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Abstract. We study differential privacy (DP) in the context of graph-structured data and
discuss its formulations and applications to the publication of graphs and their associated
statistics, graph generation methods, and machine learning on graph-based data, including
graph neural networks (GNNs). Interpreting DP guarantees in the context of graph-
structured data can be challenging, as individual data points are interconnected (often
non-linearly or sparsely). This differentiates graph databases from tabular databases, which
are usually used in DP, and complicates related concepts like the derivation of per-sample
gradients in GNNs. The problem is exacerbated by an absence of a single, well-established
formulation of DP in graph settings. A lack of prior systematisation work motivated us
to study graph-based learning from a privacy perspective. In this work, we systematise
different formulations of DP on graphs, and discuss challenges and promising applications,
including the GNN domain. We compare and separate works into methods that privately
estimate graph data (either by statistical analysis or using GNNs), and methods that aim
at generating new graph data. We conclude our work with a discussion of open questions
and potential directions for further research in this area.
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1. Introduction

Many real-world datasets like social networks, molecules, population data or electronic
health records do not naturally befit a row-and-column (tabular) representation as they hold
complex internal connections and relationships. Such data can often be efficiently represented
using graphs as data structures. The additional intrinsic structural information maintained
by this representation holds great potential for data analytics and learning tasks on such
graph-structured data. A graph’s interconnected nature can be leveraged by appropriate
algorithms and graph-based learning models and can be deployed in contexts such as market
value prediction [77], fake news detection [7] and drug development [36]. Within the last
two decades, “traditional” algorithms such as triangle counting, node degree estimation
etc. have been complemented or superseded by advanced machine learning applications
on graph-structured data, made possible by the introduction of graph neural networks
(GNNs) [101]. Such models have since then been successfully applied to various learning
scenarios [47, 85, 98]. These works demonstrate that a graph’s connectivity confers valuable
additional information, and allows analysts to leverage the interaction between individual
data points, which can significantly improve the accuracy of learning tasks compared to
reducing graph-structured data to a tabular form [121]. However, the information contained
in graph-structured data is often highly sensitive in nature in the sense that either the data
in the graph’s nodes, the connections between nodes or both represent sensitive information
requiring protection.

Moreover, the rich inter-node relationships render graph-structured data more vulnerable
to attacks that attempt do disclose the private data of individuals contained within the graph
without their consent [68, 132]. Such attacks can take the form of membership inference
(MIA) [104], where the adversary attempts to verify if a record that they possess was part
of the sensitive dataset (e.g. a patient’s electronic health record). MIA, in fact, has a higher
fidelity in graph-based settings, due to additional information that intrinsically lies in the
structure of a graph [86]. Another commonly used attack is termed an attribute (or feature)
inference attack [44]. It aims to reconstruct sensitive features of individuals in the training
dataset and typically involves an adversary having access to a non-overlapping dataset of
publicly available attributes which, alongside the predictions of the trained model, are used to
determine the value of a sensitive feature that belongs to a target participant. Furthermore,
models trained on graph-structured data, such as GNNs, were shown to be susceptible to
model inversion attacks (MInv) [34], which allow the adversary to extract sensitive training
data by leveraging the internal representations of the model (e.g. reverse-engineering a
model update into disclosing which data point corresponds to this specific update). Authors
in [132] show that MInv attacks can be adapted to graph-based learning. Wu et al. [120]
introduce a privacy attack called LinkTeller, which recovers private edges in GNNs. Notably,
seeing as graph-structured data captures information not just about individuals themselves,
but about their relationships with other participants, all of these attacks can potentially
compromise privacy of multiple participants at once.

The increasing popularity of graph-based analytics and machine learning coupled with
the regulatory and ethical mandates to protect sensitive data imply that privacy enhancing
technologies (PETs) [54] need to be applied in order to provide formal guarantees of privacy.
Differential privacy (DP) [27] was proposed to objectively quantify the privacy loss of
individuals whose data is subjected to algorithmic processing and is now regarded as the gold
standard of formal privacy guarantees. Differentially private algorithms upper-bound the
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amount of information that can be inferred by an adversary who observes a computation’s
output, thus mitigating the attacks discussed above (central DP). The utilisation of DP
mechanisms thus allows for e.g. training machine learning models on sensitive datasets while
preserving the privacy of the contributors’ data. Alternatively, DP can be applied directly to
the data (local DP), allowing it to be publicly released for subsequent analytics or machine
learning tasks. A third approach sees DP being used to generate synthetic data which shares
statistical attributes with some population without the associated privacy risks.

However, the adaptation of any of the aforementioned concepts to graph-structured data
is non-trivial for two main reasons: (1) there exist several notions of DP on graph-structured
data, which protect different components of the graph, and thus need to be selected carefully
and appropriately to the application; (2) due to the formal definition of DP, its realisation
on graphs encompasses several additional challenges compared to tabular data.

To promote the development of responsible and privacy-preserving sensitive data process-
ing systems, we identify the requirement for a comprehensive systematisation of knowledge.
In this work, we investigate existing DP implementations, their limitations and application
areas, as well as a number of challenges associated with differentially private learning on
graph-based structures and promising directions for future work. We distinguish three
lines of works: (1) non-machine learning graph analytics methods, (2) machine learning
approaches on graph-structured data with graph neural networks (GNNs), and (3) generative
models on graphs. This distinction allows us to emphasise open challenges and highlight
opportunities to transferring DP techniques from graph analytics methods to GNNs. The
outline of the remaining work and our main contributions can be summarised as follows:

• In Section 2, we provide an introduction to graph-structured data and graph neural
networks, as well as a formal definition of DP;

• We formalise the three main notions of central DP on graph-structured data: edge-level,
node-level, and graph-level DP in Sections 2 and expand them by introducing several
additional notions of DP, including local DP, in Section 4;

• We demonstrate how different DP formulations can be applied in various settings in
Section 5 and how graph analytics and graph learning under DP can be compared in these
scenarios;

• We identify limitations and open challenges of these approaches and pinpoint promising
areas of future work in the domain of DP on graph-structured data in Section 6.

2. Background

In this section, we formalise the concept of DP, introduce the three main notions of DP on
graph-structured data, as well as the concept of (global) sensitivity, the Gaussian and the
Laplace mechanisms, and provide a brief introduction to graph-structured data and graph
neural networks (GNNs).

2.1. Graph-Structured Data. In the following, we will refer to a graph G = (V ,E ) as a
collection containing a set of nodes V = {v1, v2, ..., vn} and a set of edges E = {e1, e2, ..., em},
n and m ∈ N. Here, n determines the number of nodes in the graph and m the number of
edges. The data contained in the graph can be split into the attributes contained in the
nodes V of the graph, which can be referred to as node features, and the data held by the
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connections E between the nodes. The edges can optionally also contain edge attributes,
holding additional information about the tightness or nature of the connection.

