections
provided by differential privacy are unnecessary). This rationale sounds convincing to many
outside the privacy community. For example, Hotz et al. (2022) called for a moratorium
on the use of differential privacy at the Census Bureau and mentioned that the type of
mechanisms supported by IDP “may be sensible” as an alternative to differential privacy,
although they worried that the relaxations might still not provide enough utility (Hotz et al.,
2022, Appendix C1).

The purpose of this paper is to provide an illustration, especially to non-experts, of
why privacy definitions need to consider the behavior of a mechanism M not just on the
dataset Dact at hand, but also on other datasets that may look quite different from Dact.
Specifically, we show that by eliminating consideration of such datasets, IDP and BDP allow
dataset reconstruction at arbitrarily low privacy parameter settings—that is, the privacy
accounting frameworks for those definitions would claim that almost no information is leaked.
We also provide examples of other, more targeted attacks such as verifying that a particular
combination of attributes appears in the data as part of a record, verifying that the record
is a sample unique, and perfectly reconstructing other variables associated with the record.

The weaknesses we exploit are known problems in the differential privacy community.
For example, IDP mechanisms use a concept known as local sensitivity (Nissim et al., 2007)
to determine how much noise to add to query answers. Nissim et al. (2007) previously
argued against such uses of local sensitivity. Specifically, Nissim et al. (2007) provided an
example in which the median can sometimes be released with no noise, thus leaking some
information.

Our work goes beyond this observation. Not only do we go further and show that
it opens up the possibility for full database reconstruction and targeted attacks against
individuals, but also we show that reconstruction can happen even when using no noise is
prohibited.

The main part of the paper is an attack against IDP that uses its recommended noise
infusion strategies (Soria-Comas et al., 2017). Although IDP keeps track of the privacy loss
budget expended on the queries, at the end of the attack, it claims that almost no privacy
budget was expended even though the entire dataset can be reconstructed. We launch the
attack using queries that have a special property—protecting those queries with IDP reveals
more precise information about the data than if no protections at all were used for those
queries. This is true even if the IDP mechanisms always add noise (i.e., even when the
situations with noise noise are avoided).

We discuss several simple ways that this attack can be foiled, but point out that these
defenses only underscore the weakness of IDP’s privacy accounting—either the defense
amounts to using differential privacy, or the defense specifically targets features of the attack
(thus using the defense implicitly acknowledges the limitations of IDP’s privacy accounting
without providing provable guarantees against different attacks).

After that, we briefly discuss how a similar type of result can be applied to a related
definition called Bootstrap Differential Privacy (O’Keefe and Charest, 2019). However, in
this case, rather than reconstructing the entire dataset, one can only reconstruct the distinct
set of records—that is, one can determine which records are present, but not how many
times they appear.
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We then analyze these styles of privacy definitions more abstractly to determine why
they have differing leakage properties. Overall, we conclude that this direction is unlikely to
provide the right balance between privacy and utility in practice.

To summarize, our contributions are the following:

• We present a practical reconstruction attack against Individual Differential Privacy (IDP)
(Soria-Comas et al., 2017) and its more challenging version named (ϵ1, . . . , ϵk)-Group
Differential Privacy (Soria-Comas et al., 2017) (Group IDP). The privacy loss parameter
for these definitions is ϵ, and we show that for any ϵ > 0, it is possible to reconstruct any
dataset whose size1 is larger than 2 (or 2k in the case of (ϵ1, . . . , ϵk)-group differential
privacy). In particular, we construct queries such that answering the queries with the
noise mechanism constructions proposed by Soria-Comas et al. (2017) provides more
information about the data than if the queries were always answered truthfully.

• We show that the reconstruction attack can be specialized to also perform membership
inference and attribute inference attacks with significantly fewer queries.

• We then briefly consider Bootstrap Differential Privacy (O’Keefe and Charest, 2019) and
show that its preferred mechanism can also be used to leak the distinct set of records in
the data, again for any privacy loss ϵ > 0. The fact that this information can be leaked
was noted by the authors (O’Keefe and Charest, 2019), but we show that it can even be
leaked using the preferred mechanisms of BDP.

• In order to better understand these weaknesses, we consider various ad hoc defenses
against reconstruction and show that they do not solve the fundamental problems.

• We also study this style of privacy definition more abstractly (we call it empirical
neighbors) and show that this privacy leakage is unavoidably built-in to the privacy
definition.

The rest of this paper is structured as follows. We describe notation and present
background definitions in Section 2. We present a reconstruction attack against individual
differential privacy and its group-based version in Section 3, where we also explain how
membership and attribute inference attacks against specific individuals can be performed.
This section forms the bulk of the paper. We then review bootstrap differential privacy in
Section 4 and briefly show how similar techniques can be used to launch attacks against it.
Then we analyze the weaknesses of these types of definitions more generically in Section 5.
We experimentally evaluate the reconstruction algorithm for IDP in Section 6 and discuss
related work in Section 7. Conclusions and future work are in Section 8. All proofs can be
found in the appendices.

Our code can be found at https://github.com/cmla-psu/idpreconstruction.

2. Background And Notation

A dataset D is a collection r1, . . . , rn of records, each corresponding to a distinct individual.
For simplicity, we assume that the total number of records n is known. Each record has
attributes A1, . . . ,Am (e.g., A1 =“income”, A2 =“is student?”). The value of attribute Ai

1Note this is not 2k per possible record value or 2k per dimension of the dataset; all that is required
is that the dataset have at least 2k people total, and typically the parameter k is recommended to be 1
(Soria-Comas et al., 2017). Large values of k such as 100 can severely damage the utility of the data.

https://github.com/cmla-psu/idpreconstruction
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for record rj is denoted as rj [i]. The specific dataset that has been collected by a statistical
agency is denoted as Dact.

We say that two datasets D1 and D2 are differential privacy neighbors (or dp-neighbors
for short) if one can be obtained from the other by modifying the record of one individual.
We use the notation D1 ∼ D2 to indicate that D1 and D2 are dp-neighbors.

A mechanism M is a (randomized) algorithm whose input is a confidential dataset and
whose goal is to produce an output that protects the confidentiality of individuals whose
records are in the input dataset.

2.1. Differential Privacy. Differential privacy is a set of restrictions on the behavior of
randomized algorithms. Intuitively, it masks the effect of any record on the output of M by
ensuring that the output distribution of M is relatively insensitive to changes to a record in
the input, hence providing plausible deniability for the contents of a record.

Definition 2.1 (ϵ-differential privacy (Dwork et al., 2006b)). A randomized algorithm M
satisfies ϵ-differential privacy (ϵ-DP) if for every set S ⊆ Range(M) and for all pairs of
dp-neighbors D1 and D2,

Pr[M(D1) ∈ S] ≤ eϵPr[M(D2) ∈ S],
where the probability only depends on the randomness in M .

Both IDP and BDP are variations of differential privacy, but we defer their definitions to
Sections 3 and 4, respectively, to make them relatively self-contained, so that the definition,
motivation, preferred privacy mechanisms, and attacks are all in one place.

2.2. Sensitivity. In the differential privacy literature, different notions of sensitivity are
used to quantify the effect that a single record could have on the output of a function f and
is often used to calibrate the amount of noise that a mechanism M might add to the output
of f .

The first of these is global sensitivity, defined as follows:

Definition 2.2 (Global sensitivity (Dwork et al., 2006b)). The global sensitivity of a
(vector-valued) function f , denoted as Λ(f), is the largest change in f that can be achieved
by modifying a record in any dataset:

Λ(f) = sup
D1∼D2

||f(D1)− f(D2)||1,

where the suprememum is taken over all pairs D1, D2 that are dp-neighbors of each other.

Global sensitivity may overestimate the amount of noise that must be added to hide the
effect of a record. For this reason, Nissim et al. (2007) introduced an intermediate concept
called local sensitivity.

Definition 2.3 (Local sensitivity (Nissim et al., 2007)). The local sensitivity of a (vector-
valued) function f with respect to a dataset D (denoted as Λs(f,D) is defined as the largest
change in f that can be achieved by modifying a record in D:

Λs(f,D) = sup
D′∼D

||f(D)− f(D′)||1,

where the supremum is over all datasets D′ that are dp-neighbors of D. Note that the global
sensitivity is related to local sensitivity as follows: Λ(f) = supD Λs(f,D).
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Nissim et al. (2007) noted that local sensitivity is not compatible with ϵ-differential
privacy. But an upper bound called smooth sensitivity is compatible with ϵ-differential
privacy (Nissim et al., 2007). Local sensitivity, however is compatible with IDP; see Section
3.1. The following generalization of local sensitivity is also needed for discussing IDP:

Definition 2.4 (k-Local Sensitivity). The k-local sensitivity of a function f with respect
to a dataset D (denoted by Λs

k(f,D)) is defined as the largest change in f that can be
achieved by modifying up to k records in D. Let N k(D) be the set of all datasets that can
be obtained from D by modifying up to k records. The formula for k-local sensitivity is

Λs
k(f,D) = max

D′∈N k(D)
||f(D)− f(D′)||.

Note when k = 1, this is the same as local sensitivity

3. Reconstruction against Individual Differential Privacy

In this section, we present reconstruction and more targeted attacks against IDP and its
generalization Group IDP, which is intended to provide more privacy protections (Soria-
Comas et al., 2017). Intuitively, IDP seeks only to protect the current dataset and any
dataset obtainable by changing 1 record, while Group IDP tries to extend protections to
datasets that differ from the current dataset by up to k records.

