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Abstract. Sparse histogram methods can be useful for returning differentially private
counts of items in large or infinite histograms or large group-by queries, and more generally,
releasing a set of statistics with sufficient item counts. We consider the Gaussian version of
the sparse histogram mechanism and study the exact ϵ, δ differential privacy guarantees
satisfied by this mechanism. We compare these exact ϵ, δ parameters to the simpler
overestimates used in prior work to quantify the impact of looser privacy bounds.

1. Introduction

Consider a dataset with a very large, or possibly infinite domain, such as a dataset of user
interactions with a URL—every time a user from country C performs an action A (e.g.,
share, like) on a url U , the record (U,C,A) is added to the data. It is natural to ask group-by
queries, such as

SELECT COUNT(*) FROM table WHERE Action=‘‘share’’

GROUP BY URL, COUNTRY,

which counts the number of “shares” a URL has in each country. Answering this type of query
under pure differential privacy would essentially require enumerating every possible URL and
country combination: this is called a Cartesian expansion (of the grouping columns URL
and Country). Note that under pure differential privacy, a Cartesian expansion also includes
combinations that have zero counts in the dataset, since adding or removing an individual
in the dataset might change those counts. Clearly, computing a Cartesian expansion is
infeasible for extremely large (or, as in this case, infinite) domains.1

In such cases, one settles for approximate differential privacy and thresholding schemes
[Korolova et al., 2009, Balcer and Vadhan, 2019, Wilson et al., 2020, Google Anonymization
Team, 2020, Gotz et al., 2012, Bun et al., 2016]: one first filters out items whose true counts

Key words and phrases: Differential privacy.
1Another example where the domain is too large for this to be practical is returning counts of appearances

of n-grams (n consecutive words) from a text corpus.
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are 0, adds noise to the remaining items, then returns the noisy counts for items whose noisy
counts meet or exceed some threshold τ∗. This parameter τ∗ should be set high enough so
that even if noise were added to a count whose true value is 0, the noisy value will, with
overwhelming probability, still be less than τ∗. This mechanism is known in the literature
as a sparse histogram or stability histogram mechanism [Balcer and Vadhan, 2019].

We consider a generalization of this approach that can accommodate common situations
in which data have been collected and pre-processed before being sent to a privacy expert.
Specifically, infrequent data items may have been removed (e.g., URLs with few user
interactions are removed) to save space. Thus, taking account of this pre-processing, the
mechanism effectively becomes the following: first, filter out items whose true counts are
less than some threshold τ , then add noise to the remaining items, and then return those
noisy counts for items whose noisy counts meet or exceed a second threshold τ∗. Normally,
the initial pre-processing would be considered bad for privacy, since the deletion or addition
of one item could cause an entire group of size τ to appear/disappear before noise injection.
Under pure differential privacy, such a situation would typically require the noise injection
phase to use τ times as much noise. However, for the privacy properties of the sparse
histogram mechanism, all that matters is the difference τ∗ − τ , thus providing an example
of how one can recover from pre-processing steps over which a privacy expert may have no
control.

In this setting, we study the sparse histogram mechanism and derive an exact ϵ, δ curve
for the case that the noise used is Gaussian. The reason for emphasis on the Gaussian is that
many end users are more comfortable with this distribution for their subsequent statistical
analyses. We compare the exact ϵ, δ curve to the approach of Wilson et al. [2020] and
Google Anonymization Team [2020], which provides an over-approximation of the privacy
parameters. (Originally they derived their results for Laplace noise and τ = 1, thus filtering
out exactly those cells with 0 counts; later they extended the work to Gaussian noise, but
still with τ = 1.) One goal of this paper is to quantify the impact of this over-approximation
and to identify when a more exact privacy loss accounting is necessary.

Our contributions are the following:

• We derive the exact ϵ, δ curve for the Gaussian noise-based sparse histogram mechanism.
In the database setting, this is equivalent to a group-by query that returns group sizes
along with other aggregations for each group, but filters out small groups.

• We provide a case study that allows us to analyze the impact of the conservative ϵ, δ
calculations used in prior work.

This paper is organized as follows. In Section 2, we present relevant background material
on differential privacy and the Gaussian mechanism. In Section 3 we review the Gaussian
sparse histogram mechanism (GSHM). Notation introduced in these sections is summarized
in Table 1. Next, in Section 4, we present related work on sparse histogram mechanisms,
prior to deriving our exact privacy analysis of the Gaussian sparse histogram mechanism in
Section 5. In Section 6 and 7, we compare our results against privacy accounting approaches
in prior work on a case study and against an alternative f -DP [Dong et al., 2022] analysis of
the Gaussian sparse histogram mechanism. Section 8 contains conclusions.

2. Background

Differential privacy is an emerging standard for settings where a data release mechanism
must process private data and produce publicly shareable information while each individual’s
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Data
X Dataset
X−j Dataset X with user j removed

Mechanism

d Number of potential rows in output (1 ≤ d ≤ ∞)
m Number of columns per output row (m ≥ 1)
∅ Null output value; simply not returned

M(X) random mechanism applied to dataset X returning {∅,R}d×m

M(X)i ith output row of mechanism ∈ {∅,R}m

Parameters

τ Low nonnegative threshold
τ∗ High nonnegative threshold (τ∗ > τ)
σ Standard deviation of noise for user count column
Σ Covariance matrix of noise for remaining m− 1 columns

Privacy analysis

(ϵ, δ) Approximate differential privacy parameters
Cu Maximum number of rows a user can affect
a+ Number of rows affected by user j with user count above τ
a= Number of rows affected by user j with user count equal to τ
a− Number of rows affected by user j with user count below τ
Fj A row affected by user j with user count equal to τ is not ∅m
µo µ contribution from remaining columns when m > 1

Table 1. Table of notation for Gaussian sparse histogram mechanism

privacy is protected. Differential privacy is a set of restrictions on the behavior of the data
release mechanism. Roughly speaking, a privacy mechanism is differentially private if the
probability distribution of the output of the mechanism is fairly insensitive to any individual’s
contribution to the input dataset. The probability is with respect to the randomness in the
mechanism, not the randomness in the data.

Definition 2.1 (Neighbors). Datasets X and X ′ are neighbors if one can be obtained from
the other by adding records from one individual. (An individual can contribute multiple
records to a dataset.)

Definition 2.2 (Approximate differential privacy [Dwork et al., 2006b,a]). Suppose that
ϵ ≥ 0 and δ ∈ [0, 1]. A randomized mechanism M satisfies (ϵ, δ)-DP if for every pair of
neighbors X and X ′ , and every output set S,

P(M(X) ∈ S) ≤ eϵ P(M(X ′) ∈ S) + δ. (2.1)

The ϵ, δ parameters of a mechanism M are typically derived with the help of a math-
ematical construct called the privacy loss random variable (PLRV), which is defined as
follows.

Definition 2.3 (PLRV). For a randomized mechanism M , two neighboring inputs X and
X ′, and an output ω, let lM,X,X′(ω) = log (P(M(X) = ω)/P(M(X ′) = ω)). Then LM,X,X′

is the privacy loss random variable defined as the distribution of lM,X,X′(ω) when ω is
sampled from the distribution P(M(X)).

Approximate differential privacy can then be written in terms of PLRV’s.

Theorem 2.1 (Theorem 5 from Balle and Wang [2018]). A randomized mechanism M is
(ϵ, δ)-DP if and only if for every pair of neighboring datasets X and X ′ the following holds
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for the associated PLRVs:

P(LM,X,X′ ≥ ϵ)− eϵ P(LM,X′,X ≤ −ϵ) ≤ δ. (2.2)

One important noise distribution for mechanisms satisfying approximate differential
privacy is the Gaussian distribution, which leads to the concept of a Gaussian mechanism.

Definition 2.4. Let f be a function (known as a “query”) whose input is a database and
output is a vector in Rm. The Gaussian mechanism with covariance Σ is the mechanism
that outputs f(X) + Z, where Z ∈ Rm is drawn from N(0,Σ).

The exact ϵ, δ parameters for this mechanism can be computed using the following
theorem.

Theorem 2.2 (Analytic Gaussian mechanism privacy [Balle and Wang, 2018, Dong et al.,
2021, Xiao et al., 2021]). The Gaussian mechanism is (ϵ, δ)-DP if and only if

Φ

(
µ

2
− ϵ

µ

)
− eϵΦ

(
−µ

2
− ϵ

µ

)
≤ δ (2.3)

where Φ is the CDF of the standard normal distribution and µ is

µ = max
neighboring X,X′

√
(f(X)− f(X ′))T Σ−1 (f(X)− f(X ′)). (2.4)

In particular, when Σ is a diagonal matrix with diagonals σ2
1, σ

2
2, . . . then

µ = max
neighboringX,X′

√∑
i

(f(X)i − f(X ′)i)
2 /σ2

i .

