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Department of Statistics, Penn State University, University Park, PA, USA
e-mail address: jh@psu.edu

Department of Statistics, Penn State University, University Park, PA, USA
e-mail address: sesa@psu.edu

Department of Statistics, Penn State University, University Park, PA, USA
e-mail address: xiaoyue@psu.edu

Abstract. The stochastic block model (SBM) and degree-corrected block model (DCBM)
are network models often selected as the fundamental setting in which to analyze the
theoretical properties of community detection methods. We consider the problem of
spectral clustering of SBM and DCBM networks under a local form of edge differential
privacy. Using a randomized response privacy mechanism called the edge-flip mechanism, we
develop theoretical guarantees for differentially private community detection, demonstrating
conditions under which this strong privacy guarantee can be upheld while achieving spectral
clustering convergence rates that match the known rates without privacy. We prove the
strongest theoretical results are achievable for dense networks (those with node degree
linear in the number of nodes), while weak consistency is achievable under mild sparsity
(node degree greater than

√
n). We empirically demonstrate our results on a number of

network examples.

1. Introduction

In the field of network data analysis, a common problem is community detection, the
algorithmic discovery of clusters or communities of dense connection. There exist numerous
parametric network models that exhibit community structure. Two fundamental models used
in the analysis of community detection algorithms are the stochastic block model (SBM),
first introduced in Holland et al. (1983), and the degree-corrected block model (DCBM)
of Karrer and Newman (2011), a popular SBM extension that allows for networks with
more realistic heterogeneity in node degree. In addition to theoretical interest, this class
of models has proven useful in modeling patterns of interaction in various settings ranging
from social networks and political science to the natural sciences (e.g., Wang and Wong,
1987; Daudin et al., 2008; Decelle et al., 2011; Karrer and Newman, 2011; Kim et al., 2018;
Lee and Wilkinson, 2019, and references therein).
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We consider the problem of estimating latent community structure in networks using
SBM and DCBM via the method of spectral clustering. In the absence of privacy, this
problem has gained popularity, as spectral clustering has been shown to be a computationally
tractable method for group estimation with satisfying theoretical guarantees (McSherry,
2001; Ng et al., 2002; Rohe et al., 2011; Qin and Rohe, 2013; Lei and Rinaldo, 2015; Joseph
and Yu, 2016; Binkiewicz et al., 2017; Abbe, 2018; Abbe et al., 2021). In this setting,
the clusters of a given network are informed by the relationships contained within that
network. These relationships are represented by the edges of the network, which may reflect
friendships, partnerships, collaborations, communications, financial transactions, similarities,
or other interactions between some set of entities, say, people or businesses.

In many cases, these relationships may constitute sensitive or confidential information,
and so we may desire a clustering that reveals high-level structures in the network while
preserving the privacy of low-level relationships. To provide such a privacy guarantee, we
turn to a form of local differential privacy (DP) for networks (see, e.g., Imola et al. (2021)
for networks, and Duchi et al. (2013) for more general ideas on local DP). We assume that
the nodes of the network are known but that their relationships are sensitive. We protect
these relationships through a randomized-response mechanism applied to the edges of the
network. Previous works, such as Mülle et al. (2015) and Karwa et al. (2017), have used
similar techniques to obtain a synthetic network that satisfies ε-DP (of Dwork et al., 2006)
with respect to the edges of the network. Recent works (Qin et al., 2017; Imola et al., 2021)
have emphasized that these synthetic networks can be constructed in a distributed fashion,
requiring that no single party has knowledge of the full set of true network relationships. We
construct our synthetic networks in such a manner, then apply a modified spectral clustering
algorithm to obtain consistent estimates of group membership for SBM and DCBM networks.

The problem of performing DP community detection has previously been given empirical
consideration (Mülle et al., 2015; Nguyen et al., 2016; Qin et al., 2017), but to our knowledge,
our analysis of the cost of privacy in this setting is the first theoretical treatment of the
subject.1 Our work generalizes the non-private results of Lei and Rinaldo (2015) to the
DP setting, and we demonstrate certain conditions under which our DP estimator matches
the known non-private convergence rates. We attribute these results to certain desirable
properties of the edge-flip mechanism that we explore in some detail. While this method
performs well for dense networks, the magnitude of error introduced by the local DP
mechanism results in a slowing of the convergence rate for sparse networks and a requirement
that node degree grow faster than

√
n. We derive these results in the context of more general

finite-sample and asymptotic bounds on misclassification rates with privacy.
The paper is structured as follows: We first introduce the network models and notation

in Section 2. In Section 3, we review differential privacy and define the edge-flip mechanism,
and we demonstrate that the edge-flip mechanism can be viewed as a mixture distribution
(Lemma 3.7), leading to two corollaries: a closure property for SBM and a more general
post-processing step that allows us to preserve the expected spectral embedddings of edge-
flipped networks. In Section 4, we propose a modified spectral clustering algorithm based on
this method—with concentration bounds for the estimation of spectral embeddings of SBM
and DCBM networks proven in Supplementary Material, Lemma A.1. Our main theoretical
results on finite-sample bounds on misclassification and asymptotic convergence rates for

