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Abstract. This paper explores analytical connections between the perturbation method-
ology of the Australian Bureau of Statistics (ABS) and the differential privacy (DP)
framework. We consider a single static counting query function and find the analytical
form of the perturbation distribution with symmetric support for the ABS perturbation
methodology. We then analytically measure the DP parameters, namely the (ε, δ) pair, for
the ABS perturbation methodology under this setting. The results and insights obtained
about the behaviour of (ε, δ) with respect to the perturbation support and variance are
used to judiciously select the variance of the perturbation distribution to give a good δ
in the DP framework for a given desired ε and perturbation support. Finally, we propose
a simple sampling scheme to implement the perturbation probability matrix in the ABS
Cellkey method. The post sampling (ε, δ) pair is numerically analysed as a function of the
Cellkey size. It is shown that the best results are obtained for a larger Cellkey size, because
the (ε, δ) pair post-sampling measures remain almost identical when we compare sampling
and theoretical results.

INTRODUCTION

The Australian Bureau of Statistics (ABS) is committed to improving access to ABS
statistics, while continuing to ensure privacy and confidentiality are maintained [ABS22].
The emergence of differential privacy (DP) methods provides opportunities to better quantify
the trade-off between statistical utility and confidentiality protection in statistical outputs.
As a result, the ABS is continuing to explore the opportunities offered by DP. This research
builds on [FW05,ML11] and [BC19], and seeks to enhance the perturbation methodology
in the ABS TableBuilder through the lens of DP. ABS perturbation methodology has two
components—an entropy maximisation method for generating the perturbation probability
transition matrix (or the perturbation table) and a cell key method to ensure consistent
protections for statistical outputs [FW05, ML11]. At a high level, this work improves
both components by first proposing an approach to incorporate the DP framework while
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creating the perturbation table and then developing a sampling scheme to make full use
of the perturbation table using a memory-efficient lookup table. Overall, this work offers
tools and insights for analytical quantification of DP measures for the ABS perturbation
methodology and improves its implementation efficiency. To the best of our knowledge,
this is the first attempt to quantify the connection between ABS perturbation methodology
design parameters and DP metrics in an analytical and provable format. In summary, the
design-focused approach in this paper makes it different from [BC19], which empirically
quantified the DP measures of the existing ABS perturbation methodology. We do not
propose to change the entropy maximisation framework of [FW05,ML11]. Instead, we
make the choice of its parameters relevant to DP through the analytical framework that we
introduce for the design of its probability transition matrix.

More specifically, our contributions include: (1) introducing a method to analytically
quantify the ϵ and δ DP parameters in the ABS perturbation methodology for a single
counting query with symmetric perturbation support; (2) developing an approach to in-
corporate the ϵ DP parameter and the symmetric support of the distribution into the
entropy maximisation process; (3) showing the importance of carefully choosing the variance
parameter in the method proposed by [FW05,ML11] with respect to the DP parameters; and
(4) proposing a sampling scheme to ensure the proposed method can be efficiently integrated
with the cell key approach to improve ABS perturbation methodology and quantifying the
(ϵ,δ)-DP parameters post sampling.

While we consider a specific case with a single counting query and a symmetric pertur-
bation support, the methodology and insights have the potential to be extended to more
advanced and complex cases. Addressing the following issues remain as ongoing challenges.

(1) How can national statistical organisations (NSO) use the DP framework to design
disclosure protection mechanisms to better balance confidentiality and utility?

(2) How can we extend the proposed methodology to consider asymmetric perturbation
support?

(3) How can we characterise composition of overall DP parameters if each count query has
its own perturbation distribution?

(4) How can we study and apply DP when there is a significantly large query space?
(5) How can we study and apply scope-based perturbation, e.g., [TBE13] from the lens

of DP (to protect against the range of count query being leaked from the perturbed
output)?

The paper is structured as follows. Section 1 provides the key notation and describes
the entropy maximisation proposed by [FW05,ML11]. Section 2 discusses the proposed
analytical entropy maximisation approach to incorporate (ϵ,δ)-DP parameters for noise
distributions with symmetric supports. We propose an approach to quantise and sample
the probability mass function (pmf) with a simple lookup table in Section 3. We show the
importance of increasing the size of the row index look up in Section 4. Finally, we provide
a conclusion and propose future research directions in Section 5.

1. SYSTEM MODEL AND PRELIMINARIES

This section provides the notation conventions used throughout the paper. The set {a, · · · , b}
for some a, b ∈ Z, a ≤ b is compactly represented as [a, b].

We consider a single counting query function q from a dataset x ∈ X . Assume the
true count is q(x) = n. In order to enhance the privacy of individuals in the dataset,
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a discrete-valued independent random variable Z with alphabet Z and probability mass
function (pmf) pZ is added to the true count to give the random query response

M(x) = q(x) + Z. (1.1)

For brevity, we may simply refer to Z as noise. The parameters of the noise pmf are assumed
to be independent of the dataset x. The probability mass of noise at z ∈ Z is denoted by
pZ(Z = z). We may use the short-hand notation p(z) where the context is clear.

References [FW05,ML11] show that given the above model and assumptions, the ABS
TableBuilder aims to maximise statistical confusion induced by noise, measured by the
Shannon entropy. It performs the following constrained optimisation to derive the noise
parameters

max
pZ

H(Z) = max
pZ

∑
z∈Z

p(z) log
1

p(z)
, (1.2)

s.t.


E[Z] = 0, zero bias,

E[Z2] ≤ V, variance constraint,∑
z∈Z p(z) = 1, valid pmf,

p(z) ≥ 0, ∀z ∈ Z, valid pmf.

(1.3)

We use the natural logarithm in this paper.
[FW05,ML11] solved the above optimisation problem numerically using standard solvers.