Furthermore, the quantity in Equation 2.3 is a monotonically increasing function of µ.

Privacy interpretations require ϵ and δ be nonnegative; however, Definition 2.2 is still
mathematically valid even when ϵ < 0 or δ < 0. Furthermore, the proofs of Theorem 2.2
[Balle and Wang, 2018, Dong et al., 2021, Xiao et al., 2021] also make no assumptions on ϵ,
nor do they require that Equation 2.3 be positive. This observation turns out to be useful
for the results of this paper. A similar observation that negative privacy parameters are
useful for privacy analysis occurred in Zhu et al. [2022].

Observation 2.1. The explicit PLRV expressions in Equation 2.3 for the Gaussian mecha-
nism are mathematically correct for any value of ϵ including ϵ < 0.

3. Gaussian sparse histogram mechanism

In the introduction, we briefly described a generalization of the sparse histogram mechanism
that avoids Cartesian expansion through a combination of two thresholds: τ for cell suppres-
sion and τ∗ for noisy thresholding with Gaussian noise. Here we introduce this Gaussian
sparse histogram mechanism in detail. Let X = {xi}ni=1 be a dataset of n records, xi ∈ X.

We are interested in queries that partition the records in X into d groups. For every
group, m statistics are computed, one of which is the number of records in the group. The
statistics should only be reported for groups that are large enough, having at least τ records.
For simplicity of presentation, we consider the setting where a user can contribute to at
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most Cu records, with each one belonging to a different group. Thus each user affects the
counts in at most Cu groups by at most one per group. Note that this is the same setting as
studied by Wilson et al. [2020] and Google Anonymization Team [2020], reusing the same
notation for Cu.

This is a natural setting for group-by queries. Consider the URL example from the
introduction. Each record has the form (user id, URL, country, view, like, share); it records
which actions (view, like, share) a user from the country has ever performed on the URL.
Here view, like, and share are Boolean (0/1-valued) attributes. Note that a user can only
share or like a URL if viewed. Each user is limited to Cu records and we are interested in
group-by queries such as

SELECT COUNT(*) AS cnt,

SUM(likes) AS likes,

SUM(shares) AS shares

FROM user_url_country_table

GROUP BY url, country

HAVING cnt >= tau.

Note that each user contributes a count of one to each of at most Cu groups and the number
of views is actually the number of records in each group.

Here d, the number of groups, is equal to the number of countries times the number of
URLs (which may be infinite) times the number of aggregates per group, m, is three. This
output can be represented as a table with at most d rows and m columns.

The Gaussian sparse histogram mechanism introduces a second threshold τ∗ > τ and
release noisy group statistics for all groups whose noisy counts are greater than or equal to
τ∗. In this running example, it would look like the following SQL query:

SELECT noisy_cnt, noisy_likes, noisy_shares FROM (

SELECT

COUNT(*) AS user_cnt,

COUNT(*) + GaussianNoise_1 AS noisy_cnt,

SUM(likes) + GaussianNoise_2 AS noisy_likes,

SUM(shares) + GaussianNoise_3 AS noisy_shares

FROM user_url_country_table

GROUP BY url, country

HAVING user_cnt >= tau AND noisy_cnt >= tau_star.

)

Formally, the mechanism is denoted as M and its goal is to privately answer a group-
by aggregation query that groups the records of X into d groups and computes m noisy
aggregates for each group. One of the aggregates must be count, and the rest can be arbitrary
(as long as their sensitivity is known). Its pseudocode is shown in Algorithm 1.

Thus, conceptually, the output can be organized as a d×m matrix, where each entry
comes from the domain {∅,R}d×m. Groups that are filtered out are represented as rows full
of ∅. We let M(X)i ∈ {∅,R}m denote the ith row of the output (i.e., aggregations over the
ith group of records).

When analyzing the privacy properties of M , we will make use of the following notation.
Let Gi ⊆ X be the set of possible records corresponding to the ith group (groups are
disjoint). Without loss of generality, we assume the dataset X has been aggregated per-user
and per-group such that each user has at most one record per group and each record is
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Algorithm 1: Gaussian sparse histogram mechanism (GSHM)

Input: User-group aggregated dataset X = {xi}ni=1 and groups {G1, ...Gd} where
each user has at most one record in X per group and affects at most Cu

groups. Optional aggregation function A. Parameters τ , τ∗, σ, and Σ if A
is provided.

Output: Sparse dictionary mapping group index to noisy aggregates
1 SparseGroupAggregates = {}
2 for each nonempty group Gi do
3 Sample v ∼ N(0, σ2)

4 C = (number of records from X in group Gi)

5 if C ≥ τ and C + v ≥ τ∗ then
6 Sample m ∼ N(0,Σ)
7 SparseGroupAggregates[i] = [C + v,A(X,Gi) +m]

8 return SparseGroupAggregates

(userID, groupID, otherInfo). Let C(X,Gi) be the number of records from X in group Gi

(i.e., the count) and let A be an optional aggregation function that returns a vector of m− 1
real values for a group (i.e., A(X,Gi) ∈ Rm−1). Examples of such an A include the number
of shares and likes in a group, but in general, could be arbitrary as long as its privacy impact
µ (see Theorem 2.2), after adding N(0,Σ) noise can be calculated. With this notation, row
i in the output of the Gaussian sparse histogram mechanism M can be written as

M(X)i =

{
∅m if C(X,Gi) < τ or C(X,Gi) + vi < τ∗

{C(X,Gi) + vi, A(X,Gi) +mi} otherwise,

where vi is univariate Gaussian noise with standard deviation σ and mi is multivariate
Gaussian noise with covariance matrix Σ ∈ R(m−1)×(m−1). The noise of M is independent
across all rows i. If m = 1 (i.e., the only aggregation is the count), then there is no A(X,Gi)
part.

We summarize relevant notation introduced so far for the Gaussian sparse histogram
mechanism in Table 1 within the data, mechanism, and parameters sections. Additional
terms defined for our upcoming privacy analysis are also listed there for convenience.

4. Related work

Sparse histogram methods using Laplace noise were proposed for releasing click and search
logs in Korolova et al. [2009], Gotz et al. [2012] and also analyzed in Bun et al. [2016]. An
overview of such sparse histogram approaches, including error bounds can be found in Balcer
and Vadhan [2019]. To our knowledge, this past research has not specifically considered
Gaussian noise.

Accounting for unknown or large domains has also been considered for the related
context of top-k selection, in Durfee and Rogers [2019]. Like sparse histograms, this research
involves a data-dependent pruning of outputs, in this case returning at most k items whose
noisy counts are large compared to the noisy k′th element (with k′ > k). It is worth noting
that top-k algorithms return the identities of large items, but not an estimate of their counts.
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Returning to group-by queries, instead of thresholding small groups first to achieve
sparsity and then adding noise, one could consider a postprocessing approach that first adds
noise to each group and then removes cells with with noisy counts less than a threshold
τ∗. This approach would satisfy pure differential privacy and could even be implemented
efficiently (without enumerating all groups in the Cartesian expansion) when Laplace noise
is used [Cormode et al., 2012]. However, to achieve a desired level of sparsity, the threshold
τ∗ has to increase with the (logarithm of the) size of the Cartesian expansion, indicating
dataset utility could be reduced by post-processing approaches in high-dimensional or infinite
settings.

Sparse histogram methods with Laplace noise were applied by Wilson et al. [2020] as
part of a differentially private SQL system, where avoiding Cartesian expansion was helpful
for implementing group-by operations efficiently. They additionally propose composing
the count part of the query with other aggregations using the Laplace mechanism. They
extend the previous Laplace approaches of Korolova et al. [2009] and Gotz et al. [2012] to
return multiple aggregations for each group, i.e., m > 1. In a later unpublished technical
report [Google Anonymization Team, 2020], they derived an (ϵ, δ)-DP guarantee for sparse
histogram mechanisms with a wide range of noise distributions (including Gaussian noise)
for the single count output (m = 1).2 Using the notation of our paper, their main results
on the (ϵ, δ) privacy parameters can be expressed as follows. We refer to their technique as
“add the deltas.” (Google Anonymization Team [2020])

Theorem 4.1 (Add the deltas from Wilson et al. [2020], Google Anonymization Team
[2020]). Let Cu be the maximum number of rows affected by a user. Algorithm 1 with τ = 1,
τ∗, d, m = 1, and σ, satisfies (ϵ, δGaussian + δinfinite)-DP, where

δGaussian = Φ

(√
Cu

2σ
− ϵσ√

Cu

)
− eϵΦ

(
−
√
Cu

2σ
− ϵσ√

Cu

)
δinfinite = 1− Φ

(
τ∗ − 1

σ

)Cu

. (4.1)

We recognize δGaussian from the Gaussian mechanism in Theorem 2.2 (where µ =
√
Cu/σ),

plus another contribution due to thresholding, δinfinite. We refer to the contribution from
thresholding as δinfinite because it corresponds to the worst-case probability of infinite privacy
loss under the mechanism. In particular, the privacy loss random variable lM,X,X′ is infinite
when M(X) returns a row that cannot be returned by M(X ′) due to the deterministic τ
threshold. As we shall see, the worst-case probability of at least one such row being returned
under the mechanism for two neighboring datasets X and X ′ is given by this expression for
δinfinite.