We first review these privacy definitions and recommended privacy mechanisms (Section
3.1). We examine the main query used for the attack in Section 3.2 that tricks the privacy
mechanism into revealing private information. Using this query, we then show how to
reconstruct a single column (attribute) of a table in Section 3.3. We explain how to extend
these ideas to reconstruct the entire table (Section 3.4) at arbitrarily low privacy loss budget
settings. Then, we explain how the attack can be specialized to membership inference
and attribute inference, using many fewer queries, in Section 3.5. Finally we discuss some
countermeasures and their implications for IDP in Section 3.6.

3.1. A Review of IDP and Group IDP. The fundamental idea behind IDP and Group
IDP is that the plausible deniability argument provided by differential privacy only needs
to be applied to the actual dataset Dact collected by a data curator and does not need to
apply to every possible dataset (Soria-Comas et al., 2017). Thus IDP only seeks to mask
the differences between Dact and any dataset that can be obtained from it by modifying a
record. Meanwhile, Group IDP seeks to mask the difference between Dact and any dataset
that differs from it by up to k records, for some prespecified k. Since Group IDP has k + 1
parameters named k, ϵ1, ϵ2, . . . , ϵk, we present a two-parameter simplification of it. Any
mechanism that satisfies this simplification also satisfies the more complex original definition,
so any attack on the simplification also directly works on the original definition. Formally,

Definition 3.1 (ϵ-IDP and (ϵ, k)-Group IDP (Soria-Comas et al., 2017)). Given a fixed
data set Dact, privacy loss budget ϵ ≥ 0, and group size k ≥ 1, let N k be the set of all
datasets that can be obtained from Dact by modifying up to k records. A mechanism M
satisfies (ϵ, k)-Group IDP with respect to Dact if for every D ∈ N k and every S ⊆ range(M),

Pr[M(D) ∈ S] ≤ eϵPr[M(Dact) ∈ S]
and

Pr[M(Dact) ∈ S]leqeϵPr[M(D) ∈ S].
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When k = 1, we say that M satisfies ϵ-IDP with respect to Dact; that is, ϵ-IDP is the same
as (ϵ, 1)-Group IDP.

The parameter k is the group size parameter and is particularly important to reconstruc-
tion, because our attack only works on datasets of size at least 2k. This is not a particularly
strong restriction because a low value of k is recommended (e.g, k = 1) (Soria-Comas et al.,
2017).

The parameter ϵ ≥ 0 is the privacy loss parameter. Large values of ϵ correspond to
weaker privacy protections and small values of ϵ (close to 0) ostensibly correspond to stronger
privacy protections.

We note that the original, more complex, definition has k privacy loss parameters
ϵ1, . . . , ϵk, but a mechanism M satisfying Definition 3.1 with ϵ = mini ϵi also satisfies that
more complex definition and any reconstruction attack against Definition 3.1 is therefore also
a reconstruction attack against the original definition. This privacy definition has desirable
properties that are required of formal privacy definitions:

• Postprocessing invariance: Let M be a mechanism that satisfies (ϵ, k)-Group IDP
with respect to Dact and let A be a postprocessing algorithm whose domain contains
the range of M . Then the algorithm that first runs M and then runs A on the result
satisfies (ϵ, k)-Group IDP with respect to Dact for the exact same privacy parameters
(Soria-Comas et al., 2017).

• Composition: Let M1 be a mechanism that satisfies (ϵ1, k)-Group IDP with respect to
Dact and let M2 be a mechanism that satisfies (ϵ2, k)-Group IDP with respect to Dact.
The mechanism that releases the outputs of both M1 and M2 satisfies (ϵ1 + ϵ2, k)-Group
IDP with respect to Dact (Soria-Comas et al., 2017).

Mechanisms for Group IDP are based on local and k-local sensitivity (Definition 2.4).
Specifically, the scale of the noise added to a query is proportional to the k-local sensitivity.
Nissim et al. (2007) earlier had argued that basing the amount of noise on local sensitivity
is problematic because “the noise magnitude itself reveals information about the database.”
They illustrated this with an example with the median function, which can have local
sensitivity of 0 for some (but not all) datasets, which would result in no noise being added
for those datasets. Their warning has often been interpreted as a caution against releasing
the value of the local sensitivity (Hotz et al., 2022; Chetty and Friedman, 2019).

However, we demonstrate a more severe vulnerability. First, this is not a problem that
affects only some datasets—it affects all datasets. Second, even if the noise scale is never
0 (for example, if the noise scale is proportional to k-local sensitivity +1) and even if the
local sensitivity is never revealed directly, one can still infer enough information about the
dataset to reconstruct it, as long as the dataset size is at least 2k.

One generic mechanism for Group IDP is the k-Laplace mechanism, defined as follows.

Definition 3.2 (k-Laplace Mechanism (Soria-Comas et al., 2017)). Let g be a vector-
valued function with k-local sensitivity Λs

k(g,Dact) with respect to the true data Dact.
Let ϵ∗ ∈ (0, ϵ] be the amount of the privacy loss budget allocated to the mechanism. The
k-Laplace mechanism outputs g(Dact) + Laplace(Λs

k(g,Dact)/ϵ
∗), where

Laplace(Λs
k(g,Dact)/ϵ

∗) is a vector of independent Laplace random variables, each having
density function

f(x) =
ϵ∗

2Λs
k(g,Dact)

exp

(
− ϵ∗

2Λs
k(g,Dact)

|x|
)
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and variance 2Λs
k(g,Dact)

2/(ϵ∗)2.

The k-Laplace mechanism satisfies (ϵ∗, k)-Group IDP (Soria-Comas et al., 2017), and
our reconstruction attack will take advantage of the k-Laplace mechanism when applied to
the g function corresponding to the query described in Section 3.2.

3.2. The Attack Query. We now identify a class of queries such that answering these
queries with the k-Laplace mechanism and tiny values of ϵ∗ (corresponding to very strong
claims of privacy) ends up revealing more information about the data than if the queries
were always answered truthfully (i.e., without any protections).

The queries we are interested in are predicate count queries with thresholds. That is,
given a predicate ϕ (a function whose input is a record and whose output is True/False) and
a threshold b, the query qϕ,b returns 1 if the number of records satisfying the predicate is
larger than b. Formally,

qϕ,b(D) =

{
1 if

∣∣∣{r ∈ D : ϕ(r) = True}
∣∣∣ > b

0 otherwise.
(3.1)

The k-local sensitivity of qϕ,b is calculated in the following manner.

Lemma 3.3. Let k be a positive integer (e.g., the group size parameter in Group IDP)
and suppose the true dataset Dact has at least k records. The k-local sensitivity of qϕ,b with
respect to Dact is 0 whenever b < 0, b ≥ n (number of records in Dact), or ϕ is always true
or always false. Otherwise,

Λs
k(qϕ,b, Dact) =


0 when

∣∣∣{r ∈ Dact : ϕ(r) = True}
∣∣∣ > b+ k

0 when
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ ≤ b− k
1 otherwise.

(3.2)

We are particularly interested in the queries where the predicate ϕ specifies a range
[u, v) on an attribute Ai. That is ϕ(r) =True if and only if u ≤ r[i] < v. When ϕ is such
a predicate, we denote the corresponding query as qAi∈[u,v),b. It returns 1 when the count

of records having attribute Ai in the range [u, v) is larger than b. We call this a threshold
range-count query.

Using the k-Laplace mechanism with a portion ϵ∗ of the privacy budget to protect
qAi∈[u,v),b results in what we shall call the Group IDP threshold range query mechanism for
qAi∈[u,v),b:

M(D) = qAi∈[u,v),b(D) + Laplace

(
Λs(qAi∈[u,v),b, D)

ϵ∗

)
. (3.3)

Note that for some combinations of b and D, the k-local sensitivity is 0 and no noise
is added. For other values of b and D, the local sensitivity is 1 and Laplace(1/ϵ∗) noise is
added. Being able to distinguish between the two cases using only the output of M is the
key to the attack. We explain how to do this next, but we also note that having no noise
is not necessary for the attack to work—for example if the noise is either Laplace(a/ϵ∗) or
Laplace(b/ϵ∗) for some positive numbers a and b, reconstruction is still possible. we explain
how to deal with this complication in Section 5.
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3.2.1. Detecting Noiseless Answers. When the share of the privacy budget ϵ∗ is extremely
small, it is possible to detect with near perfect accuracy whether M returned a value that
has no noise (k-local sensitivity is 0) or is noisy (k-local sensitivity is 1). For example,
suppose the share of the privacy loss budget used in the mechanism is ϵ∗ = 10−10. When
the k-local sensitivity is 1, the Laplace noise will be a non-integer—the probability that a
floating point implementation of Laplace noise with scale 1/ϵ∗ is a non-integer is essentially
1. If no noise were added, then the output would certainly be 0 or 1. Thus the following
decision rule has near perfect accuracy: if the output is not 0 or 1, it was because noise
was added and so the local sensitivity is 1; if the output is 0 or 1, then with overwhelming
probability no noise was added and local sensitivity is 0.