However, it turns out that in the case where the noise support Z is symmetric, the solution
to the problem becomes a discrete truncated Gaussian. In Section 2.1, we study this special
case and analytically derive its DP measure in Section 2.2. In Sections 2.3 and 2.4, we take
the derivations one step further and propose a design technique to keep the δ measure of the
perturbation noise under control through judicious selection of its variance based on noise
support and desired ε. We use the definition of differential privacy from [DMNS06,DR+14].
Throughout this paper, we assume that ε ∈ R+.

Definition 1. (Approximate Differential Privacy) A randomised mechanism M : X → Y is
said to satisfy (ε, δ)-differential privacy, or (ε, δ)-DP for short, if for all datasets x, x′ ∈ X
differing on a single element and all events E ⊂ Y ,

P[M(x) ∈ E] ≤ eεP[M(x′) ∈ E] + δ.

If δ = 0, we obtain pure or just ε-DP. If 0 < δ ≤ 1, we obtain approximate (ε, δ)-DP.

2. MAIN RESULTS

2.1. Analytical Distribution of the Symmetric TableBuilder Noise. The noise
range Z in the TableBuilder method is general and can be any subset of the integers Z.
However, to analytically characterise and optimise the differential privacy performance of the
TableBuilder, we focus on the special symmetric case where Z = [−D,D] for some D ∈ N.
In order for the random query output M(x) to remain nonnegative, it is required that the
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true count satisfy q(x) = n ≥ D.1 We specialise the TableBuilder optimisation problem in
(1.2) as

max
pZ

H(Z) = max
pZ

D∑
z=−D

p(z) log
1

p(z)
, (2.1)

s.t.


∑D

z=−D zp(z) = 0, zero bias,∑D
z=−Dz

2p(z) ≤ V, variance constraint,∑D
z=−D p(z) = 1, valid pmf,

p(z) ≥ 0, z ∈ [−D,D] valid pmf.

(2.2)

Taking the derivative of the Lagrangian function for this problem and after some manipula-
tions See Appendix A,, the optimal distribution p(z) is of the form

p(z) = Ce−γz2 , z ∈ [−D,D], (2.3)

where C is the normalisation constant satisfying

D∑
z=−D

Ce−γz2 = 1,

so that

C =
1

2
∑D

z=1 e
−γz2 + 1

. (2.4)

Note that the optimal distribution is indeed a discrete zero-mean truncated Gaussian. The
parameter γ is chosen to satisfy the variance constraint

D∑
z=−D

z2Ce−γz2 = 2C
D∑
z=1

z2e−γz2 = V. (2.5)

Combining (2.4) and (2.5),

D∑
z=1

z2e−γz2 = V

(
2

D∑
z=1

e−γz2 + 1

)
,

which implies that

D∑
z=1

(2z2 − 2V )e−γz2 − V = 0. (2.6)

Let us denote x := e−γ > 0. To find the pmf of noise, we need to solve the following
polynomial equation of degree D2 in x:

f(x) :=

D∑
z=1

(2z2 − 2V )xz
2 − V = 0. (2.7)

1We remark that the ABS perturbation methodology has various ways to deal with small counts to protect
confidentiality. This includes, but is not limited to zeroing out small counts or using asymmetric noise
support. The details is beyond the scope of this paper and their study from the lens of DP is suggested as
future work. Thus, the analysis in this paper applies to tables that are not sparse and all of whose entries
exceed D. The DP consequences of this data dependence are not examined.
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This equation has sparse nonzero coefficients at square degrees D2, (D − 1)2, · · · , 9, 4, 1, 0.
It is desirable for pZ to have its highest probability at Z = 0, corresponding to the

truthful count M(x) = q(x) = n having the highest likelihood in the response. That is, we
wish to have 0 < e−γ < 1 if and only if γ > 0. This means the polynomial f(x) must have a
root between 0 and 1. Note that f(0) = −V < 0, and also that

f(1) =

D∑
z=1

(2z2 − 2V )− V

=
D(D + 1)(2D + 1)

3
− (2D + 1)V

= (2D + 1)

(
D(D + 1)

3
− V

)
.

Therefore, if f(1) > 0, then f(x) is guaranteed to have a root between 0 and 1. For f(1) > 0,
we have the following proposition.

Proposition 1. For the TableBuilder pmf with symmetric support Z = [−D,D] to be a
decreasing function of |z|, its variance V must satisfy

0 < V <
D(D + 1)

3
. (2.8)

This bound on variance V is consistent with the fact that among all probability mass
functions over the support [−D,D], the uniform distribution has the maximum entropy
H(Z) = log(2D + 1), zero bias, and variance D(D + 1)/3. In the rest of Section 2, we will
impose the constraint in Proposition 1.

2.2. Differential Privacy Parameters of the ABS TableBuilder Method. We take
a first-principles approach to computing the (ε, δ)-DP parameters of the TableBuilder
mechanism. Our approach is similar in spirit to the one introduced in [BW18] for the
continuous Gaussian mechanism and [CKS22] for the discrete Gaussian mechanism. However,
the derivation of δ and optimisation of the TableBuilder noise pmf are very different and a
main novelty of this paper.

Throughout this subsection, we assume the TableBuilder noise support [−D,D] and
noise variance V are given. Recall that the variance V determines γ in (2.3), which is found
via solving (2.7). In summary, the TableBuilder noise pmf pZ in (2.3) is parameterised by
D and γ.

In this subsection, we characterise δ as a function of ε for given TableBuilder noise
parameters D and γ. To make these dependencies clear, we denote it as δγ,D(ε). In the next
subsections, we take the analysis one step further, where we study and optimise the effect of
the TableBuilder noise parameters, γ and D, on δ.