The result in Theorem 4.1 is overly conservative. Next, we will derive our exact result
and compare it to this theorem. (In Section 7 we will also consider an analysis based on
the tools of f -DP [Dong et al., 2022].) In addition to tighter accounting, our result is also
applicable to arbitrary τ ≥ 1 and m ≥ 1 for Gaussian noise.

2This derivation also includes an extension to thresholding on non-count columns with bounded positive
contributions. We do not consider this non-count extension here, but believe our results would extend to this
setting.
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5. Exact Privacy analysis

In this section, we analyze the privacy guarantees provided by the Gaussian sparse histogram
mechanism. Recall that, as in prior work [Wilson et al., 2020, Google Anonymization Team,
2020], each user contributes at most one record to up to Cu groups. We also define

µ2
o = max

i and neighboring X,X′
(A(X,Gi)−A(X ′, Gi))Σ

−1(A(X,Gi)−A(X ′, Gi)), (5.1)

which summarizes the contribution of A and noise covariance Σ to the ϵ, δ curve in Theorem
2.2 (and indirectly in Theorem 2.1).

We use privacy loss random variables (Definition 2.3) and Theorem 2.1 to obtain the
exact ϵ, δ curve for the Gaussian sparse histogram mechanism. So we begin by setting up
the relevant privacy loss random variables. Without loss of generality, the target person j
we consider for analyzing DP properties is the first person and the output rows affected are
the first C ≤ Cu rows. Among those C rows, we use a+, a=, a− to denote the number of
rows whose true user count (when X is the input) is above, equal to, below the threshold τ
respectively. Note that a+ + a= + a− = C ≤ Cu.

There are two types of privacy loss random variables (dependence on M,X,X−j , a+, a−, a=
omitted from the notation) for our mechanism M :

• L+ is defined as the distribution of log(P(M(X) = ω)/P(M(X−j) = ω)), where ω is
sampled from the distribution P(M(X)) and X−j is the dataset with user j removed.

• L− is defined as the distribution of log(P(M(X−j) = ω)/P(M(X) = ω)), where ω is
sampled from the distribution P(M(X−j)).

The rows to which the target person does not contribute (i.e., rows after row C) do not
affect the privacy loss random variable. The same is true with the rows where the count is
below the threshold (when X is the input). Therefore the privacy loss random variables are
only affected by a+ and a= and the condition that a+ + a= ≤ Cu.

Because each output row is independent of the others, we can write

L+ = L+
+ + L=

+

L− = L+
− + L=

−, (5.2)

where L+
+ is the PLRV over the a+ rows (rows containing user j and above the threshold)

and L=
+ is the PLRV over the a= rows (containing user j and at the threshold τ), similarly

for L+
− (PLRV for the same a+ rows, but now user j is removed) and L=

−.
For our mechanism to be (ϵ, δ)-DP per Theorem 2.1, we require that the following two

expressions hold for any values of a+ + a= ≤ Cu.

P(L+ ≥ ϵ)− eϵ P(L− ≤ −ϵ) ≤ δ

P(L− ≥ ϵ)− eϵ P(L+ ≤ −ϵ) ≤ δ (5.3)

for every X and j. The first expression corresponds to X containing j and X ′ not containing
j, and vice versa.

Next, we evaluate PLRVs under two cases (depending on whether a+ = 0). Proofs
appear in the Appendix.

Lemma 5.1 (Case a+= 0). If a+= 0, Equation 5.3 is satisfied when

1− Φ

(
τ∗ − τ

σ

)Cu

≤ δ. (5.4)
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Lemma 5.2 (Case a+> 0). Define

ϵ2 = ϵ− a= log Φ

(
τ∗ − τ

σ

)
,

and

ϵ3 = ϵ+ a= log Φ

(
τ∗ − τ

σ

)
If a+> 0, Equation 5.3 is satisfied when the following two conditions hold:

max
a++a=≤Cu,a+>0

1− Φ

(
τ∗ − τ

σ

)a=

+Φ

(
τ∗ − τ

σ

)a=

[P(L+
+ ≥ ϵ2)− eϵ2 P(L+

− ≤ −ϵ2)] ≤ δ,

max
a++a=≤Cu,a+>0

P(L+
− ≥ ϵ3)− eϵ3 P(L+

+ ≤ −ϵ3) ≤ δ. (5.5)

To simplify Lemma 5.2 further, we work out the remaining PLRV terms that correspond
to rows above the threshold τ . For these a+ rows, the Gaussian sparse histogram mechanism
behaves identically to the Gaussian mechanism with a post-processing threshold τ∗ applied
to the count column. Utilizing Observation 2.1 to account for possibly negative ϵ3, we can
then claim where the right-hand side is the evaluation for the Gaussian mechanism without
post-processing:

Lemma 5.3. Define

µ(a+) =

√
a+
σ2

+ a+µ2
o. (5.6)

Then,

P(L+
+ ≥ ϵ2)− eϵ2 P(L+

− ≤ −ϵ2) ≤ Φ

(
µ

2
− ϵ2

µ

)
− eϵ2Φ

(
−µ

2
− ϵ2

µ

)
and

P(L+
− ≥ ϵ3)− eϵ3 P(L+

+ ≤ −ϵ3) ≤ Φ

(
µ

2
− ϵ3

µ

)
− eϵ3Φ

(
−µ

2
− ϵ3

µ

)
, (5.7)

where the functions ϵ2 and ϵ3 are defined in Lemma 5.2. Without further assumptions about
A and the groups, these inequalities are tight.

Combining the above lemmas, and that the quantity in Equation 2.3 is a monotonically
increasing function of µ, gives our final result.

Theorem 5.4. Recall our previous definitions that

ϵ2(a=) = ϵ− a= log Φ

(
τ∗ − τ

σ

)
,

ϵ3(a=) = ϵ+ a= log Φ

(
τ∗ − τ

σ

)
,

and

µ(a+) =

√
a+
σ2

+ a+µ2
o.
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Then Algorithm 1 with parameters τ∗, τ , σ, and Σ satisfies (ϵ, δ)-DP with ϵ ≥ 0 and
δ ∈ [0, 1] if the following condition holds

max

[
1− Φ

(
τ∗ − τ

σ

)Cu

,

max
a++a==Cu,a+>0

1− Φ

(
τ∗ − τ

σ

)a=

+Φ

(
τ∗ − τ

σ

)a= [
Φ

(
µ

2
− ϵ2

µ

)
− eϵ2Φ

(
−µ

2
− ϵ2

µ

)]
,

max
a++a==Cu,a+>0

Φ

(
µ

2
− ϵ3

µ

)
− eϵ3Φ

(
−µ

2
− ϵ3

µ

)]
≤ δ. (5.8)

Without further assumptions on A and the groups, this privacy accounting is exact.

Because the optimization is over a+ + a= = Cu, this expression can be evaluated in
linear time with respect to Cu. Now let us compare our result in Theorem 5.4 directly to
“add the deltas” (Google Anonymization Team [2020]) Theorem 4.1.

Corollary 5.4.1. Let µ(Cu) be Equation 5.6 evaluated at Cu and define m ≥ 1 generaliza-
tions of Eq. 4.1:

δGaussian = Φ

(
µ(Cu)

2
− ϵ

µ(Cu)

)
− eϵΦ

(
−µ(Cu)

2
− ϵ

µ(Cu)

)
δinfinite = 1− Φ

(
τ∗ − τ

σ

)Cu

. (5.9)

Algorithm 1 with parameters τ∗, τ , σ, and Σ has a minimal δ at a given ϵ ≥ 0, given by
equality in Eq. 5.8, where

max(δinfinite, δGaussian) ≤ δ < δinfinite + δGaussian. (5.10)

For Cu = 1, the lower bound is an equality.

With realistic parameters, the minimal δ is often equal to the lower-bound in this corollary.
Equality with the lower-bound both implies no additional privacy cost for thresholding
over the Gaussian mechanism with the same noise and ϵ when δinfinite ≤ δGaussian, and a
separation from the upper-bound of δinfinite + δGaussian, the bound for m = 1 in Theorem 4.1
derived by Wilson et al. [2020].