2.2. Differential Privacy. Differential privacy (DP) is a stability condition on randomised
algorithms that makes their outputs approximately invariant to the inclusion or exclusion
of a single individual [27]. In the words of the authors of [27], DP promises “to protect
individuals from any additional harm that they might face due to their data being in the
private database that they would not have faced had their data not been part of [the
database]”. This allows one to interpret DP as guaranteeing an upper bound on the effect
size introduced by the inclusion or exclusion of the individual’s data [110] on subsequent
computations. The DP framework and its associated techniques allow data analysts to
draw conclusions about datasets while preserving the privacy of individuals. We note that
the DP guarantee makes no assumption about potential correlations between datapoints,
however the “standard” interpretation of DP can behave in unpredictable ways when applied
näıvely to data with such correlations such as graphs, prompting the more specific definitions
introduced below. In the sequel, we will first discuss central DP; we outline its differences to
local DP in Section 2.2.1 and 4.6.

In a setting of central DP on graph-structured data, we assume that an analyst A
is entrusted with a database D containing sensitive graph-structured data. From D a
neighbouring (in this work, we additionally use the term adjacent) dataset D′ is constructed
by either (a) removing or adding one node and its adjacent edges (node-level DP), (b)
removing or adding one edge (edge-level DP), or (c) removing or adding one graph (graph-
level DP). Although we will use this add/remove notion of adjacency in the definitions
throughout this paper, we note that there also exist two other general adjacency notions:
(1) replacement adjacency, where a sensitive record is replaced with another sensitive record
and (2) dummy replacement adjacency, where a sensitive record is replaced with a dummy
record. The latter is conceptually equivalent to the add/remove notion. We stress that it
is important to formally state which adjacency notion is used when discussing DP, as the
privacy guarantee changes under different adjacency notions. For graph-structured data on
single-graph datasets, the add/remove notion is typically utilised, since the replacement of
an edge or a node would affect more nodes in the graph and therefore increase the distance
between the adjacent datasets. Besides the aforementioned, additional notions of adjacent
datasets have been introduced. For example, Blocki et al. [8] define a notion of adjacent
datasets for labelled graphs, where the change of a labelling function of a single node also
results in an adjacent database. Other works [43, 59] also include the removal of an isolated
node to a suitable method to gain adjacent databases.

Formally, DP can be defined as follows:

Definition 2.1 ((ε-δ)-DP). A randomised algorithm M : X → R, where X is a collection
of sensitive databases, is (ε-δ)-differentially private if, for all S ⊆ R and all neighbouring
databases D and D′ in X, the following statement holds:

P[M(D) ∈ S] ≤ eεP[M(D′) ∈ S] + δ, (2.1)

where the guarantee is given over the randomness is M and holds equally when D and D′

are swapped. In the sequel, we will only describe one pair of neighbouring databases/graphs
for brevity but stress that the statements must also hold when the neighbouring relationship
is reversed.
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The definition of neighbouring datasets on graph-structured data depends on the desired
formulation of privacy in the setting (i.e. which attributes need to be kept private, such
as outgoing edges for instance). Therefore, the desired notion (as well as the associated
mechanisms) of privacy preservation depend on what the data owner requires to protect,
the structure of the graph and the desired application to ensure a context-appropriate
interpretation of the DP guarantee. In order to employ differentially private algorithms
to process graph-structured data, the property of neighbouring datasets thus needs to be
formally defined. The three main notions of DP on graphs can be formalised as follows:

Definition 2.2 (Edge-level DP). Under edge-level DP, two graphs G and G ′ are neighbouring
if they differ in a single edge (either through addition or removal of the edge) [55]. (ε-δ)-edge-
DP is therefore preserved if equation (2.1) holds for all events S and all pairs of neighbours
G , G ′ that differ in a single edge. In this setting, two graphs G = {V ,E} and G ′ = {V ′,E ′}
are neighbours if

V ′ = V ∧ E ′ = E \ ei, (2.2)

where ei ∈ E .

Zhu et al. [135] term edge-level DP in the setting of undirected graphs degree-DP.

Definition 2.3 (Node-level DP). Under node-level DP, two graphs G = {V ,E} and
G ′ = {V ′,E ′} are defined as neighbouring if they differ in a single node and its corresponding
edges (achieved through a node removal/addition) [2]. (ε-δ)-node-DP is therefore preserved
if equation (2.1) holds for all events S and all pairs of neighbours G , G ′, that differ in a
single node and its corresponding edges:

V ′ = V \ vi ∧ E ′ = E \ c, (2.3)

where vi is a node in V and c is the set of all edges connected to vi.

Figure 1 visualises these two main definitions of DP on graphs. Two neighbouring
datasets (graphs) under node-level DP and edge-level DP are displayed in sub-figures A and
B, respectively.

A

B

Figure 1: Two neighbouring graphs in the context of (A) node-level DP and (B) edge-level
DP. By removing (A) one node and its adjacent edges or (B) one edge (displayed
in red), two neighbouring graphs can be transformed into each other.

For multi-graph datasets, we can define a different notion of DP:
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Definition 2.4 (Graph-level DP). Under graph-level DP, we define two multi-graph datasets
D = {G11, G12, . . . , G1n} and D′ = {G21, G22, . . . , G2m} to be neighbours if they differ in one
single graph (achieved through the addition or removal of one entire graph). (ε-δ)-graph-level
DP is therefore preserved if equation (2.1) holds for all events S and all pairs of neighbouring
datasets D and D′, where

D′ = D \G1i, (2.4)

and G1i ∈ D.

We now assume that the analyst A executes a function (or query) f over the graph
dataset. When considering DP in GNNs, the function f is a repeated composition of
the forward pass, loss calculation, and gradient computation of the graph neural network
(resulting in a “database” of gradients). In order to determine the magnitude of noise that
needs to be added, we are required to calculate the global sensitivity of the function that
noise is applied to. We will consider either the global L1- or the L2-sensitivity of f .

Definition 2.5 (Global L2-sensitivity ∆2 of f). Let f be defined as above and X be the
set of all neighbouring databases. We can define the (global) L2-sensitivity of f as:

∆2(f) := max
D,D′∈X,D≃D′

∥f(D)− f(D′))∥2. (2.5)

We note that the maximum is taken over all neighbouring pairs of datasets in X.

Using the definition of L2-sensitivity, we can formalise the Gaussian Mechanism on f :

Definition 2.6 (Gaussian Mechanism). Let ∆2 and f be defined as above. The Gaussian
Mechanism M is applied to the function y = f(x), y ∈ Rn, as follows:

M(y) = y + ξ, (2.6)

where ξ ∼ N (0, σIn). In is the identity matrix with n diagonal elements and σ is
calibrated to ∆2.

Similarly to L2-sensitivity, we can define the L1-sensitivity as:

Definition 2.7 (Global L1-sensitivity ∆1 of f).

∆1(f) := max
D,D′∈X,D≃D′

||f(D)− f(D′)||1. (2.7)

When it is clear from context, we will omit the argument and write just ∆1/2.

Definition 2.8 (Laplace Mechanism). Let ∆1 and f be defined as above. The Laplace
Mechanism M is applied to the output y = f(x), y ∈ Rk, as follows:

M(y) = y + (ξ1, ξ2, . . . , ξk) , (2.8)

where ξi are I.I.D. draws from Lap
(
0, ∆1

ε

)
.



