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Abstract. We give a fast algorithm to optimally compose privacy guarantees of differen-
tially private (DP) algorithms to arbitrary accuracy. Our method is based on the notion of
privacy loss random variables to quantify the privacy loss of DP algorithms. The running
time and memory needed for our algorithm to approximate the privacy curve of a DP
algorithm composed with itself k times is Õ(

√
k). This improves over the best prior method

by Koskela et al. (2021), which requires Ω̃(k1.5) running time. We demonstrate the utility
of our algorithm by accurately computing the privacy loss of DP-SGD algorithm of Abadi
et al. (2016) and showing that our algorithm speeds up the privacy computations by several
orders of magnitude compared to prior work, while maintaining similar accuracy.

1. Introduction

Differential privacy (DP), introduced by [DMNS06], provides a provable and quantifiable
guarantee of privacy when the results of an algorithm run on private data are made public.
Formally, we can define an (ε, δ)-differentially private algorithm as follows.

Definition 1.1 ((ε, δ)-DP [DMNS06, DKM+06]). An algorithm M is (ε, δ)-DP if for any
neighboring databases D,D′ differing in exactly one user and any subset S of outputs, we
have Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Intuitively, the definition says that looking at the outcome ofM, we cannot tell whether
it was run on D or D′. Hence an adversary cannot infer the existence of any particular user
in the input database, and therefore cannot learn any personal data of any particular user.

DP algorithms have an important property called composition. SupposeM1 andM2

are DP algorithms and thatM(D) = (M1(D),M2(D)), i.e.,M runs both algorithms on D
and outputs their results. ThenM is also a DP algorithm.
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Proposition 1.2 (Simple composition [DKM+06, DL09]). IfM1 is (ε1, δ1)-DP andM2 is
(ε2, δ2)-DP, thenM(D) = (M1(D),M2(D)) is (ε1 + ε2, δ1 + δ2)-DP.

This property also holds under adaptive composition (denoted by M = M2 ◦ M1),
whereM2 can look at both the database and the output of M1.

1 It turns out that both
compositions enjoy much better DP guarantees than this simple composition rule. Let M be
an (ε, δ)-DP algorithm and let M◦k denote the (adaptive) composition ofM with itself k
times. The naive composition rule shows thatM◦k is (kε, kδ)-DP. This result was improved
significantly in [DRV10].

Proposition 1.3 (Advanced composition [DRV10, DR+14]). IfM is (ε, δ)-DP, then M◦k

is (ε′, kδ + δ′)-DP for

ε′ = ε

√
2k log

(
1

δ′

)
+ kε(eε − 1).

Note that if ε = O
(
1/
√
k
)
and δ = o (1/k), thenM◦k satisfies (Oδ′(1), δ

′)-DP. Using

simple composition (Proposition 1.2), we can only claim that M◦k is (O(
√
k), o(1))-DP.

Thus advanced composition often results in
√
k-factor savings in privacy, which is significant

in practice. The optimal DP guarantees for k-fold composition of an (ε, δ)-DP algorithm
were finally obtained by [KOV15]. For composing different algorithms, the situation is more
complicated. IfM1,M2, . . . ,Mk are DP algorithms such thatMi is (εi, δi)-DP, then it is
shown by [MV16] that computing the exact DP guarantees forM =M1 ◦M2 ◦ · · · ◦Mk

is #P-complete. They also give an algorithm to approximate the DP guarantees of M to
desired accuracy η, which runs in

Õ

(
k3ε̄(1 + ε̄)

η

)
(1.1)

time, where ε̄ = (
∑k

i=1 εi)/k.
2 If each i, εi ≈ 1/

√
k (so thatM will satisfy reasonable privacy

guarantees by advanced composition), then the running time is Õ(k2.5/η).
In most situations, DP algorithms come with a collection of (ε, δ)-DP guarantees: for

each value of ε, there exists δ such that the algorithm is (ε, δ)-DP.

Definition 1.4 (Privacy curve). A DP algorithm M is said to have privacy curve δ : R→
[0, 1], if for every ε ∈ R,M is (ε, δ(ε))-DP.

For example, the privacy curve of a Gaussian mechanism (with sensitivity 1 and noise
scale σ) is given by δ(ε) = Φ (−εσ + 1/2σ)− eεΦ (−εσ − 1/2σ), where Φ(·) is the Gaussian
CDF [BW18].

Supposing that we want to compose several Gaussian mechanisms, which (ε, δ)-DP
guarantee should we choose for each mechanism? Any choice will lead to suboptimal DP
guarantees for the final composition. Instead, we need a way to compose the privacy curves
directly. This was suggested through the use of privacy region in [KOV15] and explicitly
studied in the f -DP framework of [DRS19], which is a dual (and equivalent) way to look at
the privacy curve δ(ε).

Independently, an algorithm called Privacy Buckets for approximately composing privacy
curves was initiated in [MM18]. This algorithm depends on the notion of privacy loss random

1Here M(D) = (M1(D),M2(D,M1(D))).
2ε has an additive error of η and δ has a multiplicative error of η.
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variable (PRV) [DR16], whose distribution is called privacy loss distribution (PLD). For any
DP-algorithm, one can associate a PRV, and the privacy curve of that algorithm can be
easily obtained from the PRV. The really useful property is that PRVs add under adaptive

composition: the PRV Y of the compositionM =M1◦M2◦· · ·◦Mk is given by Y =
∑k

i=1 Yi,
where Yi is the PRV of Mi.

3 Therefore, one can find the distribution of Y convolving the
distributions of Y1, Y2, . . . , Yk. In an important paper, [KJH+20] proposed that one can
speed up the convolutions using fast Fourier transform (FFT). Explicit error bounds were
obtained for the approximation obtained by their algorithm in [KJH+20, KJPH21, KH21].
The running time of this algorithm was analyzed in [KH21], where it was shown that the
privacy curve δM (ε) ofM =M1 ◦M2 ◦ · · · ◦Mk can be computed up to an additive error
of δerror in time

Õ

(
k3ε̄

δerror

)
, (1.2)

if each algorithmMi is satisfies (εi, 0)-DP and ε̄ = (1/k)
∑k

i=1 εi. Assuming that for each

i, εi ≈ 1/
√
k, we get Õ(k2.5/δerror) running time. Note that this is slightly worse than in

(1.1), where the denominator η is the multiplicative error in δM . When composing the same

algorithm with itself for k times, the running time can be improved to Õ
(
k2ε̄/δerror

)
, which

is Õ
(
k1.5/δerror

)
when ε̄ = 1/

√
k.

1.1. Moments Accountant and Rényi DP. In an influential paper where they introduce
Differentially Private Deep Learning, [ACG+16] proposed a method called the Moments
Accountant (MA) for giving an upper bound the privacy curve of a composition of DP
algorithms. They applied their method to bound the privacy loss of differentially private
stochastic gradient descent (DP-SGD) algorithm that they introduced. Analyzing the privacy
loss of DP-SGD involves composing the privacy curve of each iteration of training with itself
k times, where k is the total of number of training iterations. Typical values of k range from
1000 to 300000 (such as when training large models like GPT3). The Moments Accountant
was subsumed into the framework of Rényi differential privacy (RDP) introduced by [Mir17].
The running times of these accountants are independent of k, but the papers give only an
upper bound and cannot approximate the privacy curve to arbitrary accuracy.

DP-SGD is an important DP algorithms in practice, because one can use it to train
neural networks to achieve good privacy-vs.-utility tradeoffs. Therefore, obtaining accurate
and tight privacy guarantees for DP-SGD is equally important. For example, reducing ε
from 2 to 1, means that one can train the network for 4 times more epochs while staying
within the same privacy budget. Therefore DP-SGD is one of the main motivations for this
work.