Because our analysis simplifies at Cu = 1 for which δ = max(δinfinite, δGaussian), we can
derive a precise comparison between the minimum noisy threshold τ∗ − τ required between
using “add the deltas” (Google Anonymization Team [2020]) versus our improved accounting
here equivalent to “max the deltas.” Recall that we want to use the smallest τ∗ − τ to
preserve utility.

Corollary 5.4.2. Let Cu = 1 and suppose that δ ≥ δGaussian. Then the ratio of the minimal
τ∗ − τ difference that satisfies (ϵ, δ)-DP for Algorithm 1 with other parameters σ and Σ
under “add the deltas” (Google Anonymization Team [2020]) and exact accounting is given
by

Φ−1(1− δ + δGaussian)

Φ−1(1− δ)
. (5.11)

This ratio is always greater than one and can be arbitrarily large, implying arbitrarily
large gains in utility due to smaller noisy thresholds are possible via the exact accounting
for fixed privacy parameters. We shall see similar behavior when Cu > 1 in our case study.



EXACT PRIVACY ANALYSIS OF THE GAUSSIAN SPARSE HISTOGRAM MECHANISM 11

After the case study, we will then examine if there is anything to be gained from an f -DP
analysis in Section 7.

6. Case study on URL dataset

Differential privacy implementations for count datasets with grouping columns typically
require constructing a Cartesian expansion across all combinations of values in the grouping
columns that are not structural zeros (e.g., impossible combinations, such as 98-year-old
infants). This can require inclusion of a very large number of rows in a private dataset that
are “sampling zeroes:” counts that happen to be zero in the dataset but are not structural
zeros, which become indistinguishable from small positive values after the addition of noise.
Let us consider an example implementation of the Gaussian sparse histogram method
using the exact accounting in this paper, as compared to the “add the deltas” (Google
Anonymization Team [2020]) accounting.

We consider differences using the “Facebook Privacy-Protected Full URLs Data Set,”
which we will refer to as the Facebook URL Shares dataset (for more details on this dataset,
see Messing et al. [2020]). The Facebook URL Shares dataset contains aggregated and
de-identified information about exposure to and engagement with URLs that were shared on
Facebook. The key table of data in this dataset is called the “URL Breakdowns” table, which
has columns recording the number of users who viewed, clicked, liked, reacted, commented,
or shared any URL that had been posted to Facebook, provided that URL had been shared
publicly at least 100 times.3 Gaussian noise was added to each of the count columns in
order to satisfy action-level and user-level differential privacy (the former protecting user
interactions with a particular URL in the dataset and the latter protecting a user’s cumulative
interactions with URLs in the dataset). The differential privacy implementation was set such
that the 99th percent(ile) most active user would receive a specified (ϵ, δ) privacy guarantee.

The URL Breakdowns table groups URL engagement data columns based on: (1) year
and month when the interaction took place (2) six user age brackets plus a NULL category (3)
user gender (4) user country of residence and (5) a 5 category user “political page affinity”
categorization, plus a NULL category, for U.S. users only. The privacy implementation for the
URL Breakdowns table was not via a sparse histogram method, and required constructing
a Cartesian expansion across all five aggregation columns. That meant that in the initial
dataset covering 31 year-months and 46 countries, every URL included in the dataset
would have 33,201 rows in the breakdowns table: 29,295 rows for all non-U.S. countries
(45 countries, 31 year-months, 7 age categories, and 3 gender categories) and 3,906 for the
U.S. These rows need to be included for each URL in the dataset, even if a given URL only
received engagement in one country across one year month.

A sparse histogram mechanism would allow us to exclude all rows with true values of
zero, but at the cost of setting a noisy threshold that would filter out some non-zero values.
The URL views column would present a logical choice as a filter column, because other types
of interactions can only occur if a URL has been viewed (i.e. users can’t click or like a URL
they have not seen). In theory, a URL in this dataset could have zero views, but this would
be highly unlikely for any URL that received over 100 public shares. As discussed in the
dataset codebook, each interaction column limits users to contributing one interaction per

3Note that Laplace noise was added to the public share counts for each URL prior to implementing the
100 public shares threshold, so this was only post-processing.
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column per row, so the data are already structured in a manner that would make it well
suited to implement our mechanism.

The codebook notes that the 99th percent most active user contributed 51, 914 URL
views. (A procedure was used to compute a noisy version of this statistic, see Messing et al.
[2020] for more details.) Following the privacy guarantee aimed at the 99th percent most
active user, we set Cu = 51, 914 for our case study.4 Because “add the deltas” (Google
Anonymization Team [2020]) was previously derived for the m = 1 setting, we limit our case
study to just considering the views column. Incorporating the other columns (via a non-zero
µ2
o) only increases differences between accounting methods. The codebook notes that the

standard deviation of the Gaussian noise added to the views column was σ = 2228, which as
a Gaussian mechanism satisfies (ϵ = 0.349, δ = 10−5)-DP according to Theorem 2.2.

Suppose that we are interested in the Gaussian sparse histogram mechanism for im-
plementing differential privacy for the views column in the Facebook URL Shares dataset,
with τ = 1. After fixing τ , the Gaussian sparse histogram mechanism has two remaining
parameters τ∗, σ. We will consider two scenarios; the minimal τ∗ versus σ that satisfies a
given (ϵ, δ)-DP constraint, and (ϵ, δ)-DP curves for a fixed σ and τ∗. In both cases, we will
see a separation between the curves produced by the exact and “add the deltas” (Google
Anonymization Team [2020]) accounting.5

6.1. Scenario 1: Comparison of minimal τ∗ versus σ. We fix (ϵ = 0.349, δ = 10−5),
the same privacy parameters implied by the Gaussian mechanism for the views column.
As the Gaussian sparse histogram mechanism cannot release a lower σ than the Gaussian
mechanism at the same privacy, we therefore consider σ ≥ 2228. At σ = 2228, the Gaussian
sparse histogram mechanism can use τ∗ = 13948. 6 For each σ, we compute the minimum τ∗

that satisfy (ϵ = 0.349, δ = 10−5)-DP from “add the deltas” in Theorem 4.1 and our exact
accounting in Theorem 5.4. We show the resulting curves in Figure 1a.

The exact accounting curve produces strictly lower thresholds τ∗ than “add the deltas”.
The difference is greatest as we approach σ = 2228 where “add the deltas” cannot produce a
threshold τ∗ that meets the criteria at this lower bound. As in Corollary 5.4.2, the difference
at σ = 2228 is unbounded, and it is precisely these lowest σ and lowest τ∗ values that are of
primary interest as they provide the maximum utility. The shape of the exact accounting
curve requires no tradeoff between the two objectives, as we can choose both the lowest σ
and the lowest τ∗. However, for “add the deltas” we are required to use a higher σ and

4Messing et al. [2020] note that users who have a total number of actions in the top one percent in
any engagement category will suffer privacy loss greater than the specified (ϵ,δ) privacy guarantee. As we
follow Messing et al. [2020], this also applies to our hypothetical case study as the actual number of URL
views may be greater than Cu for these users.

5Code to replicate the analyses in this section can be found at
https://github.com/facebookresearch/gaussian sparse histogram mechanism

6That the Gaussian sparse histogram mechanism improves upon simply post-processing the existing
Facebook URL Shares dataset released via the Gaussian mechanism is unlikely in this circumstance. Consider
dropping rows with noisy view counts less than some desired sparsity threshold τpost. If τmboxpost = τ∗ = 13948,
the probability of a given zero row remaining after post-processing is roughly 10−10. This probability is
extremely small indicating a smaller τpost would likely suffice for sparsity. On the other hand, if a desired

τpost ≥ τ∗, the Gaussian sparse histogram mechanism is preferred as it performs the same filtering on

non-zero count rows, while removing the zero count rows. Our emphasis in this case study is to understand
the effects of privacy accounting, not to determine whether applying the Gaussian sparse histogram method
would have produced a more useful dataset.

https://github.com/facebookresearch/gaussian_sparse_histogram_mechanism
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(a) (b)

Figure 1. (A). Scenario 1 showing the minimal τ∗ versus σ satisfying
(ϵ = 0.349, δ = 10−5)-DP for both “add the deltas” (Google Anonymization
Team [2020]) and exact accounting. (B). Scenario 2 showing a (δadd/δGSHM, ϵ)
curve for σ = 2228 and τ∗−τ = 16176, where δadd is from “add the deltas” and
δGSHM is the exact accounting. The “add the deltas” and exact accounting
are in Theorem 4.1 and Theorem 5.4 respectively.

higher τ∗ to satisfy the criteria. We can further quantify these differences in noisy threshold
in terms of the number of additional non-zero rows removed due to using a higher threshold:7

• With σ = 2400, we will lose about 1.1% more non-zero rows;
• With σ = 2300, we will lose about 2.8% more non-zero rows;
• With σ = 2240, we will lose about 6.9% more non-zero rows.