Moreover, even if one performs ad hoc protections such as rounding the output of the
mechanism, it is still possible to tell whether the k-local sensitivity was 0 or 1 as follows:

• If the output is rounded to the nearest integer, then if noise is injected, the probability
that the output is 0 or 1 is ≤ 1− e−2ϵ∗ . This is the probability that the absolute value of
the noise is not greater than 2. When ϵ∗ = 10−10, this probability is at most 2 × 10−10.
This means that the decision rule described above will fail with probability less than
2× 10−10.

• If the output of the mechanism is rounded to 0 or 1 (whichever is closer to the noisy
value that was produced by the mechanism), one can still distinguish between the k-local
sensitivity = 0 and k-local sensitivity = 1 cases. Simply ask the same query 15 times,
each time with privacy loss budget share ϵ∗ = 10−10/15. The decision rule to use is: if
all 15 answers are identical then assume no noise was added and if at least 1 answer is
different from the rest, then assume noise was added. Clearly, if the k-local sensitivity
is 0 then all the 15 answers are noise-free, and the rule would be correct. On the other
hand, if the k-local sensitivity is 1, then the probability of getting 15 ones or 15 zeroes
as the answers is approximately 2 ∗ 2−15 ≤ 10−10 and so the probability of the decision
rule failing is virtually 0. Meanwhile, the total privacy budget spent by the 15 queries is
15 ∗ 10−10/15 = 10−10.

3.2.2. What one learns from noisy and noiseless answers. It turns out that the ability to
detect whether an answer is noisy allows us to infer deterministic information about the
data even if the answer was highly noisy. More surprisingly, answering qAi∈[u,v),b using the
k-Laplace mechanism provides more information than one would get if no protection was
used as all (i.e., if it was always answered truthfully no matter what). This finding is a
consequence of the following lemma.

Lemma 3.4. Let Dact be a dataset with n records (where n is publicly known). Let Ai be
an ordered attribute and [u, v) be a range that does not contain the entire domain of Ai. Let
b be an integer threshold such that 1 ≤ b ≤ n− 1. Let M be the k-Laplace mechanism for
answering the threshold range query qAi∈[u,v),b. If the output ω of M(Dact) is released, then
the following can be learned about Dact:

• If ω is detected as a noisy output then

b− k + 1 ≤
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ ≤ b+ k.
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In other words, we get an upper and lower bound on the number of people in Dact whose
value for Ai is in the range [u, v).

• If ω is detected as non-noisy and ω = 1, then
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ > b+ k.

• If ω is detected as non-noisy and ω = 0, then
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ ≤ b− k
Since our decision rule has near-perfect accuracy and uses up at most ϵ∗ of the privacy

loss budget (the attack would be using ϵ∗ ≤ 10−10), then we essentially know if the answer
was noisy, and so: (1) if the answer is noisy, we learn that something about the count of
people whose attribute Ai is in the range [u, v). Specifically, we learn that this count is
actually somewhere between b − k + 1 and b + k (an interval of size 2k − 1). Note that
answering qAi∈[u,v),b with no protection would never result in our learning that the true

answer is inside such an interval ; (2) if the answer is not noisy (i.e., suppose the answer is
1), then this non-noisy query answer directly tells us that the count of people in the range
[u, v) is more than b. But furthermore, since we have figured out that the k-local sensitivity
is 0, we can combine this information with Lemma 3.3 to learn that the count is not just
> b, but it is in fact > b+ k. Again, this is more information than if the query had always
been answered truthfully. The reason we get so much extra information from this k-local
Laplace mechanism compared to a mechanism that is always truthful, is the extra leakage
caused by inferring what the local sensitivity is.

3.3. Single-Attribute Reconstruction. We next show how to reconstruct one attribute
Ai (one column) of the table when the data size is ≥ 2k.2 That is, for each possible value
aj , we will determine how many records r ∈ Dact have r[i] = aj . We consider the case
where Ai is a numeric attribute since this is the hardest case. The categorical case can be
handled in many ways; the simplest being to assign an arbitrary ordering on the domain of
a categorical attribute.3 The amount of privacy loss budget used in this reconstruction can
be made arbitrarily small. We first illustrate the attack with an example.

Example 3.5. Let us consider (ϵ, 1)-Group IDP (i.e., k = 1). Let us set the overall privacy
budget at ϵ = 0.01. We will require each call to the threshold range query mechanism to
use ϵ∗ = 10−10 of the privacy loss budget, and so our goal is to make sure that the total
budget used by all the mechanism calls is at most ϵ = 0.01. Suppose the true dataset Dact

has an income column A1, and contains 6 people whose incomes are {5, 8, 15, 16, 17, 18}. An
attacker can proceed as follows.

(1) The attacker first tries to find out if, say, there are more than 3 people with incomes in
the range [1, 10). This means u = 1, v = 10, b = 3 (and recall k = 1). Since there are
actually 2 people in that range and 2 ≤ b − k, then Lemma 3.3 says that the k-local
sensitivity is 0. This means that the threshold-query mechanism, even when given only
10−10 of the privacy loss budget, will output the true answer 0. The attacker realizes that
this is almost certainly not a noisy answer. Using Lemma 3.4, the attacker determines
that the count of people with income in the range [1, 10) is at most b− k ≡ 2.

2We assume that the data size is public because the total number of records is a query that has a k-local
sensitivity of 0.

3This is often done in practice. For example, gender is frequently coded as 0 for female and 1 for male.
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Figure 1: k-local sensitivity of qAi∈[u,v),b for Example 3.5 as a function of the threshold b.

(2) The attacker can then query if there are more than 2 people with incomes in the range
[1, 10). Based on the previous item, the attacker knows that there are not, but by posing
this query the attacker can extract more information out of the mechanism. So now the
attacker chooses u = 1, v = 10, b = 2 for the query (and recall k = 1). Since there are 2
people in the range [u, v) and 2 ≤ b+ k and 2 > b − k, then Lemma 3.3 says that the
k-local sensitivity is 1. Thus the mechanism (using 10−10 of the privacy loss budget) adds
significant amounts of noise and produces an output like 9450462192.887615, which the
attacker detects as a noisy answer. Using Lemma 3.4, the attacker determines that the
number of people with income in the range [1, 10) is at least b+ k − 1 ≡ 2 and at most
b+ k ≡ 3.

(3) Putting the results of the previous two items together, the attacker concludes there are
at exactly 2 people with incomes in the range [1, 10), and only 10−10 + 10−10 privacy
budget was spent on those two queries.

(4) The attacker can now perform the same kind of attack on the ranges [1, 5), [5, 10),
and [10,∞) to determine the number of people in these ranges and could keep going,
subdividing the ranges until a pre-specified precision such as 1 cent—i.e., an interval
would look like [$9.83, $9.84). Clearly, at this point the attacker would know exactly all
of the incomes and as long as the attacker interacts with the mechanism less than 108

times, the total privacy loss will be less than the overall target of ϵ = 0.01 given at the
beginning of the example. Clearly, if the attacker spends even less than 10−10 privacy
budget per query, the total privacy cost, according to Group IDP accounting, could be
made arbitrarily small.

Thus the main subgoal for the attacker is to find out exactly how many people have
values of attribute Ai in a range [u, v). The attacker found a b value that is at the boundary
of where the k-local sensitivity changes from 0 to 1 and used it to infer the true count. Indeed,
as b varies, the k-local sensitivity looks like Figure 1—for small b the k-local sensitivity
is 0 and the mechanism produces 1 as the noise-free answer. At some point, the k-local
sensitivity switches to 1, and then back to 0, after which the mechanism produces 0 as the
noise-free answer.



12 PROTTAY PROTIVASH, JOHN DURRELL, DANIEL KIFER, ZEYU DING, AND DANFENG ZHANG

The following lemma shows that this is indeed the behavior, and when one identifies a
value of b that is on either of those two boundaries, the exact count is revealed.

Lemma 3.6. Given a predicate ϕ, if for some integer b↑ we have (1) the k-local sensitivity
of qϕ,b↑ with respect to Dact is 0 and (2) the k-local sensitivity of qϕ,(b↑−1) is 1, then

• The count of people in Dact whose records satisfy ϕ is b↑ − k.
• The k-Laplace mechanism qϕ,b will return the non-noisy answer 0 for all b ≥ b↑.

Furthermore, if for some integer b↓ we have (1) the k-local sensitivity of qϕ,b↓ with respect to
Dact is 0 and (2) The k-local sensitivity of qϕ,(b↓+1) is 1, then

• The count of people in Dact whose records satisfy ϕ is b↓ + k + 1.

• The k-Laplace mechanism for qϕ,b will return the non-noisy answer 1 for all b ≤ b↓.

When applied to qAi∈[u,v),b, Lemma 3.3 tells us that the k-local sensitivity is 1 for

those values of b that are between
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ − k and
∣∣∣{r ∈ Dact : u ≤

r[i] < v}
∣∣∣ + k − 1. This range contains 2k integers, and so if the dataset size |Dact| is

≥ 2k + 1, a boundary between k-local sensitivity of 0 and 1 will always exist for some
b. Furthermore, if |Dact| = 2k, a boundary might not exist, but that can only happen

if the count
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ is k. Thus, as long as |Dact| ≥ 2k the attacker

can determine the count
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ with near perfect accuracy simply by

increasing b from 0 to |Dact| − 1 until a boundary is found or b hits its upper limit. As long
as the privacy budget across these (at most) |Dact| queries, the attacker can reconstruct the
true count almost perfectly at arbitrarily low “privacy cost.” The pseudocode is shown in
Algorithm 1. For simplicity, it shows the linear search but we note that a binary search can
be used instead.

