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Abstract. In this paper, we study private optimization problems for non-smooth convex
functions F (x) = Eifi(x) on Rd. We show that modifying the exponential mechanism
by adding an ℓ22 regularizer to F (x) and sampling from π(x) ∝ exp(−k(F (x) + µ∥x∥22/2))
recovers both the known optimal empirical risk and population loss under (ε, δ)-DP.

Furthermore, we show how to implement this mechanism using Õ(nmin(d, n)) queries to
fi(x) for differentially private stochastic convex optimization, where n is the number of
samples/users and d is the ambient dimension. We also give a (nearly) matching lower

bound Ω̃(nmin(d, n)) on the number of evaluation queries.
Our results utilize the following tools that are of independent interest:

• We prove Gaussian differential privacy (GDP) of the exponential mechanism if the loss
function is strongly convex and the perturbation is Lipschitz. Our privacy bound is
optimal : it includes the privacy of Gaussian mechanism as a special case and is proved
using the isoperimetric inequality for strongly log-concave measures.

• We show how to sample from exp(−F (x)− µ∥x∥22/2) for G-Lipschitz F with η error in

total variation (TV) distance using Õ((G2/µ) log2(d/η)) unbiased queries to F (x). This
is the first sampler whose query complexity has polylogarithmic dependence on both
dimension d and accuracy η.

1. Introduction

Differential privacy (DP), introduced in [DMNS06, DKM+06], is increasingly becoming
the accepted standard in privacy protection. We see an increasing array of adoptions in
industry [App17, EPK14, BEM+17, DKY17] and, more recently, the US Census Bureau
[Abo16, KCK+18]. Differential privacy allows us to quantify the privacy loss of an algorithm,
and is defined as follows.
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In this paper, we say D and D′ are neighboring databases if they agree on all the user
inputs except for a single user’s input.

Definition 1.1 ((ε, δ)-DP). A randomized mechanism M is (ε, δ)-differentially private if
for any neighboring databases D,D′ and any subset S of outputs, one has

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ.

Privacy concerns are particularly acute in machine learning and optimization using
private user data. Suppose we want to minimize some loss function F (x;D) : K → R
for some domain K where D is some database. We want to output a solution xpriv using
differentially private mechanism M such that we minimize the excess empirical risk

E
M

[F (xpriv;D)]− F (x∗;D), (1.1)

where x∗ ∈ K is the true minimizer of F (x;D).

1.1. Exponential Mechanism. One of the first mechanisms invented in differential privacy,
the exponential mechanism, was proposed by [MT07]. It involves sampling xpriv from the
density

πD(x) ∝ exp (−kF (x;D)) . (1.2)

Here k controls the privacy-vs-utility tradeoff. Large k ensures that we get a good solution
but less privacy and small k ensures that we get good privacy but we lose utility. Suppose
∆F = supD∼D′ supx |F (x;D)− F (x;D′)| is the sensitivity of F , where the supremum is over
all neighboring databases D,D′. Then choosing k = ε/2∆F , the exponential mechanism
satisfies (ε, 0)-DP.

The exponential mechanism is widely used both in theory and in practice, such as in
mechanism design [HK12], convex optimization [BST14, MV21], statistics [WZ10, WM10,
AKRS19], machine learning and AI [ZP19]. Even for infinite and continuous domains, the
exponential mechanism can be implemented efficiently for many problems [HT10, CSS13,
KT13, BV19, CKS20]. There are also several variants and generalizations of the exponential
mechanism that can improve its utility based on different assumptions [TS13, BNS13, RS16,
LT19]. See [LT19] for a survey of these results.

1.2. DP Empirical Risk Minimization (DP-ERM). In many applications, the loss
function is given by the average of the loss of each user:

F (x;D) :=
1

n

n∑
i=1

f(x; si). (1.3)

where D = {s1, s2, · · · , sn} is the collection of users si and f(x; si) is the loss function of
user si.

Throughout this paper, we assume f(·; s) is convex, that f(·; s)− f(·; s′) is G-Lipschitz
for all s, s′, and that K ⊂ Rd is convex with diameter D.1 We call the problem of minimizing
the excess empirical risk in (1.3) as DP Empirical Risk Minimization (DP-ERM). This setting
is well studied by the DP community [CM08, RBHT12, CMS11, JT14, BST14, KJ16, FTS17,

1Some of our results can handle the unconstrained domain, such as K = Rd.
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ZZMW17, Wan18, INS+19, BFTT19, FKT20, KLL21, BGN21, LL21, AFKT21, SSTT21,
MBST21, GTU22].2

In particular, [BST14] shows that exponential mechanism in (1.2) achieves the optimal
excess empirical risk of O(GDd/ε) under (ε, 0)-DP. On the other hand, [BST14, BFTT19,
BFGT20] show that noisy gradient descent on F (x;D) achieves an excess empirical risk of

O

(
GD

√
d log(1/δ)

nε

)
(1.4)

under (ε, δ)-DP, which is also shown to be optimal [BST14]. This is a significant
√
d

improvement over the exponential mechanism.
The exponential mechanism is a universally powerful tool in differential privacy. However,

nearly all of the previous works on DP-ERM rely on noisy gradient descent or its variants
to achieve the significant

√
d improvement over exponential mechanism under (ε, δ)-DP.

One natural question is whether noisy gradient descent has some extra ability that the
exponential mechanism lacks or we did not use the exponential mechanism optimally in this
setting. This brings us to the first question.

Question 1. Can we obtain the optimal empirical risk in (1.1) under (ε, δ)-DP using
exponential mechanism?

1.3. DP Stochastic Convex Optimization (DP-SCO). Beyond the privacy and empiri-
cal risk guarantees, another important guarantee is the generalization guarantee. Formally,
we assume the users are sampled from an unknown distribution P over convex functions.
We define the loss function as

F̂ (x) = E
s∼P

[f(x; s)]. (1.5)

We want to design a DP mechanism M that outputs xpriv given users D = {s1, s2, . . . , sn}
independently sampled from P and then to minimize the excess population loss

E
M,D∼P

[F̂ (xpriv)]− F̂ (x∗), (1.6)

where x∗ is the minimizer of F̂ (x). We call the problem of minimizing the excess population
loss in (1.6) as DP stochastic convex optimization (DP-SCO). By a suitable modification of
noisy stochastic gradient descent, [BFTT19, FKT20] show that one can achieve the optimal
population loss of

O

(
GD

(
1√
n

+

√
d log(1/δ)

εn

))
. (1.7)

[BFTT19] bounds the generalization error by showing that running SGD on smooth functions
is stable and [FKT20] proposes an iterative localization technique. Note that only the
algorithm for smooth functions in [BFTT19] can achieve both optimal empirical risk and
optimal population loss at the same time, with the price of taking more gradient queries
and loss of efficiency. It is unclear to us how one can obtain both using current techniques
for non-smooth functions, which brings us to the second question.

2Most of the literature uses a stronger assumption that f(·; s) is G-Lipschitz, while some of our results
only need to assume the difference f(·; s)− f(·; s′) is G-Lipschitz.
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Question 2. Can we achieve both the optimal empirical risk and the optimal population
loss for non-smooth functions with the same algorithm?

1.4. Sampling. Without extra smoothness assumptions on f , currently, there is no optimally
efficient algorithm for both problems. For example, with oracle access to gradients of f , the
previous best algorithms for DP-SCO use:

• Õ(nd) queries to ∇f(x; s) (by combining [FKT20], Moreau-Yosida regularization and
cutting plane methods),

• Õ(min(n3/2, n2/
√
d)) queries to ∇f(x; s) [AFKT21],

• Õ(min(n5/4d1/8, n3/2/d1/8)) queries to ∇f(x; s) [KLL21].

Combining these results gives an algorithm for DP-SCO that uses

Õ(min(nd, n5/4d1/8, n3/2/d1/8, n2/
√
d))

many queries to ∇f(x; s). Although the information lower bound for non-smooth functions
with the gradient queries has not been established, it seems unlikely that the answer involves
four different cases.

In this paper, we focus on the function value query (zeroth order query) on f(x; s). This
query is weaker than the gradient query as it obtains d times less information. They are used
in many practical applications, such as clinical trials and ads placement when the gradient
is not available, and is also useful in bandit problems. This brings us to the third question.

Question 3. Can we obtain an algorithm with optimal query complexity for DP-SCO for
the zeroth order query model?

1.5. Our Contributions. In this paper, we answer all three questions positively using the
Regularized Exponential Mechanism. If we add an ℓ22 regularizer to F and sample xpriv from
the density

exp
(
−k
(
F (x;D) + µ ∥x∥22 /2

))
, (1.8)

then, for a suitable choice of µ and k, we recover the optimal excess risk in (1.4) for DP-ERM
and optimal population loss in (1.7) for DP-SCO. Finally, we give an algorithm to sample
xpriv from the density (1.8) with a nearly optimal number of queries to f(x; s) See Figure
1. To the best of our knowledge, our algorithm is the first whose query complexity has
polylogarithmic dependence in both dimension and accuracy (TV distance).

Informally, our results are as follows.

Theorem 1.2 (DP-ERM, Informal). Let K be a convex set with diameter D and {f(·; s)}
be a family of convex functions on K, where f(·; s) − f(·; s′) is G-Lipschitz for all s, s′.
Given a database D = {s1, s2, · · · , sn}, for any ε, δ ∈ (0, 11/10), 3 the regularized exponential
mechanism

x(priv) ∝ exp

(
−k ·

(
1

n

n∑
i=1

f(x; si) +
µ

2
∥x∥22

))
3See Theorem 6.2 for general conclusions for all ε > 0
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is (ε, δ)-DP with expected excess empirical loss

2GD
√
d log(1/δ)

εn

for appropriate choices of k and µ. Furthermore, if f(·; s) is G-Lipschitz for all s, we can

sample x(priv) using O([ε2n2/ log(1/δ)] log2(nd/δ)) queries in expectation to the values of
f(x; s).

Theorem 1.3 (DP-SCO, Informal). Let K be a convex set with diameter D and {f(·; s)} be
a family of convex functions on K where f(·; s)− f(·; s′) is G-Lipschitz for all s, s′. Given
a database D = {s1, s2, · · · , sn} of samples from some unknown distribution P. For any
ε, δ ∈ (0, 1/10),4 the regularized exponential mechanism

x(priv) ∝ exp

(
−k ·

(
1

n

n∑
i=1

f(x; si) +
µ

2
∥x∥22

))
is (ε, δ)-DP with expected excess population loss

2GD√
n

+
2GD

√
d log(1/δ)

εn

for some choice of k and µ. Furthermore, if f(·; s) is G-Lipschitz for all s, we can sample

x(priv) using O(min{[ε2n2/ log(1/δ)], nd} log2(nd/δ)) queries in expectation to the values of
f(x; s) and the expected number of queries is optimal up to logarithmic terms.

For DP-SCO, we provide a nearly matching information-theoretic lower bound on the
number of value queries (Section 7), proving the optimality of our sampling algorithm.
Moreover, when f is strongly convex, our proof shows the exponential mechanism (without
adding a regularizer) itself simultaneously achieves both the optimal excess empirical risk
and optimal population loss.