These differences directly reflect upon the improved precision provided by our privacy
accounting over “add the deltas” on identifying non-zero rows.

The two curves converge as σ → ∞. “Add the deltas” (Google Anonymization Team
[2020]) gets within 1% of Theorem 5.4 at σ = 2396 (the necessary value of τ∗ − τ is 15, 148
under “add the deltas” and 14, 998 under Theorem 5.4). “Add the deltas” gets within 0.1%

7For these calculations, we use the breakdowns table in the Facebook URL Shares dataset that covers a
period from January 2017 to February 2021, for users living in the U.S. The URL Shares dataset is updated
periodically as new data become available. An exact computation of the expected fraction of rows lost
as a function of σ and τ∗ would require access to data not included in the Facebook URL Shares dataset.
But in practice, the expected fraction of rows lost should be almost identical when computed using the
privacy-protected version of the Facebook URL Shares dataset that is available to researchers via Social
Science One. This is because after dropping rows of the privacy-protected data where noisy views are smaller
than τ∗, the number of zero-valued rows is vanishingly small. The privacy-protected dataset has on the order
of 2× 1011 rows, of which over 38 million rows have more than 14, 022 noisy views (where country is U.S.
and where the views occurred between January 2017 and February 2021). If all the rows had true values of
zero (with 2× 1011 rows, σ = 2240 and τ∗ = 14, 022), the expected number of zero-valued rows with noisy
views greater than τ∗ is 31, which is vanishingly small considering the over 38 million rows with noisy views
greater than 14, 022.
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of Theorem 5.4 at σ = 2699 (the necessary value of τ∗ − τ is about 16, 910 under “add the
deltas” and 16, 894 Theorem 5.4). At the points where the curves converge though, we are
adding much more noise and thresholding out far more rows than would be necessary to
satisfy the desired differential privacy target. Further, this convergence occurs only because
we examined just the views column (i.e. m = 1 and µo = 0). If additional columns were
included, the curves may converge to a constant factor as in Corollary 5.4.2, considered as σ
varies.

6.2. Scenario 2: Comparison of (ϵ, δ) curves. We can also fix σ and τ∗ and examine
the (ϵ, δ)-DP curves produced by “add the deltas” (Google Anonymization Team [2020])
and our exact accounting. For this example, say we use σ = 2228 and τ∗ − τ = 16176 which
meets δinfinite = 10−8. For our curves, we know that δ ≥ δinfinite.

With these parameters set, we can examine δ(ϵ) or ϵ(δ). We consider the former in
Figure 1b which displays how δ(ϵ) varies over ϵ ∈ [0.1, 0.504] under Theorem 5.4 (GSHM)
and “add the deltas” under Theorem 4.1. As seen in Figure 1b, the final δ returned by
“add the deltas” is double that of GSHM at δGSHM = 10−8, 10% greater at δGSHM = 10−7,
1% greater at δGSHM = 10−6, and 0.1% greater at δGSHM = 10−5. This aligns with our
expectations from Corollary 5.4.1. When δinfinite is very small with respect to δGaussian,
the lower and upper bounds in Equation 5.10 become closer and δ produced from both
accounting approaches will become similar. However when δinfinite is non-trivial compared
to δGaussian, the exact accounting produces a smaller δ, by up to a factor of two.

7. f-DP analysis of Gaussian sparse histogram mechanism

In this section, we analyze the Gaussian sparse histogram mechanism using the f -DP
framework [Dong et al., 2021, 2022], a recent generalization of differential privacy. In
particular, we prove the following theorem in Appendix A.3 by following a similar novel
argument as in the main text, but using f -DP composition instead of PLRV’s.

Theorem 7.1. Define

µ(a+) =

√
a+
σ2

+ a+µ2
o.

Then using f -DP composition, Algorithm 1 with parameters τ∗, τ , σ, and Σ satisfies (ϵ,
δ)-DP with ϵ ≥ 0 and δ ∈ [0, 1] if

max
a++a==Cu

1− Φ

(
τ∗ − τ

σ

)a=

+Φ

(
τ∗ − τ

σ

)a= [
Φ

(
µ

2
− ϵ

µ

)
− eϵΦ

(
−µ

2
− ϵ

µ

)]
≤ δ. (7.1)

This f -DP result is similar but in general not identical to the results from our exact
analysis. In Eq. 7.1 we have ϵ while the middle term of Eq. 5.8 uses ϵ2 ≤ ϵ. Because the
Gaussian mechanism term in brackets is monotone decreasing with respect to ϵ, we have that
δGSHM ≤ δf -DP. Examining the expression, we also have that f -DP provides a substantially
tighter result than “add the deltas,” i.e., δf -DP ≤ δadd.

Our exact analysis and f -DP results are actually the same when Cu = 1 as can be seen
by comparing Theorem 7.1 with Corollary 5.4.1, but possibly different when Cu > 1. If the
maximum for the f -DP analysis has a+ = 0 or a+ = Cu, then the results are also the same
but there is a gap when the optimal a+ satisfies 0 < a+ < Cu. Further, we point out there
is no practical difference in complexity between computing the privacy parameters using
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the exact versus the f -DP analysis. So we conclude that for the Gaussian sparse histogram
mechanism, the exact analysis is preferable over using f -DP composition.

8. Conclusion

Applications of differential privacy to count datasets traditionally require constructing
a Cartesian expansion across all possible combinations of values in grouping columns.
Constructing such a Cartesian expansion can be difficult or impossible for multiple reasons,
especially when the domains are large or even infinite. In these cases, sparse histogram
methods provide reasonable alternatives to Cartesian expansion.

In this paper, we have provided an exact privacy loss analysis of the Gaussian sparse
histogram mechanism and demonstrated that our exact accounting is feasible in practice.
On our URL case study, our comparison against past research demonstrated that in practical
circumstances our more precise privacy accounting can increase utility by a significant
amount, primarily in situations where it is desirable to set a low enough noisy threshold
such that δinfinite is comparable to δGaussian. On the other hand, when δinfinite can be made
vanishing through use of a large noisy threshold, our accounting matches those from “add
the deltas” (Google Anonymization Team [2020]). Given that the implementation of exact
accounting is simple and that smaller noisy thresholds are of primary concern when using a
sparse histogram method, we believe our improved accounting should be useful in practice.

The exactness of our privacy analysis relies upon uniform sensitivity across groups
for m > 1 and unbounded group counts. If the count of users per group is bounded or
non-uniformity is of interest, future research could improve upon our privacy analysis via
revisiting Lemma 5.3 with additional assumptions.
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Appendix A.

A.1. Additional preliminaries for privacy analysis. We partition the output space
Ω into events for which L+ (through L=

+) is finite and infinite. Let Fj be all events where
some subset of the rows a= are not ∅m. M(X) ∈ Fj if and only if L+ is infinite. We have
these facts, where we use ∼ F to represent the event that F did not happen:

• PM(X−j)(Fj) = 0;

• PM(X−j)(∼ Fj) = 1;

• PM(X)(Fj) = 1− Φ
(
τ∗−τ
σ

)a=
;

• PM(X)(∼ Fj) = Φ
(
τ∗−τ
σ

)a=
;

• L=
+ = ∞ with probability 1−Φ

(
τ∗−τ
σ

)a=
and equals log

(
Φ
(
τ∗−τ
σ

)a=
/1
)
= a= log(Φ

(
τ∗−τ
σ

)
)

with probability Φ
(
τ∗−τ
σ

)a=
• L=

− = log
(
1/Φ

(
τ∗−τ
σ

)a=)
= −a= log(Φ

(
τ∗−τ
σ

)
) > 0 with probability 1.

A.2. Proofs using above preliminaries.

Lemma 5.1 (Case a+= 0). If a+= 0, Equation 5.3 is satisfied when

1− Φ

(
τ∗ − τ

σ

)Cu

≤ δ. (5.4)

Proof of Lemma 5.1. In this case, we have the following facts:

• L+
+ = 0;

• L+
− = 0;

• For any ϵ > 0, P(L=
+ ≥ ϵ) = 1− Φ ((τ∗ − τ)/σ)a= and P(L=

− ≤ −ϵ) = 0;
• For any ϵ > 0, P(L=

− ≥ ϵ) = 1 if ϵ ≤ −a= log(Φ ((τ∗ − τ)/σ)) and is 0 otherwise.
P(L=

+ ≤ −ϵ) = Φ ((τ∗ − τ/σ))a= if −ϵ ≥ a= log(Φ ((τ∗ − τ)/σ)), and is 0 otherwise.