There are also situations in which the PRVs do not have bounded moments and so
Moments Accountant or Rényi DP cannot be applied to analyze privacy. An example of such
an algorithm is the DP-SGD-JL algorithm of [BGK+21], which uses numerical composition
of PRVs to analyze privacy.

3[KJH+20] state this only for non-adaptive composition. In this paper we show how to extend to adaptive
composition as well.
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1.2. GDP Accountant. [DRS19, BDLS19] introduced the notion of Gaussian differential
privacy (GDP) and used it to develop an accountant for DP-SGD. This accountant is based
on central limit theorem, and gives only an approximation to the true privacy curve, which
improves with k. But as we show in Figure 1, GDP accountant can significantly under-report
the true epsilon value.

Several different notions of privacy were introduced for obtaining good upper bounds on
the privacy curve of composition of DP algorithms such as concentrated DP (CDP) [DR16,
BS16], Truncated CDP [BDRS18] etc. None of these methods can approximate the privacy
curve of compositions to arbitrary accuracy. The notion of f -DP introduced by [DRS19],
allows for a lossless composition theorem, but computing the privacy curve of composition
seems computationally hard and they do not give any algorithms for doing it.

1.3. Our Contributions. The main contribution of this work is a new algorithm with an
improved analysis for computing the privacy curve of the composition of a large number of
DP algorithms.

Theorem 1.5 (Informal version of Theorem 5.5). SupposeM1,M2, . . . ,Mk are DP algo-
rithms. Then the privacy curve δM(ε) of adaptive compositionM =M1 ◦M2 ◦ · · · ◦Mk

can be approximated in time

O

εupper k
1.5 log k

√
log 1

δerror

εerror

 , (1.3)

where εerror is the additive error in ε, δerror is the additive error in δ and εupper is an upper
bound on max {εM(δerror),maxi εMi (δerror/k)} .4

If eachMi satisfies
(
1/
√
k, o(1)/k

)
-DP, then by advanced composition (Proposition 1.3),

we can set εupper = O(1). Therefore, the running time of our algorithm in this case

is Õ
(
k1.5

√
log(1/δerror/εerror

)
. We can save a factor of k, when we compose the same

algorithm with itself k times.

Theorem 1.6. Suppose M is a DP algorithm. Then the privacy curve δM◦k(ε) of M
(adaptively) composed with itself k times can be approximated in time

O

εupper k
1
2 log k

√
log 1

δerror

εerror

 , (1.4)

where εerror is the additive error in ε, δerror is the additive error in δ and εupper is an upper
bound on max {εM◦k(δerror), εM (δerror/k)} .

Thus we improve the previous state-of-the-art by at least a factor of k in running time.
We also note that our algorithm improves the memory required by a factor of k. See Figure 1
for a comparison of our algorithm with that of [KJPH21]. Also note that RDP Accountant
(equivalent to the Moments Accountant) significantly overestimates the true ε, while the
GDP Accountant significantly underestimates the true ε. In contrast, the upper and lower
bounds provided by our algorithm lie very close to each other.

4εM(δ) is the inverse of δM(ε).
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Figure 1. Case study on DP-SGD. Sampling probability p = 10−3, noise
scale σ = 0.8, δ = 10−7.

1.4. Our Techniques. Our algorithm (and also the prior work of [KJH+20]) proceeds by
approximating the PRVs by truncating and discretizing them. We then use FFT to convolve
the distributions efficiently. The main difference is in the approximation procedure and the
error analysis. In the approximation procedure, we correct the approximation so that the
expected value of the discretization matches the expected value of the PRV.

To analyze the approximation error, we introduce the concept of coupling approximation
(Definition 5.1), which is a variant of Wasserstein (optimal transport) distance specifically
tailored to this application. We first show that the approximation output by our algorithm
to each privacy random variable is a good coupling approximation. We then show that
when independent coupling approximations are added, cancellation happens between the
errors due to Hoeffding bound, producing a much better coupling approximation than
one naively expects from the triangle inequality. This allows us to choose the mesh size
in our discretization to be ≈ 1/

√
k, whereas [KH21] choose a mesh size of ≈ 1/k. The

other improvement is the truncation procedure. We give a tight tail bound of the PRVs
(Lemma 5.4) that allows us to choose the domain size for in truncation to be ≈ Õ(1),

whereas [KH21] choose ≈ Õ(
√
k). Both ideas together save a factor of k in the run time

and memory.
For the analysis, the previous paper analyzes the discretization error by studying the

stability of convolution. This leads to complicated calculations with the runtime linear in
1/δerror (see (1.2)). Since δerror ≪ δ ≪ 1/N is required to give meaningful privacy guarantee
(N is the number of users), this term 1/δerror is huge. In this paper, we show various facts
about how coupling approximation accumulates and use them to give a runtime depending
only on

√
log(1/δerror).

1.5. Subsequent Work. Additional work has followed the publication of a preliminary
version of this paper. The most relevant is the work of [GKKM22], in which it was shown
that by evolving the discretization during the composition and making it progressively finer,
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one can further improve the running time of our accountant to polylog(k) from Õ(
√
k) when

composing the same mechanism k times. Further, the running time for composing k different
mechanisms can be reduced to Õ(k) from Õ(k1.5). In [DGK+22], a new privacy accountant
called Connect-the-Dots is introduced. This accountant can also upper bound the privacy
curve to arbitrary accuracy, but the authors do not give bounds on how fast the upper
bound converges to the truth. But in empirical experiments, they show that this accountant
converges faster than our accountant.

The work of [ZDW22] gives a privacy accountant (called Analytical Fourier Accountant)
that can be used when we can derive an explicit expression for the characteristic function
(Fourier transform) of the PRV Y , i.e. t→ E[eitY ]. Since when Y1, . . . , Yk are independent,

the characteristic function of Y1 + · · ·+ Yk is
∏k

j=1 E[eitYj ], we just need to invert to get the
distribution of Y1 + Y2 + · · ·+ Yk. They do this using numerical integration via Gaussian
quadrature. Finally, the work of [AAC+22] introduces an accountant called Saddle-Point
Accountant that combines the central limit theorem method of GDP accountant and the
large deviation bounds method of Moments accountant to give a very accurate accountant
and also derive error bounds for this accountant. In experiments, they show that their
accountant compares favorably to the PRV accountant from this paper.

2. DP Preliminaries

Given a DP algorithmM, for each value of ε ≥ 0, there exists some δ ∈ [0, 1] such thatM is
(ε, δ)-DP. We can represent all these privacy guarantees by a function δM(ε) : R≥0 → [0, 1]
and say that δM(·) is the privacy curve of M. This inspires the following definition of a
privacy curve between two random variables.

Definition 2.1 (Privacy curve). Given random variables X,Y supported on some set Ω,
define δ(X||Y ) : R→ [0, 1] as:

δ(X||Y )(ε) = sup
S⊂Ω

Pr[Y ∈ S]− eε Pr[X ∈ S].

Therefore, an algorithmM is (ε, δ)-DP iff δ (M(D)||M(D′)) (ε) ≤ δ for all neighboring
databases D,D′.

Remark 2.2. Note that not all functions δ : R→ [0, 1] are privacy curves. A characterization
of privacy curves can be obtained using the f-DP framework of [DRS19]. The notion of
privacy curve δ(X||Y ) and tradeoff function T (X||Y ) are dual to each other via convex
duality [DRS19]. This implies a characterization of privacy curves as shown in [ZDW21].