In a concurrent and independent work, [GTU22] study the DP properties of Langevin
diffusion, and provide optimal/best known private empirical risk and population loss under
both pure-DP (δ = 0) and approximate-DP (δ > 0) constraints. Utility/privacy trade-offs
for non-convex functions are also discussed.

2. Techniques

The main contribution of this paper is that adding regularization terms in exponential
mechanism leads to optimal algorithms for DP-ERM and DP-SCO. For this, we develop
some important tools that could be of independent interest. We now briefly discuss each of
the main tools.

4See Theorem 6.9 for general conclusions for all ε > 0.
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2.1. Gaussian Differential Privacy (GDP) of Regularized Exponential Mechanism.
To analyze the privacy of the regularized exponential mechanism, we need to bound the
privacy curve between a strongly log-concave distribution and its Lipschitz perturbation in the
exponent. [MASN16] gave a nearly tight (up to constants) privacy guarantee of exponential
mechanism if the distribution exp(−kF (x;D)) satisfies logarithmic Sobolev inequality (LSI).
Since strongly log-concave distributions satisfy LSI, their result immediately gives the (ε, δ)-
DP guarantee of our algorithm. However, this gives a sub-optimal privacy bound because it
does not take full advantage of strong log-concavity.

Instead, we show directly that the privacy curve between a strongly log-concave dis-
tribution and its Lipschitz perturbation in the exponent is bounded above by the privacy
curve of an appropriate Gaussian mechanism. This new proof uses the notion of tradeoff
function introduced in [DRS19] and the isoperimetric inequality for strongly log-concave
distributions.

Theorem 2.1. Given a convex set K ⊆ Rd and µ-strongly convex functions F, F̃ over K,
let P,Q be distributions over K such that P (x) ∝ e−F (x) and Q(x) ∝ e−F̃ (x). If F̃ − F is
G-Lipschitz over K, then for all ε > 0,

δ(P ∥ Q)(ε) ≤ δ
(
N (0, 1)

∥∥∥∥ N ( G
√
µ
, 1

))
(ε).

This proves that the privacy curve for distinguishing between P,Q is upper bounded
the privacy curve of a Gaussian mechanism with sensitivity G/

√
µ and noise scale 1.

Tightness: Note that Theorem 2.1 is tight because it contains the privacy of Gaussian
mechanism as a special case. If F (x) = ∥x∥22 /2 and F̃ (x) = ∥x− a∥22 /2 for some a ∈ Rd,

then F̃ (x)−F (x) = −⟨x, a⟩+ ∥a∥22 /2 is G-Lipschitz with G = ∥a∥2 and F, F̃ are 1-strongly
convex. And P = N (0, Id) and Q = N (a, Id). Therefore,

δ(P ∥ Q) = δ(N (0, Id) ∥ N (a, Id)) = δ(N (0, 1) ∥ N (∥a∥2 , 1)),

which is precisely the upper bound guaranteed by the theorem.

2.2. Generalization Error of Sampling. Many important and fundamental problems
in machine learning, optimization and operations research are special cases of SCO, and
ERM is a classic and widely-used approach to solve it, though their relationships are not
well-understood. If one can solve the ERM problem optimally and get the exact optimal
solution x∗ to minimizing F (·;D) (see Equation 1.3), then [SSSSS09] showed x∗ will also be a
good solution to the SCO for strongly convex functions. But in most situations, solving ERM
optimally costs too much or is even impossible. Can we find a approximately good solution
to ERM and hope that it is also a good solution for SCO? [Fel16] provides a negative answer

and shows there is no good uniform convergence between F (·;D) and F̂ , that is there always

exists x ∈ K such that |F (x;D) − F̂ (x)| is large. This fact forces us to find approximate
solution to ERM with very high accuracy, which makes the algorithms inefficient.

Prior works proposed ways to overcome this difficulty, such as the uniform stability in
[HRS16] and the iterative localization technique in [AFKT21]. Roughly speaking, uniform
stability means that if running algorithms on neighboring datasets lead to similar output
distributions, then the generalization error of the ERM algorithm is bounded. Thus a good
solution to ERM obtained by a stable algorithm is also a good solution for SCO. [BFTT19]
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makes use of the stability of running SGD on smooth functions to get a tight bound on the
population loss for DP-SCO.

Recall that F (x;D) and F̂ (x) are defined in Equation (1.3) and (1.5) respectively. Our
result enriches the toolbox of bounding the generalization error and provides new insights
for this problem.

Theorem 2.2. Suppose {fi} that is a family of µ-strongly convex functions over K and that
fi − fi′ is G-Lipschitz for any functions fi, fi′ in the family. For any k > 0 and suppose the
n samples in data set D are drawn i.i.d from the underlying distribution, then by sampling

x(sol) from density ∝ e−kF (x(sol);D), the population loss satisfies

E[F̂ (x(sol))]−min
x∈K

F̂ (x) ≤ G2

µn
+
d

k
.

Considering two neighboring datasets D and D′, our result is based on bounding the
Wasserstein distance between the distributions proportional to e−kF (x;D) and e−kF (x;D′),
which means the sampling scheme is stable and leads to the G2/µn term in generalization
error. The other term d/k is excess empirical loss of the sampling mechanism. One advantage
of our result is that it works for both smooth and non-smooth functions. Moreover, we may
choose the value k carefully and get a solution with both optimal empirical loss and optimal
population loss.

2.3. Non-smooth Sampling and DP Convex Optimization. Implementing the expo-
nential mechanism involves sampling from a log-concave distribution. When the negative
log-density function F is smooth, i.e. the gradient of F is Lipschitz, there are many efficient
algorithms for this sampling tasks such as [Dal17, LSV18, MMW+21, CV19, DMM19, SL19,
CDWY20, LST20]. For example, if F = (1/n)

∑n
i=1 fi and each fi is 1-strongly convex with

κ-Lipschitz gradient,5 we can sample x ∼ exp(−F (x)) in Õ(n + κmax(d,
√
nd) log(1/δ))

iterations with δ error in total variation distance and each iteration involves computing one
∇fi(x) [LST21]. Note that this is nearly linear time when n≫ κ2d and the δ error in total
variation distance can be translated to an extra δ error in the (ε, δ)-DP guarantee.

Complexity Oracle Guarantee

[BST14] dO(1) F (x) D∞ ≤ ε
[CDJB20] GO(1)d5/2/ε4 ∇F (x) W2 ≤ δ

[JLLV21] + [Che21] d3 F (x) TV ≤ δ
[GT20] α2G4d/ε2 ∇F (x) Dα ≤ ε
[LC21] G2/δ ∇F (x) TV ≤ δ

This paper G2 fi(x) TV ≤ δ

Figure 1: The complexity of sampling from exp(−F (x)), where F = (1/n)
∑

i fi is 1-strongly
convex and fi are G-Lipschitz and convex. For applications in differential privacy,
ε is a constant and δ = n−Θ(1). Polylogarithmic terms are omitted. Only the last
result uses the summation structure and queries only one fi each step.

5For convenience, we used fi to denote the function f(·; si) here and Section 5.
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Unfortunately, when the functions fi are only Lipschitz but not smooth, this problem
is more difficult. In Table 1, we summarize some existing results on this topic. They use
different guarantees such as Renyi divergence Dα of order α, Wasserstein distance W2 and
total variation distance TV (defined in subsection 3.3). For applications in differential
privacy, we need either polynomially small W2 or TV distance, or ε small Dα distance.

All previous results for non-smooth function use oracle access to F or ∇F (instead of
fi) and have iterative complexity at least d iterations for W2 or TV distance smaller than
1/d. Because of this, our algorithm is significantly faster than the previous algorithms and
can handle the case when F is expectation of (infinitely many) fi directly. For example, to

get the optimal private empirical loss with typical settings where ε = Θ(1) and δ = 1/nΘ(1),

the previous best samplers use Õ(n4d) many queries to ∇fi(x) by [GT20] or Õ(nd3) many
queries to fi(x) by combining [JLLV21] and [Che21]. In comparison, our algorithm only

takes Õ(n2) many fi(x).
Our result is based on the alternating sampler proposed in [LST21] and a new rejection

sampling scheme.

Theorem 2.3. Let ψ be a µ-strongly convex function defined on a convex set K ⊆ Rd

and +∞ outside. Given a family of G-Lipschitz convex functions {fi(x)}i∈I defined on K
and an initial point x0 ∈ K, define the function F̂ (x) = Ei∈I fi(x) + ψ(x) and the distance

D = ∥x0− x∗∥2 for some x∗ = arg minx∈K F̂ (x). Then for any δ ∈ (0, 1/2), we can generate
a random point x that has δ total variation distance to the distribution proportional to

exp(−F̂ (x)) in

T := Θ

(
G2

µ
log2

(
G2(d/µ+D2)

δ

))
steps. urthermore, each steps accesses only O(1) many fi(x) and samples from exp(−ψ(x)−
∥x− y∥22)/2η for O(1)-many y in expectation, where η = Θ(G−2/ log(T/δ)).

2.4. Subsequent Work. Since the preliminary version of our work was published, several
further results have emerged. For instance, [AT22] demonstrated that additional iterations
do not result in further privacy costs after running DP-SGD on smooth convex functions
for a small burn-in period. [GLL+23a, GLL+23b] extended our findings to non-Euclidean
geometries, i.e., they extend our results to the setting where the functions fi(·; s) are G-
Lipschitz w.r.t some arbitrary norm ∥·∥X . By adding a regularizer that is strongly convex
w.r.t. ∥·∥X , they show that one can recover similar results as this paper. [FYC23] generalizes
the rejection sampler to semi-smooth functions.

3. Preliminaries

3.1. Differential Privacy. A DP algorithm M usually satisfies a collection of (ε, δ)-DP
guarantees for each ε, i.e., for each ε there exists some smallest δ for which M is (ε, δ)-DP.
By collecting all of them together, we can form the privacy curve or privacy profile which
fully characterizes the privacy of a DP algorithm.
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Definition 3.1 (Privacy Curve). Given two random variables X,Y supported on some set
Ω, define the privacy curve δ(X∥Y ) : R≥0 → [0, 1] as:

δ(X∥Y )(ε) = sup
S⊂Ω

Pr[Y ∈ S]− eε Pr[X ∈ S].

One can explicitly calculate the privacy curve of a Gaussian mechanism as

δ(N (0, 1) ∥ N (s, 1))(ε) = Φ
(
−ε
s

+
s

2

)
− eεΦ

(
−ε
s
− s

2

)
, (3.1)

where Φ(·) is the Gaussian cumulative distribution function (CDF) [BW18].
We say a differentially private mechanism M has privacy curve δ : R≥0 → [0, 1] if for

every ε ≥ 0, M is (ε, δ(ε))-differentially private, i.e., δ(M(D)∥M(D′))(ε) ≤ δ(ε) for all
neighbouring databases D,D′.

We will also need the notion of tradeoff function introduced in [DRS19], which is an
equivalent way to describe the privacy curve δ(P∥Q).

Definition 3.2 (Tradeoff function). Given two (continuous) distributions P,Q, we define
the trade-off function6 T (P∥Q) : [0, 1]→ [0, 1] as

T (P∥Q)(z) = inf
S:P (S)=1−z

Q(S).