First, the definition of (ε, δ)-DP (see Definition 1 on page 3) specifies that for every
E ⊂ Y , δ must satisfy

δ ≥ P[M(x) ∈ E]− eεP[M(x′) ∈ E].

Therefore, the tightest lower bound on δ is

δ ≥ sup
E⊂Y

{
P[M(x) ∈ E]− eεP[M(x′) ∈ E]

}
. (2.9)
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To characterise the worst-case event set E∗ achieving the supremum, we need to define the
privacy loss random variable. Using the results in [CKS22], detailed in Appendix B, we get

E∗ := E∗
γ,D(ε) ≜

{
z : z ∈ [−D,D + 1],

p(z)

p(z − 1)
> eε

}
, (2.10)

leading to the computation of the lowest achievable δ as follows

δγ,D(ε) := P[M(x) ∈ E∗]− eεP[M(x′) ∈ E∗] =
∑
z∈E∗

p(z)− eεp(z − 1). (2.11)

We first note that z = −D always belongs to E∗ regardless of ε and γ. This is because
p(Z = −D) ̸= 0 and p(Z = −D−1) = 0, resulting in the privacy loss ratio becoming infinite.
Therefore, a simple lower bound on δ is the noise pmf value at Z = −D. That is, for all
ε > 0,

δγ,D(ε) ≥ pZ(Z = −D) = Ce−γD2
. (2.12)

In order to fully characterise the set E∗, let us expand and simplify it as

E∗
γ,D(ε) ≜

{
z : z ∈ [−D,D + 1],

p(z)

p(z − 1)
=

e−γz2

e−γ(z−1)2
> eε

}
(2.13)

= {z : z ∈ [−D,D + 1], e−2γz+γ > eε} (2.14)

= {z : z ∈ [−D,D + 1], −2γz + γ > ε} (2.15)

=

{
z : z ∈ [−D,D + 1], z < 0.5− ε

2γ

}
. (2.16)

Under the constraint detailed in Section 2.1 that V < D(D + 1)/3, we will have that
γ > 0 and hence, z ≥ 1 cannot belong to E∗. Therefore, it suffices to determine whether
each z ∈ [−D + 1 : 0] belongs to E∗. Let us define

F ∗ := F ∗
γ,D(ε) ≜

{
z : z ∈ [−D + 1 : 0], z < 0.5− ε

2γ

}
. (2.17)

Denote z∗ := ⌊0.5− ε/2γ⌋. We consider two cases:

(1) 0 < ε < γ, which is the same as 0 < 0.5 − ε/2γ < 0.5. Therefore, z∗ = 0 and
F ∗ = {−D + 1, · · · , 0}

(2) ε > γ > 0, which means that 0.5− ε/2γ < 0, and hence z∗ < 0. Within this case, there
are two sub-cases:
(a) If z∗ ≤ −D, then F ∗ = ∅. This means E∗ = {−D}.
(b) If −D + 1 ≤ z∗ < 0, then F ∗ = [−D + 1, z∗] ̸= ∅.

Therefore, the set E∗ can be compactly written as

E∗
γ,D(ε) = {−D} ∪ F ∗

γ,D(ε) = [−D,max{−D, z∗}]. (2.18)

In summary, we analytically characterise δγ,D(ε) in the following proposition.

Proposition 2. Consider the mechanism in (1.1) for the single counting query q. The
TableBuilder mechanism with noise pmf given in (2.3)-(2.5) and variance V satisfying
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(a) Plots of δγ,D(ε) using (2.19) for D = 11
and two values of γ = 0.125 and γ ≈ 0.0498
corresponding to two variances V = 4 and V =
10, respectively.
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(b) Plots of δγ,D(ε) using (2.19) for D = 15 and
the same variances V = 4 and V = 10.

Figure 1. Plots of δγ,D(ε) for various TableBuilder noise parameters D and
γ.

Proposition 1 achieves (ε, δ)-DP such that

δ = δγ,D(ε) =

{
Ce−γD2

, ⌊0.5− ε
2γ ⌋ ≤ −D,

Ce−γD2
+ C

∑⌊0.5− ε
2γ

⌋
z=−D+1(e

−γz2 − eεe−γ(z−1)2), −D < ⌊0.5− ε
2γ ⌋ ≤ 0,

(2.19)

where γ is determined by V via solving the polynomial equation in (2.7).

In Appendix C, we verify that for D = ∞, the above derivation coincides with δ given
in [CKS22] for the discrete Gaussian mechanism over the integers.

In Figure 1, we present evaluation of δγ,D(ε) according to (2.19) for four possible
combinations of D = 11 and D = 15 with γ = 0.125 and γ ≈ 0.0498 (corresponding to
two variances V = 4 and V = 10, respectively). They are divided into Figure 1a and
1b for different values of D. There are a number of important observations that can be
made from the two figures. Broadly speaking, when γ is fixed, increasing the noise support
span D will decrease δ. However, the impact of γ on δ and its interactions with ε is
complex. [FW05] and [ML11] rely on variance V and support D to design the noise and
there are no specific relationships between V (or γ), δ and ε. Therefore, when we attempt
introducing ε parameter to calculate δ using (2.19), we can observe increasing ε will hit a
point where δ is not decreasing. This is because if the relation of ε with D and γ is such

that ⌊0.5− ε/2γ⌋ ≤ −D, we will have a fixed δ = Ce−γD2
regardless of how much larger ε

gets. Figure 1a shows that δ hits a plateau after reaching a certain point in ε. [FW05,ML11]
preserve better confidentiality-utility trade off before hitting this plateau where δ is lower
for a higher variance V . However, the plateau in δ prevents it from continuing this trend.
Overall, a careful choice of parameters for the TableBuilder noise is needed to ensure a
desired outcome. We will discuss this topic in greater detail in Subsections 2.3 and 2.4.