DP GUARANTEES FOR ANALYTICS AND MACHINE LEARNING ON GRAPHS 7

2.2.1. Local and Central DP. As briefly mentioned above, one can furthermore distinguish
between local and central DP. Under local differential privacy (LDP) [124] the data owner
performs the noise perturbation step before the data reaches the analyst. Such interpretation
can be preferable in low-trust collaborative learning settings, as no party other than its
owner has access to the data before the learning task commences. Data owners only share a
perturbed version of their data, which reduces the amount of information an analyst can
infer about the shared data itself, while still allowing to draw insights from the privatised
aggregated data [98]. Note that in local DP, adjacency is defined differently as in central DP
(see Section 4.6). Local DP thus bounds the information at the data source itself, minimising
the potential privacy exposure [54]. An adversary is, therefore, unable to infer the input
value with high confidence, but is possible to approximate the target query if provided with
a large number of noisy samples [98]. More details about local DP on graph-structured data
can be found in Section 4.6.

When DP is, on the other hand, applied to the output of the computation instead of
the input data, one speaks of central differential privacy. In this case, the noise is not added
directly to the input data but instead to the computation outputs. Due to the properties
of DP, only a bounded quantity of additional information can be derived about the data
belonging to an individual, while the overall statistics of the whole dataset can still be
approximately evaluated.

2.3. Graph Neural Networks. To allow for machine learning to be performed directly
on graph-structured data, GNNs were proposed [101]. They leverage the full underlying
structure of the dataset and maximise learning capacity by directly learning on the graph.
GNNs can be applied to either single graph or multi-graph datasets, depending on the
desired task and available dataset. The three major tasks of GNNs are node-level prediction
(where one label is predicted for each node in the graph), edge-level prediction (where edges
are predicted or labeled), and graph-level prediction (where one label is predicted for each
graph).

A key concept of GNNs is message passing [61], where information is shared along
edges and therefore propagated among neighbourhoods of nodes. This property enables the
utilisation of the full dimensionality of graph datasets. However, this typically complicates
the disentanglement of contributions by individual nodes, making the calculation of individual
privacy loss per each participant a challenging task.

3. Systematisation Methodology

We conducted a survey of papers that intersect the domains of graph analytics, deep learning
on graphs, or graph generation with DP. We employed the Google Scholar and the Web of
Science search engines and examined papers that contained the keywords “node-”, “edge-”,
“graph-” “differential privacy” between January, 2007 and February 2023. Our searches often
had to be coupled (e.g. “node differential privacy graphs”), as notions such as graphs or
nodes are often used in unrelated concepts such as computation graphs or network nodes.
We selected 57 studies, which we partitioned based on the DP formulations employed in
each work: node-level DP, edge-level DP, graph-level DP, and whether local DP was applied
in the respective works. Furthermore, we separated the works into graph analytics and GNN
training. We additionally recorded the contexts in which DP was applied. A summary of
the works that we discuss in this study can be found in Tables 1 and 2.
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We observed that a large number of studies concentrate on the usage of graph datasets
but explicitly not on the utilisation of GNNs. The large amount of research in the context of
DP on graphs in general shows the importance of applying differentially private algorithms to
graph-structured data. However, applications of DP to GNNs are currently underrepresented,
presumably due to the fact that GNNs are a relatively recent deep learning method, and
the application of DP to GNNs entails several challenges. For example, there is no singular
explicit notion of “DP” in different graph machine learning settings, as discussed below.
We are optimistic that the here-presented systematisation of different possibilities to apply
differential privacy to graph neural networks can act as a guide to practitioners and aid them
in the the development of new methods in this area. With the advent of privacy-preserving
machine learning and the strong interest in geometric deep learning applications, we strongly
believe the differentially private training of GNNs to be a promising future research area
with several applications to sensitive data. We therefore explicitly decided to include both
graph analytics and machine learning on graphs in our survey. Some exemplary application
areas are discussed in Section 5.

4. DP formulations on Graph-Structured Data

In this section, we outline and discuss methods from the research field of differentially private
graph analytics and graph machine learning. We identify and consider three separate lines
of work: (a) DP in statistical graph analytics methods, (b) in graph neural networks (Table
1), and (c) in generative models (Table 2). We also indicate the notion of DP that was
applied in the respective research in the columns Edge-DP, Node-DP, Graph-DP, and LDP
and summarise ranges of the privacy budget ε if they were reported in the respective works.
The line of work of DP in traditional graph analytics (a) includes e.g. methods for privately
computing graph statistics like degree-distributions [43], frequent sub-graph-mining [103],
and sub-graph counting [8]. The works of DP for GNN training (b) include, for instance,
text classification [47], whole-graph classification [81], and attacks on GNNs [132] and the
works on DP graph generation (c) are summarised in Table 2.

The first differentially private computation on graph data was introduced by Nissim
et al. [84]. The authors implement a DP algorithm to estimate the computational cost of
minimum spanning tree creation and triangle counting. In their work, the authors opted for
the utilisation of edge-level DP.

As indicated in Tables 1 and 2, we generally observe a focus on edge-level DP in earlier
papers, compared to a more frequent utilisation of node-level DP in more recent works.
We attribute this to the fact that node-level DP is more challenging to achieve, but offers
stronger privacy guarantees (as it considers the privacy of a node and all its adjacent edges).
Works on graph-level DP are quite rare. However, we believe this notion of DP to be
promising and given that different works name the same concept differently, we still included
graph-level DP in Tables 1 and 2.

We furthermore observe that, in the works discussing DP on GNNs, authors frequently
omit to specifically assign the guarantees provided to one of the aforementioned DP notions,
which highlights the need for more systematic approaches to defining DP in graph learning
tasks. We attribute this lack of specification to missing systematisation of terminology in
this area as well as the challenging task to differentiate the individual notions of privacy in
graph learning tasks and their dependence on the dataset and the application area.
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Edge-DP Node-DP Graph-DP LDP Year Reference Context ε

S
ta

ti
st
ic
a
l
G
ra

p
h

A
n
a
ly
ti
c
s

✓ ✓ 2007 Nissim et al. [84] Estimation for spanning trees -
✓ 2009 Hay et al. [43] Graph degree estimation [0.01; 1]

2011 Gehrke et al.** [37] Zero-knowledge statistics estimation -
✓ 2011 Machanavajjhala et al. [73] Privacy in social graphs [0.5; 3]
✓ 2011 Sala et al. [100] Release of private graphs [0.1; 100]
✓ 2011 Karwa et al. [55] Private subgraph counting 0.5
✓ 2012 Gupta et al. [40] Private cut function release -
✓ 2012 Karwa et al. [56] Release of graph degree sequences -
✓ 2012 Mir et al. [78] Private release of graph distribution 0.2
✓ ✓ 2013 Blocki et al. [8] Restricted sensitivity for DP -

✓ 2013 Chen et al. [14] Private graph database aggregation [0.1; 0.5]
✓ 2013 Kasiviswanathan et al. [59] Private graph analysis -

✓ 2013 Shen et al. [103] Private graph pattern mining [0.1; 1]
✓ 2013 Wang et al. [117] Private spectral graph analysis 460
✓ 2013 Wang et al. [115] Private spectral graph analysis -
✓ 2014 Chen et al. [13] Correlated network data release [0.6; 1]
✓ 2014 Lu et al. [72] Estimation of graph model parameters [0.1, 1]

✓ 2014 Raskhodnikova et al. [94] DP analysis of graphs -
✓ ✓ ✓ 2014 Task et al. [108] Private social network analysis -