It is easy to compute explicitly the tradeoff function for Gaussian mechanism [DRS19],

T (N (0, 1)∥N (s, 1))(z) = Φ(Φ−1(1− z)− s). (3.2)

Note that perfect privacy is equivalent to the tradeoff function Id(z) = 1− z and the closer a
tradeoff function is to Id, better the privacy. The tradeoff function T (P∥Q) and the privacy
curve δ(P∥Q) are related via convex duality. Therefore to compare privacy curves, it is
enough to compare tradeoff curves.

Proposition 3.3 ([DRS19]). δ(P∥Q) ≤ δ(P ′∥Q′) iff T (P∥Q) ≥ T (P ′∥Q′).

3.2. Optimization. Here we collect some properties of functions that are useful for opti-
mization and sampling.

Definition 3.4 (L-Lipschitz continuity). A function f : K → R is L-Lipschitz continuous
over the domain K ⊂ Rd if |f(ω)− f(ω′)| ≤ L∥ω − ω′∥2 for all ω, ω′ ∈ K.

Definition 3.5 (µ-strong convexity). A differentiable function f : K → R is called strongly
convex with parameter µ > 0 if K ⊂ Rd is convex

f(ω′) ≥ f(ω) +
〈
∇f(ω), ω′ − ω

〉
+
µ

2
∥ω′ − ω∥22.

for all points ω, ω′ ∈ K.

Definition 3.6 (Log-concave measure and density). A density function f : K → R≥0 is
log-concave if

∫
K f(x)dx = 1 and f(x) = exp(−F (x)) for some convex function F . We call

f is µ-strongly log-concave if F is µ-strongly convex. Similarly, we call π a log-concave
measure if its density function is log-concave, and we call π is a µ-strongly log-concave
measure if its density function is µ-strongly log-concave.

6Tradeoff curves in [DRS19] are defined using type I and type II errors. The definition given here is
equivalent to their definition for continuous distributions.
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3.3. Distribution Distance and Divergence. We present some distribution distances or
divergences mentioned or used in this work.

Definition 3.7. [Rén61, Rényi divergence] Suppose 1 < α <∞ and π, ν are measures with
π ≪ ν. The Rényi divergence of order α between π and ν is defined as

Dα(π∥ν) =
1

α
log

∫ (
π(x)

ν(x)

)α

ν(x)dx.

We follow the convention that 0/0 = 0. Rényi divergence of orders α = 1,∞ are defined
by continuity. For α = 1, the limit in Rényi divergence equals to the Kullback-Leibler
divergence of π from ν, as defined next.

Definition 3.8 (Kullback–Leibler divergence). The Kullback–Leibler divergence between
probability measures π and ν is defined by

DKL(π∥ν) =

∫
log
(π
ν

)
dπ.

Definition 3.9 (Wasserstein distance). Let π, ν be two probability distributions on Rd.
The second Wasserstein distance W2 between π and ν is defined by

W2(π, ν) =
(

inf
γ∈Γ(π,ν)

∫
Rd×Rd

∥x− y∥22dγ(x, y)
)1/2

,

where Γ(π, ν) is the set of all couplings of π and ν.

Definition 3.10 (Total variation distance). The total variation distance between two
probability measures π and ν on a sigma-algebra F of subsets of the sample space Ω is
defined via

TV(π, ν) = sup
S∈F
|π(S)− ν(S)|.

3.4. Isoperimetric Inequality for Strongly Log-concave Distributions. The cumu-
lative distribution function (CDF) of the one-dimensional standard Gaussian distribution
will be denoted by Φ(x) = Pry∼N (0,1)[y ≤ x]. The following lemma relates the expanding
property of log-concave measures with Φ.

Proposition 3.11 (Theorem 1.1. in [Led99]). Let π be a µ-strongly log-concave measure
supported on a convex set K ⊆ Rd. Let A ⊂ K by any subset such that π(A) = z. For any
point x ∈ Rd, define d(x,A) = infy∈A ∥x− y∥2. Let Ar = {x : d(x,A) ≤ r}. Then if Ar ⊆ K,
for every r ≥ 0,

π(Ar) ≥ Φ(Φ−1(z) + r
√
µ).

The property above implies the concentration of Lipschitz functions over log-concave
measures.

Corollary 3.12. Let π be a µ-strongly log-concave measure supported on a convex set
K ⊆ Rd. Suppose α : K → R is G-Lipschitz. For z ∈ [0, 1], define m(z) ∈ R such that
Prx∼π[α(x) ≤ m(z)] = z. Then for every r ≥ 0,

Pr
x∼π

[α(x) ≥ m(z) + r] ≤ Φ

(
Φ−1(1− z)−

r
√
µ

G

)



REGULARIZED EXPONENTIAL MECHANISM 11

and

Pr
x∼π

[α(x) ≤ m(z)− r] ≤ Φ

(
Φ−1(z)−

r
√
µ

G

)
.

Proof. Fix some z ∈ [0, 1]. Let A = {x ∈ K : α(x) ≤ m(z)}, so π(A) = z. Let Ar = {x :
d(x,A) ≤ r}. Since α is G-Lipschitz, α(x) ≥ m(z) + r implies that d(x,A) ≥ r/G. Therefore
{x : α(x) ≥ m(z) + r} ⊂ {x : d(x,A) ≥ r/G} = Ar/G and so

Pr
x∼π

[α(x) ≥ m(z) + r] ≤ π(Ar/G)

= 1− π(Ar/G)

≤ 1− Φ

(
Φ−1(z) +

r
√
µ

G

)
= Φ

(
−Φ−1(z)−

r
√
µ

G

)
.

We obtain the other inequality by applying the above inequality to −α(x).

4. GDP of Regularized Exponential Mechanism

In this section, we prove our DP result (Theorem 2.1). The proof uses the isoperimetric
inequality for strongly log-concave measures [Led99]. Intuitively, the privacy loss random
variable will be G-Lipschitz under the hypothesis and isoperimetric inequality implies
that any Lipschitz function will be as concentrated as a Gaussian with an appropriate
standard deviation. This allows us compare the privacy curve δ(P ∥ Q) to that of a Gaussian
mechanism. In our proof, it is actually more convenient to compare tradeoff curves (T (P ∥ Q))
which are equivalent to privacy curves via convex duality (Proposition 3.3 and Theorem 2.1).

Theorem 4.1. Given a convex set K ⊆ Rd and µ-strongly convex functions F, F̃ over K,
let P,Q be distributions over K such that P (x) ∝ e−F (x) and Q(x) ∝ e−F̃ (x). If F̃ − F is
G-Lipschitz over K, then for all z ∈ [0, 1],

T (P ∥ Q)(z) ≥ T
(
N (0, 1)

∥∥∥∥ N ( G
√
µ
, 1

))
(z).

Proof. Let γ = G/
√
µ. Let α(x) = F̃ (x)− F (x) so that Q(x) ∝ e−α(x)P (x). Recall that we

have T (P∥Q)(z) = infS:P (S)=1−z Q(S). Note that the infimum is achieved when we choose
S = {x ∈ K : α(x) ≥ m(z)} for some m(z) chosen such that P (S) = Prx∼P [α(x) ≥ m(z)] =
1− z (Neyman-Pearson lemma). Therefore,

T (P∥Q)(z) =

∫
x∈S

Q(x)dx =

∫
x∈S e

−α(x)P (x)dx∫
x∈K e

−α(x)P (x)dx
=

(
1 +

EP [e−α1S̄ ]

EP [e−α1S ]

)−1

.
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We now derive a lower bound for EP [e−α1S ]. Let the random variable Y = α(x), where
x ∼ P. Let fY (·) be the PDF of Y . Then

E
P

[e−α(x)1S ] =

∫
x:α(x)≥m(z)

e−α(x)P (x)dx = E[e−Y 1(Y ≥ m(z))] =

∫ ∞

m(z)
e−tfY (t)dt

=

∫ ∞

t=0
e−t−m(z)

(
−d Prx∼P [α(x) ≥ t+m(z)]

dt

)
dt

= e−m(z)

(
−e−t Pr

x∼P
[α(x) ≥ t+m(z)]

∣∣∣∣∞
0

−
∫ ∞

t=0
e−t Pr

x∼P
[α(x) ≥ t+m(z)] dt

)
= (1− z)e−m(z) − e−m(z)

∫ ∞

t=0
e−t Pr

x∼P
[α(x) ≥ t+m(z)] dt

≥ (1− z)e−m(z) − e−m(z)

∫ ∞

t=0
e−tΦ(Φ−1(1− z)− t/γ)dt (Corollary 3.12)

= (1− z)e−m(z) − e−m(z)

(
(1− z)− exp

(
γ2

2
− Φ−1(1− z)γ

)
Φ(Φ−1(1− z)− γ)

)
(Claim 4.2)

= exp

(
γ2

2
+ Φ−1(z)γ −m(z)

)
Φ(−Φ−1(z)− γ).

We next derive an upper bound for EP [e−α1S̄ ] in a similar way:

E
P

[e−α(x)1S̄ ] =

∫
x:α(x)≤m(z)

e−α(x)P (x)dx

=

∫ ∞

t=0
e−m(z)+t

(
−dPrx∼P [α(x) ≤ m(z)− t]

dt

)
dt

= e−m(z)

(
−et Pr

x∼P
[α(x) ≤ m(z)− t]

∣∣∣∣∞
0

+

∫ ∞

t=0
et Pr

x∼P
[α(x) ≤ m(z)− t] dt

)
= ze−m(z) + e−m(z)

∫ ∞

t=0
et Pr

x∼P
[α(x) ≤ m(z)− t] dt

≤ ze−m(z) + e−m(z)

∫ ∞

t=0
etΦ(Φ−1(z)− t/γ)dt (Corollary 3.12)

= ze−m(z) + e−m(z)

(
−z + exp

(
γ2

2
+ Φ−1(z)γ

)
Φ(Φ−1(z) + γ)

)
(Claim 4.2)

= exp

(
γ2

2
+ Φ−1(z)γ −m(z)

)
Φ(Φ−1(z) + γ).

Combining the two bounds,

T (P∥Q)(z) =

(
1 +

EP [e−α1S̄ ]

EP [e−α1S ]

)−1

≥
(

1 +
Φ(Φ−1(z) + γ)

Φ(−Φ−1(z)− γ)

)−1

= Φ(−Φ−1(z)− γ) (Using Φ(x) + Φ(−x) = 1)

= T (N(0, 1) ∥ N(γ, 1)). (Eqn (3.2))
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We finish by calculating the integrals appearing in the proof.

Claim 4.2. ∫ ∞

0
e−tΦ

(
a− t

γ

)
dt = Φ(a)− e

γ2

2
−aγΦ(a− γ)

and ∫ ∞

0
etΦ

(
a− t

γ

)
dt = −Φ(a) + e

γ2

2
+aγΦ(a+ γ)

Proof. We have∫ ∞

0
e−tΦ(a− t/γ)dt = −e−tΦ(a− t/γ)

∣∣∞
0
−
∫ ∞

0
e−t e

−(a−t/γ)2/2

γ
√

2π
dt

= Φ(a)−
∫ ∞

0
eγ

2/2−aγ e
−(t−(γa−γ2))2/2

γ
√

2π
dt

= Φ(a)− eγ2/2−aγΦ(a− γ).∫ ∞

0
etΦ(a− t/γ)dt = etΦ(a− t/γ)

∣∣∞
0

+

∫ ∞

0
et
e−(a−t/γ)2/2

γ
√

2π
dt

= −Φ(a) +

∫ ∞

0
eγ

2/2+aγ e
−(t−(aγ+γ2))2/2γ2

γ
√

2π
dt

= −Φ(a) + eγ
2/2+aγΦ(a+ γ).