Definition 2.3 (Composition of privacy curves [DRS19]). Let δ1 ≡ δ(X1||Y1) and δ2 ≡
δ(X2||Y2) be any two privacy curves. The composition of the privacy curves, denoted by
δ1 ⊗ δ2, is defined as

δ1 ⊗ δ2 ≡ δ ((X1, X2)||(Y1, Y2)) ,
where X1, X2 are independently sampled and Y1, Y2 are independently sampled.

Note that there can be many pairs of random variables that have the same privacy curve,
but the above operation is well-defined. If δ(X1||Y1) ≡ δ(X ′

1||Y ′
1) and δ(X2||Y2) ≡ δ(X ′

2||Y ′
2),

then it was shown by [DRS19] that

δ ((X1, X2)||(Y1, Y2)) = δ
(
(X ′

1, X
′
2)||(Y ′

1 , Y
′
2)
)
.

[DRS19] also show that ⊗ is a commutative and associative operation.
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Given two DP algorithmsM1 andM2, the adaptive composition (M2 ◦M1)(D) is an
algorithm that outputs (M1(D),M2(D,M1(D)), i.e.,M2 can look at the database D and
also the output ofM1(D). Adaptive composition of more than two algorithms is defined
analogously. SupposeM1 has privacy curve δ1 andM2 has privacy curve δ2 (i.e.,M2(·, y) is
a DP algorithm with privacy curve δ2 for any fixed y.). The following composition theorem
shows how to get the privacy curve ofM2 ◦M1.

Theorem 2.4 (Composition theorem [DRS19]). LetM1,M2, . . . ,Mk be DP algorithms
with privacy curves given by δ1, δ2, . . . , δk respectively. The privacy curve of the adaptive
compositionMk ◦Mk−1 ◦ · · · ◦M1 is given by δ1 ⊗ δ2 ⊗ · · · ⊗ δk.

3. Privacy Loss Random Variables (PRVs)

The notion of PRVs is a unique way to assign a pair (X,Y ) for any privacy curve δ
such that δ ≡ δ(X||Y ). PRVs allow us to compute the composition of two algorithms via
summing random variables (Theorem 3.5) (equivalently, convolving their distributions).
Thus PRVs can be thought of as a reparametrization of privacy curves in which composition
becomes convolution. In this paper, we differ from the usual definition of PRVs given
in [DR16, KJH+20], which is tied to a specific algorithm. Instead we think of them as a
reparametrization of privacy curves and study them directly. This allows us to succinctly
prove many useful properties of PRVs.

Let R = R ∪ {−∞,∞} be the extended real line, where we define ∞ + x = ∞ and
−∞+ x = −∞ for x ∈ R.

Definition 3.1 (Privacy loss random variables (PRVs)). Given a privacy curve δ : R→ [0, 1],
we say that (X,Y ) are privacy loss random variables for δ if they satisfy the following
conditions:

• X,Y are supported on R,
• δ(X||Y ) ≡ δ,
• Y (t) = etX(t) for every t ∈ R, and
• Y (−∞) = 0 and X(∞) = 0,

where X(t), Y (t) are probability density functions of X,Y respectively.

Mathematically, the correct way to write the condition Y (t) = etX(t) is to say that
EY [ϕ(Y )] = EX [ϕ(X)eX ] for all test functions ϕ : R→ [0, 1] with ϕ(∞) = ϕ(−∞) = 0. This
will generalize to all situations where X,Y are continuous or discrete or both. For ease of
exposition, we ignore this complication and assume that X(t), Y (t) represent the PDFs if
X,Y are continuous at t, or the probability masses if they have point masses at t.

The following theorem shows that the PRVs for a privacy curve δ = δ(P ||Q) are given
by the log-likelihood random variables of P,Q.

Theorem 3.2. Let δ : R→ [0, 1] be a privacy curve given by δ ≡ δ(P ||Q), where P,Q are
random variables supported on Ω. Then, the PRVs (X,Y ) for δ are given by5:

X = log (Q(ω)/P (ω)) ,

5Here Q(ω) and P (ω) are the probability density functions of Q,P respectively. Note that the mathemati-
cally precise way is to replace the ratio Q(ω)/P (ω) by the Radon-Nikodym derivative dQ/dP (ω).
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where ω ∼ P , and
Y = log (Q(ω)/P (ω)) ,

where ω ∼ Q.

The following theorem provides a formula for computing the privacy curve δ in terms
of the PRVs and conversely a formula for PRVs in terms of the privacy curve. A similar
statement appears in [SMM19, KJH+20].

Theorem 3.3. The privacy curve δ can be expressed in terms of PRVs (X,Y ) as

δ(ε) = Pr[Y > ε]− eε Pr[X > ε] = EY [(1− eε−Y )+] = Pr[Y ≥ ε+ Z], (3.1)

where Z is an exponential random variable.6 Conversely, given a privacy curve δ : R→ [0, 1],
the PDFs of its PRVs are

Y (t) = δ′′(t)− δ′(t) and X(t) = et(δ′′(t)− δ′(t)). (3.2)

Remark 3.4. Theorem 3.3 shows that the PRVs X,Y do not depend on the particular P,Q
used to represent the privacy curve δ in Theorem 3.2. So we should think of the PDF of the
PRV Y (or X) as an equivalent re-parametrization of the privacy curve δ : R→ [0, 1], just
as the notion of f -DP [DRS19] is a re-parametrization of the privacy curve δ.

PRVs are useful in computing privacy curves because the composition of two privacy
curves can be computed by adding the corresponding pairs of PRVs. A similar statement
appears in [DR16].

Theorem 3.5. Let δ1, δ2 be privacy curves with PRVs (X1, Y1) and (X2, Y2) respectively.
Then the PRVs for δ1 ⊗ δ2 = δ(X1, X2||Y1, Y2) are (X1 +X2, Y1 + Y2). In particular,

δ1 ⊗ δ2 = δ(X1 +X2||Y1 + Y2).

Proof. Let (X,Y ) be the privacy random variables for δ(X1, X2||Y1, Y2). By Theorem 3.2,

X = log

(
(Y1, Y2)(t1, t2)

(X1, X2)(t1, t2)

)
, where (t1, t2) ∼ (X1, X2)

= log

(
Y1(t1)Y2(t2)

X1(t1)X2(t2)

)
, where t1 ∼ X1, t2 ∼ X2

(By independence of X1, X2 and indpendence of Y1, Y2)

= log
(
et1 · et2

)
, where t1 ∼ X1, t2 ∼ X2

= t1 + t2, where t1 ∼ X1, t2 ∼ X2

= X1 +X2.

Similarly,

Y = log

(
(Y1, Y2)(t1, t2)

(X1, X2)(t1, t2)

)
, where (t1, t2) ∼ (Y1, Y2)

= t1 + t2, where t1 ∼ Y1, t2 ∼ Y2

= Y1 + Y2.

6For x ∈ R, x+ = max{x, 0}.
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In Appendix B, we provide a proof of Theorems 3.2 and 3.3. We also discuss how to
compute the PRVs for a subsampled mechanism given the PRVs for the original mechanism
and give examples of PRVs for some standard mechanisms. These are used in our experiments
to calculate the PRVs for DP-SGD.

4. Numerical composition of privacy curves

In this section, we present an efficient and numerically accurate method, ComposePRV
(Algorithm 1), for composing privacy guarantees by utilizing the notion of PRVs.