2.3. Selection of TableBuilder Parameters under (ε, δ)-DP Framework. In the
previous subsection, we derived the (ε, δ)-DP parameters of the Tablebuilder mechanism.
The derivation technique takes the TableBuilder γ and D as input parameters and determines
what δ is achievable as a function of ε. We observed that for a fixed γ, there comes a
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threshold in ε beyond which increasing ε does not decrease δ. We attributed this plateauing
phenomenon to the existence of the first case for δγ,D(ε) in (2.19) in Proposition 2. Even

as we increase ε, we observed that δγ,D(ε) is bounded away from zero by Ce−γD2
. In this

subsection, the core idea is to judiciously select γ (or variance) as ε increases to avoid a
plateau in δ.

As we know from the first case in (2.19), making z∗ smaller than −D by increasing
ε does not result in a reduction of δ. Therefore, we propose to choose γ such that z∗ =
⌊0.5 − ε/2γ⌋ = −D, always. This effectively means that in (2.17), F ∗

γ,D(ε) = ∅ and the

only element in E∗ in (2.18) is Z = −D. Setting z∗ = ⌊0.5 − ε
2γ ⌋ = −D prevents it from

unnecessarily becoming too small, thereby avoiding a plateau. That is, we propose to choose
γ such that the first case in (2.19) always holds with equality ⌊0.5− ε

2γ ⌋ = −D.2 This will

give δ = Ce−γD2
.

Note that ⌊u⌋ ≤ u < ⌊u⌋+ 1. To have z∗ = ⌊0.5− ε/2γ⌋ = −D, we need to ensure the
following is satisfied

D ≤ 0.5− ε

2γ
< −D + 1,

i.e., that
ε

2D + 1
≤ γ <

ε

2D − 1
, (2.20)

which is the proposed range for γ as a function of ε. We now find what range for the variance
of the TableBuilder is required to ensure the desired γ. It turns out that we can find the
corresponding range for V in analytical closed-form. Recall (2.7), which is polynomial in
x = e−γ , but is affine in V . We can solve (2.7) for V in terms of x = e−γ :

V =

∑D
z=1 2z

2e−γz2

2
∑D

z=1 e
−γz2 + 1

. (2.21)

It can be verified that V in (2.21) is an increasing function of x = e−γ or a decreasing
function of γ. Therefore, based on (??) and (2.21), the proposed range for V is∑D

z=1 2z
2e−

ε
2D−1

z2

2
∑D

z=1 e
− ε

2D−1
z2 + 1

< V ≤
∑D

z=1 2z
2e−

ε
2D+1

z2

2
∑D

z=1 e
− ε

2D+1
z2 + 1

. (2.22)

And from (2.4), the desired range for C (which is decreasing in x = e−γ or increasing in γ) is

1

2
∑D

z=1 e
− ε

2D+1
z2 + 1

≤ C <
1

2
∑D

z=1 e
− ε

2D−1
z2 + 1

. (2.23)

Finally, we detail δ, which also has a range. It can be verified that

δ = Ce−γD2
=

e−γD2

2
∑D

z=1 e
−γz2 + 1

,

2Note that we are not claiming this choice for γ will minimise δ overall. This is because for simplicity of
analysis, we are not considering both cases of (2.19) jointly to select the best γ for a given ε and D. Our
proposed method is a heuristic technique, which focuses on optimising the first case in (2.19) and obtains an
analytical achievable expression for δ in terms of ε and D. It is intuitive that focusing on the first case of
(2.19) should be a good choice, as it does not suffer from additional terms for δ. See Figure 2 for a numerical
corroboration.
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is an increasing function of x = e−γ or a decreasing function of γ. The obtained range for δ
is

e−
ε

2D−1
D2

2
∑D

z=1 e
− ε

2D−1
z2 + 1

< δ ≤ e−
ε

2D+1
D2

2
∑D

z=1 e
− ε

2D+1
z2 + 1

. (2.24)

Remark 1. We stress the importance of choosing an appropriate value for γ for a corre-
sponding V (see (2.22)) and δ (see (2.24)). The choice of value for γ should be within the
range [ε/(2D + 1), ε/(2D − 1)) according to (2.20).

It is important to note that the interval in (2.20) is open on the right hand side. It is
not desirable for γ to be equal to ε/(2D − 1), because when this happens the derivations in
Section 2.2 show that E∗

γ,D will become strictly larger than {−D} and this will contribute

to a larger δ. This is shown in the second case in (2.19) in Proposition 2. To avoid this, γ
has to be strictly smaller than ε/(2D − 1). We also remind the reader that an unnecessarily
small γ is not desirable either. First, a value for γ that is strictly smaller than ε/(2D + 1)
can result in a plateau in δ, as we saw before, because E∗

γ,D = {−D} regardless of how small

γ gets. Second, if γ = ε/(2D + 1), the upper bounds on the V and δ are reached according
to (2.22) and (2.24) (Note that V and δ increase in (2.22) and (2.24) as γ decreases.)

We summarise the results of this subsection in the following proposition.