As a corollary to Theorem 4.1, we can bound any divergence measure that decreases
under post-processing such as Rényi divergence or KL divergence. In particular, this also
implies Rényi differential privacy [Mir17] of our algorithm.

Corollary 4.3. Suppose F, F̃ are µ-strongly convex functions over K ⊆ Rd, and F − F̃ is

G-Lipschitz over K. For any k > 0, if we let P ∝ e−kF and Q ∝ e−kF̃ be two probability
distributions on K, then

D(P∥Q) ≤ D

(
N (0, 1)∥N

(
G
√
k

√
µ
, 1

))
for any divergence measure D that decreases under post-processing. In particular,

Dα(P∥Q) ≤ αkG2

2µ
and DKL(P∥Q) ≤ kG2

2µ
.

Proof. By Theorem 2.10 in [DRS19], if T (P∥Q) ≥ T (X∥Y ), then there exists a randomized
algorithm M such that M(X) = P and M(Y ) = Q. Therefore for any divergence measure
which decreases under post-processing we have,

D(P∥Q) = D(M(X)∥M(Y )) ≤ D(X∥Y ).

The rest follows from Theorem 4.1. It is well-known that Rényi divergence and KL di-
vergence decrease with post-processing (see [VEH14], for example). We can also compute
Dα(N (0, 1),N (s, 1)) = αs2/2 and DKL(N (0, 1),N (s, 1)) = s2/2 [Mir17].
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5. Efficient Non-smooth Sampling

In this section, we will present an efficient sampling scheme for (non-smooth) functions to
complement our main results. Specifically, we study the following problem about sampling
from a (non-smooth) log-concave distribution.

Problem 5.1. Assume that as given a µ-strongly convex function ψ(x) defined on a convex
set K ⊆ Rd and +∞ outside and a family of G-Lipschitz convex functions {fi(·)}i∈I defined

on K. Our goal is to sample a point x ∈ K with probability proportional to exp(−F̂ (x)),
where

F̂ (x) = E
i∈I

fi(x) + ψ(x).

Our sampler is based on the alternating sampling algorithm in [LST21]; see algorithm

1. This algorithm reduces the problem of sampling from exp(−F̂ (x)) to sampling from

exp(−F̂ (x)− ∥x− y∥2/2η) for some fixed η and for roughly 1/ηµ many different y. When
the step size η is very small, the later problem is easier because the distribution is almost
like a Gaussian distribution. For our problem, we will pick the largest step size η such that

we can sample exp(−F̂ (x)− ∥x− y∥2/2η) using only Õ(1) many steps.

Algorithm 1: Alternating Sampler

1 Input: µ-strongly convex function F̂ , step size η > 0, initial point x0
2 for t ∈ [T ] do
3 yt ← xt−1 +

√
η · ζ, where ζ ∼ N (0, Id).

4 Sample xt ∝ exp(−F̂ (x)− ∥x− yt∥22/2η).

5 end

6 Return xT

Theorem 5.2 ([LST21, Theorem 1]). Let F be a µ-strongly convex function defined on K with

an initial point x0. Let the distance D = ∥x0− x∗∥2 for any x∗ = arg minx∈K F̂ (x). Suppose

the step size η ≤ 1
µ , the target accuracy δ > 0 and the number of step T ≥ Θ( 1

ηµ log(d/µ+D2

ηδ )).

Then, Algorithm 1 returns a random point xT that has δ total variation distance to the

distribution proportional to exp(−F̂ (x)).

Now, we show that Line 4 in Algorithm 1 can be implemented by a simple rejection

sampling. The idea is to pick step size η small enough such that F̂ (x) is essentially a constant
function for a random x ∼ N (y, η · Id). The precise algorithm is given in Algorithm 2.

Since F has the ψ term, instead of sampling x from N (y, η · Id), we sample from
exp(−ψ(x)− ∥x− y∥2/2η) in Algorithm 2. The following lemma shows how to decompose

the distribution exp(−F̂ (x)− ∥x− y∥2/2η) into the distribution mentioned above and the
distribution exp(−Ei∈I fi(x)). It also calculates the distribution given by the algorithm.

Lemma 5.1. Let π be the distribution proportional to exp(−F̂ (x)− ∥x− y∥22/2η) and let G
be the distribution proportional to exp(−ψ(x)− ∥x− y∥2)/2η. Then,

dπ

dx
=
dG
dx
· exp(−Ei∈I fi(x))

Ex∼G exp(−Ei∈I fi(x))
.
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Algorithm 2: Implementation of Line 4

1 Input: convex function F̂ (x) = Ei∈I fi(x) + ψ(x), step size η > 0, current point y

2 repeat
3 Sample x, z from the distribution ∝ exp(−ψ(x)− ∥x− y∥22/2η)

4 Set ρ← 1

5 for α = 1, 2, · · · do
6 ρ← ρ+ Πα

i=1(fji(z)− fji(x)) where ji are random indices in I

7 With probability α/(1 + α), break

8 end

9 Sample u uniformly from [0, 1].

10 until u ≤ ρ/2;

11 Return x

Let π̃ be the distribution returned by Algorithm 2. Then,

dπ̃

dx
=
dG
dx
· E(ρ|x)

E(ρ)
,

where ρ = min(max(ρ, 0), 2) is the truncation of ρ in Algorithm 2 to [0, 2], E(ρ|x) is the
expected value of ρ conditional on x, and E(ρ) = Ex∼G E(ρ|x). Furthermore,

E(ρ|x) = exp(− E
i∈I

fi(x)) · E
z∼G

exp( E
i∈I

fi(z)).

Proof. For the true distribution π,

dπ

dx
=

exp(−Ei∈I fi(x)− ψ(x)− 1
2η∥x− y∥

2
2)∫

exp(−Ei∈I fi(x)− ψ(x)− 1
2η∥x− y∥

2
2)dx

=
exp(−Ei∈I fi(x))dGdx∫
exp(−Ei∈I fi(x))dGdxdx

=
dG
dx
· exp(−Ei∈I fi(x))

Ex∼G exp(−Ei∈I fi(x))
.

For the distribution π̃ by the algorithm, we sample x ∼ G, then accept the sample if
u ≤ ρ/2. Hence, we have

dπ̃

dx
=
dG
dx

Pr(u ≤ 1
2ρ|x)

Pr(u ≤ 1
2ρ)

.

Since u is uniform between 0 and 1, we have the result.
Finally, for the expectation of ρ, we note that

EΠα
i=1(fji(z)− fji(x)) = ( E

i∈I
(fi(z)− fi(x)))α

and that the probability that the loop pass step α is exactly 1
α! . Hence,

E(ρ|x, z) = 1 +

∞∑
α=1

1

α!
( E
i∈I

(fi(z)− fi(x)))α = exp( E
i∈I

(fi(z)− fi(x)).

Taking expectation over z gives the result.
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Note that if we always had 0 ≤ ρ ≤ 2, then E(ρ|x) = E(ρ|x) ∝ exp(−Ei∈I fi(x)) and
hence dπ/dx = dπ̃/dx. Therefore, the only thing left is to show that 0 ≤ ρ ≤ 2 with high
probability and that it does not induces too much error in total variation distance. To
do this, we use Gaussian concentration to prove that Ei∈I fi(x) is almost a constant over
random x ∼ G.

Lemma 5.2 (Gaussian concentration [Led99, Eq 1.21]). Let X ∼ exp(−F̂ ) for some

1/η-strongly convex F̂ and let ℓ be a G-Lipschitz function. Then, for all t ≥ 0,

Pr[ℓ(X)− E[ℓ(X)] ≥ t] ≤ e−t2/(2ηG2).

Now, we are already to prove our main result. This shows that if η ≪ G−2, then the
algorithm indeed implements Line 4 correctly up to small error.

Lemma 5.3. If η ≤ C log−1(1/δinner)G
−2 for some small enough C and the inner accuracy

δinner ∈ (0, 1/2), then Algorithm 2 returns a random point x that has δinner total variation

distance to the distribution proportional to exp(−F̂ (x) − ∥x − y∥22/2η). Furthermore, the
algorithm accesses only O(1) many fi(x) in expectation and samples from exp(−ψ(x)−∥x−
y∥22/2η) for O(1) many y.

Proof. Let π be the distribution given by c·exp(−F̂ (x)−∥x−y∥22/2η) and π̃ is the distribution
outputted by the algorithm. By Lemma 5.1,

dTV(π, π̃) =

∫
Rd

∣∣∣∣dGdx exp(−Ei∈I fi(x))

Ex∼G exp(−Ei∈I fi(x))
− dG
dx

E(ρ|x)

E(ρ)

∣∣∣∣ dx
= E

x∼G

∣∣∣∣ exp(−Ei∈I fi(x))

Ex∼G exp(−Ei∈I fi(x))
− E(ρ|x)

E(ρ)

∣∣∣∣ .
Let X be the random variable E(ρ|x) and X̃ be the random variable E(ρ|x). Lemma 5.1
shows that X = exp(−Ei∈I fi(x)) · Ez∼G exp(Ei∈I fi(z)) and hence

exp(−Ei∈I fi(x))

Ex∼G exp(−Ei∈I fi(x))
=

X

Ex∼G X
.

Therefore, noting that X̃ is nonnegative,

dTV(π, π̃) = E

∣∣∣∣∣ XEX − X̃

E X̃

∣∣∣∣∣ ≤ E

∣∣∣∣∣ XEX − X̃

EX

∣∣∣∣∣+ E

∣∣∣∣∣ X̃EX − X̃

E X̃

∣∣∣∣∣ ≤ 2
E |X − X̃|
|EX|

. (5.1)

We simplify the right-hand side using a lower bound on EX. By Lemma 5.2 and the
fact that the negative log-density of G is 1/η-strongly convex, we have that Ei∈I fi(z) ≥
Ex∼G Ei∈I fi(x)− 2G

√
η with probability ≥ 1− e−2. Hence, we have

EX = E
x∼G

exp(− E
i∈I

fi(x)) · E
z∼G

exp( E
i∈I

fi(z))

≥ exp(− E
x∼G

E
i∈I

fi(x)) · E
z∼G

exp( E
i∈I

fi(z))

= E
z∼G

exp( E
i∈I

fi(z)− E
x∼G

E
i∈I

fi(x))

≥ (1− e−2) exp(−2G
√
η).