Now that we have a tool for determining the counts of records within a range [u, v), we
can use it to reconstruct an entire attribute Ai up to a certain precision—that is, we can
find all of the incomes in the dataset up to the nearest cent. Algorithm 2 shows how to do
this. The algorithm starts by setting u to be the lower bound on the domain of Attribute
Ai and v to be an upper bound.4 For example for the Income attribute, one could set u = 0
and v = 240.

Next, the algorithm considers a decreasing sequence of values v = v0 > v1 > v2 > . . . .
It calls Algorithm 1 to find out how many people have attribute Ai in the range [u, vj). If
it finds that the count for [u, vj)—call this count s0—and the count for [u, vj−1)—call it
s1—are different, then there must be s0 − s1 people in the range [vj−1, vj). If the width
of the interval is ≤ 0.01, then it has reconstructed those income values up to a penny. In
general, the target precision is a user-provided input called γ.

Note that Algorithm 2 uses linear search to find the next value after vj for which the
count changes, but this is shown for simplicity and can be replaced by a binary search for
efficiency.

4If bounds are not known in advance, one could start with the interval [−1, 1) and keep doubling the
endpoints as long as Algorithm 1 reports that fewer than n records are in the interval.
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Algorithm 1: Reconstruct count of records with attribute Ai in an interval [u, v).

k, ϵ: Group IDP parameters

n ≥ 2k: publicly known number of records in Dact

i: index of the target attribute

M
(i)
[u,v),b: mechanism that answers qAi∈[u,v),b using the k-Local Laplace mechanism

as in Equation 3.3

def CountReconstruct(k, ϵtarget, u, v, i):
b0 ← 0

a0 ← result of M
(i)
[u,v),b0

using privacy budget ϵ
n

// Note linear search is shown for simplicity

// Use binary search for more efficiency

for j = 1, . . . , n− 1 do
bj ← j

aj ← result of M
(i)
[u,v),bj

using privacy budget ϵ
n

if aj detected as noisy, aj−1 detected as non-noisy then
return bj−1 + k + 1

else if aj detected as non-noisy, aj−1 detected as noisy then
return bj − k

// After loop, either all answers were noisy

// or all answers were non-noisy

// But all non-noisy is impossible

return k

Algorithm 2 also yields an upper bound on the number of calls it would need to Algorithm
1 and splits its target privacy budget ϵ equally among these calls. It ensures that the amount
of privacy budget given to each Algorithm 1 call is small enough so that an answer to a
k-local Laplace mechanism can be detected as noisy/non-noisy and so that Algorithm 2 can
meet its budget goals.

3.4. Reconstructing the Full Dataset. Reconstructing the full dataset can be done in an
iterative manner. One first reconstructs the first attribute A1 using Algorithm 2. This gives
a set of records r1, . . . , rn that have just one attribute. One then needs to add attribute
A2 to each record, then attribute A3, and so on. Since the algorithms used to do this are
nearly identical to Algorithms 1 and 2, we do not list them here, but instead explain how
the process would work with an example.

Example 3.7. Suppose Algorithm 2 has been used to reconstruct the Age column to get
the values [18, 18, 21, 21, 30]. To add the next column, say height, we would be interested in
queries of the form: “are there more than b many 18-year-olds who have height in [u, v).” This
is another predicate count query with a threshold b and its k-local sensitivity is again given
by Lemma 3.3. It is answerable using the k-local Laplace mechanism, similar to Equation
3.3. To identify the number of 18-year-olds who have height in [u, v), again one would search
for a b value on the boundary of k-local sensitivity changes, using Algorithm 1, but modified
to use the k-local laplace mechanism for this new query. Then using Algorithm 2 with this
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Algorithm 2: Reconstruct all elements in the column corresponding to attribute
Ai

k, ϵ: Group IDP parameters

γ: targeted decimal point precision of each reconstructed element

n ≥ 2k: publicly known data size

def ColumnReconstruct(k, ϵtarget, γ):
u← Lower bound on domain of Ai

v ← Upper bound on domain of Ai

/* Target privacy parameter for each call to Algorithm 1:

CountReconstruct() */

ϵshare = min
{
10−10, ϵ/[(v − u)/γ]

}
)

vals← [] // Will store reconstructed values

s0 ← n // Number of items left to reconstruct

// Note linear search is shown for simplicity

// Use binary search for more efficiency

while s0 ̸= 0 do
v ← v − γ // decrease upper bound

s1 ← CountReconstruct(k, ϵshare, u, v, i)

if s0 ̸= s1 then
// There are s0 − s1 items in [v, v + γ)

add s0 − s1 copies of v into vals array

s0 ← s1

return vals

modified Algorithm 1 allows us to find all of the heights associated with 18-year-olds in the
data. Then we would repeat the process with 21-year-olds and 30-year-olds.

Continuing this process with a third attribute, then a fourth, and so on, would result in
the entire dataset being reconstructed as long as it contains at least 2k people.

3.5. Additional Attacks. The attack algorithm can be made efficient by replacing linear
search in Algorithms 1 and 2 with binary search. The algorithms could also be adapted for
other kinds of attacks, not just entire data reconstruction.

Example 3.8 (Confirmation of Uniqueness). Suppose the dataset schema is A1, . . . ,Am

and we know the values of ℓ of these attributes for a target individual’s record r∗. (Say we
know r∗[A1] = a1, . . . , r

∗[Aℓ] = aℓ.) We may ask if that person is unique in the data for
those attributes. We can consider the following query qb: is the number of records r with
r[A1] = a1, . . . , r[Aℓ] = aℓ larger than b? This is a predicate count query with threshold
b and its k-local sensitivity is given in Lemma 3.3. Namely, when the true count of such
records is greater than b + k or less than or equal to b − k, the k-local sensitivity is 0,
otherwise it is 1. Let M b be the k-Laplace mechanism for this query. Then we run M b with
b = k and a tiny privacy budget, and then we run it with b = k + 1. By Lemma 3.6, this
would be an upper boundary for the k-local sensitivity change (i.e., the k-local sensitivity is
detected as 1 for b = k and detected as 0 for b = k + 1) if and only if there truly is only
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one such person in the data. Thus, if we observe this combination of non-noisy answer for
b = k+1 and a noisy answer for b = k, we learn the person is unique in the dataset on those
attributes. On the other hand, if we observe a different outcome, then we learn that the
person is not unique. This attack only requires two accesses to the mechanism.

Example 3.9 (Membership Inference). Suppose we know that an individual is unique in
the population based on attributes A1, . . . ,Aℓ, and we want to know whether this person is
in the dataset (e.g., it could be an HIV dataset). This attack would proceed in the same
way as in Example 3.8, except we run the mechanism M b from that example with b = k and
b = k− 1 (with very small privacy budgets). If there are no people in the dataset with those
combinations of attributes, the k-local sensitivity would be 1 when b = k − 1 and 0 when
b = k. Thus again, this attack looks for the upper boundary and that is why 2 mechanism
calls are needed (i.e., to identify which boundary it is).

Note that if the query was never protected, we would simply ask one query: if the
number of people with a particular combination of uniquely identifying attributes is positive.
If the answer is True, then the person is in the dataset, if False, then they are not. This
is an interesting observation because, even though the k-local laplace mechanism reveals
more precise information about the dataset (as explained in Section 3.2.2), this more precise
information is more complex: (1) when the query is protected, there are two boundaries and
we need to determine which one we found; (2) when the query is unprotected, there is only
one relevant boundary—the b at which the answer changes from True to False. If a unique
person is in the data, this boundary would occur at b = 0.

Example 3.10 (Attribute Inference). Suppose we know that an individual is in the dataset
and we know the values for attributes A1, . . . ,Aℓ for that individual. We may be interested
in learning the value of Aℓ+1. This is exactly what the dataset reconstruction algorithm
does (Section 3.4)—it finds the multiset of values for Aℓ+1 for the records for which
A1 = a1, . . . ,Aℓ = aℓ. The reconstruction algorithm does this for all combinations of
(A1, . . . ,Aℓ) values that appear in the dataset, but clearly it can be specialized to target
just one particular combination as well.

3.6. Countermeasures. There are a variety of possible countermeasures to the attack we
propose here. We list some of these countermeasures and discuss their implications.

• Instead of adding noise to the query answer directly, one could add noise to the count
of the records that satisfy ϕ and then threshold the noisy count (convert it to 1 if it is
greater than b and 0 otherwise). This turns the mechanism into a differentially private
mechanism and abandons IDP.
• A system could specifically disallow these queries or allow only a restricted set of possible
queries. Not only would this greatly limit the ability of researchers to perform data
analysis, but systems based on query restrictions may not guarantee privacy protections
either (Cohen and Nissim, 2020). Using these kinds of restrictions would also tacitly
acknowledge that the framework of IDP is not trusted, whereas a formal privacy definition
should guarantee protections against reconstruction.
• A system could limit the number of queries that an analyst can ask. This approach has
the same limitations as the previous one. Additionally, we note that membership inference
only requires 2 queries, so even query limitation is not very effective.
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• A system could require queries to use a minimum privacy loss budget—in other words, the
system would require an analyst to use queries that leak at least a pre-specified amount
of information. This can have the unintended consequence of losing the trust of people
whose data are to be collected. It also implicitly restricts the amount of queries an analyst
can ask, since analysts are also constrained by the sum of the leakages associated with the
queries they ask.