Therefore

P(L=
+ ≥ ϵ)− eϵ P(L=

− ≤ −ϵ) = 1− Φ

(
τ∗ − τ

σ

)a=

and

P(L=
− ≥ ϵ)− eϵ P(L=

+ ≤ −ϵ) =

{
0 if ϵ > −a= log(Φ

(
τ∗−τ
σ

)
)

1− eϵΦ
(
τ∗−τ
σ

)a=
if ϵ ≤ −a= log(Φ

(
τ∗−τ
σ

)
).

Note that the maximum of these is 1 − Φ ((τ∗ − τ)/σ)a= ; maximizing over a= ≤ Cu, we get

1− Φ

(
τ∗ − τ

σ

)Cu

≤ δ. (A.1)
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Lemma 5.2 (Case a+> 0). Define

ϵ2 = ϵ− a= log Φ

(
τ∗ − τ

σ

)
,

and

ϵ3 = ϵ+ a= log Φ

(
τ∗ − τ

σ

)
If a+> 0, Equation 5.3 is satisfied when the following two conditions hold:

max
a++a=≤Cu,a+>0

1− Φ

(
τ∗ − τ

σ

)a=

+Φ

(
τ∗ − τ

σ

)a=

[P(L+
+ ≥ ϵ2)− eϵ2 P(L+

− ≤ −ϵ2)] ≤ δ,

max
a++a=≤Cu,a+>0

P(L+
− ≥ ϵ3)− eϵ3 P(L+

+ ≤ −ϵ3) ≤ δ. (5.5)

Proof of Lemma 5.2. Conditioned on event Fj not happening,

L+|{M(X) ∈∼ Fj} = L+
+ + log

PM(X)(∼ Fj)

PM(X−j)(∼ Fj)
= L+

+ + a= log Φ

(
τ∗ − τ

σ

)
L−|{M(X−j) ∈∼ Fj} = L+

− + log
PM(X−j)(∼ Fj)

PM(X)(∼ Fj)
= L+

− − a= log Φ

(
τ∗ − τ

σ

)
. (A.2)

As mentioned in the main text, for our mechanism to be (ϵ, δ)-DP, we require that the
following two expressions hold for any values of a+ + a= ≤ Cu:

P(L+ ≥ ϵ)− eϵ P(L− ≤ −ϵ) ≤ δ

P(L− ≥ ϵ)− eϵ P(L+ ≤ −ϵ) ≤ δ (A.3)

The first expression corresponds to X having j and X ′ not having j, and the second
expression corresponds to X not having j and X ′ having j.

We first consider the top expression. Dividing into conditioning on ∼ Fj and Fj , and
remembering that ∼ Fj happens with probability one under M(X−j),

PM(X)(Fj)P(L+ ≥ ϵ|Fj) + PM(X)(∼ Fj)P(L+ ≥ ϵ| ∼ Fj)− eϵ P(L− ≤ −ϵ| ∼ Fj)

= PM(X)(Fj) + PM(X)(∼ Fj)P(L+ ≥ ϵ| ∼ Fj)− eϵ P(L− ≤ −ϵ| ∼ Fj)

= 1− PM(X)(∼ Fj) + PM(X)(∼ Fj)
[
P(L+ ≥ ϵ| ∼ Fj)− eϵ−log(PM(X)(∼Fj)) P(L− ≤ −ϵ| ∼ Fj)

]
= 1− Φ

(
τ∗ − τ

σ

)a=

︸ ︷︷ ︸
δ for infinite privacy loss

+Φ

(
τ∗ − τ

σ

)a=

[P(L+
+ ≥ ϵ2)− eϵ2 P(L+

− ≤ −ϵ2)]︸ ︷︷ ︸
δ from the numerical a+ rows, no a= rows are output

,

where ϵ2 = ϵ− a= log Φ ((τ∗ − τ)/σ). Note that ϵ > 0 implies that ϵ2 > 0.
We return to the bottom expression that considers X without j and X ′ with j. For this

case, we want

P(L− ≥ ϵ)− eϵ P(L+ ≤ −ϵ) ≤ δ. (A.4)

Expanding the left-hand side (similarly to before, being careful with the signs and noting
that (a) P(L+ ≤ −ϵ|Fj) = 0 and (b) P(L− ≥ ϵ| ∼ Fj) = P(L− ≥ ϵ) (since ∼ Fj always
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happens under M(X−j)), we get

P(L− ≥ ϵ| ∼ Fj)− eϵ
(
PM(X)(∼ Fj)P(L+ ≤ −ϵ| ∼ Fj) + PM(X)(Fj)P(L+ ≤ −ϵ|Fj)

)
= P(L− ≥ ϵ| ∼ Fj)− eϵ+log(P(∼Fj)) P(L+ ≤ −ϵ| ∼ Fj)

= P(L+
− ≥ ϵ3)− eϵ3 P(L+

+ ≤ −ϵ3), (A.5)

where ϵ3 = ϵ+ a= log Φ (τ∗ − τ/σ).

Lemma 5.3. Define

µ(a+) =

√
a+
σ2

+ a+µ2
o. (5.6)

Then,

P(L+
+ ≥ ϵ2)− eϵ2 P(L+

− ≤ −ϵ2) ≤ Φ

(
µ

2
− ϵ2

µ

)
− eϵ2Φ

(
−µ

2
− ϵ2

µ

)
and

P(L+
− ≥ ϵ3)− eϵ3 P(L+

+ ≤ −ϵ3) ≤ Φ

(
µ

2
− ϵ3

µ

)
− eϵ3Φ

(
−µ

2
− ϵ3

µ

)
, (5.7)

where the functions ϵ2 and ϵ3 are defined in Lemma 5.2. Without further assumptions about
A and the groups, these inequalities are tight.

Proof of Lemma 5.3. Let A+ be the set of a+ rows containing j with counts greater than
the threshold τ . To evaluate the remaining PLRV expressions when a+ > 0, for these
A+ rows, we note that the Gaussian sparse histogram mechanism applied to these rows is
identical to the Gaussian mechanism with a post-processing threshold τ∗ applied to the
noisy counts for each row. Lemma 5.3 then follows from the argument about post-processing
in A.2.1 which says we can use the PLRV expressions from the Gaussian mechanism as an
upper-bound, regardless of the sign of ϵ. Observation 2.1 says that the Gaussian PLRV
expressions contained in Theorem 2.2 are correct, despite possibly negative ϵ3.

We now address the tightness of these inequalities. Since we are releasing these rows
each of which has a µi contribution, the total µ2 for releasing the A+ rows is given by∑

i∈A+
µ2
i ≤ a+/σ

2 + a+µ
2
o. Recalling that the Gaussian PLRV expressions are increasing

functions of µ, using a larger µ2 (and therefore larger µ) results in a larger upper bound.
Under uniformity (µ2

i contributions equal for all rows i), this final inequality for the µ
contribution from the A+ rows is an equality. Without any assumptions on A(x) and
the groups, uniformity is possible (and reasonable in many circumstances) and hence this
inequality is tight.

We next address tightness of the inequality due to post-processing. Consider a pair of
neighboring datasets X and X−j , where for all rows in A+ the counts in both X and X−j

are very large compared to the threshold τ∗, such that the chance of a noisy user count
being less than τ∗ goes to zero. Therefore the privacy loss random variables over the A+

rows can behave arbitrarily close to the Gaussian mechanism by simply considering datasets
with large enough counts on these rows. Hence there exists a pair of neighboring datasets
X and X−j such that the PLRV expressions from the Gaussian mechanism are arbitrarily
close to those of applying the Gaussian sparse histogram mechanism on these A+ rows.
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A.2.1. Post-processing and PLRV’s. We modify the proof of Theorem 5 by Balle and Wang
[2018] to prove the following claim.