Using η ≤ G−2/8, we have E[X] ≥ 2/3. From this inequality, (5.1), X = E(ρ|x), and

X̃ = E(ρ|x),

dTV(π, π̃) ≤ 3 · E |X − X̃| ≤ 3 · E(|ρ| · 1ρ/∈[0,2]).
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We split the ρ into two terms ρ≤L and ρ>L. The first term ρ≤L is the sum of all terms
added to ρ when α ≤ L (including the initial term 1). The second term ρ>L is the sum
when α > L. Hence, we have ρ = ρ>L + ρ≤L, so that

dTV(π, π̃) ≤ 3 · E(|ρ>L| · 1ρ/∈[0,2]) + 3 · E(|ρ≤L| · 1ρ/∈[0,2]). (5.2)

For the term ρ>L, by a calculation similar to Lemma 5.1,

E(|ρ>L| · 1ρ/∈[0,2]) ≤ E |ρ>L| ≤ E
x,z

Φ( E
i∈I
|fi(z)− fi(x)|),

where Φ(t) =
∑∞

α=L+1 t
α/α! is a power series in t with positive coefficients. By picking

L > C log(1/δinner) for some large constant C, we have Φ(t) ≤ δinner/16 for all |t| ≤ 1. Let
∆ be the random variable Ei∈I |fi(z)− fi(x)|, whose randomness comes from x and z. Then,

E(|ρ>L| · 1ρ/∈[0,2]) ≤
δinner

16
+ E e∆1∆≥1 ≤

δinner
16

+

∞∑
k=1

ek+1 Pr
x,z

(∆ ≥ k).

Let hx,z(t) := Pri∈I [|fi(z)− fi(x)| ≥ t]. Since each fi is G-Lipschitz, Lemma 5.2 shows
that

Pr
x,z

[|fi(z)− fi(x)| ≥ t] ≤ 4e−t2/(8ηG2),

which implies that

E
x,z

[hx,z(t)] = Pr
x,z,i

[|fi(z)− fi(x)| ≥ t] ≤ 4e−t2/(8ηG2).

By Markov’s inequality, for any k > 0,

Pr
x,z

[hx,z(t) ≥ e−k] ≤ 4ek−t2/(8ηG2).

As |fi(z)− fi(x)| ≤ G∥x− z∥2, if hx,z(t) = Pri∈I [|fi(z)− fi(x)| ≥ t] ≤ e−t2/(16ηG2), we know

E
i∈I
|fi(z)− fi(x)| ≤ t+ e−t2/(16ηG2) ·G∥x− z∥2.

Hence, one has

Pr
x,z

[
E
i∈I
|fi(z)− fi(x)| ≥ t+ e−t2/(16ηG2)G∥x− z∥2

]
≤ Pr

x,z
[hx,z(t) ≥ e−t2/(16ηG2)]

≤ 4e−t2/(16ηG2).

By Gaussian concentration,

Pr
x,z

[∥x− z∥2 ≥ t] ≤ Pr
x,z

[∥x− Ex∥2 ≥ t/2 or ∥z − E z∥ ≥ t/2] ≤ 2e−t2/(8η).
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Thus,

Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ 2t]

= Prx,z[ E
i∈I
|fi(z)− fi(x)| ≥ 2t, ∥x− z∥2 ≥ t/G]

+ Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ 2t, ∥x− z∥2 < t/G]

≤ 2e−t2/(8G2η) + Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ 2t, ∥x− z∥2 < t/G]

≤ 2e−t2/(8G2η) + Pr
x,z

[ E
i∈I
|fi(z)− fi(x)| ≥ t+ e−t2/(16ηG2)G∥x− z∥2]

≤ 6e−t2/(16ηG2).

Hence, we have Pr(∆ ≥ k) ≤ 6 exp(−k2/(64G2η)) and

E(|ρ>L| · 1ρ/∈[0,2]) ≤
δinner

16
+ 17

∞∑
k=1

e
k− k2

64G2η ≤ δinner
9

, (5.3)

where we used η ≤ 2−6G−2/ log(400/δinner) at the end.
As for the term ρ≤L,

E(|ρ≤L| · 1ρ/∈[0,2]) = E(|ρ≤L| · 1ρ/∈[0,2] · 1|ρ≤L|≤2L) + E(|ρ≤L| · 1ρ/∈[0,2] · 1|ρ≤L|≥2L)

≤ Pr[ρ /∈ [0, 2]] · 2L +
∞∑
k=1

2(k+1)L Pr(|ρ≤L| ≥ 2kL). (5.4)

Note that the term ρ≤L involves only fewer than L2/2 many fi(x) and fi(z). Lemma
5.2 shows that for any i,

Pr
x∼G

(|fi(x)− E
x∼G

fi(x)| ≥ t) ≤ 2e−t2/(2ηG2).

By the union bound,

Pr
x,z∼G

(|fi(x)− fi(z)| ≥ 1

4
2k for any such i) ≤ L2 exp(−4k/32ηG2).

Under the event that |fi(x)− fi(z)| ≤ 2k/3 for all i appears in ρ≤L,

|ρ≤L| ≤ 1 +
L∑

α=1

Πα
i=1|fji,α(z)− fji,α(x)| ≤ 1 +

L∑
α=1

(
2k

3
)α ≤ 2kL.

Therefore, Pr(|ρ≤L| > 2kL) ≤ L2 exp(−4k/32ηG2) and
∞∑
k=1

2(k+1)L Pr(|ρ≤L| > 2kL) ≤
∞∑
k=1

2(k+1)LL2 exp(− 4k

32ηG2
) ≤

∞∑
k=1

24kL exp(− 4k

32ηG2
).

Picking η ≤ 2−8G−2L−1,
∞∑
k=1

2(k+1)L Pr(|ρ≤L| > 2kL) ≤
∞∑
k=1

24kL exp(−2 · 4kL) ≤
∞∑
k=1

2−kL ≤ δinner
9

(5.5)

by picking L > C log(1/δinner) for large enough C.
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It remains to bound the term Pr[ρ /∈ [0, 2]] · 2L. We know the probability the algorithm
enters the (L+ 1)-th phase is at most 1/L!. Hence we know Pr[ρ /∈ [0, 2]] ≤ 1/L! + Pr[ρ≤L /∈
[0, 2]]. Similarly, by Gaussian Concentration and union bound, we have

Pr
x,z∼G

(|fi(x)− fi(z)| ≥ 1/2 for any such i) ≤ L2 exp(− 1

8ηG2
).

Under the event that |fi(x)− fi(z)| ≤ 1/2 for all i appears in ρ≤L,

1−
L∑

α=1

Πα
i=1|fji,α(z)− fji,α(x)| ≤ ρ≤L ≤ 1 +

L∑
α=1

Πα
i=1|fji,α(z)− fji,α(x)|,

which implies 0 ≤ ρ≤L ≤ 2. Then we know Pr[ρ≤L /∈ [0, 2]] ≤ L2 exp(−1/8ηG2). By our
setting of parameters and that L = C log(1/δinner) for some large constant C, we know

Pr[ρ /∈ [0, 2]] · 2L ≤ 2L(L2 exp(− 1

8ηG2
) +

1

L!
) ≤ δinner

9
. (5.6)

Combining (5.2), (5.3), (5.4), (5.5) and (5.6), we have the result that dTV(π, π̃) ≤ δinner.
Finally, the acceptance probability is given by E X̃/2 and E X̃ ≥ EX − E |X − X̃| ≥

2/3− δinner/3 ≥ 1/3. Hence, the number of accesses is O(1).

Combining Theorem 5.2 and Lemma 5.3, we have the following result:

Theorem 5.3. Let ψ(x) be a µ-strongly convex function defined on a convex set K ⊆ Rd

and defined to be +∞ outside. Assume given a family of G-Lipschitz convex functions

{fi(x)}i∈I defined on K. Define the function F̂ (x) = Ei∈I fi(x) + ψ(x) and the distance

D = ∥x0 − x∗∥2 for some x∗ = arg minx F̂ (x). For any δ ∈ (0, 1/2), if we can get samples
from exp(−ψ(x)− ∥x− y∥22/2η) for any y ∈ Rd and η > 0, we can find a random point x

that has δ total variation distance to the distribution proportional to exp(−F̂ (x)) in

T := Θ(
G2

µ
log2(

G2(d/µ+D2)

δ
))

steps. Furthermore, each steps accesses only O(1) many fi(x) in expectation and samples
from exp(−ψ(x)− ∥x− y∥22/2η for O(1) many y with η = Θ(G−2/ log(T/δ)).

Proof. This follows from applying Lemma 5.3 to implement Line 4. Note that the distribution
implemented has total variation distance δinner to the required one. By setting δinner =
δ/(2T ), this only gives an extra δ/2 error in total variation distance. Finally, setting η =
Θ(G−2/ log(1/δinner)), Theorem 5.2 shows that Algorithm 2 outputs the correct distribution
up to δ/2 error in total variation distance. This gives the result.

In the most important case of interest when ψ(x) is ℓ22 regularizer, one can see
exp(−ψ(x)− ∥x− y∥22/2η) is a truncated Gaussian distribution, and there are many results
on how to sample from truncated Gaussian, e.g. [KD99]. For more general case, there
are also efficient algorithms to do the sampling, such as projected Langevin Monte Carlo
[BEL18]. In fact, our sampling scheme matches the information-theoretical lower bound on
the value query complexity up to some logarithmic terms, which can be reduced from the
result in [DJWW15] with some modifications. See Section 7 for more detailed discussion.
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6. DP Convex Optimization

In this section we present our results about DP-ERM and DP-SCO.

6.1. DP-ERM. In this subsection, we state our result for the DP-ERM problem (1.3).
Briefly, our main result (Theorem 2.1) shows that sampling from exp(−kF (x;D)) for some
appropriately chosen k is (ε, δ)-DP and achieves the optimal empirical risk in (1.4). Our
sampling scheme in Section 5 provides an efficient implementation. We start with the
following lemma which shows the utility guarantee for the sampling mechanism.

Lemma 6.1 (Utility Guarantee, [DKL18, Corollary 1]). Suppose k > 0 and F is a convex
function over the convex set K ⊆ Rd. If we sample x according to distribution ν whose
density is proportional to exp(−kF (x)), then we have

E
ν
[F (x)] ≤ min

x∈K
F (x) +

d

k
.

This is first shown by [KV06] for any linear function F , and [BST14] extends it to any
convex function F , but with a slightly worse constant.

Theorem 6.2 (DP-ERM). Suppose that ε > 0, that K ⊆ Rd is a convex set of diameter
D, and that {f(·; s)}s∈D is a family of convex functions over K such that f(·; s) − f(·; s′)
is G-Lipschitz for all s, s′. For any data-set D and k > 0, sampling x(priv) with probability
proportional to exp

(
−k(F (x;D) + µ∥x∥22/2)

)
is (ε, δ(ε))-differentially private, where

δ(ε) ≤ δ

(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

The excess empirical risk is bounded by d/k + µD2/2. Moreover, if {f(·, s)}s∈D are µ-

strongly convex, then sampling x(priv) with probability proportional to exp(−kF (x;D)) is
(ε, δ(ε))-differentially private, where

δ(ε) ≤ δ

(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

The excess empirical risk is bounded by d/k.

Proof. The privacy guarantee follows directly from our main result Theorem 2.1, and the
bound on excess empirical loss can be proved by Lemma 6.1.

Before we state the implementation results on DP-ERM, we need the following technical
lemma.

Lemma 6.3. For any constants 1/2 > δ > 0 and ε > 0, if |s| ≤
√

2 log(1/(2δ)) + 2ε −√
2 log(1/(2δ)),

δ(N (0, 1) ∥ N (s, 1)) ≤ δ.