4. A Brief Examination of Bootstrap Differential Privacy

In this section, for the purposes of comparison with IDP, we review bootstrap differential
privacy (BDP) (O’Keefe and Charest, 2019) and demonstrate how it can leak the distinct set
of records in the data, using the preferred mechanism construction of O’Keefe and Charest
(2019).

4.1. Bootstrap Differential Privacy. BDP again defines its own versions of neighbors,
sensitivity, and Laplace mechanism as follows.

Definition 4.1 (Bootstrap Neighbors (O’Keefe and Charest, 2019)). Given a true dataset
Dact, we say that D1 and D2 are bootstrap neighbors conditioned on Dact if D1 can be
obtained from D2 by replacing one record and both D1 and D2 can be obtained from Dact

by changing the multiplicities of records in Dact (i.e., D1 and D2 cannot contain a record
that Dact does not contain).

Definition 4.2 (ϵ-bootstrap differential privacy (BDP) (O’Keefe and Charest, 2019)). Given
a dataset Dact and privacy parameter ϵ > 0, a randomized algorithm M satisfies ϵ-bootstrap
differential privacy if for every set S ⊆ Range(M) and for all pairs of bootstrap neighboring
data sets D1 and D2 (conditioned on Dact),

Pr[M(D1) ∈ S] ≤ eϵPr[M(D2) ∈ S]. (4.1)

The Bootstrap sensitivity (BS) of a function f with respect to Dact takes the usual
definition of sensitivity from differential privacy and swaps in bootstrap neighbors conditioned
on Dact.

Definition 4.3 (Bootstrap Sensitivity (O’Keefe and Charest, 2019)). The Bootstrap sensi-
tivity (BS) of f with respect to Dact, denoted by Λs

B(f,D) is

Λs
B(f,Dact) = max

D1∼D2

||f(D1)− f(D2)||1, (4.2)

where the maximum is taken over bootstrap neighbors conditioned on Dact.

Bootstrap sensitivity is used to calibrate noise for the bootstrap Laplace mechanism:

Definition 4.4 (Bootstrap Laplace Mechanism (O’Keefe and Charest, 2019)). Let f be a
function whose output is a vector. Let ϵ∗ > 0 be a privacy parameter. The bootstrap Laplace
mechanism is a mechanism M that, on input Dact, adds independent Laplace noise with
scale Λs

B(f,Dact)/ϵ
∗ to each component of f , i.e., M(D) = f(D)+Laplace(Λs

B(f,D)/ϵ∗).

We next show how the bootstrap Laplace mechanism can be used to verify the existence
or non-existence of any record with almost no privacy expenditure. Let ϕ be an arbitrary
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predicate (e.g., “Income > 50k and Age = 32”) and let qϕ be the query that returns 1 if
and only if some record in Dact satisfies ϕ:

qϕ(D) =

{
1 ϕ(r) = True for some r ∈ D
0 ϕ(r) = False for all r ∈ D.

Lemma 4.5. Given a true dataset Dact, the bootstrap sensitivity of qϕ with respect to Dact

is

Λs
B(qϕ, Dact) =


0 if all r ∈ Dact satisfy ϕ

0 if no r ∈ Dact satisfies ϕ

1 otherwise.

Thus, if one uses the bootstrap Laplace mechanism with a tiny privacy loss budget (e.g.,
ϵ = 10−10) to answer qϕ, then Lemma 4.5 tells us that:

(1) If we receive the answer 0, then with overwhelming probability, no record in Dact satisfies
ϕ (because it is almost impossible for an extremely noisy answer to be 0 or 1, hence this
must have been a noise-free answer and the bootstrap sensitivity would have to be 0).

(2) If we receive the answer 1, then with overwhelming probability, all records in Dact satisfy
ϕ.

(3) If we receive any other answer, it is definitely a noisy answer (bootstrap sensitivity is 1)
and so there exists a record in Dact satisfying ϕ.

Thus the output of the bootstrap Laplace mechanism tells us whether there is or is
not such a record in the database (i.e., we have figured out what the true answer to qϕ
is) and sometimes it tells us more information (when all records satisfy ϕ or all do not).
So again, protecting the query with the bootstrap Laplace mechanism reveals at least as
much information compared to always answering qϕ accurately. It allows us to probe which
records are in Dact (but not how many copies there are).

5. A General Study of Empirical Neighbors Definitions

We have demonstrated an attack against (ϵ, k)-Group IDP that recovers any dataset with at
least 2k records and sketched an attack against BDP that recovers all records in the dataset
but not their multiplicity. Both attacks work with arbitrarily low privacy budget parameters
ϵ (which, according to those definitions should correspond to strong privacy protections). In
this section, we consider whether there are simple fixes for this style of privacy definition
that can prevent reconstruction or whether the problems are deeper and harder to fix.

5.1. Ensuring all answers are noisy. In the previous sections, we exploited the fact that
we can detect whether a query answer is noisy or not using arbitrarily small amounts of
privacy budget. What if one changes the mechanism so that noise is always added? For
example, consider the following modification to the k-local Laplace mechanism: add 1 to the
k-local sensitivity and use that to calibrate the noise. That is, if g is a function with k-local
sensitivity Λs

k(g,Dact) with respect to Dact, then this modified mechanism M † returns

M †(Dact; ϵ) = g(Dact) + Laplace

(
1 + Λs

k(g,Dact)

ϵ

)
.
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m accuracy

10 1,606,049
2,000,000 = 80.30245%

100 1,976,433
2,000,000 = 98.82165%

1000 2,000,000
2,000,000 = 100.00000%

Table 1: Empirical accuracy of the decision rule based on ϕm, for different values of m for 2
million simulations.

Such a mechanism, when given privacy loss budget ϵ, would be answering the threshold
range-count queries qAi∈[u,v),b from Section 3.2 by either adding Laplace(2/ϵ) noise (when

the the k-local sensitivity is 1) or Laplace(1/ϵ) noise (when the k-local sensitivity is 0). If
we can reliably detect which type of noise was added, then the same reconstruction attacks
from Section 3 could be used.

It turns out that this is also possible using statistical hypothesis testing and exploiting
the composition rules for privacy definitions like IDP and BDP. For example, given a desired
target ϵ and an integer m, we can run the mechanism M † for m times, each time using ϵ/m
privacy budget for a total cost of ϵ. This gives us m noisy numbers z1, . . . , zm which are
either obtained by adding Laplace(2m/ϵ) noise to an unknown quantity, or Laplace(m/ϵ)
noise. We can use the empirically observed variance as a test statistic ψm

ψm =
ϵ2

m2

[
1

m− 1

m∑
i=1

(
zi −

z1 + zm
m

)2
]

If the zi are generated with Laplace(2m/ϵ) noise, then the variance of each zi is 8m
2/ϵ2

and so the expected value of ψm would be (ϵ2/m2)(8m2/ϵ2) = 8. On the other hand, if the
zi are generated with Laplace(m/ϵ) noise, then the variance of each zi is 2m

2/ϵ2 and so the
expected value of ψm would be (ϵ2/m2)(2m2/ϵ2) = 2.

Thus, there is a simple decision rule one could use. Run the mechanism M † m times,
with ϵ/m privacy budget each time. Compute the test statistic ψm and if it is < 5, decide that
Laplace(m/ϵ) was used (hence k-local sensitivity is 0), otherwise decide that Laplace(2m/ϵ)
(hence k-local sensitivity is 1). If this decision rule is highly accurate, then this is all that is
needed to perform reconstruction using the algorithms in Section 3.

The following lemma shows that when m is large enough, ψm is highly concentrated
around its mean (either 2 or 8), and so the decision rule is very accurate. An empirical
demonstration is also shown in Table 1, which shows the empirical accuracy for different
values of m. It is based on 2 million simulations, in half of which used Laplace(2m/ϵ) noise
and the other half, Laplace(m/ϵ) noise. Note the total privacy budget expended is always ϵ,
regardless of the value of m, and that by Lemma 5.1, the decision rule has the same accuracy
for any value of ϵ > 0.

Lemma 5.1. Given an integer m > 1 and any ϵ > 0 and a noise scale multiplier α ≥ 0,
define the following random variables:

(1) z1, . . . , zm, where each zi = µ+Laplace(αm/ϵ) for some unknown number µ (the private
value that gets noised).

(2) z∗1 , . . . , z
∗
m, where each z∗ = Laplace(1)
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Furthermore, define

ψm =
ϵ2

m2

[
1

m− 1

m∑
i=1

(
zi −

z1 + zm
m

)2
]

and

ψ∗
m =

1

m− 1

m∑
i=1

(
z∗i −

z∗1 + z∗m
m

)2

.

Then the distribution of ψm is the same as the distribution of α2ψ∗
m (in particular, it does

not depend on ϵ or the private value µ). The expected value of ψ∗
m (resp., ψm) is 2 (resp.,

2α2) and ψ∗
m converges to 2 with probability 1 as m→∞, hence ψm converges to 2α2.

Thus, the foundational mechanisms for these privacy definitions are flawed and reconstruction-
proof fixes most likely require more complex strategies like smooth sensitivity (Nissim et al.,
2007) in differential privacy. We next examine flaws in the formulation of the privacy
definitions themselves.