Algorithm 1: ComposePRV: Composing privacy curves using PRVs

Input: CDFs of PRVs Y1, Y2, . . . , Yk, mesh size h, Truncation parameter
L ∈ h/2 + hZ>0

Output: PDF of an approximation Ỹ for Y =
∑k

i=1 Yi. Ỹ will be supported on
µ+ (hZ ∩ [−L,L]) for some µ ∈ [0, h/2].

for ℓ = 1 to k do

Ỹi ← DiscretizePRV(Yi, L, h);

end

Compute PDF Of Ỹ = Ỹ1 ⊕L Ỹ2 ⊕L · · · ⊕L Ỹk by convolving PDFs of Ỹ1, Ỹ2, . . . , Ỹk
using FFT;

Compute δ
Ỹ
(ε) = E

Ỹ

[(
1− eε−Ỹ

)
+

]
for all ε ∈ [0, L];

Return Ỹ , δ
Ỹ
(·)

In the algorithm ComposePRV, we compute the circular convolution ⊕L using FFT.
Fix L > 0. For x ∈ R, we define x (mod 2L) = x− 2Ln where n ∈ Z is chosen such that
x− 2Ln ∈ (−L,L]. Given x, y, we define the circular addition

x⊕L y = x+ y (mod 2L).

When we use FFT to compute the convolution of two discrete distributions Y1, Y2 supported
on hZ ∩ [−L,L], we are implicitly calculating the the distribution of Y1 ⊕L Y2. In the

appendix, we show that Ỹ1⊕L Ỹ2⊕L · · · ⊕L Ỹk is a good approximation of Y1 + Y2 + · · ·+ Yk.
The subroutine DiscretizePRV (Algorithm 2) is used to truncate and discretize PRVs.

In this subroutine, we shift the discretized random variables such that it has the same mean
as the original variables. This is one of main differences between our algorithm and the
algorithm in [KJPH21, KH21]. We show that this significantly decreases the discretization

error and allow us to use much coarser mesh h ≈ 1/
√
k instead of h ≈ 1/k.

For simplicity, throughout this paper, we assume that the PRVs Y1, Y2, . . . , Yk do not
have any mass at ∞. This is without loss of generality. Suppose Pr[Yi =∞] = δi for each i.
Let Y ′

i = Yi|Yi ̸=∞. Then

Y1 + Y2 + · · ·+ Yk =

{
Y ′
1 + Y ′

2 + · · ·+ Y ′
k w.p. (1− δ1)(1− δ2) · · · (1− δk)

∞ w.p. 1− (1− δ1)(1− δ2) · · · (1− δk).

Therefore we can use Algorithm 1 to approximate the distribution of Y ′
1 + Y ′

2 + · · · + Y ′
k,

and use it to approximate the distribution of Y1 + Y2 + · · ·+ Yk.
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Algorithm 2: DiscretizePRV: Discretize and truncate a PRV

Input: CDFY (·) of a PRV Y , mesh size h, Truncation parameter L ∈ h/2 + hZ>0

Output: PDF of an approximation Ỹ supported on µ+ (hZ ∩ [−L,L]) for some
µ ∈ [0, h/2].

n← (L− h/2)/h;
for i = −n to n do

qi ← CDFY (ih+ h/2)− CDFY (ih− h/2);

end

q ← q/
(∑n

i=−n qi
)
; // Normalize q to make it a probability distribution

Y L ← Y
∣∣
|Y |≤L

(i.e., Y conditioned on |Y | ≤ L);

µ← E[Y L]−
∑n

i=−n ih · qi;
Ỹ ←

{
ih+ µ w.p. qi for − n ≤ i ≤ n ;

Return Ỹ ;

5. Error analysis

To analyze the discretization error, we introduce the notion of coupling approximation, a
variant of Wasserstein distance. Intuitively, a good coupling approximation is a coupling
where the two random variables are close to each other with high probability.

Definition 5.1 (coupling approximation). Given random variables Y1, Y2, we write |Y1 −
Y2| ≤η h if there exists a coupling between Y1, Y2 such that Pr[|Y1 − Y2| > h] ≤ η.

The following lemma shows that if we have a good coupling approximation Ỹ to a PRV
Y , then the privacy curves δY (ε) and δ

Ỹ
(ε) are close.

Lemma 5.2. If Y and Ỹ are random variables such that |Y − Ỹ | ≤η h, then for every
ε ∈ R,

δ
Ỹ
(ε+ h)− η ≤ δY (ε) ≤ δ

Ỹ
(ε− h) + η.

Proof. By Theorem 3.2, δY (ε) = Pr[Y ≥ ε+ Z], and hence

δY (ε) = Pr[Y − Ỹ + Ỹ ≥ ε+ Z]

≤ Pr[Y − Ỹ ≥ h] + Pr[Ỹ ≥ ε− h+ Z]

≤ η + δ
Ỹ
(ε− h).

Similarly, δ
Ỹ
(ε) ≤ η + δY (ε− h) for all ε ∈ R.

Therefore, the goal of our analysis is to show that the ComposePRV algorithm finds

a good coupling approximation Ỹ to Y =
∑k

i=1 Yi. We first show that the DiscretizePRV
algorithm computes a good coupling approximation to the PRVs and crucially, it preserves

the expected value after truncation. Lemma C.5 shows that |Ỹ − Y L| ≤0 h, where Ỹ is the
approximation of a PRV Y output by Algorithm 2 and Y L is the truncation of Y to [−L,L].

We then use the following key lemma, which shows that when we add independent
coupling approximations for which expected values match, we get a much better coupling
approximation than the triangle inequality predicts.
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Lemma 5.3. Suppose Y1, Y2, . . . , Yk and Ỹ1, Ỹ2, . . . , Ỹk are two collections of independent

random variables such that |Yi − Ỹi| ≤0 h and E[Yi] = E[Ỹi] for all i, then∣∣∣∣∣
k∑

i=1

Yi −
k∑

i=1

Ỹi

∣∣∣∣∣ ≤η h

√
2k log

2

η
.

Proof. Let Xi = Yi − Ỹi, where (Yi, Ỹi) are coupled such that |Yi − Ỹi| ≤ h w.p. 1. Then
Xi ∈ [−h, h] w.p. 1. Note that X1, X2, . . . , Xk are independent of each other. By Hoeffding’s
inequality,

Pr

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
− 2t2

k(2h)2

)
= η

if we set t = h
√
2k log(2/η).

This lemma shows that the error of k times composition is around
√
k · h and hence

setting h ≈ 1/
√
k gives small enough error. Next, we bound the domain size L. Naively,

the domain size L should be of order
√
k because Y is the sum of k independent random

variables, each bounded by a constant. In the Appendix, we give a tighter tail bound of Y .

Lemma 5.4. Let (X,Y ) be the privacy random variables for a (ε, δ)-DP algorithm, then
for any t ≥ 0,

Pr[|Y | ≥ ε+ t] ≤
δ
(
1 + e−ε−t

)
1− e−t

.

This shows that Pr[|Y | ≥ ε+2] ≤ 4δ/3, and hence truncating the domain with L = 2+ε
only introduces an additive δ error in the privacy curve. Therefore, if the composition
satisfies a good privacy guarantee (namely ε = O(1) for small enough δ), we can truncate the

domain at L = Θ(1). Together with the fact that mesh size is 1/
√
k, this gives a O(

√
k)-time

algorithm for computing the privacy curve when we compose the same mechanism with
itself k times. The following theorem gives a formal statement of the error bounds of our
algorithm. It is proved in Appendix 5.

Theorem 5.5. Let εerror, δerror > 0 be fixed error terms. LetM1,M2, . . . ,Mk be DP algo-
rithms with respective privacy curves δMi(ε). Let Yi be the PRV corresponding toMi such
that δMi(ε) = δYi(ε) for ε ≥ 0. LetM be the (adaptive) composition ofM1,M2, . . . ,Mk

and let δM(ε) be its privacy curve. Set L ≥ 2 + εerror sufficiently large such that

k∑
i=1

δMi(L− 2) ≤ δerror
8

and δM(L− 2− εerror) ≤
δerror
4

. (5.1)

Let Ỹ be the approximation of Y =
∑k

i=1 Yi produced by ComposePRV algorithm with
mesh size

h =
εerror√

k
2 log

12
δerror

.