Proof. By Equation (3.1), we know that

δ(N (0, 1) ∥ N (s, 1))(ε) ≤ Φ
(
−ε
s

+
s

2

)
.

Without loss of generality, we assume s ≥ 0 and want to find an appropriate value of s such

that Φ (−ε/s+ s/2) leqδ. Let t
def
= Φ−1(1− δ) and since 1− Φ(t) ≤ exp(−t2/2)/2 for t > 0,
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we know that t ≤
√

2 log(1/(2δ)). It is equivalent to solve the equation eps/s − s/2 ≥ t,

which is equivalent to 0 ≤ s ≤
√
t2 + 2ε− t. Note that

√
t2 + 2ε− t decreases as t increases,

which implies that we can set s ≤
√

2 log(1/(2δ)) + 2ε−
√

2 log(1/(2δ)).

Combining the sampling scheme (Theorem 5.3) and our analysis on DP-ERM, we can
get the efficient implementation results on DP-ERM directly.

Theorem 6.4 (DP-ERM Implementation). Impose the assumptions of Theorem 6.2, and
assume f(·; s) is G-Lipschitz over K for all s. Then, for any constants δ ∈ (0, 1/10) and
ε > 0, there is an efficient sampler to solve DP-ERM that has the following guarantees:

• The scheme is (ε, δ)-differentially private;
• The expected excess empirical loss is bounded by

GD
√
d

n(
√

log(1/δ) + ε−
√

log(1/δ))
.

In particular, if ε < 1/10, the expected excess empirical loss is bounded by 2GD
√
d log(1/δ)/εn.

If ε ≥ log(1/δ), the expected excess empirical loss is bounded by O(GD
√
d/n
√
ε).

• The scheme takes

Θ

(
ε2n2

log(1/δ)
log2(

ndε

δ
)

)
queries to the values on f(x; s) in expectation and takes the same number of samples from
some Gaussian restricted to the convex set K.

Proof. By Lemma 6.3, we can set s =
√

2 log(3/(4δ)) + 2ε −
√

2 log(3/(4δ)) to make

δ(N (0, 1) ∥ N (s, 1)) ≤ 2δ/3. For our setting, Theorem 6.2 shows that s = G
√
k/n
√
µ,

and hence we can take

k =
2µn2

(√
log(3/(4δ)) + ε−

√
log(3/(4δ))

)2
G2

.

Putting this into the excess empirical loss bound of d/k + µD2/2 and setting

µ =
G
√
d

nD
(√

log(3/(4δ)) + ε−
√

log(3/(4δ))
) ,

we get the result on the empirical loss.
In particular, consider the case that ε < 1/10. We know the excess empirical loss is

bounded by GD
√
d/n

(√
log(3/(4δ)) + ε−

√
log(3/(4δ))

)
. Note that 1 + x/2 − x2/8 ≤

√
1 + x ≤ 1 + x/2 for x ≥ 0. Under the assumption that δ, ε ∈ (0, 1/10), we know

GD
√
d/n(

√
log(3/(4δ)) + ε −

√
log(3/(4δ))) ≤ 2GD

√
d log(4/(5δ))/nε. The case when

ε ≥ log(1/δ) follows similarly.
To make it algorithmic, we apply Theorem 5.3 with the accuracy on the total variation

distance to be min{δ/3, 1/cncε} for some sufficiently constant c. This leads to (ε, δ)-DP and
an extra empirical loss and hence we use log(1/δ) rather than log(3/(4δ)) or log(4/(5δ)) in
the final loss term.

The running time follows from Theorem 5.3.
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6.2. DP-SCO and Generalization Error. As mentioned before, one can reduce the DP-
SCO (1.5) to DP-ERM (1.3) by the iterative localization technique proposed by [FKT20]. But
this method forces us to design different algorithms for DP-ERM and DP-SCO, and may lead
to a large constant in the final loss. In this section, we show that the exponential mechanism
can achieve both the optimal empirical risk for DP-ERM and the optimal population loss for
DP-SCO by simply changing the parameters. The bound on the generalization error works
beyond differential privacy and can be useful for other (non-private) optimization settings.

The proof makes use of the Talagrand transportation inequality. Recall for two probability
distributions ν1, ν2, the Wasserstein distance is equivalently defined as

W2(ν1, ν2) = inf
Γ

(
E

(x1,x2)∼Γ
∥x1 − x2∥22

)1/2

,

where the infimum is over all couplings Γ of ν1, ν2.

Theorem 6.5 (Talagrand transportation inequality). [OV00, Theorem 1] Let dπ ∝ e−F (x)dx
be a µ-strongly log-concave probability measure on K ⊆ Rd with finite moments of order 2.
For all probability measure ν absolutely continuous with respect to π and with finite moments
of order 2,

W2(ν, π) ≤
√

2

µ
DKL(ν, π).

To prove our main result on bounding the generalization error of sampling mechanism,
we need the following lemma.

Lemma 6.6 (Lemma 7 in [BE02]). For any learning algorithm A and dataset D =
{s1, · · · , sn} drawn i.i.d from the underlying distribution P , let D′ be a neighboring dataset
formed by replacing a random element of D with a freshly sampled s′ ∼ P. If A(D) is the
output of A with D, then

E
D

[F̂ (A(D))− F (A(D);D)] = E
D,s′∼P,A

[
f(A(D); s′)− f(A(D′); s′)

]
.

Now state and prove our main result on the generalization error.

Theorem 6.7. Suppose {f(·, s)} is a family µ-strongly convex functions over K such that
f(x; s)− f(x; s′) is G-Lipschitz for all s, s′. For any k > 0 and dataset D = {s1, s2, · · · , sn}
drawn i.i.d from the underlying distribution P, let D′ be a neighboring dataset formed by
replacing a random element of D with a freshly sampled s′ ∼ P,

W2(πD, πD′) ≤ G

nµ
.

If we sample our solution from density πD(x) ∝ e−kF (x;D), we can bound the excess population
loss as:

E
D,x∼πD

[F̂ (x)]−min
x∈K

F̂ (x) ≤ G2

µn
+
d

k
.

Proof. Recall that

F (x;D) =
1

n

∑
si∈D

f(x; si).



REGULARIZED EXPONENTIAL MECHANISM 23

We form a neighboring data set D′ by replacing a random element of D by a freshly sampled
s′ ∼ P . Let πD ∝ e−kF (x;D) and πD′ ∝ e−kF (x;D′). By Corollary 4.3, we have

DKL(πD, πD′) ≤ G2k

2n2µ
.

By the assumptions, we know both F (x;D) and F (x;D′) are µ-strongly convex and by
Theorem 6.5, we have

W2(πD, πD′) ≤
√

2

kµ
DKL(πD, πD′) ≤ G

nµ
.

By Lemma 6.6 and properties of Wasserstein distance, we have

E
D,x∼πD

[F̂ (x)− F (x;D)] = E
D,s′∼P

[
E

x∼πD
f(x; s′)− E

x′∼πD′
f(x′; s′)

]
= E

D,s′∼P

[
E

x∼πD

[
f(x; s′)− f(x; s′′)

]
− E

x′∼πD′

[
f(x′; s′)− f(x′; s′′)

]]
(where s′′ is chosen arbitrarily; note that ED,x∼πD [f(x; s′′)] = ED′,x′∼πD′ [f(x′; s′′)])

≤ G ·W2(πD, πD′) (f(·; s′)− f(·; s′′) is G-Lipschitz)

≤ G2

nµ
.

Hence,

E
D,x∼πD

[F̂ (x)]−min
x∈K

F̂ (x) ≤ E
D,x∼πD

[F̂ (x)]− E
D

[min
x∈K

F (x;D)]

≤ E
D,x∼πD

[F̂ (x)− F (x;D)] + E
D,x∼πD

[F (x;D)−min
x∈K

F (x;D)]

≤ G2

nµ
+ E

D,x∼πD
[F (x;D)−min

x∈K
F (x;D)]

≤ G2

nµ
+
d

k
,

where the last inequality follows from Lemma 6.1.

With the bounds on generalization error, we can get our first result on DP-SCO.

Theorem 6.8 (DP-SCO). Let ε > 0, K ⊆ Rd be a convex set of diameter D and {f(·; s)}s∈D
be a family of convex functions over K such that f(·; s) − f(·; s′) is G-Lipschitz for all

s, s′. For any data-set D and k > 0, sampling x(priv) with probability proportional to
exp

(
−k(F (x;D) + µ∥x∥22/2)

)
is (ε, δ(ε))-differentially private, where

δ(ε) ≤ δ

(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).

If users in the dataset D are drawn i.i.d. from the underlying distribution P, the excess
population loss is bounded by G/nµ+ d/k+ µD2/2. Moreover, if {f(·; s)}s∈D are µ-strongly

convex, then sampling x(priv) with probability proportional to exp(−kF (x;D)) is (ε, δ(ε))-
differentially private where

δ(ε) ≤ δ

(
N (0, 1)

∥∥∥∥∥ N
(
G
√
k

n
√
µ
, 1

))
(ε).



24 S. GOPI, Y. LEE, AND D. LIU

The excess population loss is bounded by G/nµ+ d/k.

Proof. The first part about privacy is a restatement of our result on DP-ERM (Theorem 6.4).
The excess population loss (See Equation (1.6)) follows from the bound on generalization
error (Theorem 6.7) and utility guarantee (Lemma 6.1).

We give an implementation result of our DP-SCO result.

Theorem 6.9 (DP-SCO Implementation). With same assumptions in Theorem 6.8, and
assume f(·; s) is G-Lipschitz over K for all s. For 0 < δ < 1/10 and 0 < ε < 1/10, there is
an efficient algorithm to solve DP-SCO that has the following guarantees:

• The algorithm is (ε, δ)-differentially private;
• The expected population loss is bounded by

GD

(
2
√

log(1/δ)d

εn
+

2√
n

)
,

where c > 0 is an arbitrary constant to be chosen.
• The algorithm takes

O

(
min

{
ε2n2

log(1/δ)
, nd

}
log2

(
εnd

δ

))
queries of the values of f(·, si) in expectation and takes the same number of samples from
some Gaussian restricted to the convex set K.

Remark 6.10. As for the non-typical case when ε ≥ 1/10, one can use the bound in
Theorem 6.4 and the bound on generalization error (Theorem 6.7) . Particularly, one can
achieve expected population loss

O

(
GD

( √
d/n√

log(1/δ) + ε−
√

log(1/δ)
+

1√
n

))
.

Proof. By Theorem 6.8, when k ≤ ε2n2µ//2G2 log(3/(4δ)), sampling from exp(−k(F (x;D)+
µ∥x∥22/2)) is (ε, 2δ/3)-DP.

In addition, we can set k = µ
G2 min{ε2n2/2 log(3/(4δ)), 2nd} for anarbitrarily large

constant c > 0 to make the mechanism (ε, 2δ/3)-differentially private, achieving tight
population loss and decreasing the running time. Then the population loss is bounded above
by

d

k
+
µD2

2
+
G2

µn
=
G2

µ
max

{
2 log(3/(4δ))d

ε2n2
,

1

2n

}
+
µD2

2
+
G2

µn
.