✓ 2016 Day et al. [21] Private graph distribution release [0.1; 2]
✓ 2016 Jorgensen et al. [51] Private attributed graph models [1; 20]

✓ 2016 Raskhodnikova et al. [95] Private release of graph statistics -
✓ ✓ 2016 Wang et al. [116] Private aggregation of data [0; 2]
✓ ✓ 2017 Zhu et al. [136] Applications of differential privacy -
✓ ✓ ✓ 2018 Cormode et al. [17] Private data release -

✓ 2018 Macwan et al. [74] Private release of graph data 0.5
✓ 2019 Arora et al. [3] Graph sparsification -

✓ 2019 Sealfon et al. [112] Estimation of graph statistics -
2019 Sun et al. [107] Subgraph statistics, decentralised DP [1; 10]

✓ 2019 Yuxuan et al. [128] Private histogram release -
✓ 2020 Chen et al. [15] Private synthetic data release [2; 5]

✓ 2020 Liu et al. [70] Node strength distribution [0.1; 2]
✓ 2020 Zhang et al. [131] Private social graph release [0.1; 20]
✓ ✓ 2020 Zhang et al. [129] Control-flow graph coverage analysis [2−5; 25]
✓ 2021 Iftikhar et al. [46] Private release of degree distribution [0.01; 10]
✓ 2021 Fichtenberger et al. [32] Private dynamic graph algorithms -

✓ ✓ 2021 Imola et al. [48] Private sub-graph counting [0; 2]
✓ 2021 Lan et al. [63] Private node strength histogram release [0.1; 2]
✓ 2021 Liu et al. [71] Private degree histogram release [0.1; 2]
✓ 2021 Sealfon et al. [111] Private graph density estimation -

✓ ✓ ✓ 2021 Xia et al. [122] Benchmark platform for DP on graphs -
✓ ✓ 2021 Zheng et al. [134] Private graph publication framework -

G
N
N
s

✓ 2020 Sajadmanesh et al.* [98] Locally private GNNs [0.01; 3]
✓ 2021 Daigavane et al. [20] Node-level DP in GNNs [5; 30]

2021 Igamberdiev et al.* [47] Private text classification [1; 100]
2021 Olatunji et al.* [85] Private GNN and graph data release [1; 40]
2021 Zhang et al.* [132] Attacks on GNNs [1; 10]

✓ 2022 Mueller et al. [81] Graph-level DP for graph classification [0.5; 20]
✓ ✓ 2022 Sajadmanesh et al. [99] Aggregation perturbation [0; 16]

Table 1: Summary of existing works addressing DP statistical and learning-based analytics
on graphs, in ascending order by publication year and alphabetically within the
same year. Ticks in columns Edge-DP, Node-DP, and Graph-DP specify which
notion of privacy was used. A tick in column LDP indicates that the authors used
local DP. One asterisk (*) indicates that the DP notion is not clearly stated. Two
asterisks (**) the utilisation of zero-knowledge privacy (see Section 4.5.3). The
column ε reports the evaluated privacy budgets in the respective works.

4.1. Sensitivity Calculation on Graphs. As described above, ensuring data privacy on
graphs presents additional challenges compared to structured databases such as image or
tabular datasets, since the data points are inter-connected and the graph structure itself can
contain sensitive information. Furthermore, depending on the application it can be desired
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G
e
n
e
ra

ti
v
e

Edge-DP Node-DP Graph-DP LDP Year Reference Context ε

✓ 2009 Mir et al. [79] Synthetic graph generation -
✓ 2014 Proserpio et al. [91] Synthetic graph generation [0.01; 10]
✓ 2015 Borgs et al. [9] Graphon estimation -

✓ 2016 Karwa et al. [57] Synthetic graph generation -
✓ ✓ ✓ 2017 Qin et al. [92] Graph generation for social networks [0; 7]

✓ 2018 Borgs et al. [10] Graphon estimation -
✓ 2019 Zhu et al. [135] Graph generation for social networks [0.5; 3]
✓ 2021 Zheng et al. [133] Network Generation [0.1; 440]

Table 2: Summary of existing works on DP graph generation methods, in ascending order
by publication year and alphabetically within the same year. Ticks in columns
Edge-DP, Node-DP, and Graph-DP specify which notion of privacy was used.
A tick in column LDP indicates that the authors used local DP. The column ε
reports the evaluated privacy budgets in the respective works.

to protect different parts of the graph. One fundamental challenge is therefore the issue of
sensitivity calculation.

In cases of graphs, this value can be challenging to obtain as it depends not only on
the structure of the graph but also on the attributes of the query function. Two main
methods have been proposed to obtain node differentially private algorithms which are either
based on (a) the utilisation of projections, for which sensitivity can be bounded, or (b) on
computing Lipschitz extensions [8, 14, 95]. Raskhodnikova et al. [95] study the efficient
computation of Lipschitz extensions for multi-dimensional functions on graphs, which can be
obtained in polynomial time, and determine that they do not always exist - in comparison
to Lipschitz extensions for one-dimensional functions. Karwa et al. [55] discuss methods to
determine the local and smooth sensitivity of DP graph analysis for example for triangle
count, k-star estimation, and sub-graph counting queries. As noted above, the adjacency
notion also influences the sensitivity calculation, as sensitivity is computed over all adjacent
database pairs. Moreover, a small portion of the aforementioned papers do not utilise the
global sensitivity, but a relaxation such as local sensitivity. For details on local sensitivity
and other variations, we refer to [23]. Unless otherwise indicated, we will limit ourselves to
global sensitivity in this work.

In the next sections, we give more details about the different definitions of DP on graphs
in node-level, edge-level, graph-level DP as well as some alterations and combinations of
these, with respective interpretations of what is implied by neighbouring datasets in each
setting.

4.2. Edge-Level Differential Privacy. There exist several approaches that allow one
to release graph statistics with edge-level DP guarantees, including sub-graph counts [56],
spanning tree estimation [84], degree distributions [43, 108] and graph cuts [40]. Those
settings set a focus on privatising the relationships between nodes. This can be applied to
social network graphs [43, 79] or location graphs [123], where the edges contain sensitive
information, but the data represented in the nodes of the graph are assumed to be publicly
known or non-sensitive.

4.3. Node-Level Differential Privacy. Node-level differential privacy is a strictly stronger
guarantee than edge-level differential privacy [59]. This is of particular importance in
scenarios where graphs are very sparse, and thus, the removal of a single node can alter
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the graph structure severely. For instance, the number of triangles in a graph with n nodes
can increase by

(
n
2

)
when inserting a single additional node. Consequently, these functions

tend to have high sensitivity [95], resulting in a large noise magnitude. Bounded-degree
graphs (graphs where each node has an upper limit of edges and the degree of each node
is therefore bounded) can assist in lowering the sensitivity. Here, the removal of a single
node results in an upper-bounded change in edges which typically leads to a reduced impact
on the output of the algorithm. When calculating the number of triangles in a graph, for
instance, maximum change of a D-bounded-degree graph is

(
D
2

)
which is strictly smaller

than
(
n
2

)
if D < n.

Settings that can benefit most from this formulations of DP are those that put an
emphasis on the data within the node itself yet additionally privatise the connections
between the nodes. This includes studies on social networks [8, 92], the publication of
higher-order network statistics [46, 71, 74], and recommendation systems [73].