Let M be a random function from O to R. Let f be a deterministic post-processing
function from R to R′. Then for any datasets X and X ′, and any value of ϵ including ϵ < 0,
we have that

P(Lf◦M,X,X′ ≥ ϵ)− eϵ P(Lf◦M,X′,X ≤ −ϵ) ≤ P(LM,X,X′ ≥ ϵ)− eϵ P(LM,X′,X ≤ −ϵ). (A.6)

Proof. Let T = {r′ ∈ R′ : log[P(f(M(X)) = r′)/P(f(M(X ′)) = r′)] ≥ ϵ}, and let S = {r ∈
R : f(r) ∈ T}. Let E = {r ∈ R : log[P(M(X) = r)/P(M(X ′) = r)] ≥ ϵ}. Also E+ = S ∩ E
and E− = S ∩ (R/E). Using these definitions we can write

P(Lf◦M,X,X′ ≥ ϵ)− eϵ P(Lf◦M,X′,X ≤ −ϵ)

=

∫
T
[P(f(M(X)) = r′)− eϵ P(f(M(X ′)) = r′)]dr′

=

∫
S
[P(M(X) = s)− eϵ P(M(X ′) = s)]ds

= (

∫
E+

+

∫
E−

)[P(M(X) = s)− eϵ P(M(X ′) = s)]ds

≤
∫
E+

[P(M(X) = s)− eϵ P(M(X ′) = s)]ds

≤
∫
E
[P(M(X) = s)− eϵ P(M(X ′) = s)]ds

= P(LM,X,X′ ≥ ϵ)− eϵ P(LM,X′,X ≤ −ϵ), (A.7)

where we used that under the events in E− the contributions are all non-positive for the first
inequality, and then the contributions under any events in E are nonnegative and E+ ⊆ E.

Theorem 5.4. Recall our previous definitions that

ϵ2(a=) = ϵ− a= log Φ

(
τ∗ − τ

σ

)
,

ϵ3(a=) = ϵ+ a= log Φ

(
τ∗ − τ

σ

)
,

and

µ(a+) =

√
a+
σ2

+ a+µ2
o.

Then Algorithm 1 with parameters τ∗, τ , σ, and Σ satisfies (ϵ, δ)-DP with ϵ ≥ 0 and
δ ∈ [0, 1] if the following condition holds

max

[
1− Φ

(
τ∗ − τ

σ

)Cu

,

max
a++a==Cu,a+>0

1− Φ

(
τ∗ − τ

σ

)a=

+Φ

(
τ∗ − τ

σ

)a= [
Φ

(
µ

2
− ϵ2

µ

)
− eϵ2Φ

(
−µ

2
− ϵ2

µ

)]
,

max
a++a==Cu,a+>0

Φ

(
µ

2
− ϵ3

µ

)
− eϵ3Φ

(
−µ

2
− ϵ3

µ

)]
≤ δ. (5.8)

Without further assumptions on A and the groups, this privacy accounting is exact.
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Proof of Theorem 5.4. The three terms in the theorem immediately follow from Lemma 5.1,
Lemma 2.1, and Lemma 5.3. Tightness follows from the tightness of these preceding Lemmas.
The only remaining aspect is to prove that the inner maximization occurs when a++a= = Cu

instead of a+ + a= ≤ Cu. To do so, we demonstrate that the PLRV difference given by the
left-hand side of Eq. 2.3 is monotonically increasing with respect to µ for any ϵ.

Let

f(µ, ϵ) = Φ

(
µ

2
− ϵ

µ

)
− eϵΦ

(
−µ

2
− ϵ

µ

)
. (A.8)

for arbitrary µ > 0 and ϵ. Applying calculus, we have that

∂f

∂µ
= ϕ

(
µ

2
− ϵ

µ

)
(A.9)

and

∂f

∂ϵ
= −eϵΦ

(
−µ

2
− ϵ

µ

)
, (A.10)

where ϕ is the PDF of the standard normal distribution. So the partial derivative of f with
respect to µ is always positive, and the partial derivative with respect to ϵ is always negative.

This implies equality with Cu because a+ only enters into these expressions via µ(a+)
and µ(a+) in Equation 5.6 is monotonically increasing in a+.

Corollary 5.4.1. Let µ(Cu) be Equation 5.6 evaluated at Cu and define m ≥ 1 generaliza-
tions of Eq. 4.1:

δGaussian = Φ

(
µ(Cu)

2
− ϵ

µ(Cu)

)
− eϵΦ

(
−µ(Cu)

2
− ϵ

µ(Cu)

)
δinfinite = 1− Φ

(
τ∗ − τ

σ

)Cu

. (5.9)

Algorithm 1 with parameters τ∗, τ , σ, and Σ has a minimal δ at a given ϵ ≥ 0, given by
equality in Eq. 5.8, where

max(δinfinite, δGaussian) ≤ δ < δinfinite + δGaussian. (5.10)

For Cu = 1, the lower bound is an equality.

Proof of Corollary 5.4.1. Note for ϵ ≥ 0 as assumed here, 0 ≤ δGaussian < 1.

A.2.2. Lower bound derivation. The lower-bound on δ follows from the first term in the
three-term maximization of Equation 5.8 and the third term in the three-term maximization
evaluated at a+ = Cu and a= = 0. The first term is identically δinfinite and the third gives
δGaussian.

When Cu = 1, both the second and third terms are equal to δGaussian because they are
optimizations over a+ > 0 so they can only be evaluated at a+ = 1 = Cu and a= = 0. Hence
the minimal δ = max(δinfinite, δGaussian) when Cu = 1.
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A.2.3. Upper bound derivation. We start by recalling f from Equation A.8, that the partial
derivative of f with respect to µ is always positive, and that the partial derivative with
respect to ϵ is always negative.

To simplify, let function β(a=) = Φ ((τ∗ − τ)/σ)a= . Then the second and third terms of
the three-term maximization in Theorem 5.4 written in terms of β and f are:

max
a++a=≤Cu,a+>0

1− β + βf(µ(a+), ϵ− lnβ),

max
a++a=≤Cu,a+>0

f(µ(a+), ϵ+ lnβ) (A.11)

Then µ(a+) is maximized when a+ = Cu. Let µ
∗ = µ(Cu). Given that the partial derivative

of f with respect to µ is always positive and the partial derivative with respect to ϵ is always
negative (and ln β < 0), we can write upper bounds for both terms as

max
a=≤Cu−1

1− β + βf(µ∗, ϵ)

and

max
a=≤Cu−1

f(µ∗, ϵ+ lnβ). (A.12)

Because f(µ∗, ϵ) = δGaussian < 1, the solution to the first optimization is a= = Cu − 1, which
evaluates to a quantity even larger when a= = Cu. Evaluated at Cu, the first equation
is δinfinite + (1 − δinfinite)δGaussian < δinfinite + δGaussian, our desired upper-bound. So what
remains to be shown is that the second equation is less than or equal to the first.

Define

r(β) = 1− β + βf(µ∗, ϵ)

and

t(β) = f(µ∗, ϵ+ lnβ). (A.13)

We will show r(β) ≥ t(β) for continuous β ∈ [0, 1], the relevant range of β for the above
maximization over a=. First, we note equality at the endpoints r(0) = t(0) = 1 and
r(1) = t(1) = δinfinite. Then dr/dβ = −1 + δinfinite is a constant negative slope and

dt

dβ
=

∂f(µ∗, ϵ+ lnβ)

∂ϵ

1

β
= −eϵΦ

(
−µ∗

2
− ϵ+ lnβ

µ∗

)
.

Evaluated at β = 0, dt/dβ < dr/dβ because −eϵ < −1+ δinfinite. So slightly above β = 0, we
have that r > t. Remembering that eyϕ(x/2 + y/x) = ϕ(x/2− y/x), where ϕ is the density
function for the standard normal, we have that

d2t

dβ2
=

ϕ
(
µ∗

2 − ϵ+lnβ
µ∗

)
β2µ∗ . (A.14)

This is always positive on the range of β ∈ (0, 1].
Now we claim via the mean value theorem applied to the difference of the functions

r − t, that because d2(r − t)/dβ2 < 0 over β ∈ (0, 1], and the two functions are equal at
β = 0 and β = 1, there can be no other value of β such that r = t over this range. Since
r − t > 0 slightly above β = 0, therefore r(β) ≥ t(β) for β ∈ [0, 1], and we have proven our
upper bound.
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Corollary 5.4.2. Let Cu = 1 and suppose that δ ≥ δGaussian. Then the ratio of the minimal
τ∗ − τ difference that satisfies (ϵ, δ)-DP for Algorithm 1 with other parameters σ and Σ
under “add the deltas” (Google Anonymization Team [2020]) and exact accounting is given
by

Φ−1(1− δ + δGaussian)

Φ−1(1− δ)
. (5.11)

Proof of Corollary 5.4.2. For Cu = 1 and δ ≥ δGaussian, “add the deltas” accounting would
require that

δinfinite = δ − δGaussian ≥ 1− Φ

(
τ∗ − τ

σ

)
. (A.15)

Exact accounting would require that

δ ≥ 1− Φ

(
τ∗ − τ

σ

)
. (A.16)

Solving for the minimal τ∗ − τ under the two cases (equality in the two expressions) and
dividing gives the corollary.