Then
δ
Ỹ
(ε+ εerror)− δerror ≤ δY (ε) = δM(ε) ≤ δ

Ỹ
(ε− εerror) + δerror. (5.2)

Furthermore, our algorithm takes O (b(L/h) log (L/h)) time, where b is the number of distinct
algorithms amongM1,M2, . . . ,Mk.
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Remark 5.6. A simple way to set L such that the condition (5.1) holds is by choosing an
L such that:

L ≥ 2 + max

{
εerror + εM

(
δerror
4

)
,max
i∈[k]

εMi

(
δerror
8k

)}
, (5.3)

where εA(δ) is the inverse of δA(ε). To set the value of L, we do not need the exact value of
εM (or εMi). We only need an upper bound on εM, which can often by obtained by using
the RDP Accountant or any other method to derive upper bounds on privacy.

6. Experiments

In this section, we demonstrate the utility of our composition method by computing the
privacy curves for the DP-SGD algorithm.

The DP-SGD algorithm [ACG+16] is a variant of stochastic gradient descent with k
steps. In each step, the algorithm selects a fraction p of training examples uniformly and
at random. The algorithm adds a Gaussian vector with variance proportional to σ2 to
the clipped gradient of the selected batch. Then it performs a gradient step (or any other
iterative methods) using the noisy gradient computed. The privacy loss of DP-SGD involves
composing the privacy curve of each iteration with itself k times. The PRVs for each iteration
have a closed form and depend only on p and σ (see Appendix). Our algorithms use this
closed form of PRVs.

See Figure 1(B) for the comparison between our algorithm and the GDP and RDP
Accountant. Our method provides a lower and upper bound of the privacy curve according
to (5.2). In Figure 1(a), we compare our algorithm with [KJPH21] (implemented in [KP21]).
Under the same mesh size, our algorithm computes a much closer upper and lower bound.

We validate our program for the case p = 1. When p = 1, we have an exact formula for

δ(ε) = Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
, (6.1)

where µ =
√
k/σ. In Figure 2, we show that the true privacy curve is sandwiched between

the bounds we compute and that the vertical distance between our bounds is 2εerror with a
negligible δerror of 10

−10.

6.1. Floating point errors. Note that our error analysis in Section 5 ignores floating point
errors. This is because they are negligible compared to the discretization and truncation errors
we analyzed in Section 5 for the range of δ we are interested in. Our implementation uses long
double floating point format, which is platform dependent, however, it guarantees a
precision at least as good as double precision which has a resolution of 10−15. Computations
involving δ of these orders of magnitude suffer from floating point inaccuracies. Our
implementation, therefore, only allows δ values which are greater than 10−10, which suffices
for practical use cases. See Appendix A for more details.
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Figure 2. Setting p = 1 and comparing to the analytical solution (6.1).
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Figure 3. Comparison of error bounds of δ with varying number of discreti-
sation points for p = 4× 10−3, σ = 0.8, ε = 1.5, k = 1000.

6.2. Comparison with [KJPH21]. In this section, we provide more results demonstrating
the practical use of our algorithm. We compare run times of our algorithm with [KJPH21],
which is the state-of-the-art, for typical values of privacy parameters (σ = 0.8, p = 4× 10−3,
ε = 1.5).

See Figure 3 for the effect of the number of discretization points n on the accuracy of δ.
Our algorithm requires a few orders of magnitude smaller number of discretization points to
converge compared to the algorithm of [KJPH21].

A similar picture can be seen in Figure 4. While for a small number of compositions,
the algorithm of [KJPH21] gives reasonable estimates, for a large number of compositions,
their error bounds worsen quickly.

We note that run times are directly proportional to the memory required by the
algorithms and so a separate memory analysis is not required; the runtime and memory

7We are using the implementation of [KJPH21] from [KP21].
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Figure 4. Comparing error bounds using the same mesh size 8×10−4 under
different number of steps k = 10, 100, 1000. (With p = 10−2, σ = 0.8.)

are dominated by the number of points in the discretization of PRV. All experiments are
performed on a Intel Xeon W-2155 CPU with 3.30GHz with 128GB of memory.

In order to compare run times, we align the accuracy of both FFT algorithms. We
find sets of numerical parameters (number of discretization bins and domain length) such
that both algorithms give similarly accurate bounds and verify it visually (see Figure 5
(b)). Figure 5 illustrates the run times for varying numbers of DPSGD steps. We observe a
significant reduction in the run time using our algorithms.

Acknowledgements. We would like to thank Janardhan Kulkarni and Sergey Yekhanin
for several useful discussions and encouraging us to work on this problem. L.W. would like
to thank Daniel Jones and Victor Rühle for fruitful discussions and helpful guidance.
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Appendix A. Effect of floating point arithmetic

In this section, we demonstrate the effect of floating point inaccuracies on the computed
privacy parameters. Figure 6 compares lower and upper bounds of the privacy curve with the
analytical solution for small values of δ. As mentioned in section 6, we use a floating point
representation with a resolution of at least 10−15. The number of discretization points in
this examples are on the order of 104. Consequently, we expect floating point inaccuracies to
become dominant for values on the order of 10−11. This can be also seen in the illustration,
where the lower and upper bound fail to produce meaningful results for δ < 2× 10−11.
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Figure 6. Setting p = 1 and comparing to the analytical solution (6.1) for
values of δ beyond expected floating point accuracy.

Appendix B. Privacy Loss Random Variables

In this section, we continue the discussion on privacy random variables in Section 3. First,
we give the proof of the formula for PRVs of δ(P ||Q) and the formula for a privacy curve
given its PRVs (Theorem 3.2).

Theorem 3.2. Let δ : R→ [0, 1] be a privacy curve given by δ ≡ δ(P ||Q), where P,Q are
random variables supported on Ω. Then, the PRVs (X,Y ) for δ are given by:

X = log (Q(ω)/P (ω)) ,

where ω ∼ P , and
Y = log (Q(ω)/P (ω)) ,

where ω ∼ Q.
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Proof. We will first verify that Y (t) = etX(t). This is equivalent to proving that EY [ϕ(Y )] =
EX [ϕ(X)eX ] for any test function ϕ : R→ [0, 1]. This is true since

EY [ϕ(Y )] = Eω∼Q

[
ϕ

(
log

(
Q(ω)

P (ω)

))]
= Eω∼P

[
ϕ

(
log

(
Q(ω)

P (ω)

))
Q(ω)

P (ω)

]
= EX [ϕ(X)eX ].

We will now prove that δ(X||Y ) = δ(P ||Q). We have

δ(P ||Q)(ε) = sup
S⊂Ω

Pr[Q ∈ S]− eε Pr[P ∈ S]

= Pr[Q ∈ Sε]− eε Pr[P ∈ Sε]

where

Sε =

{
ω ∈ Ω :

Q(ω)

P (ω)
> eε

}
=

{
ω ∈ Ω : log

(
Q(ω)

P (ω)

)
> ε

}
.

Therefore Pr[Q ∈ Sε] = Pr[Y > ε] and Pr[P ∈ Sε] = Pr[X > ε]. To complete the proof, note
that

δ(X||Y )(ε) = sup
T⊂R

Pr[Y ∈ T ]− eε Pr[X ∈ T ] = Pr[Y ∈ Tε]− eε Pr[X ∈ Tε],

where

Tε =

{
t ∈ R :

Y (t)

X(t)
> eε

}
=
{
t ∈ R : et > eε

}
= (ε,∞].