Proposition 3. Consider the mechanism in (1.1) for the single counting query q. For any
given ε > 0, D ∈ N and γ in the range [ε/(2D+1), ε/(2D−1)), the TableBuilder mechanism
with the following noise pmf

pZ(Z = z) =
e−γz2

2
∑D

z=1 e
−γz2 + 1

, z ∈ [−D,D], (2.25)

and noise variance

V =

∑D
z=1 2z

2e−γz2

2
∑D

z=1 e
−γz2 + 1

, (2.26)

will achieve (ε, δ)-DP such that

δ =
e−γD2

2
∑D

z=1 e
−γz2 + 1

. (2.27)

Figure 2a plots the analytical asymptotic expression for δ (as γ tends to ε/(2D − 1)
from below) versus ε for two noise support parameters D = 11 and D = 15. The plateaus in
Figure 1 have disappeared and as D increases, δ decreases. For comparison, we also plot the
best possible δ, which is found numerically by varying γ from 0.0001 to 0.3 in linear steps
of 0.0001, evaluating δγ,D(ε) using (2.19), and choosing the minimum δ possible. The gaps
vary from being small to zero and corroborate our intuition that focusing on the first case
of (2.19) and optimising it as described above is a good design strategy. Figure 2b plots
the expression for variance V versus ε (again as γ tends to ε/(2D − 1) from below) for the
corresponding two noise support parameters D = 11 and D = 15.
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(a) δ versus ε: analytical δ versus numerically
optimised values using (2.19).
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(b) Analytical TableBuilder variance to achieve
the corresponding analytical δ in Figure 2a.

Figure 2. Plots of δ and V versus ε for two TableBuilder noise support
parameters D = 11 and D = 15.

2.4. A TableBuilder Noise Design Guide. In some applications, it may be desirable
to achieve a specific (ε, δ)-DP measure for the ABS perturbation methodology. In this
subsection, we use the results in Subsection 2.3 to prescribe a simple method for analytically
choosing the parameters of the perturbation, that is, the support D and the variance V to
achieve a desired (ε, δ)-DP.

(1) Start with the desired ε > 0 and 0 ≤ δ ≤ 1 as inputs.
(2) For the desired ε, linearly increase the support D = 1, 2, · · · and evaluate the expression

in (2.27) with a value for γ in the range [ε/(2D + 1), ε/(2D − 1)), until the desired
δ—or the first value smaller than δ—is reached. For simplicity, we can assume that
γ = ε/(2D−1)−2ε/(10(4D2−1)) is chosen to ensure that ε/(2D+1) < γ < ε/(2D−1).

(3) Select the last evaluated D, denoted by D∗, as the perturbation noise support parameter.
Hence, Z = [−D∗, D∗]. Denote the chosen value of γ as γ∗.

(4) The TableBuilder noise variance V to support the desired (ε, δ) is given by (2.26) using
the γ∗ found in the previous step.

(5) The TableBuilder noise pmf is given by

pZ(Z = z) =
e−γ∗z2

2
∑D∗

z=1 e
−γ∗z2 + 1

, z ∈ [−D∗, D∗]. (2.28)

We now demonstrate how this routine works via an example.

Example 1. Let us assume the desired privacy target is ε = 0.5 and δ = 10−4. We find
that the smallest D that satisfies (2.27) with γ = ε/(2D− 1)− 2ε/[10(4D2 − 1)] is D∗ = 25,
resulting in δ ≈ 9.91 × 10−5. The corresponding perturbation variance is V ≈ 49.00 and
γ = 0.5/(2× 25− 1)− 1/(10(2500− 1)). So the overall perturbation pmf using (2.28) is

pZ(Z = z) =
e
−( 0.5

2×25−1
− 1

10(2500−1) )z2

2
∑25

z=1 e
−( 0.5

2×25−1
− 1

10(2500−1) )z2
+ 1, z ∈ [−25, 25]. (2.29)
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For example, if we evaluate the above pmf at Z = 0, Z = ±1, Z = ±2, · · · , Z = ±12, · · · ,
Z = ±24, and Z = ±25, we get

pZ(Z = 0) ≈ 0.056895481243871,
pZ(Z = −1) = pZ(Z = 1) ≈ 0.056320120792644,
pZ(Z = −2) = pZ(Z = 2) ≈ 0.054628714970934,

...
pZ(Z = −12) = pZ(Z = 12) ≈ 0.016632589297126,

...
pZ(Z = −24) = pZ(Z = 24) ≈ 0.000163117271714,
pZ(Z = −25) = pZ(Z = 25) ≈ 0.000099129808160.

(2.30)

Note that P (Z = −z) = P (Z = z). The plot of the pmf is shown in Figure 3.

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

z

P
Z
(z
)

Probability distribution of Example 1

Figure 3. Perturbation distribution in Example 1.

3. CELL KEY METHODOLOGY

The ABS developed the cell key method to ensure that users cannot circumvent perturbation
by making repeated requests for the same table. If the disclosure protection mechanism
failed to deliver a consistent random perturbation, then a user could obtain different versions
of the same table. Comparing the cell values across these different versions might reveal
some information about the original table. This risk is particularly important to address
in the context of the ABS TableBuilder, where there is no restriction to prevent a user
requesting the same table many times [Lea09].

The cell key method assigns a pseudo-random number (also known as record key) to
each record of the micro dataset. Record keys, Rkeyi, are positive integers less than 232

generated from uniform distribution. In [TBE13], record keys of size 232 were further
processed (were combined byte-by-byte) to give cell keys of size 28. But this low cell key
size was mainly implemented to reduce the complexity of lookup tables for sampling from a
quantised perturbation noise distribution. However, this small cell key size is not strictly
necessary. As we will see in the next section, larger cell key sizes are needed to maintain
desired DP measures.
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Therefore, in this section, we extend the cell key described in [TBE13] to allow cell keys
to be a power of 2, which can be as high as 232. The cell key size is denoted by KEYSIZE.
When a table is constructed, the record keys are summed over each cell, to give

CellKeyj =
N∑
i=1

Rkey
j
i ( modulo bigN), (3.1)

where the cell key has four components j = 1, · · · , 4, bigN is a large prime number that is
very close to KEYSIZE, and we take the modulo to prevent integer overflows when we sum
the pseudo-random numbers.3 The final CellKey is determined as follows

CellKey = CellKey1 ⊕ CellKey2 ⊕ CellKey3 ⊕ CellKey4, (3.2)

where ⊕ is the bitwise XOR operator. The values CellKey1, CellKey2, CellKey3, CellKey4

are the four binary components derived from representing cell key as a binary number up to
32 bits.