4.4. Graph-Level Differential Privacy. So far, graph-level DP has not been explored in
great detail, neither in the context of graph analytics nor in GNNs. Task et al. [108] name
this notion of privacy partition privacy and show its application to graph analytics of social
networks. Shen et al. [103] investigate the mining of frequent graph patterns in multi-graph
datasets and apply the mechanism of graph-level DP to their algorithm. They use Markov
Chain Monte Carlo (MCMC) random walks to discover frequently appearing sub-graphs in
the graph dataset and infer graph statistics under graph-level DP.

In the context of GNN training, graph-level DP can be applied in learning settings
that investigate graph classification tasks, e.g. drug discovery or molecule classification [25],
discovering disease-specific biomarkers of brain connectivity [65, 67], or shape analysis [119].
This way, privacy guarantees can be given to the individuals, whose sensitive information
is contained in those multi-graph datasets. For instance, in the setting of drug discovery,
a group of pharmaceutical companies can collaborate on a graph classification task, while
bounding the information that can be inferred about their individual molecules, which
represent the private data in this context. Mueller et al. [81] apply graph-level DP for
classification tasks on several sensitive datasets, implementing the concept of graph-level
DP on GNNs and showing potential applications.

4.5. Further Definitions of DP on Graphs. We consider node-, edge-, and graph-level
DP to be the three main categories of DP guarantees on graph-structured data. However,
there exist additional notions of DP that have not yet found a widespread application and
are mostly derived from the notions formalised above. Here, we provide further details about
those additional definitions and variations of applied notions of DP.

4.5.1. k-Edge Differential Privacy. One such formulation is k-edge differential privacy
introduced by Hay et al. [43]. It defines a stricter notion of edge-level DP, where two graphs
G = {V ,E} and G ′ = {V ′,E ′} are neighbours if |V ⊕V ′|+ |E⊕E′| ≤ k. Hereby, ⊕ denotes
the symmetric difference. If k = 1, the definition recovers edge-level DP. However, if k = |V |,
k-edge-level DP is a stricter definition than node-level DP, as the set of neighbouring graphs
in the definition of node-level DP is a subset of the neighbouring graphs under k-edge-level
DP. For nodes with a degree smaller then k, k-edge-level DP provides an equivalent protection
as node-level DP. Nodes with a degree ≥ k face more exposure, since they have more edges.



12 T.T. MUELLER, D. USYNIN, J.C. PAETZOLD, R. BRAREN, D. RUECKERT, AND G. KAISSIS

However, one can argue that those high degree nodes have a higher impact on the general
graph structure and it might therefore be necessary to expose them to larger privacy risks to
allow analysts to accurately measure graph statistics. The authors experimentally evaluate
their notion of k-edge-differential privacy on social network data from Flickr, LiveJournal,
Orkut, and YouTube.

4.5.2. Out-Link Differential Privacy. Another definition of DP on graphs was introduced
by Task et al. [108] and is termed out-link differential privacy. In this context directed
graphs are considered, where it is possible to distinguish between incoming and outgoing
edges of nodes. Under this notion, two datasets are considered to be neighbouring if all
out-links (outgoing edges) of an arbitrary node are added or removed. Formally, two graphs
G = {V ,E} and G ′ = {V ′,E ′} are neighbours, if V = V ′ and E ′ = E − {(v1, v2)|v1 = x}
for an x ∈ V . (v1, v2) hereby defines an edge going from node v1 to node v2.

Out-link DP is strictly weaker then node-level DP, but in many scenarios comparable
to edge-level DP. Under this notion of DP, an attacker would not be able to determine
whether a person x contributed their data to the construction of the graph and participants
in the graph can hide their out-links. In the setting of a social network, for instance, a
person x can deny friendships. Others can still claim to be friends with person x, but the
latter can deny that those connections are mutual (i.e. that person x has out-going links to
adjacent nodes). The authors argue that out-link privacy simplifies sensitivity computation
and reduces noise addition requirements, enabling queries that would be infeasible under
previous DP definitions.

Similar to k-edge-level DP, out-link DP can also be extended to k-out-link privacy.
In this case, neighbouring datasets are considered, that differ in k out-links compared to
the original dataset. When considering 2-out-link privacy, for example, two nodes can
simultaneously deny all their out-links. This would also enable to protect a complete mutual
edge, resulting in edge-level DP in addition to out-link DP.

4.5.3. Zero-Knowledge Privacy. Gehrke et al. [37] introduce a stricter formulation of node-
level DP, namely zero-knowledge privacy on graphs, which authors argue is particularly
desirable in social network analysis. It relies on a notion similar to the one of cryptographic
zero-knowledge proofs [33], which entails that a protocol participant obtains a computation
result with “zero additional knowledge” about the data used to perform this computation. A
privacy mechanism M is (Agg, ε)-zero-knowledge private if there exists a simulator S and
an agg from the family of algorithms Agg such that for all neighbouring datasets D1 and
D2 the following holds: M(D1) ≈ε S(Agg(D2)) [37]. Authors in [37] apply this definition
to ensure that a mechanism does not release additional information apart from “aggregate
information” which is considered acceptable to release to ensure usability.

4.5.4. Relationship Differential Privacy. Imola et al. [48] introduce a notion called relation-
ship DP, a definition falling under local DP. Here, one edge in a graph is masked during the
entire learning process. In a setting of social network analysis, relationship DP assumes that
each user only knows their own connections (i.e. friends), requiring users to have a higher
degree of “trust” when interacting with their immediate neighbours. Given two users vi and
vj that share a link in the social network, under relationship-DP a user vi has to trust its
adjacent user vj not to leak information about their shared connection. Intuitively, edge-level
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LDP considers the edge from user vi to user vj and the edge from user vj to user vi to be two
separate “secrets”, whereas relationship DP assumes that the two edges represent the same
“secret”. (More details about edge-level LDP can be found in Section 4.6.) Therefore, the
trust model of relationship DP is a stronger one than the one of edge-level LDP, which does
not hold any assumptions about what other users do, but weaker than the one of centralised
edge-level DP, where all edges are held by a centralised party. If a randomised algorithm M
provides ε-edge-level LDP, then M provides 2ε-relationship DP, given that an edge (vi, vj)
affects two elements in the adjacency matrix of the graph and the property of group privacy
[27].

The authors apply this formulation of privacy to algorithms for sub-graph, k-star, and
triangle counting, which can be used to analyse connection patterns in graphs.

4.5.5. Edge-Weight Privacy. For shortest path or distance queries on graphs, edge-level and
node-level DP are not well suited, since both queries usually return a set of edges, which
violates both edge-level and node-level DP. Therefore, Sealfon [102] introduced a different
notion of privacy on graphs: edge-weight privacy. This notion of privacy is applicable if the
edge weights of a graph contain private data, whereas the graph structure itself is publicly
available and does not need to be protected. An example would be traffic data in a known
street system.

4.5.6. Node Attribute Privacy. Chen et al. [15] define another notion of privacy for attributed
graphs. An attributed graph G = (V,E,A) is the set of vertices V , edges E and node
attributes A. In this definition of privacy, two graphs are defined to be neighbouring if they
differ in one edge or in the attribute vector of one node. So in this scenario, the presence of
nodes is assumed to be non-private, whereas the connections (edges) between the nodes as
well as the attributes that define the nodes contain private information. This definition can
for example be useful in social networks, where the existence of a profile can be publicly
known but friendships and personal attributes (stored in the profiles/nodes) are private.