1Related theoretical developments include the study of differentially private graph cuts (e.g., Gupta et al.,
2012; Blocki et al., 2012), as spectral clustering may be seen as a relaxation of the problem of finding minimal
graph cuts (Von Luxburg, 2007).
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private spectral clustering are presented in Section 5. Proofs of these results are deferred to
Supplementary Material, Section A. In Section 6, we evaluate the performance of private
spectral clustering on both simulated and observed networks. Finally, we conclude with a
discussion of limitations and open questions in Section 7.

2. Network Models and Notation

SBM and DCBM are models for binary, undirected networks without covariates. Edges
in both networks occur as independent Bernoulli random variables. Each of the n nodes
is assigned to one of k communities, or blocks, and these memberships are denoted in the
parameter θ ∈ [k]n (where [k] = {1, . . . , k}). In SBM, the probability of a given edge
occurring between nodes i and j depends only on the blocks to which i and j belong, with
those block-to-block edge probabilities recorded in the symmetric matrix B ∈ (0, 1]k×k. In
DCBM, edge probabilities further depend on a parameter ψ ∈ (0, 1]n that determines the
relative expected node degree for each node. If we let Y be the symmetric n× n adjacency
matrix from a DCBM, the elements of Y are then distributed as

Yij
ind∼


Bernoulli(ψiψjBθiθj

), i < j

0, i = j

Yji, i > j.

For such a network, we will write Y ∼ DCBM(θ,ψ, B). The stochastic block model can
be regarded as a special case of the DCBM, where ψ = 1n, a vector of n ones, i.e.,

SBM(θ, B)
D
= DCBM(θ,1n, B), (2.1)

where
D
= indicates equality in joint distribution of network edges.

We let Cj = {i : θi = j} denote the set of nodes in the j-th community. We denote
the size of the j-th community in an SBM or DCBM (i.e., the number of nodes in a
block) as nj = |Cj |, the smallest of which we denote by nmin = minj∈[k] nj , the largest
by nmax = maxj∈[k] nj , and the second-largest as n′

max. As in Lei and Rinaldo (2015), we

denote the effective size of the j-th block in a DCBM as ñj =
∑

i∈Cj
ψ2

i and the largest

effective size of a block as ñmax = maxj∈[k] ñj . As a measure of heterogeneity within the

j-th block, we use νj = n−2
j (
∑

i∈Cj
ψ−2

i )(
∑

i∈Cj
ψ2

i ) ∈ [1,∞). When νj = 1, all nodes in

the j-th community have the same expected degree, and larger values of νj denote greater
heterogeneity.

We use λB to denote the smallest absolute nonzero eigenvalue of the matrix B. The
largest entry in B is denoted maxB = maxij Bij . We represent networks via adjacency
matrices, e.g., Y ∈ {0, 1}n×n. The i-th row of the matrix Y is denoted Yi∗. We use ∥x∥p to
denote the ℓp norm of a vector x, ∥A∥F to denote the Frobenius norm of a matrix, and ∥A∥
to denote the operator norm of the matrix A, i.e., ∥A∥ = sup∥x∥2=1 ∥Ax∥2.

In asymptotic notation, we write an = o(bn) when |an/bn| → 0 as n → ∞; an = ω(bn)
when |an/bn| → ∞ as n → ∞; an = O(bn) when |an/bn| ≤ C for some C > 0 and all n;
an = Ω(bn) when |an/bn| ≥ C for some C > 0 and all n; and an = Θ(bn) when an = O(bn)
and an = Ω(bn). Finally, we write Xn = OP (bn) if for any α > 0 there exists a constant C
such that P (|Xn/bn| > C) < α for all large n.
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3. Privacy Mechanism as a Mixture Distribution

3.1. Defining Privacy. The framework of differential privacy offers more than just a
formal privacy definition: it offers many privacy definitions that build on each other. To
fully appreciate the privacy implications of a given definition—and thereby to justify our
specific choice of definition—we briefly review the core concepts of DP and discuss the
nuanced distinctions between privacy definitions that could be applied to the problem at
hand. Consider first the typical definition of DP:

Definition 3.1 (Differential Privacy (Dwork et al., 2006)). Suppose that ε > 0, δ ∈ [0, 1).
Let Y,Z be sets, and let d : Y × Y → Z≥0 be an integer-valued metric. Let M : Y → Z be
a randomized algorithm. We say M satisfies (ε, δ)–differential privacy with respect to d
if for any y, y′ ∈ Y satisfying d(y, y′) = 1 and any E ⊆ Z,

P (M(y) ∈ E) ≤ eε · P (M(y′) ∈ E) + δ. (3.1)

If δ = 0, we say M satisfies ε–differential privacy.