The XOR operation is an important feature to remove the additive relationships between
CellKey for the interior and marginal cells to ensure strong protection [Jon21]. We will
use this CellKey and its size KEYSIZE in the next section for direct sampling from the
perturbation noise.

To summarise, we assume that CellKey values are uniformly generated in the range
[0, KEYSIZE−1], where KEYSIZE is a power of 2. Typical values 28, 216, or 232 will be studied
here, but other values are also possible.

4. SAMPLING AND ITS IMPACT ON (ε, δ)-DP

4.1. Sampling. For sampling, we first scale and quantise the cumulative mass function
(cmf) of the proposed perturbation method in Proposition 3 according to the following
procedure:

(1) For a given ϵ, D, γ ∈ [ε/(2D + 1), ε/(2D − 1)), the pmf of ABS perturbation method,
pZ , is given by (2.25). We first compute its cmf as

cZ(Z = z) = P[Z ≤ z] =

z∑
z′=−∞

pZ(Z = z′), z ∈ [−D,D], (4.1)

where clearly cZ(Z = z) = 0 for any z < −D and cZ(Z = z) = 1 for any z ≥ D.

(2) Then, given the maximum cell key size KEYSIZE, we scale and quantise cZ into cQZ as
follows:

cQZ (Z = z) = ⌈cZ(Z = z)× KEYSIZE⌉, (4.2)

where ⌈·⌉ is the integer ceiling function. This will ensure that the minimum and maximum

bounds 0, and 1 in cZ will correspond to 0 and KEYSIZE in cQZ , respectively.

(3) The values of cQZ are stored in a lookup table of size 2D + 1. Since D is usually small,
this lookup table can be saved in a memory-efficient manner.

3The prime number bigN should be chosen as close to KEYSIZE as possible to ensure that the CellKey is
also essentially uniformly distributed.
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(4) When a CellKey is generated according to (3.2), we use the lookup table to get a sample
from the distribution as follows. For a given value CellKey in the range [0, KEYSIZE− 1],
we output the sample S as follows: since

cQZ (Z = z) ≤ CellKey < cQZ (Z = z + 1),

then

S = z + 1. (4.3)

(5) If the cell key size, KEYSIZE is small, it may happen that two or more consecutive cQZ
may become identical. This means that some perturbation noise values z can never
be achieved. If this happens, KEYSIZE must be increased or the parameters of the
distribution must be adjusted to ensure the full support of the distribution can be
achieved.

Example 2. We use the results from (2.30) in Example 1. Assume the cell key size is

KEYSIZE = 232. We compute the scaled and quantised cmf CQ
Z according to (4.2). For

example, CQ
Z values at Z = −26,−25,−24,−23, and Z = 25 are given as follows:

cQZ (Z = −26) = 0,

cQZ (Z = −25) = ⌈0.000099129808160× 232⌉ = 425760,

cQZ (Z = −24) = ⌈0.0002622470798742925× 232⌉ = 1126343,

cQZ (Z = −23) = ⌈0.0005252540370388639× 232⌉ = 2255949,
...

cQZ (Z = 25) = ⌈1× 232⌉ = 232.

(4.4)

The values of cQZ will be stored in a lookup table of size 2D + 1 = 51. Now imagine that

CellKey = 2552 is given according to (3.2). Since cQZ (Z = −26) ≤ 2552 < cQZ (Z = −25) =
425760, we output S = −25 as the ABS perturbation noise. As another example, assume

CellKey = 1200124 is given. Since cQZ (Z = −24) ≤ 1200124 < cQZ (Z = −23) = 2255949, we
should output S = −23 as the ABS perturbation noise, and so on.

Now assume that KEYSIZE = 28 is given instead. We can see that cQZ (Z = −25) =

cQZ (Z = −24) = cQZ (Z = −23) = 1. This means not all values in the support [−D,D] can be
realised in practice. Hence, we conclude that KEYSIZE = 28 is not a sufficient cell key size
for this perturbation distribution.

4.2. Evaluating Post-Sampling Utility and Privacy Measures. It now remains to
verify the properties of the scaled and quantised distribution in terms of bias, variance and
(εQ, δQ)-DP, where the superscript Q signifies values post sampling. To this end, we follow
the procedures below.

(1) We convert the scaled and quantised cmf cQZ in (4.2) into the scaled and quantised pmf

pQZ as follows:

pQZ (Z = z) =
cQZ (Z = z)− cQZ (Z = z − 1)

KEYSIZE
, z ∈ [−D : D]. (4.5)

Note that we assume KEYSIZE is chosen sufficiently large to ensure that pQZ has full

support over [−D,D]. In steps below, we use the shorthand pQ(z) := pQZ (Z = z).
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(2) The resulting bias and variance of pQZ are computed as

BQ :=
D∑

z=−D

zpQ(z), (4.6)

V Q :=
D∑

z=−D

z2pQ(z)− (BQ)2. (4.7)

These metrics clearly depend on the cell key size, KEYSIZE. Intuitively, the larger the

KEYSIZE, the finer the quantisation will be and the closer the bias and variance of pQZ
should be to its original version obtained from pZ .

To understand the effective (εQ, δQ)-DP metric as a result of scaling and quantisation

in pQZ , we propose the following method.