Putting it all together,

δ(P ||Q)(ε) = Pr[Y > ε]− eε Pr[X > ε] = δ(X||Y ).

Theorem 3.3. The privacy curve δ can be expressed in terms of PRVs (X,Y ) as

δ(ε) = Pr[Y > ε]− eε Pr[X > ε] = EY [(1− eε−Y )+] = Pr[Y ≥ ε+ Z], (3.1)

where Z is an exponential random variable. Conversely, given a privacy curve δ : R→ [0, 1],
the PDFs of its PRVs are

Y (t) = δ′′(t)− δ′(t) and X(t) = et(δ′′(t)− δ′(t)). (3.2)
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Proof. Since the PDFs of PRVs (X,Y ) satisfy the relation Y (t) = etX(t), we can rewrite
the equation 3.1 in terms of just Y or just X.

δ(ε) = Pr[Y ≥ ε]− eε Pr[X ≥ ε]

=

∫ ∞

ε
Y (t)dt−

∫ ∞

ε
eεX(t)dt

=

∫ ∞

ε
Y (t)dt−

∫ ∞

ε
eε−tY (t)dt (Since Y (t) = etX(t))

=

∫ ∞

ε
Y (t)(1− eε−t)dt

=

∫ ∞

−∞
Y (t)(1− eε−t)+dt

= EY [(1− eε−Y )+]

To get the other form for δ(ε), we use the integration by parts formula.

δ(ε) =

∫ ∞

ε
Y (t)(1− eε−t)dt

=

∫ ∞

ε
Y (t)dt+

∫ ∞

ε
(−Y (t)) eε−tdt

= Pr[Y ≥ ε] +

(
Pr[Y ≥ t]eε−t

∣∣∣∞
ε
−
∫ ∞

ε
Pr[Y ≥ t]

(
−eε−t

)
dt

)
= Pr[Y ≥ ε]− Pr[Y ≥ ε] +

∫ ∞

ε
Pr[Y ≥ t]eε−tdt

=

∫ ∞

ε
eε−t Pr[Y ≥ t]dt

=

∫ ∞

0
e−z Pr[Y ≥ ε+ z]dz (Substituting z = t− ε)

= Pr[Y ≥ ε+ Z]. (where Z is an exponential random variable)

We now prove the converse relation by differentiating the expression for δ(ε) twice:

δ(ε) =

∫ ∞

ε
Y (t)dt− eε

∫ ∞

ε
e−tY (t)dt

=⇒ δ′(ε) = −Y (ε) + eε · e−εY (ε)− eε ·
∫ ∞

ε
e−tY (t)dt = −eε ·

∫ ∞

ε
e−tY (t)dt

=⇒ e−εδ′(ε) = −
∫ ∞

ε
e−tY (t)dt

=⇒ e−εδ′′(ε)− e−εδ′(ε) = e−εY (ε)

=⇒ Y (ε) = δ′′(ε)− δ′(ε).
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B.1. Examples of privacy loss random variables. In this section, we state the PRVs
for a few standard mechanisms.

Proposition B.1 (Gaussian Mechanism). The PRVs for δ(N (µ, 1)||N (0, 1)) are:

X = N (−µ2/2, µ2) and Y = N (µ2/2, µ2).

Proof. Let P = N (µ, 1) and Q = N (0, 1). By Theorem 3.2,

Y ∼ log

(
Q(t)

P (t)

)
where t ∼ Q

∼ log

(
exp(−t2/2)

exp(−(t− µ)2/2)

)
where t ∼ N (0, 1)

∼ (t− µ)2

2
− t2

2
where t ∼ N (0, 1)

∼ µ2

2
− µt where t ∼ N (0, 1)

= N
(
µ2

2
, µ2

)
.

A similar calculation shows that X = N
(
−µ2/2, µ2

)
Proposition B.2 (Laplace Mechanism). The PRVs for the privacy curve δ (Lap (µ, 1) ||Lap (0, 1))
are X = |Z| − |Z − µ| and Y = |Z − µ| − |Z|, where Z ∼ Lap(0, 1).

Proof. Let P = Lap(µ, 1) and Q = Lap(0, 1). By Theorem 3.2,

Y ∼ log

(
Q(t)

P (t)

)
where t ∼ Q

∼ log

(
exp(−|t|)

exp(−|t− µ|

)
where t ∼ Lap(0, 1)

∼ |t− µ| − |t| where t ∼ Lap(0, 1)

= |Z − µ| − |Z| where Z ∼ Lap(0, 1).

A similar calculation shows that X = |Z| − |Z − µ|, where Z ∼ Lap(0, 1).

Proposition B.3 ((ε, δ)-DP). The PRVs for the privacy curve of a (ε, δ)-DP algorithm are

X =


−∞ w.p. δ

−ε w.p. (1−δ)eε

eε+1

ε w.p. 1−δ
eε+1 ,

Y =


−ε w.p. 1−δ

eε+1

ε w.p. (1−δ)eε

eε+1

∞ w.p. δ.

Proof. It is easy to verify that Y (t) = etX(t) for all t ∈ R. We can also verify that

δ(ε) = Pr[Y > ε]− eε Pr[X > ε] = δ.

Morever X = −Y , therefore the privacy curve δ(X||Y ) is symmetric by Proposition C.9, i.e.,
δ(X||Y ) = δ(Y ||X). These conditions together imply that X,Y are PRVs for the (ε, δ)-DP
curve.
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Note that in the all the above examples, we have X = −Y as the privacy curves are
symmetric.

B.2. Subsampling. In this section, we calculate the PRVs for a subsampled mechanism
given the PRVs for the original mechanism. Given two random variables P,Q and a sampling
probability p ∈ [0, 1], p · P + (1− p) ·Q denotes the mixture where we sample P w.p. p and
Q w.p. 1− p.

Proposition B.4. Let (X,Y ) be the PRVs for a privacy curve δ(P ||Q). Let (Xp, Yp) be the
PRVs for δp = δ(P || p · P + (1− p) ·Q). Then

Xp = log(1 + p(eX − 1)),

Yp =

{
log(1 + p(eY − 1)) w.p. p

log(1 + p(eX − 1)) w.p. 1− p.

The CDFs of Xp and Yp are given by:

CDFXp(t) =

{
CDFX

(
log
(
et−(1−p)

p

))
if t ≥ log(1− p)

0 if t < log(1− p)

and

CDFYp(t) =

{
p · CDFY

(
log
(
et−(1−p)

p

))
+ (1− p) · CDFX

(
log
(
et−(1−p)

p

))
if t ≥ log(1− p)

0 if t < log(1− p).

Proof. By Theorem 3.2,

Xp = log

(
pY (t) + (1− p)X(t)

X(t)

)
where t ∼ X

= log
(
pet + 1− p

)
where t ∼ X

= log
(
peX + 1− p

)
.

Similarly,

Yp = log

(
pY (t) + (1− p)X(t)

X(t)

)
where t ∼ pY + (1− p)X

= log
(
pet + 1− p

)
where t ∼ pY + (1− p)X

=

{
log(1 + p(eY − 1)) w.p. p

log(1 + p(eX − 1)) w.p. 1− p.

The CDF of Xp is given by

Pr[Xp ≤ t] = Pr
[
log
(
peX + 1− p

)
≤ t
]

= Pr

[
X ≤ log

(
et − (1− p)

p

)]
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The CDF of Yp is given by:

Pr[Yp ≤ t] = pPr
[
log
(
peY + 1− p

)
≤ t
]
+ (1− p) Pr

[
log
(
peX + 1− p

)
≤ t
]

= pPr

[
Y ≤ log

(
et − (1− p)

p

)]
+ (1− p) Pr

[
X ≤ log

(
et − (1− p)

p

)]
.