5.2. Is leakage built in to the privacy definition? We saw that simple modifications
to the mechanisms to make sure that they always add noise is still not sufficient to protect
against reconstruction. One would need to use something much more complex, such as
smooth sensitivity (Nissim et al., 2007) and differential privacy. So next we study the general
class of privacy definitions that IDP and BDP belong to in order to identify further flaws.
We call this class of definitions empirical neighbors. The main components of empirical
neighbors privacy definitions are:

(1) A set of pairs of neighbors to protect. This set depends on Dact, the data observed by
the data collector. Hence we represent it as NPairs(Dact). The privacy constraints
are obtained from NPairs(Dact)—for each (D1, D2) ∈ NPairs(Dact) and each possible
output ω of a mechanism M , they require that P (M(D1) = ω) ≤ eϵP (M(D2) = ω). For
example, in IDP, NPairs(Dact) has the form

{(Dact, D1), (Dact, D2), . . . } ∪ {(D1, Dact), (D2, Dact), . . . },
where D1, D2, . . . are the datasets that can be obtained from Dact by replacing one record.
Similarly, in BDP, NPairs(Dact) contains all pairs (D1, D2) where D1 can be obtained
from D2 by replacing one record and all records that appear in D1 and D2 must also
appear in Dact.

(2) A hint function h that looks at the data. The data collector decides which mechanism to
use based on the hint h(Dact). We note that the use of such hint functions is becoming
increasingly common. Not only is it implicitly used in IDP (Soria-Comas et al., 2017)
and BDP (O’Keefe and Charest, 2019) but it was also used for actual data releases for
the Opportunity Atlas (Chetty and Friedman, 2019) and the 2020 Decennial Census (the
as-enumerated population count in each state as well as the number of housing units
and non-empty group quarters in each geographic area) (Abowd et al., 2022). In fact,
many papers on differential privacy implicitly use h(Dact) = |Dact| because they reveal
the exact size of the dataset.
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(3) A mechanism selector Chooser whose input is h(Dact) and whose output is a mechanism
that satisfies the constraints obtained by NPairs(Dact). This reflects the core principles
in IDP and BDP that a mechanism is chosen after observing the data.

These pieces fit together into a privacy definition, generalizing IDP and BDP, as follows:

Definition 5.2 (Empirical Neighbors). Given NPairs and a hint function h, a mechanism
chooser satisfies ϵ-empirical neighbors privacy if for any choice of Dact, then Chooser(h(Dact))
produces a mechanism M that satisfies:

Pr[M(D1) = ω] ≤ eϵPr[M(D2) = ω]

for all (D1, D2) ∈ NPairs(Dact) and all possible outputs ω.

Neither IDP nor BDP explicitly states the rules that must be followed when choosing a
mechanism—what information about Dact can be used? Equivalently, what restrictions are
there on the hint function h? Because these rules were not fully specified, our attacks had
to use the mechanism design principles provided by those papers.

Some natural choices for h are: (1) no restrictions, (2) h(Dact) = ∅, (3) h(Dact) =
NPairs(Dact). In other words, h provides information equivalent to the set of constraints
that the mechanism selected by Chooser should satisfy This is most likely what was intended
in IDP and BDP.

We next show the consequences of each of these choices, which is that this style of
definition allows h(Dact) (the information used to decide on a mechanism) to be leaked,
which can be catastrophic in the cases of IDP and BDP. Furthermore, preventing the leakage
of h(Dact) results in differential privacy.

Lemma 5.3. The empirical neighbors definitions allow the release of h(Dact) for any ϵ
parameter. In particular, if h(Dact) = NPairs(Dact) then Group IDP allows Dact to be
revealed whenever |Dact| > 1 and BDP allows the distinct set of records to be revealed.

On the other hand, if h(Dact) = ∅ and
⋃

DNPairs(D) is the set of all pairs of datasets
that differ on a record, then the empirical neighbors definition is equal to differential privacy.

6. Experiments

As a proof of concept, we empirically evaluate the attacks against IDP because of its leakage
potential. We consider 3 attack scenarios:

• Membership inference: given a set of uniquely identifying attributes of a target
individual, how many queries does an attacker need to verify that the target individual is
in the dataset, using arbitrarily low privacy budget.

• Attribute inference: given a set of uniquely identifying attributes of a target individual,
how many queries does an attacker need to reconstruct the rest of the target’s record,
using arbitrarily low privacy budget.

• Full dataset reconstruction: how many queries does an attacker need to reconstruct
the entire dataset, using arbitrarily low privacy budget.
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In these experiments, we optimize the attack code of Algorithms 1 and 2 to use binary search
instead of sequential search. We compare (1) how many queries are needed when they are
“protected” by the k-local Laplace mechanism to (2) how many queries are needed when no
protection is used (i.e., they are always answered without noise). When reconstructing using
“protected” threshold range-count queries qAi∈[u,v),b, the main idea is to look for a threshold b
for which the threshold range query mechanism M switches from noisy to non-noisy answers.
When reconstructing using unprotected queries, one looks for the threshold b for which the
query answer changes from 0 to 1. The attack is for IDP (Group IDP with k = 1).

It is important to note that, as discussed in Example 3.9, just because the k-Laplace
mechanism can leak more information about a query (such as qAi∈[u,v),b) than if the query
were not protected, this does not mean that our particular attack will benefit from it. Hence
it is important to evaluate if there are inefficiencies in our attack.

6.1. The Dataset. As an illustration of the way the attack would be launched in practice,
we use the well-known Banking dataset (Moro et al., 2014) containing records of 45211
people. There are 7 numeric (integer) and 10 categorical attributes. As discussed in Section
3.2, categorical attributes can be handled simply by encoding the values as integer. Thus,
for example, a yes/no attribute can be converted to an attribute whose values are 0 or 1.

Since part of the attack (Algorithm 2) uses upper and lower bounds on the domain of
numeric attributes, we choose the following conservative bounds:

[
−105, 106

]
for balance,[

0, 104
]
for duration, [−1, 2000] for pdays (-1 is a special coding for customers who were

not previously contacted), [0, 2000] for previous, [0, 125] for age, [0, 31] for day, and [0, 100]
for campaign.

6.2. Membership Inference. In membership inference attacks, an attacker has uniquely
identifying information about an individual and attempts to determine whether that indi-
vidual is in the dataset (i.e., whether the number of people having the same values for those
known attributes is 0 or 1). As explained in Example 3.9, when using the k-local Laplace
mechanism to protect query answers, then no matter how small the privacy budget ϵ is, this
attack succeeds with just two queries (no matter what the dataset is). If, on the other hand,
queries are not protected at all, one simply asks whether the number of people with the
known attributes is > 0. These results are summarized in Table 2.

Protected by IDP No Protection
# Queries 2 1

Table 2: Number of queries needed to launch a successful membership inference attack, no
matter how small ϵ > 0 is, when queries are protected using the k-local Laplace
mechanism of IDP compared to no protection at all.

6.3. Attribute Inference. We next consider an attacker who knows a person is in the data,
has uniquely identifying information about the person, and is trying to discover additional
attributes (such as the person’s balance in the banking dataset).

In this experiment, an attacker knows the following attributes about a target individual:
age, marital status, level of education, job type, and whether the individual has a
housing loan. These will be treated as the identifying attributes. The attacker could try
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Protected by IDP No Protection
“Balance” # Queries 29.9 29.9
Full Record # Queries 131.2 131.2

Table 3: Average number of queries to reconstruct the balance for people who are unique
on linking attributes and the average number of queries to reconstruct all the
non-linking attributes. Comparison between threshold range-count queries with
and without IDP protection.

to learn just one attribute (in this casem balance) or the attacker could try to learn the
complete rest of the entire record.

This attack can be carried out, for any arbitrarily low privacy loss budget ϵ > 0, as
described in Example 3.10. In the dataset, there were 1815 people who are unique on the
linking attributes. In Table 3 we show, on average, how many queries are needed to learn
the balance attribute for those unique people, and how many queries are needed to learn
the entire record.

To help interpret the numbers, consider the balance attribute, for which we used lower
and upper bounds of €100, 000 and €1, 000, 000, which is a range that can be represented
using 21 bits. Thus, on average we need 29.9/21 ≈ 1.4 queries per bit. This number can be
further reduced if an attacker is not interested in the exact amount and only needs a few
significant digits, or if the attacker already has an estimate of the target’s balance.

Also note that balance was the attribute with the largest domain. The remaining 11
non-linking attributes are reconstructed using, on average, 131.2− 29.9 = 101.3 additional
queries. We note that recovering a binary attribute Abinary is particularly straightforward. If
we know someone is in the data and is unique on a set of attributes A1 = a1, . . . ,Am = am
then, if the value of Abinary = 1, there would only be one person in the data with A1 =
a1, . . . ,Am = am,Abinary = 1. Thus we can perform a membership inference attack with
this combination of attributes and if the attack returns “true,” it means that Abinary = 1
for the target person, and if it returns “false,” then Abinary = 0. The cost of this is simply 2
“protected” queries.

6.4. Dataset Reconstruction. Efficient membership inference and partial/full record
reconstruction for a target individual are already a strong demonstration of the exploitability
of IDP. We next show that there are savings in bulk when performing full dataset recon-
struction. That is, the average number of queries per person needed for reconstruction is
less than the number of queries needed to attack a person individually because an attribute
value may be shared by multiple people, so using one binary search to find this value and its
count would produce results for multiple people at once. To take advantage of this type of
bulk savings, we perform reconstruction starting with the binary attributes and then adding
attributes to the reconstruction in order of the size of their domain.