(1) We first define and compute εQ−1 as follows:

εQ−1 := argmin

{
{ε : pQ(z)

pQ(z − 1)
< eε, z ∈ [−D + 1, D]

}
. (4.8)

The quantity εQ−1 is the minimum required value to ensure the ratio pQ(z)/pQ(z − 1) is

bounded for support values z ∈ [−D + 1 : D]. Similarly, we define and compute εQ+1 as
follows:

εQ+1 := argmin

{
ε :

pQ(z)

pQ(z + 1)
< eε, z ∈ [−D,D − 1]

}
. (4.9)

The quantity εQ+1 is the minimum required value to ensure the ratio pQ(z)/pQ(z + 1) is

bounded for support values z ∈ [−D : D − 1]. The effective εQ is the maximum of the
two quantities:

εQ = max
{
εQ−1, ε

Q
+1

}
. (4.10)

(2) Once the effective εQ is obtained as above, the effective δQ will be the maximum of the

pmf pQZ at the two extreme support values and is given by

δQ = max
{
pQ(−D), pQ(D)

}
. (4.11)

Again, the cell key size, KEYSIZE will play a main role on the resulting (εQ, δQ) metric.
The larger the KEYSIZE, the closer (εQ, δQ) can get to the original (ε, δ) metrics for the
continuous case. Also, 1/KEYSIZE will pose a lower bound on how small δQ can get,

since this is the smallest value that pQZ (Z = −D) or pQZ (Z = D) can have.

Example 3. Continuing on Example 1 and Example 2, we can convert the scaled and

quantised cmf CQ
Z , according to (4.5), back to quantised pmf pQZ . For example, at Z =

−25,−24,−23, and Z = 25,

pQZ (Z = −25) = 425760
232

≈ 0.000099129974842,

pQZ (Z = −24) = 1126343−425760
232

≈ 0.000163117190823,

pQZ (Z = −23) = 2255949−1126343
232

≈ 0.0002630068920552731,
...

pQZ (Z = 25) = 232−4294541537
232

= 0.00009912974201142788.

(4.12)
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Note that the quantised pmf has lost its complete symmetry, compared to the original pmf
in Example 2. Its bias can be calculated from (4.6) to be BQ = −5.820766091346741× 10−9.
Its variance can be calculated from (4.7) to be V Q = 49.002167175291106, which are very
close to the original zero-bias and design variance, respectively.

Now, we compute εQ according to (4.8)-(4.10), which gives εQ ≈ 0.498039387067656.
Interestingly, this is slightly smaller than the design target ε = 0.5. This is not unusual,
since the quantisation is a nonlinear operation and εQ can be lower or higher than ε.

We will investigate this further in the upcoming experiments. Finally, δQ = pQZ (−D) ≈
9.9129974842× 10−5 is computed according to (4.11), and is only slightly larger than the
original δ in Example 1.

4.3. Experiments. To study the effect of KEYSIZE on the perturbation bias, variance and
DP measures more systematically, we consider the following scenario. We set D = 10, vary
ε ∈ [0.1, 2.5] in 0.1 steps, let γ = ε/(2D − 1)− 2ε/[10(4D2 − 1)], and follow the proposed
quantisation procedure we described in the previous subsections.

First, we find that bias BQ ≈ −2.3 × 10−9 is lowest when KEYSIZE = 232. This
deteriorates to BQ ≈ −1.5×10−4 when KEYSIZE = 216 and to BQ ≈ −0.04 when KEYSIZE =
28. This confirms that KEYSIZE has a clear effect on the post-sampled perturbation measures.
Furthermore, for KEYSIZE = 28 and KEYSIZE = 216 not all values of ε result in distributions
with full support.

Next, we define the normalised error in variance after quantisation as

V Q − V

V
.

This normalised variance error is in the order of 10−9 and 10−4 for KEYSIZE = 232 and
KEYSIZE = 216, respectively. However, when KEYSIZE = 28 the normalised variance error
can be as high as ≈ 0.007.

Figure 4 shows the relation between ε at the time of design and the resulting εQ post-
sampling for three different values of KEYSIZE. Having ε ≥ εQ is desirable and εQ > ε is not
desirable. We see that when KEYSIZE = 28 or KEYSIZE = 216, εQ > ε. When KEYSIZE = 232,
εQ is either very close to ε or slightly lower. The nonlinear/jittery behaviour is not unusual
and is due to the nonlinear sampling scheme, which involves the integer ceiling function.
The other main problem with both KEYSIZE = 28 and KEYSIZE = 216 values is that the

quantised perturbation pQZ cannot provide full support due to the nonlinear quantisation
and insufficiently large KEYSIZE. This is not acceptable since the designed support of
[−10, 10] cannot be maintained, which is the original design criterion. For KEYSIZE = 28,
this happens after ε = 0.6 and for KEYSIZE = 216, this happens after ε = 1.7. Whereas,
when KEYSIZE = 232, we see that εQ ≈ ε as desired, and the full support is maintained for
all ε values under consideration.

Figure 5 shows the relation between δ at the time of design and the resulting δQ post
sampling for three different values of KEYSIZE. δ ≥ δQ is desirable and δQ > δ is not
desirable. We see that when KEYSIZE = 28, δQ > δ. When KEYSIZE = 216 or KEYSIZE = 232,
δQ is almost identical to the original δ. However, as mentioned before, the main problem
in using KEYSIZE = 28 or KEYSIZE = 216 is that the full support of perturbation noise
maintained cannot be maintained for all ε values under consideration.
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Figure 4. εQ versus ε for three values of cell key size. Overall, only
KEYSIZE = 232 can closely follow the original ε across its entire range.
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Figure 5. δQ versus δ for three values of cell key size. Overall, only
KEYSIZE = 232 can closely follow the original δ across the entire range of ε.

5. CONCLUSION

The DP framework provides an opportunity to better quantify the confidentiality protection
and data utility of the ABS perturbation methodology. We have proposed an alternative
entropy maximisation approach which incorporates (ε, δ)-DP parameters for symmetric
support.

We have proposed an approach to expand the cell key row index size. We have shown
the importance of having a larger cell key size to achieve the desired (ε, δ)-DP parameters
in our quantised sampling approach.