Appendix C. Proofs for Error Analysis

C.1. Facts about Coupling Approximation. Here we collect some useful properties of
coupling approximations. The following lemma shows that the coupling approximations
satisfy a triangle inequality.

Lemma C.1 (Triangle inequality for couplings). Suppose X,Y, Z are random variables such
that |X − Y | ≤η1 h1 and |Y − Z| ≤η2 h2. Then |X − Z| ≤η1+η2 h1 + h2.

Proof. There exists couplings (X,Y ) and (Y,Z) such that

Pr[|X − Y | ≥ h1] ≤ η1 and Pr[|Y − Z| ≥ h2] ≤ η2.

From these two couplings, we can construct a coupling between (X,Z): sample X, sample
Y from Y |X (given by coupling (X,Y )) and finally sample Z from Z|Y (given by coupling
(Y,Z)). Therefore for this coupling, we have:

Pr[|X − Z| ≥ h1 + h2] ≤ Pr[|(X − Y ) + (Y − Z)| ≥ h1 + h2]

≤ Pr[|X − Y |+ |Y − Z| ≥ h1 + h2]

≤ Pr[|X − Y | ≥ h1] + Pr[|Y − Z| ≥ h2]

≤ η1 + η2.

The following lemma shows that small total variation distance implies good coupling
approximation.

Lemma C.2. If the total variation distance dTV (X,Y ) ≤ η, then |X − Y | ≤η 0.

Proof. It is well known that for any two random variables X,Y , there exists a coupling such
that dTV (X,Y ) = Pr[X ̸= Y ]. This immediately implies what we want.

C.2. Bounding the error using tail bounds of PRVs. The goal of this section is to
bound the error of ComposePRV in terms of the tail bounds of the underlying PRVs.

Theorem C.3. Let Y1, Y2, . . . , Yk be PRVs and let Ỹ be the approximation produced by

the ComposePRV algorithm (Algorithm 1) for Y =
∑k

i=1 Yi with truncation parameter L
and mesh size

h =
εerror√
k
2 log

2
η0

.

Then
δ
Ỹ
(ε+ εerror)− δerror ≤ δY (ε) ≤ δ

Ỹ
(ε− εerror) + δerror
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where

δerror = Pr

[∣∣∣∣∣
k∑

i=1

Ỹi

∣∣∣∣∣ ≥ L

]
+

k∑
i=1

Pr[|Yi| ≥ L] + η0

≤ Pr

[∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ L− εerror

]
+ 2

k∑
i=1

Pr[|Yi| ≥ L] + 2η0.

Remark C.4. We can directly bound Pr
[∣∣∣∑k

i=1 Ỹi

∣∣∣ ≥ L
]
using moment generating functions

as

Pr

[∣∣∣∣∣
k∑

i=1

Ỹi

∣∣∣∣∣ ≥ L

]
≤ inf

λ>0

∏k
i=1 E[exp(λỸi)]

eλL
+ inf

λ>0

∏k
i=1 E[exp(−λỸi)]

eλL
.

Sometimes, if we already have good upper bound for Pr [|
∑

i Yi| ≥ L], then the second bound
on δerror is useful.

The following key lemma shows that the DiscretizePRV algorithm (Algorithm 2) produces
a good coupling approximation to the PRV and preserves the mean.

Lemma C.5. Given a PRV Y , let Y L = Y
∣∣
|Y |≤L

be its truncation. The approximation

Ỹ returned by DiscretizePRV satisfies E[Ỹ ] = E[Y L] and |Y L − (Ỹ − µ)| ≤0
h
2 for some µ

where h is the mesh size. We also have |Y L − Y | ≤η 0 where η = Pr[|Y | ≥ L].

Proof. Since dTV (Y, Y
L) ≤ Pr[|Y | ≥ L] = η, by Lemma C.2, |Y − Y L| ≤η 0. It is clear that

by construction E[Ỹ ] = E[Y L], so that

E[Ỹ ] = µ+
n∑

i=−n

ih · qi =

(
E[Y L]−

n∑
i=−n

ih · qi

)
+

n∑
i=−n

ih · qi = E[Y L].

We will now construct the coupling between (Y L, Ỹ ) such that |Y L − (Ỹ − µ)| ≤ h/2. The
coupling is as follows: First sample y ∼ Y L. Suppose y ∈ (ih− h

2 , ih+ h
2 ] for some integer i

such that −n ≤ i ≤ n, then return ỹ = µ+ ih. Clearly, the distribution of ỹ matches with

Ỹ and |y − (ỹ − µ)| = |y − ih| ≤ h/2.

Since our error bound on Ỹ is slightly different from the assumption in Lemma 5.3, we
need the following generalization using the same proof.

Lemma C.6. Suppose Y1, Y2, . . . , Yk and Ỹ1, Ỹ2, . . . , Ỹk are collections of independent random

variables such that |Yi − (Ỹi − µi)| ≤0 h for some µi and E[Yi] = E[Ỹi] for all i, then∣∣∣∣∣
k∑

i=1

Yi −
k∑

i=1

Ỹi

∣∣∣∣∣ ≤η h

√
2k log

2

η
.

In the algorithm, we only calculate the distribution of Y1 ⊕ Y2 ⊕ · · · ⊕ Yk instead of
Y1 +Y2 + · · ·+Yk. The following simple lemma shows that this is still a good approximation
as long as

∑
i Yi stays within [−L,L] with high probability.

Lemma C.7. Let Y1, Y2, . . . , Yk be random variables supported on (−L,L]. Then∣∣∣∣∣
k∑

i=1

Yi − (Y1 ⊕L Y2 ⊕L · · · ⊕L Yk)

∣∣∣∣∣ ≤η 0,
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where

η = Pr

[∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ L

]
.

Proof.

Pr

[
k∑

i=1

Yi ̸= (Y1 ⊕L Y2 ⊕L · · · ⊕L Yk)

]
≤ Pr

[∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ L

]
.

This clearly implies what we want.

Combining all the above lemmas, we get the following corollary.

Corollary C.8. Let Y1, Y2, . . . , Yk be random variables supported on and let Ỹi be the dis-
cretization of Yi produced by DiscretizePRV algorithm with mesh size h = h0/

√
(k/2) log(2/η0)

and truncation parameter L. Then∣∣∣(Y1 + Y2 + · · ·+ Yk)− (Ỹ1 ⊕ Ỹ2 ⊕ · · · ⊕ Ỹk)
∣∣∣ ≤η h0

where

η = Pr

[∣∣∣∣∣
k∑

i=1

Ỹi

∣∣∣∣∣ ≥ L

]
+

k∑
i=1

Pr[|Yi| ≥ L] + η0.

Furthermore, we can bound

Pr

[∣∣∣∣∣
k∑

i=1

Ỹi

∣∣∣∣∣ ≥ L

]
≤ Pr

[∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ L− h0

]
+

k∑
i=1

Pr[|Yi| ≥ L] + η0.

Proof. Let Y L ≡ Yi
∣∣
|Yi|≤L

be the truncation of Yi. By Lemma C.5, |Y L
i − (Ỹi − µi)| ≤0

h
2 for

some µi and |Y L
i − Yi|ξi ≤ 0 where ξi = Pr[|Yi| ≥ L]. Now applying the triangle inequality

for coupling approximations (Lemma C.1), we have∣∣∣∣∣∑
i

Yi −
∑
i

Y L
i

∣∣∣∣∣ ≤η1 0

where η1 =
∑

i ξi =
∑

i Pr[|Yi| ≥ L]. By Lemma C.6, we have∣∣∣∣∣∑
i

Y L
i −

∑
i

Ỹi

∣∣∣∣∣ ≤η0

h

2
·
√
2k log

2

η0
= h

√
k

2
log

2

η0
= h0.