We consider two types of experiments: how much effort is needed to reconstruct a single
attribute, and how much effort is needed to reconstruct the entire dataset.

6.4.1. Single Attribute Reconstruction. Here we study how many queries are needed to
reconstruct each attributes in isolation. That is, for each attribute, we are just interested in
determining what are the distinct values that are present, and how many people have those



RECONSTRUCTION ATTACKS ON AGGRESSIVE RELAXATIONS OF DIFFERENTIAL PRIVACY 23

IDP Protection No Protection
Total number of queries 5,418,936 5,200,591
Queries per person ≈ 119.9 ≈ 115.0
Queries per data element ≈ 7.1 ≈ 6.8
Total privacy budget spent 0.0005418936 N/A

Table 4: Full dataset reconstruction using threshold range-count queries, with and without
the protection mechanisms of IDP. Each protected query access used ϵ = 10−10 of
the privacy budget.

values (in other words, we want to get an exact one-way marginal). The number of queries
depends on the number of unique values that appear for that attribute, as shown in Figure
2.
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Figure 2: Number of queries needed to reconstruct an attribute in isolation. The plot
indicates the number of queries vs. the number of distinct values that appear for
the attribute.

Note that reconstructing a binary attributes means determining exactly how many people
had 0 (resp., 1) for that attribute and so requires a binary search that takes O(log(n)) queries
per attribute value (0 or 1), where n is the number of people. The most difficult attribute
to reconstruct as balance, which had 7168 distinct values in the dataset. Reconstruction
required 238,462 queries, which is approximately 33 queries per distinct value, or 5 queries
per person.

6.4.2. Entire Dataset Reconstruction. The entire dataset consists of 17 attributes and
contains 45,211 people, meaning that a full reconstruction is required to produce 17∗45, 211 =
768, 587 items. Thus, one would expect that the number of queries would be in the millions.
We allocated an ϵ = 10−10 for each use of the k-local Laplace mechanism. The results are
shown in Table 4.
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Note that the total privacy budget spent (according to IDP privacy accounting) recon-
structing the entire dataset was approximately 0.0005. It can be made arbitrarily small. For
example, if we used 10−11 per query, then the privacy budget would be 1/10th the size. In
fact, for any target ϵ∗, it is possible to guarantee that the total spent is at most ϵ∗. For
example, one could allocate ϵ1 = min(ϵ∗/2, 10−10) for the first query, ϵ2 = ϵ1/2 for the next
query, ϵ3 = ϵ2/2 for the third query, and so on. This guarantees that the total spent is at
most ϵ∗.

7. Related Work

Reconstruction attacks are possible when too many queries over confidential data are
answered too accurately (Dinur and Nissim, 2003), or equivalently, when one tries to create
a data product that supports all possible use cases. This is not just a theoretical possibility,
but also affects commercial offerings (Cohen and Nissim, 2020).

Differential privacy, formally introduced in 2006 (Dwork et al., 2006b), has been gaining
steam as a mathematically rigorous privacy definition that protects against reconstruction
and other embarrassing privacy attacks against public data products. This property allows
organizations to use it to collect, protect and publish data products that would otherwise
not be available at all.

There has been significant research on trying to improve the accuracy of the data prod-
ucts by carefully weakening the original differential privacy definition, while still preventing
reconstruction. This includes approximate differential privacy (Dwork et al., 2006a), con-
centrated differential privacy (Bun and Steinke, 2016), Rényi differential privacy (Mironov,
2017), and f -DP (Dong et al., 2022). These privacy definitions have group privacy guarantees,
which is what prevents reconstruction attacks (Vadhan, 2017).

There have, in fact, been numerous attempts to weaken differential privacy, strengthen it,
and apply it to non-tabular data—see the comprehensive comparative survey by Desfontaines
and Pejó (2020).

One of the lines of research taken, which we call empirical neighbors is spearheaded by
IDP (Soria-Comas et al., 2017). It is noteworthy for several reasons: (1) it was proposed
by several long-term experts in privacy, (2) its flaws were not observed in the authoritative
comparative survey (Desfontaines and Pejó, 2020) or the literature that cites IDP (e.g.,
(Pratesi et al., 2018)), and (3) most notably, a group of prominent researchers, mostly from
the economics field, called on the Census Bureau to stop using differential privacy and to
explore alternatives (Hotz et al., 2022). One approach, of adding noise depending on the
local sensitivity (e.g., IDP) was deemed “sensible” as long as the local sensitivity itself is
not explicitly revealed (Hotz et al., 2022, appendix c). In fact, their concern with local
sensitivity was that it might not provide enough utility.

It is known that adding noise based on local sensitivity does not satisfy differential
privacy, and hence smooth sensitivity was proposed (Nissim et al., 2007), and many believed
that the main weakness of local sensitivity occurs when the local sensitivity is explicitly
published (Hotz et al., 2022; Chetty and Friedman, 2019). However, the weaknesses we
have demonstrated—queries that reveal more information when protected by IDP than if
they had no protection at all (even when the local sensitivity is not explicitly published),
and their use membership attacks, attribute inference, and full dataset reconstruction at
arbitrarily low privacy costs (according to IDP privacy accounting)—were not previously
known, to the best of our knowledge.
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Several authors investigated something similar to IDP, but as a diagnostic tool rather
than a method for selecting mechanisms (Charest and Hou, 2017; Redberg and Wang, 2024).
Here, a differentially private mechanism M is chosen, it is applied to the dataset, and the
privacy with respect to that dataset is studied after the fact. Charest and Hou (2017) used
this methodology to compute an ϵ (this would be the ϵ that IDP would assign to M) and
studied how well it correlates to the differential privacy ϵ. They concluded that it was not
a good estimate. Redberg and Wang (2024) studied how to make this ex post analysis
differentially private, so that the actual privacy cost of M on the actual dataset could be
revealed without breaching privacy.

8. Conclusion

In this paper, we studied a class of privacy definitions called empirical neighbors that
condition on the observed data when choosing a mechanism. We showed that the preferred
mechanisms can be exploited to reveal significant information about the true data. We also
showed that the definitions themselves can be exploited to design mechanisms that directly
leak private information. It is not clear whether this style of privacy definition can provide
the right balance between privacy and utility in practice.
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Appendix A. Proofs from Section 3

Lemma A.1. Let k be a positive integer (e.g., the group size parameter in Group IDP)
and suppose the true dataset Dact has at least k records. The k-local sensitivity of qϕ,b with
respect to Dact is 0 whenever b < 0, b ≥ n (number of records in Dact), or ϕ is always true
or always false. Otherwise,

Λs
k(qϕ,b, Dact) =


0 when

∣∣∣{r ∈ Dact : ϕ(r) = True}
∣∣∣ > b+ k

0 when
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ ≤ b− k
1 otherwise.

(3.2)

Proof of 3.3. The case when b < 0 or b ≥ n or ϕ is always true or is always false is trivial.
So for the rest of the proof, we assume that none of those hold.

Let N k be the set of records that can be obtained from Dact by modifying at most k
records.
Case 1: If

∣∣∣{r ∈ Dact : ϕ(r) = True}
∣∣∣ > b+ k, then changing up to k records of Dact can

decrease the count by at most k (i.e., by taking up to k records that satisfy the predicate

and changing them to some value that does not) and so for all D∗ ∈ N k,
∣∣∣{r ∈ D∗ : ϕ(r) =

True}
∣∣∣ > b and so qϕ,b would return the same answer for Dact and for each dataset in N k.

Thus in this case, the k-local sensitivity is 0.

Case 2: If
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ ≤ b− k, then changing up to k records of Dact can

increase the count by at most k (i.e., by taking up to k records that do not satisfy ϕ and

changing them to a value that does). So, for all D∗ ∈ N k,
∣∣∣{r ∈ D∗ : ϕ(r) = True}

∣∣∣ ≤ b

and so qϕ,b would return the same answer for Dact and for each dataset in N k. Thus in this
case, the k-local sensitivity is also 0.

Case 3: If b+ k ≥
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ > b. Here we have two sub-cases:

• If
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ ≥ k, then one can change k records that satisfy ϕ to a

value that does not lead to D∗ ∈ N k for which
∣∣∣{r ∈ D∗ : ϕ(r) = True}

∣∣∣ ≤ b (which is

a decrease from the upper bound b+ k that defines Case 3). Thus qϕ,b(Dact) = 1 while
qϕ,b(D

∗) = 0 and thus the k-local sensitivity would be 1.

• If
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ < k, then one can modify all the records that satisfy ϕ to

values that do not to get a D∗ ∈ N k for which
∣∣∣{r ∈ D∗ : ϕ(r) = True}

∣∣∣ = 0 ≤ b (recall
that the situation where b is negative has already been dealt with). Thus qϕ,b(Dact) = 1
while qϕ,b(D

∗) = 0 and thus the k-local sensitivity would be 1.

Case 4: If b ≥
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ > b− k. Here again we have two cases.