There are several potential directions for future research. This includes (1) extending
the method to consider asymmetrical perturbation distributions; (2) developing a frame-
work to consider ε and δ parameters for dynamic table environments; and (3) evaluating
the performance against different types of perturbation distributions. Furthermore, the
perturbation methodology that we studied in this paper is data-dependent in the sense that
the noise distribution depends on the range of counts [−D,D]. It will be interesting to
consider a combination of scope perturbation, such as those in [TBE13], and data perturba-
tion methodologies from the lens of DP. Finally, it will be useful to study and design the
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ABS perturbation methodology using generalised notions of DP such as Rényi DP [Mir17],
concentrated DP [BS16], and probabilistically bounded DP [KAA+22].
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Appendix A. Lagrange Optimsation of (2.1)

We first write the Lagrange function for the optimisation problem (2.1) subject to the
conditions in (2.2) as

L(pZ) = H(Z)− α (
∑
z

pZ(z)− 1)︸ ︷︷ ︸
valid pmf

−β
∑
z

zpZ(z)︸ ︷︷ ︸
zero bias

−γ

(∑
z

z2pZ(z)− V

)
︸ ︷︷ ︸

variance

. (A.1)

We can drop the condition of valid pmf by normalising the obtained result at the last step.
Therefore, the simplified function becomes

L(pZ) = −
D∑

z=−D

p(z) log p(z)− β
D∑

z=−D

zpZ(z)− γ

(
D∑

z=−D

z2pZ(z)− V

)
. (A.2)

We will also check that the solution is positive after the solution is derived. Taking the
derivative of L with respect to pZ(z) and setting it to zero gives

∂L

∂pZ(z)
= − log(pZ(z))− pZ(z)

1

pZ(z)
− βz − γz2 = 0,

so that
pZ(z) = e(−1−βz−γz2),

which is positive as expected from a probability mass. Next, we consider the bias. It is clear
that β = 0 will ensure bias is zero. Hence, pZ simplifies to

pZ(z) = e−1−γz2 , z ∈ [−D,D]. (A.3)

Normalising pZ(·) so that it sums to one gives the desired result in (2.4).

Appendix B. More Details on Derivation of δ

For the mechanism M(x), let pM(x)(y) denote the pmf of the random variable Y = M(x) and
pM(x′)(y) denote the pmf of the random variable Y ′ = M(x′), where x, x′ are neighbouring
datasets. The privacy loss random variable is then defined as

ℓM,x,x′(y) := log

(
pM(x)(y)

pM(x′)(y)

)
.

[CKS22] show the worst-case event E∗ that achieves the supreme in (2.9) is the subset of Y
for which the privacy loss random variable is greater than ε. That is,

E∗ =

{
y ∈ Y : log

(
pM(x)(y)

pM(x′)(y)

)
> ε

}
(B.1)

Referring to (1.1) and (2.3), we have pM(x)(y) = pZ(y − q(x)) = Ce−γ(y−q(x))2 and

pM(x′)(y) = pZ(y − q(x′)) = Ce−γ(y−q(x′))2 . Note that in counting queries, the largest
absolute query sensitivity to neighbouring datasets is 1. That is, q(x)− q(x′) ∈ {−1, 0, 1} for
two neighbouring datasets x, x′. Given the symmetry of p(z) for the considered symmetric
support [−D,D], we need to only consider either q(x) − q(x′) = 1 or q(x) − q(x′) = −1
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to characterise δγ,D(ε). Without loss of generality, let us set q(x) = 0 and q(x′) = −1.
Therefore, E∗ is equivalently defined as

E∗ =

{
z : z ∈ [−D,D + 1],

p(z)

p(z − 1)
> eε

}
. (B.2)

Appendix C. Derivation of δ for D = ∞

For ease of reference, we repeat equation (2.19) here.

δ = δγ,D(ε) =

{
Ce−γD2

, ⌊0.5− ε
2γ ⌋ ≤ −D,

Ce−γD2
+ C

∑⌊0.5− ε
2γ

⌋
z=−D+1(e

−γz2 − eεe−γ(z−1)2), −D < ⌊0.5− ε
2γ ⌋ ≤ 0,

(C.1)

For a finite ε and γ := 1/2σ2, when D = ∞, the first case above becomes inactive and

Ce−γD2
= 0. The second case becomes active and the summation becomes

δ = C

⌊0.5− ε
2γ

⌋∑
z=−∞

(e−γz2 − eεe−γ(z−1)2) (C.2)

= C

⌊0.5−εσ2⌋∑
z=−∞

e−
z2

2σ2 − eεC

⌊0.5−εσ2⌋∑
z=−∞

e−
(z−1)2

2σ2 (C.3)

= C

⌊0.5−εσ2⌋∑
z=−∞

e−
z2

2σ2 − eεC

⌊−0.5−εσ2⌋∑
z′=−∞

e−
z′2
2σ2 , (C.4)

where we change the variable z = z − 1 in the second sum. If we carefully compare the last
expression with the expression given for δ in equation (2.3) in Theorem 2.6 in [CKS22], we
find that they are indeed identical for query sensitivity ∆ = 1.4 We remark that this is not
surprising. The reason is that we follow the work of [BW18] and [CKS22] by applying their
methodology and using first-principle to derive δ. Our method does not provide an upper
bound for δ, but computes it exactly. Indeed, a similar technique was used in Theorem 2.6
of [CKS22]. Hence, we get identical results when D = ∞. For finite D, our derivations are
still exact for the pmf.

4Note that due to the symmetry of the discrete Gaussian pmf, one can replace Pr(Z > z) with Pr(Z < −z)
and also since Z ∈ Z, we have Pr(Z < −z) = Pr(Z ≤ ⌊−z⌋).
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