By Lemma C.7, ∣∣∣∣∣
k∑

i=1

Ỹi −
(
Ỹ1 ⊕L Ỹ2 ⊕L · · · ⊕L Ỹk

)∣∣∣∣∣ ≤η2 0,

where η2 = Pr
[∣∣∣∑k

i=1 Ỹi

∣∣∣ ≥ L
]
. Finally applying the triangle inequality (Lemma C.1) once

again, ∣∣∣(Y1 + Y2 + · · ·+ Yk)− (Ỹ1 ⊕L Ỹ2 ⊕L · · · ⊕L Ỹk)
∣∣∣ ≤η h0
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where η = η0 + η1 + η2. We can bound Pr
[∣∣∣∑k

i=1 Ỹi

∣∣∣ ≥ L
]
as:

Pr

[∣∣∣∣∣∑
i

Ỹi

∣∣∣∣∣ ≥ L

]
= Pr

[∣∣∣∣∣∑
i

(Ỹi − Y L
i ) +

∑
i

(Y L
i − Yi) +

∑
i

Yi

∣∣∣∣∣ ≥ L

]

≤ Pr

[∣∣∣∣∣∑
i

(Ỹi − Y L
i )

∣∣∣∣∣+
∣∣∣∣∣∑

i

(Y L
i − Yi)

∣∣∣∣∣+
∣∣∣∣∣∑

i

Yi

∣∣∣∣∣ ≥ h0 + 0 + L− h0

]

≤ Pr

[∣∣∣∣∣∑
i

(Ỹi − Y L
i )

∣∣∣∣∣ > h0

]
+ Pr

[∣∣∣∣∣∑
i

(Y L
i − Yi)

∣∣∣∣∣ > 0

]
+ Pr

[∣∣∣∣∣∑
i

Yi

∣∣∣∣∣ ≥ L− h0

]

≤ η0 + η1 + Pr

[∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣ ≥ L− h0

]
.

Proof of Theorem C.3. Combining Corollary C.8 (with h0 = εerror) and Lemma 5.2, we have
Theorem C.3.

C.3. Tail Bound for PRVs. To finish the proof of our main theorem (Theorem 5.5, we
need a tail bound on PRVs in terms of their privacy curves. First, we need a lemma relating
the PRVs of a privacy curve δ(P ||Q) with the PRVs of δ(Q||P ).

Proposition C.9. Let (X,Y ) be the PRVs for a privacy curve δ(P ||Q). Then the PRVs
for the privacy curve δ(Q||P ) are (−Y,−X).

Proof. Let (X̃, Ỹ ) be the PRVs for δ(Q||P ). We know that δ(P ||Q) = δ(X||Y ). So
δ(Q||P ) = δ(Y ||X). Then by Theorem 3.2,

X̃ = log

(
X(t)

Y (t)

)
where t ∼ Y

= log
(
e−t
)
where t ∼ Y

= −Y.

Ỹ = log

(
X(t)

Y (t)

)
where t ∼ X

= log
(
e−t
)
where t ∼ X

= −X.
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Now, we show our tail bound, which shows the PRVs (X,Y ) for a (ε, δ)-DP algorithm
satisfies roughly that Pr(|Y | ≥ ε+ 2) ≤ 2δ.

Lemma 5.4. Let (X,Y ) be the privacy random variables for a (ε, δ)-DP algorithm, then
for any t ≥ 0,

Pr[|Y | ≥ ε+ t] ≤
δ
(
1 + e−ε−t

)
1− e−t

.

Proof. We have δ(X||Y ) ≤ fε,δ and δ(Y ||X) ≤ fε,δ where fε,δ is the privacy curve of a
(ε, δ)-DP algorithm. By Theorem 3.2, we have

δ ≥
∫ ∞

0
Pr[Y ≥ ε+ s]e−sds

≥
∫ t

0
Pr[Y ≥ ε+ s]e−sds

≥ Pr[Y ≥ ε+ t]

∫ t

0
e−sds

≥ Pr[Y ≥ ε+ t](1− e−t).

By Proposition C.9, the PRVs for δ(Y ||X) are (−Y,−X). Therefore by a similar
argument, we have

Pr[X ≤ −ε− t] = Pr[−X ≥ ε+ t] ≤ δ

1− e−t
.

Finally, note that Y (s) = esX(s) for all s ∈ R and Y (−∞) = 0 by the definition of PRVs.
Therefore,

Pr[Y ≤ −ε− t] ≤ e−ε−t Pr[X ≤ −ε− t],

so that

Pr[|Y | ≥ ε+ t] = Pr[Y ≥ ε+ t] + Pr[Y ≤ −ε− t]

≤ Pr[Y ≥ ε+ t] + e−ε−t Pr[X ≤ −ε− t]

≤
(
1 + e−ε−t

) δ

1− e−t
.

C.4. Proof of Theorem 5.5. Now, we can prove our main theorem.

Theorem 5.5. Let εerror, δerror > 0 be fixed error terms. LetM1,M2, . . . ,Mk be DP algo-
rithms with respective privacy curves δMi(ε). Let Yi be the PRV corresponding toMi such
that δMi(ε) = δYi(ε) for ε ≥ 0. LetM be the (adaptive) composition ofM1,M2, . . . ,Mk

and let δM(ε) be its privacy curve. Set L ≥ 2 + εerror sufficiently large such that

k∑
i=1

δMi(L− 2) ≤ δerror
8

and δM(L− 2− εerror) ≤
δerror
4

. (5.1)

Let Ỹ be the approximation of Y =
∑k

i=1 Yi produced by ComposePRV algorithm with
mesh size

h =
εerror√

k
2 log

12
δerror

.



NUMERICAL COMPOSITION OF DIFFERENTIAL PRIVACY 27

Then
δ
Ỹ
(ε+ εerror)− δerror ≤ δY (ε) = δM(ε) ≤ δ

Ỹ
(ε− εerror) + δerror. (5.2)

Furthermore, our algorithm takes O (b(L/h) log (L/h)) time, where b is the number of distinct
algorithms amongM1,M2, . . . ,Mk.

Proof. By Lemma 5.4,

Pr[|Yi| ≥ L] = Pr[|Yi| ≥ L− 2 + 2]

≤ δYi(L− 2) · 1 + e−L

1− e−2

≤ δYi(L− 2) · 1 + e−2

1− e−2

≤ δYi(L− 2) · 4
3
.

Therefore we have
k∑

i=1

Pr[|Yi| ≥ L] ≤ 4

3

k∑
i=1

δYi(L− 2) ≤ 4

3
· δerror

8
=

δerror
6

.

Similarly

Pr[|Y | ≥ L− εerror] ≤
4

3
δY (L− 2− εerror) ≤

δerror
3

.

Therefore by Theorem C.3, setting η0 = δerror/6 gives the desired result.
For the runtime, we note that the bottleneck of our algorithm is to compute the

convolution, which can be done using FFT. In total, we need to compute b+1 many FFT for
b distinct algorithms, one for each for computing the Fourier transform and one of computing
the inverse Fourier transform. Since the length of the array for the FFT is bounded by
O(L/h), this costs O(bL/h log(L/h)) in total.

The step δ
Ỹ
(ε) = E

Ỹ

[(
1− eε−Ỹ

)
+

]
can be computed in linear time by first computing

the CDF of Ỹ and the prefix sum E
Ỹ≤α

[
e−Ỹ

]
for all α.
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