• If
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ ≤ n− k then there are at least k records not satisfying ϕ,

and so k of them can be modified to values that do satisfy ϕ to get a D∗ ∈ N k. This

will increase the count by k and so we will have
∣∣∣{r ∈ D∗ : ϕ(r) = True}

∣∣∣ > b. Thus

qϕ,b(Dact) = 0 while qϕ,b(D
∗) = 1, and thus the k-local sensitivity would be 1.
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• If
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ > n − k, then there are fewer then k records that do not

satisfy ϕ. If we modify all of them to have values that do satisfy ϕ then we get a D∗ ∈ N k

such that
∣∣∣{r ∈ D∗ : ϕ(r) = True}

∣∣∣ = n > b. (Recall the situation where b ≥ n has

already been dealt with.) Thus qϕ,b(Dact) = 0 while qϕ,b(D
∗) = 1, and thus the k-local

sensitivity would be 1.

Lemma A.2. Let Dact be a dataset with n records (where n is publicly known). Let Ai be
an ordered attribute and [u, v) be a range that does not contain the entire domain of Ai. Let
b be an integer threshold such that 1 ≤ b ≤ n− 1. Let M be the k-Laplace mechanism for
answering the threshold range query qAi∈[u,v),b. If the output ω of M(Dact) is released, then
the following can be learned about Dact:

• If ω is detected as a noisy output then

b− k + 1 ≤
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ ≤ b+ k.

In other words, we get an upper and lower bound on the number of people in Dact whose
value for Ai is in the range [u, v).

• If ω is detected as non-noisy and ω = 1, then
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ > b+ k.

• If ω is detected as non-noisy and ω = 0, then
∣∣∣{r ∈ Dact : u ≤ r[i] < v}

∣∣∣ ≤ b− k
Proof of 3.4. Since the query qAi∈[u,v),b has k-local sensitivity either 0 or 1, when ω is
detected as noisy it means that the k-local sensitivity is 1. By Lemma 3.3, the k-local
sensitivity is 1 only when the number of people in the range is ≤ b− k and > b− k. Since
counts of people, b, and k are all integers, the condition > b− k is the same as ≥ b− k + 1.
Hence the first item follows.

When the query answer ω is detected as non-noisy and ω = 1 then we learn that the
number of people in the range [u, v) is > b (since we know we are getting the true answer).
However, this means the k-local sensitivity is 0 and we also know, by Lemma 3.3, that this
only happens when the count of people in the range is > b+ k or ≤ b− k. Combined with
the knowledge that it is > b, we have that the count of people in this range is > b+ k. This
proves the second item.

Similarly, when the query answer ω is detected as non-noisy and ω = 0 then we learn
that the number of people in the range [u, v) is ≤ b (since we know we are getting the true
answer). However, this means the k-local sensitivity is 0 and we also know, by Lemma
3.3, that this only happens when the count of people in the range is > b + k or ≤ b − k.
Combined with the knowledge that it is ≤ b, we have that the count of people in this range
is ≤ b− k. This proves the third item.

Lemma A.3. Given a predicate ϕ, if for some integer b↑ we have (1) the k-local sensitivity
of qϕ,b↑ with respect to Dact is 0 and (2) the k-local sensitivity of qϕ,(b↑−1) is 1, then

• The count of people in Dact whose records satisfy ϕ is b↑ − k.
• The k-Laplace mechanism qϕ,b will return the non-noisy answer 0 for all b ≥ b↑.
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Furthermore, if for some integer b↓ we have (1) the k-local sensitivity of qϕ,b↓ with respect to
Dact is 0 and (2) The k-local sensitivity of qϕ,(b↓+1) is 1, then

• The count of people in Dact whose records satisfy ϕ is b↓ + k + 1.

• The k-Laplace mechanism for qϕ,b will return the non-noisy answer 1 for all b ≤ b↓.

Proof of 3.6. First, by Lemma 3.3, the k-local sensitivity with respect to Dact changes from

0 to 1 when replacing b↑ with b↑ − 1 only when
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ = b↑ − k (since

the other condition for having 0 sensitivity remains unchanged as the threshold is decreased).
Thus for any b ≥ b↑, the sensitivity remains at 0 and the true answer to the query is also 0.

For the second part, by Lemma 3.3, the k-local sensitivity with respect to Dact changes

from 0 to 1 when replacing b↓ with b↓ +1 only when
∣∣∣{r ∈ Dact : ϕ(r) = True}

∣∣∣ = b↓ + k+1

(since the other condition for having 0 sensitivity remains unchanged as the threshold
increases). Thus for any b ≤ b↓ the sensitivity remains at 0 and the true query answer is 1.

Appendix B. Proofs from Section 4

Lemma B.1. Given a true dataset Dact, the bootstrap sensitivity of qϕ with respect to Dact

is

Λs
B(qϕ, Dact) =


0 if all r ∈ Dact satisfy ϕ

0 if no r ∈ Dact satisfies ϕ

1 otherwise.

Proof of 4.5. Let D1, D2 be bootstrap neighbors conditioned on Dact. This means that any
record in D1 and D2 also appears in Dact. Hence if all records in Dact give the same answer
for ϕ (i.e., all records satisfy it or all do not) then qϕ(D1) = qϕ(D2) and so the bootstrap
sensitivity is 0.

If there is some record r1 ∈ Dact for which ϕ(r1) =True and a r2 ∈ Dact for which
ϕ(r2) =False, then D1 = {r1} and D2 = {r2} are bootstrap neighbors conditioned on Dact

and qϕ(D1)− qϕ(D2) = 1, hence the bootstrap sensitivity is 1.

Appendix C. Proofs from Section 5

Lemma C.1. Given an integer m > 1 and any ϵ > 0 and a noise scale multiplier α ≥ 0,
define the following random variables:

(1) z1, . . . , zm, where each zi = µ+Laplace(αm/ϵ) for some unknown number µ (the private
value that gets noised).

(2) z∗1 , . . . , z
∗
m, where each z∗ = Laplace(1)

Furthermore, define

ψm =
ϵ2

m2

[
1

m− 1

m∑
i=1

(
zi −

z1 + zm
m

)2
]
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and

ψ∗
m =

1

m− 1

m∑
i=1

(
z∗i −

z∗1 + z∗m
m

)2

.

Then the distribution of ψm is the same as the distribution of α2ψ∗
m (in particular, it does

not depend on ϵ or the private value µ). The expected value of ψ∗
m (resp., ψm) is 2 (resp.,

2α2) and ψ∗
m converges to 2 with probability 1 as m→∞, hence ψm converges to 2α2.

Proof of 5.1. We first note that (ϵ/m)(zi − µ) is a Laplace(α) random variable—because
scaling it by ϵ/m is the same as multiplying the scale parameter by ϵ/m, so it has the same
distribution as αz∗i . Hence

ϵ2

m2

[
1

m− 1

m∑
i=1

(
zi −

z1 + zm
m

)2
]

=
ϵ2

m2

[
1

m− 1

m∑
i=1

(
zi − µ+ µ− z1 + zm

m

)2
]

=
ϵ2

m2

[
1

m− 1

m∑
i=1

(
(zi − µ)−

(z1 − µ) + (zm − µ)
m

)2
]

=

[
1

m− 1

m∑
i=1

(
ϵ

m
(zi − µ)−

ϵ
m(z1 − µ) + ϵ

m(zm − µ)
m

)2
]
,

which has the same distribution as[
1

m− 1

m∑
i=1

(
αz∗i −

αz∗1 + αz∗m
m

)2
]

= α2

[
1

m− 1

m∑
i=1

(
z∗i −

z∗1 + z∗m
m

)2
]
,

and so ψm has the same distribution as α2ψ∗
m.

Now, the formula for ψ∗
m is known as the sample variance of a sequence of iid random

variables and is known to be an unbiased estimate of their variance. Since the variance of
Laplace(1) is 2, the expected value of ψ∗

m is 2 and the expected value of ψm is 2α2. By the
law of large numbers, the convergence happens with probability 1.

Lemma C.2. The empirical neighbors definitions allow the release of h(Dact) for any ϵ
parameter. In particular, if h(Dact) = NPairs(Dact) then Group IDP allows Dact to be
revealed whenever |Dact| > 1 and BDP allows the distinct set of records to be revealed.

On the other hand, if h(Dact) = ∅ and
⋃

DNPairs(D) is the set of all pairs of datasets
that differ on a record, then the empirical neighbors definition is equal to differential privacy.

Proof of 5.3. For any set of bits b, let M b be the mechanism that ignores its input and
simply outputs b. Consider the chooser function such that Chooser(h(Dact)) that returns
M b, where b = h(Dact). Clearly this satisfies empirical neighbors privacy for any privacy
parameter ϵ and always reveals h(Dact).

If h(Dact) = NPairs(Dact), as is the case with IDP and BDP, then we can reason
as follows. For the case of IDP and Group IDP, NPairs(Dact) consists of pairs (D1, D2)
where either D1 = Dact or D2 = Dact, so Dact is the dataset that appears in every pair. If
|Dact| > 1 then there are at least 2 pairs and only Dact will appear in all of them, hence
Dact is revealed.
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In the case of BDP, if we take all of the rows of all of the datasets that appear in
NPairs(Dact), and then apply the database distinct operator, we get the distinct rows in
Dact.

Finally, if h(Dact) = ∅, then a mechanismM must be chosen without looking at the data,
and so letting N =

⋃
DNPairs(D) be the set of all pairs of databases that are neighbors

for some dataset, the condition of the lemma is that N covers all pairs of neighbors (D1, D2)
that differ on one record and so the only way to guarantee that the empirical neighbors
constraints are always satisfied is to ensure they are satisfied for all D1, D2 ∈ N , which is
equivalent to differential privacy.
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