4.6. Local DP on Graphs. There exist several works that target the preservation of local
differential privacy (LDP) on graph-structured data. The advantage of local DP [58] in
comparison to central DP is that no trusted third party is required. LDP can and has been
applied to both classical graph analytics and graph neural networks. Qin et al. [92] define
edge-level and node-level LDP in the context of neighbour lists. A neighbour list of a vertex
vi in a directed graph with n vertices is defined to be an n-dimensional bit vector (b1, . . . , bn),
where bi = 1, i ∈ [1;n], if and only if there exists an edge (vi, vj), going from vi to vj , in the
graph, otherwise bi = 0. Edge-level LDP is then defined for two neighbour lists that differ
in exactly one bit, whereas node-level LDP is defined for any two neighbour lists.

4.6.1. Locally private graph analytics. Examples for LDP in graph analytics tasks include
Zhang et al. [129], who perform control-flow graph coverage analysis under node-level LDP
and Imola et al. [48], who apply LDP to sub-graph counting, k-star and triangle counts
while preserving edge-level LDP.
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4.6.2. Locally private GNNs. LDP can also be applied to GNNs, where settings such as
decentralised social networks can benefit from this property, as shown by Sajadmanesh
and Gatica-Perez [98]. They introduce a privacy-preserving architecture-agnostic GNN
algorithm, which preserves private node features under LDP. Their architecture includes
an LDP encoder and an unbiased rectifier, which functions as the communicator between
the server and the graph. This algorithm can be applied in a setting where either the node
features or the labels (or in certain cases both) are to be kept private regardless of the GNN
architecture. Authors use a so-called multi-bit mechanism which allows the nodes to perturb
their features before passing them to the server. The server then processes this noisy data
through the first convolutional layer. GNNs aggregate the node features before passing them
through the activation function, which can be used as a denoising mechanism to average out
the noise that was injected into the node features in the first place. The authors employ a
generalised randomised response mechanism [52] to preserve privacy of node labels. However,
they explicitly do not preserve node-level or edge-level DP but protect the privacy of node
features and labels. This leaves the graph structure itself unprotected, which remains an
open challenge in this context. Note that label DP is a distinct area of study which we do
not cover here, but has been described for non-graph datasets e.g. in [29, 38, 75].

4.7. DP for Graph Neural Networks. While the notion of DP on traditional graph
analytics and statistics applications (particularly for private data release) is well established,
there exist significantly fewer studies on differentially private GNN training. This can be
attributed to multiple factors, one of them being the number of different GNN machine
learning settings (e.g. single- and multi-graph settings). This renders the identification of a
standardised method for differentially private GNN training significantly more challenging.
Furthermore, GNN learning is not yet a fully established area of research, leaving a number
of learning contexts unexplored. In this section we introduce two methods that have been
used to achieve differentially private training on GNNs.

4.7.1. DP-SGD Training of GNNs. One of the most common methods to perform differen-
tially private training in (non-graph) machine learning is differentially private stochastic
gradient descent (DP-SGD) [1]. Here, a gradient descent step is privatised through bounding
the gradient L2-norm (clipping) and through the addition of calibrated noise, such that the
output of the gradient calculation over two neighbouring datasets can –with high probability–
not be well distinguished. This concept is not limited to SGD and can be applied to
other first-order optimisation techniques, e.g. Adam. In standard machine learning, the
clipping in DP-SGD is applied to the gradient of each individual data point to minimise the
amount of noise that has to be added to the gradients. This method, naturally befitting
structured databases with well-defined notions of what an “individual” gradient entails, does
not seamlessly extend to graph machine learning in all cases. For graph classification tasks,
for instance, each graph can be seen as an individual entity in a multi-graph dataset and,
therefore, graph-level DP can be seen as a natural formulation in these learning settings.
Here the standard procedure of DP-SGD can be transferred from database queries to graph
learning tasks, matching database entries (rows) with individual graphs. This has been
shown in [81]. Even though graph-level DP has not been deeply explored in research so far,
we believe this to be an interesting and promising research area holding multiple applications,
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for example in medical settings with population graphs or brain networks (see Sections 5.2
and 5.3).

DP-SGD was initially not designed with graph databases in mind, where connections
and interactions between nodes complicate some fundamental aspects of DP-SGD, like
per-sample gradients. In a graph, single data points (nodes or edges) cannot be separated
from the whole dataset without breaking up the graph structure, which is essential to the
message passing mechanisms of GNNs. Therefore, DP-SGD is not directly transferable to
GNNs for node-level and edge-level DP on single-graph datasets. This not only precludes
a notion of “per-sample” gradients, but also privacy amplification by sub-sampling, which
states that a DP mechanism executed on a random (secret) sub-sample of a population
results in tighter privacy guarantees than when applied to the whole population [4]. For
DP relaxations like Rényi DP [80, 114] or Gaussian DP [24], different (sometimes stronger)
amplification results hold.

When working with single-graph datasets, randomly sampled nodes are likely to result
in disconnected nodes that do not function as a suitable sub-graph for learning. Therefore,
appropriate sub-sampling techniques for using DP-SGD with GNNs have been developed.
Igamberdiev et al. [47] implement a graph splitting method, which partitions the graph
into smaller batches to approximate sub-sampling amplification and apply DP mechanisms
to graph neural networks. Daigavane et al. [20] recently introduced a set of techniques
to enable the training of node-differentially private multi-layer GNNs, whereas previous
works were constrained to single-layer GNNs. They implement (sub-sampled) DP-SGD by
sampling the local neighbourhood of a node and by analysing the of affected per-sample
gradient terms in a sub-graph. So far however, no universal method to analyse privacy
amplification by sub-sampling in GNNs on single-graph datasets has been proposed.

Of note, sub-sampling is not the only method to amplify privacy. It can also be amplified
by shuffling [16, 28] and diffusion/post-processing [5]. However, to the best of our knowledge,
no works have discussed these methods for graph-structured data. Given the so far limited
amount of work in areas of DP-SGD training of GNN and amplification methods, we believe
those to be important research questions, which need to be explored in more detail.

4.7.2. Private Aggregation of Teacher Ensembles. Differentially private stochastic gradient
descent is one of the most common methods to offer DP guarantees in machine learning.
However, there are also alternative methods of preserving DP in machine learning, one being
private aggregation of teacher ensembles (PATE), introduced by Papernot et al. [87]. PATE
and its variants (e.g. [50, 88, 126, 130]) leverage an ensemble (a collection) of so-called
teacher models that are trained on disjoint datasets containing sensitive data. These models
are not published but instead used as teacher models for a separate student model. The
student model cannot access any single teacher model nor the underlying data. It instead
relies on a noisy voting algorithm performed across all teacher models to make a prediction
[87]. One notable limitation of PATE is the reliance on a publicly available unlabelled
dataset that is utilised by the teacher model. In general, this is a rather strong assumption,
particularly in contexts relying on scarce, private datasets, such as medical data, limiting
how generally it can be adopted as the means of differentially private training. In general,
PATE should be considered as a private student-teacher data labeling mechanism rather
than necessarily representing a method for private collaborative training.