By setting

µ =
G

D

√
2(

2 log(3/(4δ))d

ε2n2
+

1

2n
),

the population loss is bounded above by

GD

√
4 log(3/(4δ))d

ε2n2
+

1

n
+GD

√
1

n
≤ GD

(
2
√

log(3/(4δ))d

εn
+

2√
n

)
.

To make the process algorithmic, we also apply Theorem 5.3 with the accuracy on the
total variation distance to be min{δ/3, 1/cnc} for some large enough constant c. This leads



REGULARIZED EXPONENTIAL MECHANISM 25

to an extra empirical loss, and hence we use log(1/δ) rather than log(3/(4δ)) in the final
loss term. The runtime follows from Theorem 5.3.

7. Information-theoretic Lower Bound for DP-SCO

In this section, we prove an information-theoretic lower bound for the query complexity
required for DP-SCO (with value queries), which matches (up to logarithmic terms) the
query complexity achieved by our algorithm (in Theorem 6.9). Our proof is similar to the
previous works such as [ACCD12, DJWW15], but with some modifications.

Before stating the lower bound, we define additional notations. Recall that we are given
a set D of n samples (users) {s1, · · · , sn}. Let Ak be the collection of all algorithms that
observe a sequence of k data points (Y 1, · · · , Y k) with Y t = f(Xt;St), where St ∈ D and
Xt ∈ K are chosen arbitrarily and adaptively by the algorithm (and possibly introducing
randomness).

For the lower bound, we only consider linear functions, that is, we define f(x; s)
def
= ⟨x, s⟩.

Let PG be the collection of all distributions such that if P ∈ PG, then Es∼P ∥s∥22 ≤ G2, and
define the optimality gap

εk(A,P,K)
def
= E

D∼Pn,A
[F̂ (x̂(D))]− inf

x∈K
F̂ (x),

where F̂ (x) = Es∼P f(x; s), x̂ is the output the algorithm A given the input dataset D and
the expectation is over the dataset D ∼ Pn and the randomness of the algorithm A. Note
that we can rewrite the optimality gap as:

εk(A,P,K) = E
D∼Pn,A

[F̂ (x̂(D))]− inf
x∈K

F̂ (x)

= E
s∼P

[
E

D∼Pn,A
f(x̂(D); s)]

]
− inf

x∈K
E

s∼P
[f(x; s)]

= E
s∼P,D∼Pn,A

[x̂(D)⊤s]− inf
x∈K

E
s∼P

[x⊤s].

The minimax error is defined by

ε∗k(PG,K)
def
= inf

A∈Ak

sup
P∈PG

εk(A,P,K).

Theorem 7.1. Let K be the ℓ2 ball of diameter D in Rd, then

ε∗k(PG,K) ≥ GD

16
min

{
1,

√
d

4k

}
.

In particular, for any (randomized) algorithm A that can observe a sequence of data points
(Y 1, · · · , Y k) with Y t = f(Xt;St) where St ∈ D = {s1, s2, . . . , sn} and Xt ∈ K are chosen
arbitrarily and adaptively by A, there exists a distribution P over convex functions such that
Es∼P [∥∇f(x, s)∥22] ≤ G2 for all x ∈ K, such that the output x̂ of the algorithm satisfies

E
s∼P

[
E

D∼Pn,A
f(x̂; s)]

]
−min

x∈K
E

s∼P
[f(x; s)] ≥ GD

16
min

{
1,

√
d

4k

}
.
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7.1. Proof of Theorem 7.1. We reduce the optimization problem into a series of binary

hypothesis tests. Recall we are considering linear functions f(x; s)
def
= ⟨x, s⟩. Let V = {−1, 1}d

be a Boolean hypercube and for each v ∈ V , let Nv = N (δv, σ2Id) be a Gaussian distribution

for parameters to be chosen such that F̂v(x)
def
= Es∼Nv [f(x; s)] = δ⟨x, v⟩. Note that

E
s∼Nv

[∥∇f(x, s)∥22] = E
s∼Nv

[∥s∥22] = (δ2 + σ2)d.

Therefore G =
√
d(δ2 + σ2).

Clearly the lower bound should scale linearly with D. Therefore without loss of generality,
we can assume that the diameter D = 2 and define K = {x ∈ Rd : ∥x∥2 ≤ 1} to be the unit
ball. As in [ACCD12], we suppose that v is uniformly sampled from V = {−1, 1}d. Note

that if we can find a good solution to F̂v(x), we need to determine the signs of vector v well.
In particular, we have the following claim.

Claim 7.2 ([DJWW15]). For each v ∈ V, let xv minimize F̂v over K and note that that

xv = −v/
√
d. For any solution x̂ ∈ Rd, we have

F̂v(x̂)− F̂v(xv) ≥ δ

2
√
d

d∑
j=1

1{sign(x̂j) ̸= sign(xvj )},

where the function sign(·) is defined as:

sign(x̂j) =

 + if x̂j > 0
0 if x̂j = 0
− otherwise

Claim 7.2 provides a method to lower bound the minimax error. Specifically, we define
the hamming distance between any two vectors x, y ∈ Rd as dH(x, y) =

∑
j=1 1{sign(xj) ̸=

sign(yj)}, and we have

ε∗k(PG,K) ≥ δ

2
√
d
{inf

v̂
E[dH(v̂, v)]}, (7.1)

where v̂ denotes the output of any algorithm mapping from the observation (Y 1, · · · , Y k)
to {−1, 1}d, and the probability is taken over the distribution of the underlying v, the
observation (Y 1, · · · , Y k) and any additional randomness in the algorithm.

By Equation (7.1), it suffices to lower bound the value of the testing error E[dH(v̂, v)].
As discussed in [ACCD12, DJWW15], the randomness in the algorithm cannot help, and
we can assume the algorithm is deterministic, i.e., (Xt, St) is a deterministic function of

Y [t−1].7 The argument is basically based on the easy direction of Yao’s principle.
Now we continue our proof of the lower bound. We will make use of the property of the

Bayes risk.

Lemma 7.3 ([ACCD12, Lemma 1]). Consider the problem of testing hypothesis H−1 : v ∼
P−1 and H1 : v ∼ P1, where H−1 and H1 occur with prior probability π−1 and π1

def
= 1− π−1

respectively. For any algorithm that takes one sample v and outputs î : v → {−1, 1}, we
define the Bayes risk B be the minimum average probability that algorithm fails (v is not

7We use Y [t] to denote the first t observations, i.e., (Y 1, · · · , Y t)
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sampled from Hî(v)). That is, B = inf î π−1 Pr[̂i(v) = 1 | v ∼ P−1] + π1 Pr[̂i(v) = 0 | v ∼ P1].

Then, we have

B ≥ min(π−1, π1)(1− ∥P1 − P−1∥TV).

Lemma 7.4. Suppose that v is uniformly sampled from V = {−1, 1}d. Then any estimator
v̂ obeys

E[dH(v̂, v)] ≥ d

2

(
1− δ

√
k

σ
√
d

)
.

Proof. Let π−1 = π1 = 1/2. For each j, define P−1,j = P(Y [k] | vj = −1) and P1,j = P(Y [k] |
vj = 1) to be distributions over the observations (Y 1, · · · , Y k) conditional on vj ̸= 1 and
vj = 1 respectively. Let Bj be the Bayes risk of the decision problem for j-th coordinate of
v between H−1,j : vj = −1 and H1,j : vj = 1. We have that

E[dH(v̂, v)] ≥
d∑

j=1

Bj

≥π1
d∑

j=1

(1− ∥P1,j − P−1,j∥TV)

≥d
2

1− 1√
d

√√√√ d∑
j=1

∥P1,j − P−1,j∥2TV

 ,

where the first inequality follows from the definition of Bayes risk, the second inequality
follows by Lemma 7.3, and the last inequality follows by the Cauchy-Schwartz inequality.

To complete the proof, it suffices to show that

d∑
j=1

∥P1,j − P−1,j∥2TV ≤
δ2

σ2
k, (7.2)

which will be established later. Assuming Equation (7.2) to hold,

E[dH(v̂, v)] ≥ d

2
(1− δ

√
k

σ
√
d

).

We will complete the proof of Lemma 7.4 by showing the following boundon total
variation distance.

Claim 7.5.
d∑

j=1

∥P1,j − P−1,j∥2TV ≤
δ2

σ2
k.

Proof. Applying Pinsker’s inequality, we know ∥P1,j − P−1,j∥2TV ≤
1
2DKL(P−1,j∥P1,j). To

bound the KL divergence between P−1,j and P1,j over all possible Y [k], consider v′ =
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(v1, · · · , vj−1, vj+1, · · · , vd), and define P−1,j,v′(Y
[k])

def
= P(Y [k] | vj = −1, v′) to be the

distribution conditional on vj = −1 and v′. We have

P−1,j(Y
[k]) =

∑
v′

Pr[v′]P−1,j,v′(Y
[k]).

Convexity of the KL divergence suggests that

DKL(P−1,j∥P1,j) ≤
∑
v′

Pr[v′]DKL(P−1,j,v′∥P1,j,v′).

Fixing any possible v′, we want to bound the KL divergence DKL(P−1,j,v′∥P1,j,v′).
Recall that we are considering deterministic algorithms and (Xt, St) is a deterministic

function of Y [t−1]. Let Qi ∈ Rd×k be a (random) matrix, which records the set of points the
algorithm queries for the user si. Specifically, for t-th step, if the algorithm queries (Xt, St),
then Qt

i = Xt if St = si, otherwise Qt
i = 0, where Qt

i is the t-th column of Qi.
Because we are considering linear functions, without loss of generality we can assume

⟨Qj
i , Q

j′

i ⟩ = 0 for each i and any j ≠ j′, and ∥Qt
i∥2 ∈ {0, 1} for any i and t. We name this

assumption Orthogonal Query. Roughly speaking, for any algorithm, we can modify it to
satisfy the Orthogonal Query. Whenever the algorithm wants to query some point, we
can use Gram–Schmidt process to query another point and satisfy Orthogonal Query, and
recover the function value at the original point queried by the algorithm.

By the chain rule of KL-divergence, if we define P−1,j,v′(Y
t | Y [t−1]) to be the distribution

of tth observation Y t conditional on v′, vj = −1 and Y [t−1], then

DKL(P−1,j,v′∥P1,j,v′)

=

k∑
t=1

∫
Yt−1

DKL(P−1,j,v′(Y
t | Y [t−1] = y)∥P1,j,v′(Y

t | Y [t−1] = y)dP−1,j,v′(y).

Fix Y [t−1] such that Y [t−1] = y. Since the algorithm is deterministic and (Xt, St) is

fixed given Y [t−1], let St = si so Xt = Qt
i.

Note that the n users in D are i.i.d. sampled. Then DKL(P−1,j,v′(Y
t | Y [t−1] =

y)∥P1,j,v′(Y
t | Y [t−1] = y) only depends on the randomness of si and the first t columns of

Qi, which is denoted by Q
[t]
i . We use Y t

j to denote the observation corresponding to user

sj for the tth query (if St ̸= sj , we have Y t
j = 0). Note that the observation Y

[t]
i = Q

[t]⊤
i si

where si ∼ N (δv, σ2Id). Then we know Y
[t]
i is normally distributed with mean δQ

[t]⊤
i v and

covariance σ2Q
[t]⊤
i Q

[t]
i .