A.3. f-DP Calculations. The f -DP framework [Dong et al., 2021, 2022] can also be used
to analyze this thresholding algorithm. f -DP is a generalization of differential privacy which
introduces a tradeoff function f : [0, 1] → [0, 1], which is any continuous convex function that
is non-increasing and f(y) ≤ 1− y for all y ∈ [0, 1]. If a mechanism M satisfies f -DP, then
it guarantees the following. If two datasets X1 and X2 differ on one individual, then any
(possibly randomized) classification rule that uses the output of M and tries to determine
whether the input was X1 or X2 is going to have a tradeoff between its false positive rates
and true positive and false negative rates. Specifically, if the false positive rate is at most α
then the true positive rate is at most 1 − f(α) and the false negative rate is at least f(α).
Formally,

Definition A.1 (Dong et al. [2021, 2022]). Let f : [0, 1] → [0, 1] be a continuous convex
function that is non-increasing and such that f(y) ≤ 1− y for all y ∈ [0, 1]. A mechanism
M satisfies f -DP is for all datasets X1 and X2 that differ on on individual’s data and for all
measurable sets S, then

P (M(X2) ∈ S) ≤ 1− f(P (M(X1) ∈ S)).

Next, we recall some facts from Dong et al. [2021, 2022].

Lemma A.1 ([Dong et al., 2022, Section 2.2]). Let mechanism M be the mechanism that
adds N(0, σ2) noise to a query with L2 sensitivity ∆. Then

• M satisfies µ-Gaussian DP with µ = ∆/σ; and
• The tradeoff function between Type I and Type II error is fµ(α) = Φ(Φ−1(1− α)− µ).

Lemma A.2 (Dong et al. [2021, 2022]). If M satisfies (0, δ)-differential privacy then it
satisfies f -DP with tradeoff function f(y) = 1− δ − y.
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Given a sequence of mechanisms M1, . . . ,Mk, f -DP allows one to compute their compo-
sition by evaluating the composed tradeoff function for each pair of neighbors X1, X2 and
then taking the pointwise minimum of the resulting tradeoff functions. This is equivalent
to fixing an ϵ, computing the δ approximate differential privacy parameter for each pair of
neighbors separately and then taking the maximum δ.

For the case of the GSHM, let X1 and X2 be neighbors where, without loss of generality,
X1 is obtained from X2 by removing one person, say person j. Thus H= be the groups such
that person j participates in those groups in X2 and they have counts equal to τ . Thus
the number of such groups is a=. Let H+ (resp., H−) be those groups such that person j
participates in them in X2 have counts > τ (resp., < τ). Thus the number of groups in H−
is a− and the number of groups in H+ is a+. When just considering the neighboring pair
X1 and X2, the GSHM mechanism has the same effect as the following three mechanisms:

• M− which just looks at the groups in H− and always outputs ∅.
• M= which just looks at the groups in H= and produces one output per group. For each
group, it adds N(0, σ2) noise to the group. If the true count is < τ or if the noisy count is
< τ∗ it outputs ∅. Otherwise it outputs the noisy count and noisy aggregate statistics.

• M+ which just looks at the groups in H>. It computes the noisy group counts and
noisy group aggregates. For those groups whose noisy count is ≥ τ∗ it releases the noisy
statistics, otherwise it suppresses them. This mechanism doesn’t use a τ but it still
coincides with the behavior of the GSHM algorithm on X1 and X2 because these groups
are guaranteed to have at least τ people each.

The mechanism M− is uninformative and has no privacy impact. The mechanism M=

satisfies (0, δ)-differential privacy, with δ = 1 − Φ(τ∗ − τ/σ)a= , because if all the outputs
are ∅ it is uninformative, but if some output is not ∅, then one can immediately tell that
the input was X2. The mechanism M+ just behaves like a Gaussian mechanism followed
by postprocessing and satisfies Gaussian DP with privacy parameter µ(a+) (defined in
Equation 5.6).

Composition of (0, δ)-DP and Gaussian mechanisms, and obtaining the (ϵ, δ) parameters
of the composed mechanisms works as follows.

Lemma A.3 ([Dong et al., 2022, Section 3.3]). If M has tradeoff function f , then the
composition of M and an (0, δ)-differentially private mechanism has tradeoff function g
lower bounded by

g(α) =

{
(1− δ)f( α

1−δ ) if α ∈ [0, 1− δ]

0 otherwise.
(A.17)

The convex conjugate g∗ of a function g defined over [0, 1] is:

g∗(y) = sup
α∈[0,1]

yα− g(α)

Lemma A.4 ([Dong et al., 2021, proof of corollary 2.13]). The convex conjugate f∗
µ of the

tradeoff function fµ (of the Gaussian mechanism) is

f∗
µ(y) = yΦ

(
−µ

2
− 1

µ
log(−y)

)
− Φ

(
−µ

2
+

1

µ
log(−y)

)
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Lemma A.5 ([Dong et al., 2022, Section 3.3]). A mechanism M with tradeoff function
lower bounded by f satisfies (ϵ, δ)-differential privacy for δ = 1 + f∗(−eϵ).

Lemma A.6. Let f be a tradeoff function and define g as in Equation A.17. The the convex
conjugate of g is max{(1− δ)f∗(y), y}.

Proof. We calculate as follows:

g∗(y) = max

{
sup

α∈[0,1−δ]
yα− g(α), sup

α∈(1−δ,1]
yα− g(α)

}

= max

{
sup

α∈[0,1−δ]
yα− (1− δ)f(

α

1− δ
), sup

α∈(1−δ,1]
yα

}

= max

{
sup

α∈[0,1−δ]
yα− (1− δ)f(

α

1− δ
), y

}
(substituting z = α/(1− δ))

= max

{
sup

z∈[0,1]
(1− δ)yz − (1− δ)f(z), y

}

= max

{
(1− δ) sup

z∈[0,1]
yz − f(z), y

}
= max{(1− δ)f∗(y), y}.

Lemma A.7. Let M1 be a mechanism that satisfies µ-Gaussian DP and let M2 be a
mechanism that satisfies (0, δ)-DP. Then the composition of M1 and M2 satisfies (ϵ, δ∗)-DP
for ϵ > 0 with

δ∗ ≥ δ + (1− δ)

(
Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
.

)
.

In particular, this means that if the Gaussian mechanism satisfies (ϵ2, δ2)-DP, then the
composed mechanism satisfies (ϵ2, δ + (1− δ)δ2)-DP.

Proof. By Lemma A.3, the tradeoff function of the composition of M1 and M2 is lower
bounded by the function g in Equation A.17 in which fµ is used in place of f . Combining
Lemmas A.4 and A.6, the convex conjugate of g is

g∗(y) = max

{
y, (1− δ)yΦ

(
−µ

2
− 1

µ
log(−y)

)
− (1− δ)Φ

(
−µ

2
+

1

µ
log(−y)

)}
.

Substituting y = −eϵ,

g∗(−eϵ) = max

{
−eϵ, −(1− δ)eϵΦ

(
−µ

2
− ϵ

µ

)
− (1− δ)Φ

(
−µ

2
+

ϵ

µ

)}
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and so by Lemma A.5, the composed mechanism satisfies (ϵ, δ)-DP for

δ = 1 + g∗(−eϵ)

= 1 +max

{
−eϵ, −(1− δ)eϵΦ

(
−µ

2
− ϵ

µ

)
− (1− δ)Φ

(
−µ

2
+

ϵ

µ

)}
= max

{
1− eϵ, δ + (1− δ)− (1− δ)eϵΦ

(
−µ

2
− ϵ

µ

)
− (1− δ)Φ

(
−µ

2
+

ϵ

µ

)}
= max

{
1− eϵ, δ + (1− δ)

(
1− eϵΦ

(
−µ

2
− ϵ

µ

)
− Φ

(
−µ

2
+

ϵ

µ

))}
= max

{
1− eϵ, δ + (1− δ)

(
−eϵΦ

(
−µ

2
− ϵ

µ

)
+Φ

(
µ

2
− ϵ

µ

))}
= max

{
1− eϵ, δ + (1− δ)

(
Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

))}
.

Finally, note that for ϵ > 0, the first term is negative, so the second term is the maximum.

Using Lemma A.7, we can work out the (ϵ, δ∗) parameters that result from the composi-
tion of the tradeoff functions of M= and M+ for the pair of neighboring databases X1 and
X2. Specifically, we have µ = µ(a+) and δ = 1− Φ((τ∗ − τ)/σ)a= . Taking the maximum δ∗

over all pairs of neighbors is the same as taking the maximum over all a+ and a= that sum
to Cu. The result is:

max
a=+a+=Cu

1− Φ(
τ∗ − τ

σ
)a=

+ Φ(
τ∗ − τ

σ
)a=

[
Φ

(
− ϵ

µ(a+)
+

µ(a+)

2

)
− eϵΦ

(
− ϵ

µ(a+)
− µ(a+)

2

)]
.
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