This shortcomings of PATE techniques are compounded by a low utility of PATE
in graph settings as well as the limited generality beyond graph classification settings,
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as the physical separation of datasets in graph learning destroys structural information,
significantly reducing the utility of the trained model [85]. Therefore, Olatunji et al. [85]
recently introduced a framework named PrivGNN, which also leverages a student-teacher
training paradigm for GNNs. The authors generate pseudolabels for public query nodes
using specialised GNN models while adding noise to the predictions. The method requires
two datasets: labeled private data for the teacher model and unlabeled public data for the
student model. In the end, the public student model is released. It is trained using the noisy
pseudo-labels and is differentially private based on the post-processing property of DP. The
authors therefore implement a method for private release of trained graph neural networks
and show their results on three node classification datasets.

4.8. Generative Models and Synthetic Graphs. The ability to generate synthetic
data samples allows one to augment existing datasets with additional data points in a
privacy-neutral way, resulting in more diverse data representations. We summarised these
strands of work in Table 2. Synthetically generated graphs can improve the utility of the
model trained on this data as well as empirically reduces the effectiveness of inference
attacks [90]. There exist several works in the area [9, 10, 15, 56, 57, 79, 92, 133] that allow
one to generate graph-structured data in a private manner. Chen et al. [15], e.g., explore
synthetic graph generation of social graphs under edge-level DP and Qin et al. [92], e.g.,
resort to LDP to generate synthetic decentralised social graphs. In [56] and [57], Karwa et
al. introduce DP β-models that can be used for synthetic graph generation - also under
edge-level DP and Zheng et al. [133] resort to generative adversarial networks for their
graph creation method. Borgs et al. [9, 10] rely on non-parametric models, which do not
require a previous estimation of the parameters, and utilise graphons to generate synthetic
graphs under node-level privacy guarantees.

Even though some works have already investigated synthetic graph generation, a number
of limitations still hold. For example, privacy-utility trade-offs are much more profound in
graph generation tasks, forcing the model owner to either deteriorate the privacy guarantees
or to generate graphs of much lower utility. Furthermore, synthetic graph generation methods
have not yet reached a high variety of application areas and are often still applied only to
benchmark datasets. Since the task of private graph generation has so far not been widely
investigated in real world settings, we identify this to be a promising area of future work in
the graph domain.

5. Application Areas for DP on Graphs

In this section we discuss how our findings from above can be and have previously been
applied to graph learning tasks in order to establish which formulations of DP are most
suitable for each context, and give insights into a selection of potential application areas for
DP on graph-structured data. Lastly, we provide an outlook on promising future research in
those settings. We chose three exemplary learning contexts to allow us to cover all commonly
used formulations of DP on graphs (i.e. node-level, edge-level and graph-level DP). Overall,
more contexts relying on sensitive (or proprietary) data can benefit from a formalisation
of DP, such as drug discovery [49] or location-based learning [60]. We leave an in-depth
investigation of privacy in these settings as future work.



DP GUARANTEES FOR ANALYTICS AND MACHINE LEARNING ON GRAPHS 17

5.1. Social Networks. One of the more well-researched areas of private learning on graphs
concerns social graphs [8, 37, 73, 74, 78, 92, 99, 100, 108], where the personally-identifying
information is contained in the nodes of the graph and/or in the edges, defining the
interactions between individuals, that could potentially allow to uniquely identify them (e.g.
when spatio-temporal data is published [22]). As a result, there exist two concievable routes
to perform private learning on such data: edge-level DP to protect the connections to other
individuals in the graph and prevent unique identification of users like in [55, 73, 78, 92, 100]
and node-level DP to protect the data of each individual itself (as well as the outgoing edges)
like in [8, 37, 70, 131]. Furthermore, Sajadmanesh et al. [98] utilise locally differentially
private GNNs in the context of social networks. The focus on social network data for the
utilisation of DP in GNNs shows the high importance of protecting privacy in these settings,
as well as the associated risks inherent to working with such datasets. Recently, the same
authors [99] introduced a method that guarantees both node-level and edge-level DP.

5.2. Population Graphs. The large amount of medical data collected by multiple medical
institutions as well as personally through wearable devices, for instance, lead to mounting
challenges of structuring these multi-modal datasets. One approach of handling this data
heterogeneity is the construction of population graphs, which have found widespread adoption
in medical research [6, 41, 83]. These data structures allow to encapsulate the information
about patients across multiple departments and time periods (e.g. spatio-temporal patient
data [69]), leveraging much more relevant information and leading to better predictions.
One such scenario could involve representing each patient as a node and the whole patient
population/cohort by a graph comprising the individuals, as described e.g. in [35, 76].
Connections between patients can, for instance, be based on their similarity (like in [89]).
An advantage of creating such patient population graphs for the implementation of DP
mechanisms is that the graph can be explicitly degree-bounded, limiting the impact of
individual nodes on the graph structure.

Alternatively, each node can be patient-specific data about a single individual collected
at different times by various specialists. Either of these contexts would benefit from the
utilisation of node-level DP in order to quantify and limit the amount of information revealed
when node-level data is processed or released, as they are relying on extremely sensitive
data contained in each node.

5.3. Brain Networks. Here, we give an example for a graph classification problem on
multi-graph datasets. In such setting it is not the information contained in a single node or
inter-node connections that need to be kept private, but rather the information contained in
a graph as a whole. One prime example of such dataset that contains sensitive information
on a whole-graph level, rather than on the level of its individual constituents is a brain
network graph [12]. Such data is used extensively in neuroimaging problems [82, 105, 127].
However, similarly to most medical datasets, due to the difficulty of obtaining such data
(both because of the complexity of the task as well as of the privacy concerns) it is essential
that the learning task is augmented with a suitable privacy-preservation mechanisms. In
the case of brain network graphs, information about the value of individual voxels, or single
connections to other voxels in the brain network are not necessarily personally identifying.
Nonetheless, a collection of such interconnected points is considered to be a particularly
sensitive medical dataset and it thus needs to be protected. For this setting, graph-level
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DP is a particularly suitable technique for data release. To date, there only exists a small
number of such implementations of differentially private multi-graph learning [81] and we
envision that such formulation can gain significance as part of the future work in the area.
We recall that DP deep learning on brain graphs (with learning tasks similar to [97] for
instance) can be implemented through a straightforward utilisation of DP-SGD, similarly to
Euclidean contexts.

6. Challenges and Outlook

In this section, we discuss a number of challenges associated with differentially private
graph analytics, some of which can be attributed to the inter-connected nature of graphs,
while others are inherent to DP itself. Note that we also discuss a number of potential
complications arising in DP GNN training like privacy accounting, privacy-utility trade-offs,
computational performance and interpretability of DP on graph-structured data.

6.1. Privacy Accounting. Typically, in differentially private machine learning settings
privacy loss can be bounded per individual data point (i.e. per image or table record), thus
considering data points independently from each other, simplifying privacy loss accounting.
However, due to the intrinsic inter-dependency of nodes in a graph, independence cannot be
guaranteed and therefore quantifying the contribution of each individual becomes non-trivial.
Thus, there arises a need for concrete definitions which would allow the data owner(s) to
determine the exact formulation of differentially private training that is applicable in the
specific application areas. As noted by [2], the guarantees given by edge-level DP and
node-level DP have different implications, which are based on the exact features data owners
wish to protect.