Recall that the KL divergence between normal distributions is DKL(N (µ1,Σ)∥N (µ2,Σ)) =

(µ1 − µ2)⊤Σ−1(µ1 − µ2)/2. By the Orthogonal Query assumption, Q
[t]⊤
i Q

[t]
i ∈ {0, 1}t×t is a

diagonal matrix. By the nature of conditional distributions of Gaussian distributions, we

know that Y t
i only depends on the Qt

i and it is independent of Q
[t−1]
i . Hence

DKL(P−1,j,v′(Y
t | Y [t−1] = y)∥P1,j,v′(Y

t | Y [t−1] = y))

= DKL(P−1,j,v′(Y
t
i | Y [t−1] = y)∥P1,j,v′(Y

t
i | Y [t−1] = y))

=
1

2
(2δQt

i(j))
2/σ2,
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where Qt
i(j) is the j-th coordinate of Qt

i. Summing over the terms,

d∑
j=1

∥P1,j − P−1,j∥2TV ≤
1

2
DKL(P−1,j∥P1,j)

≤1

2

k∑
t=1

d∑
j=1

n∑
i=1

E[
1

2
(2δQt

i(j))
2/σ2]

≤ δ
2

σ2
k,

where the last line follows from the fact that for each t,
∑n

i=1 ∥Qt
i∥22 =

∑n
i=1

∑d
j=1(Qt

i(j))
2 = 1

since we only query one user for t-th step.

Having Lemma 7.4, we can complete the proof of Theorem 7.1.

Proof. of Theorem 7.1. As discussed before,

F̂v(x̂)− F̂v(xv) ≥ δ

2
√
d

d∑
j=1

1{sign(x̂j) ̸= sign(xvj )},

and hence

ε∗k(PG,K) ≥ δ

2
√
d

inf
v̂
E[dH(v̂, v)]

≥δ
√
d

4

(
1− δ

√
k

σ
√
d

)
,

where the last line follows from Lemma 7.4. We now set δ = σ
√
d/2
√
k and σ =

G/
√
d+ d2/4k, so that d(σ2 + δ2) = G2. Therefore,

ε∗k(PG,K) ≥ δ
√
d

8
=
Dδ
√
d

16
=

GD

16
√

1 + 4k
d

≥ GD

16
min

{
1,

√
d

4k

}
.

Corollary 7.6 (Lower bound for DP-SCO). For any (non-private) algorithm which makes less
than O

(
min{ε2n2/ log(1/δ), nd}

)
function value queries, there exist a convex domain K ⊂ Rd

of diameter D, a distribution P supported on G-Lipschitz linear functions f(·; s) def
= ⟨x, s⟩,

such that the output x̂ of the algorithm satisfies

E
s∼P

[⟨x̂, s⟩]−min
x∈K

E
s∼P

[⟨x, s⟩] ≥ Ω

(
GD√

1 + log(n)/d
·min

{√
log(1/δ)d

εn
+

1√
n
, 1

})
.

Proof. Note that Theorem 7.1 almost gives us what we want, except that the Lipschitz
constant of the functions in the hard distribution is bounded only on average by G. To get
distributions over G-Lipschitz functions, we just condition on the bad event not happening.

Recall that we are considering the set of distributions Nv = N (δv, σ2Id) for which

Es∼Nv ∥s∥22 ≤ G2 = d(δ2 +σ2). And we proved that infA∈Ak
supv∈V Es∼Nv ,A[F̂v(x̂k)− F̂ ∗

v ] ≥
(GD/16) min

{
1,
√
d/4k

}
in Theorem 7.1, where x̂k is the output of A with k observations
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Y [k]. To prove Corollary 7.6, we need to modify the distribution of s to satisfy the Lipschitz
continuity.

In particular, for some constant c,

E[F̂v(x̂k)− F̂ ∗
v ]

= E
[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
∥si∥2 ≤ cG

√
1 + log(nd)/d

]
Pr
[

max
si∈D
∥si∥2 ≤ cG

√
1 + log(nd)/d

]
+ E

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
∥si∥2 > cG

√
1 + log(nd)/d

]
Pr
[

max
si∈D
∥si∥2 > cG

√
1 + log(nd)/d

]
.

By the concentration of spherical Gaussians, if s ∼ N (δv, σ2Id), then

Pr
[
∥s− δv∥22 ≤ σ2d(1 + 2

√
ln(1/η)/d+ 2 ln(1/η)/d)

]
≥ 1− η.

We can choose the constant c large enough, such that Pr[maxsi∈D ∥si∥2 ≤ cG
√

1 + log(nd)/d] ≥
1− 1/ poly(nd), which implies that

inf
A∈Ak

sup
v∈V

E
D∼Nn

v ,A

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
∥si∥2 ≤ cG

√
1 + log(nd)/d

]
≥ Ω(GD

min{
√
d,
√
k}√

k
).

If we use the distributions conditioned on maxsi∈D ∥si∥2 ≤ cG
√

1 + log(nd)/d rather than
the Gaussians, and scale the constant to satisfy the assumption on Lipschitz continuity, we
can prove the statement. Particularly, let G′ = cG(

√
1 + log(nd)/d). If the algorithm can

only make k = O
(
min{[ε2n2/ log(1/δ)], nd}

)
observations, then

inf
A∈Ak

sup
v∈V

E
D∼Nn

v ,A

[
F̂v(x̂k)− F̂ ∗

v | max
si∈D
∥si∥2 ≤ G′

]
≥ Ω

(
GD ·min

{
(

√
log(1/δ)d

εn
+

1√
n

), 1

})

= Ω

(
G′D√

1 + log(nd)/d
·min

{√
log(1/δ)d

εn
+

1√
n
, 1

})
,

which proves the lower bound claimed in the Corollary statement.

Corollary 7.7 (Lower bound for sampling scheme). Given any G > 0 and µ > 0. For
any algorithm which takes function values queries less than O

(
(G2/µ)(1 + log(G2/µ)/d)

)
times, there is a family of G-Lipschitz linear functions {fi(x)}i∈I defined on some ℓ2 ball
K ⊂ Rd, such that the total variation distance between the distribution of the output of
the algorithm and the distribution proportional to exp(−Ei∈I fi(x)− µ∥x∥2/2) is at least

min(1/2,
√
dµ/G2).

Proof. As shown in [DJWW15], and similar to Corollary 7.6, for any algorithm which can
only make k observations, there are a family of G-Lipschitz linear functions restricted on an
ℓ2 ball K of diameter D centered at 0 such that

E
[
F̂v(x̂k)− F̂ ∗

v

]
≥Ω

(
GD√

1 + log(k)/d
·min

{√
d

k
, 1

})
, (7.3)

where F̂ ∗
v = minx∈K F̂v(x) and x̂k ∈ K is the output of A.
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Suppose we have a sampling algorithm that takes k queries. We use it to sample from
x(sol) proportional to p(x) := exp(−F̂v(x)−mu∥x∥2/2) on K with total variation distance

η ≤ min(1/2,
√
dµ/G2).

Lemma 6.1 shows that

E[F̂v(x(sol)) +
µ

2
∥x(sol)∥2] ≤ min

x∈K

(
F̂v(x) +

µ

2
∥x∥2

)
+O(d) +O(η) · (GD + µD2),

where the last term involving η is due to the total variation distance between x(sol) and p.
Setting D =

√
d/µ and using the diameter of K is D and η ≤ min(1/2,

√
dµ/G2), we have

E[F̂v(x(sol))] ≤ min
x∈K

F̂v(x) +
µ

2
D2 +O(d+ η · (GD + µD2))

≤ min
x∈K

F̂v(x) +O(d).

Note that we set D =
√
d/µ. Comparing with (7.3), we have

G
√
d/µ√

1 + log(k)/d
min

{√
d

k
, 1

}
≤ O(d).

If d ≤ G2/µ ≤ exp(d), we have

G
√
d/µ

√
d

k
≤ O(d)

and hence k = Ω(G2/µ). If G2/µ ≥ exp(d), we have

G
√
d/µ√

log(k)/d

√
d

k
≤ O(d)

and hence k = Ω((G2d/µ) log(G2/µ)). If G2/µ ≤ d, we can construct our function only on
the first O(G2/µ) dimensions to get a lower bound k = Ω(G2/µ). Combining all cases gives
the result.
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Rényi divergence analysis of discretized Langevin MCMC. Advances in Neural
Information Processing Systems, 33:7222–7233, 2020.

[GTU22] Arun Ganesh, Abhradeep Thakurta, and Jalaj Upadhyay. Langevin diffusion:
An almost universal algorithm for private Euclidean (convex) optimization.
arXiv preprint arXiv:2204.01585, 2022.

[HK12] Zhiyi Huang and Sampath Kannan. The exponential mechanism for social
welfare: Private, truthful, and nearly optimal. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 140–149. IEEE, 2012.

[HRS16] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better:
Stability of stochastic gradient descent. In International Conference on Machine
Learning, pages 1225–1234. PMLR, 2016.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In
Proceedings of the Forty-second ACM Symposium on Theory of Computing,
pages 705–714, 2010.

[INS+19] Roger Iyengar, Joseph P Near, Dawn Song, Om Thakkar, Abhradeep Thakurta,
and Lun Wang. Towards practical differentially private convex optimization.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 299–316. IEEE,
2019.

[JLLV21] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Reducing isotropy
and volume to KLS: an o(n3ψ2) volume algorithm. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 961–974,
2021.

[JT14] Prateek Jain and Abhradeep Guha Thakurta. (Near) dimension independent
risk bounds for differentially private learning. In International Conference on
Machine Learning, pages 476–484. PMLR, 2014.

[KCK+18] Yu-Hsuan Kuo, Cho-Chun Chiu, Daniel Kifer, Michael Hay, and Ashwin
Machanavajjhala. Differentially private hierarchical count-of-counts histograms.
Proceedings of the VLDB Endowment, 11(11), 2018.

[KD99] Jayesh H Kotecha and Petar M Djuric. Gibbs sampling approach for generation
of truncated multivariate Gaussian random variables. In 1999 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing. Proceedings.
ICASSP99 (Cat. No. 99CH36258), volume 3, pages 1757–1760. IEEE, 1999.

[KJ16] Shiva Prasad Kasiviswanathan and Hongxia Jin. Efficient private empirical risk
minimization for high-dimensional learning. In International Conference on



REGULARIZED EXPONENTIAL MECHANISM 35

Machine Learning, pages 488–497. PMLR, 2016.
[KLL21] Janardhan Kulkarni, Yin Tat Lee, and Daogao Liu. Private non-smooth ERM

and SCO in subquadratic steps. Advances in Neural Information Processing
Systems, 34, 2021.

[KT13] Michael Kapralov and Kunal Talwar. On differentially private low rank approx-
imation. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1395–1414. SIAM, 2013.

[KV06] Adam Tauman Kalai and Santosh Vempala. Simulated annealing for convex
optimization. Mathematics of Operations Research, 31(2):253–266, 2006.

[LC21] Jiaming Liang and Yongxin Chen. A proximal algorithm for sampling from
non-smooth potentials. arXiv preprint arXiv:2110.04597, 2021.

[Led99] Michel Ledoux. Concentration of measure and logarithmic Sobolev inequalities.
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