DP is inherently compositional, that is, DP algorithms composed with each-other yet
again yield a DP algorithm [27]. However, the heterogeneous composition of different
formulations of DP in a graph setting (e.g. simultaneously accounting for learning the
adjacency matrix of a graph and for node classification) has not been studied previously,
and we consider it a promising avenue for future research.

Beyond the privacy accounting techniques discussed in Section 4.7 above, a line of work
has introduced techniques aiming to account for personalised/individual or per-instance
privacy loss. Personalised DP (pDP) was introduced by Ghosh and Roth in 2011 [39] and
later extended by Feldman et al. [31] and termed individual privacy. Personalised DP (pDP)
captures a level of privacy for each individual in a dataset, considering the addition or
removal of a data point from all possible datasets. In contrast, per-instance DP –introduced
by Wang et al. [118]– considers the addition or removal of a data point from a fixed dataset.

The general aim of individual/personalised/per-instance DP is to give a “bespoke”
privacy guarantee to each individual participating in a computation, typically combined with
a method to automatically terminate their participation when their individual privacy budget
is exhausted. As the process of deciding to continue or halt a computation by considering
the currently spent privacy budget is an instance of fully adaptive composition, additional
mechanisms are introduced: a privacy odometer (which tracks the privacy expenditure in
the process of computation, without having to specify a privacy budget in advance) and
the privacy filter (which stops the computation once the privacy budget is exceeded). The
combination of these tools allows for a finer-grained control of the information that can
be learned from each individual data point and potentially higher utility. The ability to
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compute the individual privacy loss can allow a selective removal of individual nodes (and
their corresponding edges), resulting in a much finer control of individual privacy expenditure.
This method can permit tighter privacy bounding in settings where amplification by sub-
sampling is not possible. However, it is also limited in applicability whenever the notion
of a single individual within the graph is ill-defined. According to the author of [118],
per-instance DP can be extended to graph-structured data in a straightforward fashion,
but no published literature exists on the topic as of the writing of this paper. Of note, the
aforementioned techniques should be considered analytical tools foremost, as the individual’s
privacy loss is itself a private quantity and releasing it requires special considerations [96].

6.2. Privacy-Utility Trade-Offs. As briefly discussed in section 4, DP in general adversely
affects the utility of the model or of the results derived from a differentially private graph
analytics. Utility if often measured by the accuracy of a query or with similar evaluation
metrics. Therefore, similar to differentially private machine learning on Euclidean data or
release of statistics derived from the sensitive data, there persists an issue of privacy-utility
trade-off. This implies that the more “private” the result of the computation is (e.g. the
lower the value of epsilon is), the less useful information can be inferred from that result not
just by the adversary, but also by the end user of the trained model, potentially hindering
the scientific progress based on the insights that could have otherwise been obtained from the
study. This is further exacerbated by the inter-connected nature of the graphs, as it is not
possible to guarantee independence of individual nodes, as we discussed above. Therefore,
operations that limit the amount of information that can be derived from these nodes (e.g.
through DP statistics release) affect not just the individuals, but also additional nodes
connected to them. Thus, the utility loss can become more problematic when compared to
datasets with independent data points and inflict additional penalties on the results of the
computation. We note that this discussion is relevant to both graph datasets and GNNs, as
the nature of GNN learning can only make full use of the data if these properties of graphs
are preserved. Relying on GNN models pre-trained on publicly available data (similar to
[42, 45, 93]) could severely reduce the negative impact that DP has on utility, when used
in transfer learning contexts. Here a model is trained on public data and subsequently
fine-tuned on private data where higher privacy can be achieved, while having better utility.
This approach was demonstrated in [1] and more recently in [109] for non-graph machine
learning tasks, demonstrating that –whereas training to the same utility from scratch–
requires about one order of magnitude more data, results comparable to non-private training
can easily be achieved by transfer learning.

6.3. Computational Performance. Beyond the aforementioned trade-offs in model gen-
eralisation performance, the utilisation of differential privacy is also associated with a
computational performance overhead when employed in deep learning settings. This can
be attributed to a requirement for per-sample gradient calculation, imposing a significant
burden on model performance at train time. Moreover, due to noise addition and gradient
clipping, models typically converge more slowly, thus prolonging the required training time
[62].

Recent works have introduced new methods to reduce the shortcomings regarding
computational performance of the DP training of ML models. Lee et al. [64] introduce
a faster PyTorch implementation for per-sample gradient clipping for a variety of NN
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layers, including fully connected layers, recurrent layers, convolutional layers, LSTM layers,
and multi-head attention layers. An extension to NLP methods called ghost clipping has
been introduced by Li et al. [66]. Bu et al. [11] introduce a new book-keeping technique
(alternative to ghost clipping) that sustainably improves computational costs of DP training
and apply it to different convolutional networks. Also, deep learning frameworks supporting
automatic vectorisation of per-sample gradient computations and/or just-in-time compilation
can be used to greatly speed up the gradient clipping process [106]. We anticipate that a
subset of these techniques can be straightforwardly extended to GNN training.

6.4. Interpretability of DP in Graphs. DP can often be difficult to reason over from
the perspectives of fairness [30] and explainability [26]. Moreover, its correct application
is complicated by the introduction of unintuitive parameters like ε or δ [19, 53], or by the
requirement to understand additional DP definitions like node, edge or graph-level DP. Thus,
besides systems which automate sensitivity calculations and the application of DP to generic
machine learning workflows [113], works similar to [18] are required, which investigate user
expectations and interpretations of DP, paving the way for an improved user experience for
practitioners.

Interpretability of GNNs in general is a highly discussed task in literature. The authors
in [81] use an explainability method called GNNExplainer [125] to visualise and quantify
the similarity between graph neural networks trained with and without DP-SGD to evaluate
whether the privately trained network considers the same edges in the graph as important
as the network trained with standard ML. We see potential in methods like these to get a
better insight into differenitially private GNNs and increase their interpretability.

7. Conclusion

In this work, we explore and systematise the utilisation of differential privacy in methods
that analyse graph data (including statistical analysis and graph neural network training)
as well as graph generation methods. We discovered 57 works that perform differentially
private data processing of graph structures, which we classify by the DP formulations
employed in each work and summarise our findings in Tables 1 and 2. We identify three
main DP formulations with regards to the attributes of graphs considered to be sensitive:
(1) edge-level, (2) node-level, and (3) graph-level differential privacy. We additionally discuss
machine learning tasks (in particular those relying on GNNs) that require utilisation of
sensitive graph-structured data and could hence benefit from a formalisation of differentially
private learning. Subsequently, we discuss the limitations of DP when applied to such
learning contexts, some of which are inherent to the choice of DP learning setting and some
attributable to the inter-connected nature of graph structures specifically. We conclude our
discussion with an analysis of graph learning tasks on sensitive data, summarise which DP
formulations are suitable for different learning problems and identify promising areas of
future research. We hope that our work offers practitioners a helpful overview of the current
state of DP employed in graph-based learning, and will stimulate both foundational and
application-focused future research.
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