Such an algorithm M is called a privacy mechanism, and the elements y and y′ are
often referred to as databases. In non-network settings, the metric d is usually chosen to be
the Hamming distance, such that (3.1) can be interpreted thus: changing any one record
in an arbitrary database y ∈ Y does not significantly affect the distribution of M(y).2

Consequently, one can gain virtually no information about a single record based on the
private output M(y). The parameters ε and δ quantify the strength of the privacy guarantee,
with smaller values conferring a stronger guarantee. We focus on the case where δ = 0, a
setting often referred to as pure differential privacy. The parameter ε is commonly called
the privacy-loss budget.

In the network setting, there are two primary choices for the metric d that are frequently
employed, and these correspond to the notions of edge DP and node DP (Hay et al., 2009;
Kasiviswanathan et al., 2013):

Definition 3.2 (Edge DP). Let Y, Y ′ be two networks with n nodes. Then dedge(Y, Y
′) is

given by the total number of edges that differ between Y and Y ′. If M satisfies (ε, δ)–DP
with respect to dedge, then we say M satisfies (ε, δ)–edge differential privacy.

Definition 3.3 (Node DP). Let Y, Y ′ be two networks with n nodes. Then dnode(Y, Y
′)

is given by the minimum number of nodes in Y whose incident edges can be modified in
order to obtain Y ′. If M satisfies (ε, δ)–DP with respect to dnode, then we say M satisfies
(ε, δ)–node differential privacy.

Since dedge(Y, Y
′) ≥ dnode(Y, Y

′), the definition of node DP is more strict than the
definition of edge DP. Indeed, node DP implies edge DP, but the reverse is not true. In
many cases, the strictness of node DP precludes meaningful analysis (Kasiviswanathan et al.,

2013). This is the case, for example, in the problem we wish to solve. Suppose θ̂(Y ) is an
ε–DP estimator of the group membership θ for the network Y with respect to a distance
measure d. This implies that when we look at any given node’s estimated label, [θ̂(·)]i,

2Note that the databases y, y′ are not presented as random quantities in this definition. One can think of
M(y) as a distribution conditioned on the observed data, as in Wasserman and Zhou (2010).
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across two networks Y, Y ′ satisfying d(Y, Y ′) = 1, it must be that

P ([θ̂(Y )]i = ℓ)

P ([θ̂(Y ′)]i = ℓ)
∈ [e−ε, eε] ∀ℓ.

For edge DP (d = dedge), this means that changing any single edge in the network cannot
significantly affect the distribution of the estimated label for a given node. For node DP
(d = dnode), however, we can take any given node and change any subset (or even all) of its
incident edges without significantly affecting the distribution of its estimated label. Since
our goal is to infer labels from precisely these edges, this notion of privacy is too strict for
our purposes. For this reason, we will focus on edge-based definitions of DP, which aim to
protect the privacy of individual relationships within the network.3

So far, the DP definitions we have considered all fall under the umbrella of central DP.
In central DP, we assume that one party, often called the trusted curator, has complete
knowledge of the true database y. This arrangement is not always desirable, which motivates
the concept of local DP (Kasiviswanathan et al., 2011; Duchi et al., 2013). In local DP,
records in the database are held by a number of distributed parties (e.g., users of a social
network), and only these parties require true knowledge of their records. To facilitate some
central analysis of the database, a randomized algorithm is independently applied to each
record to produce a local differentially private view of that record. These local DP views
may then be shared with a central processor for further analysis. Thus, in contrast with
central DP, where a single mechanism is applied at the database level by a single database
owner, local DP applies privacy mechanisms at the record level, eliminating the need for a
trusted curator, while still allowing for centralized analysis of the data.

Applying local DP to the edge setting, we have further choices yet. Possibly the most
widely known definition of local DP in the edge setting is edge local DP of Qin et al. (2017),
but we will instead focus on relationship DP as defined in Imola et al. (2021). This definition
is more tailored to the setting of undirected networks, where it provides a stronger privacy
guarantee.4 In relationship DP (as in edge local DP), each node reports a private view (or
summary) of its neighbor list, the set of nodes with which it shares an edge. The formal
definition is given below.

Definition 3.4 (Relationship DP (Imola et al., 2021)). Let ε > 0, and let M1, . . . ,Mn be
randomized algorithms with domain {0, 1}n. The algorithmM(Y ) = (M1(Y1∗), . . . ,Mn(Yn∗))
is said to satisfy ε–relationship DP if for each E ⊆ Range(M) and networks Y, Y ′ satisfying
dedge(Y, Y

′) = 1,
P (M(Y ) ∈ E) ≤ eε · P (M(Y ′) ∈ E).

3.2. The Edge-Flip Mechanism. The specific privacy mechanism we employ is a simple
randomized-response mechanism that produces an ε-relationship-DP synthetic copy Mε(Y )
of the original network Y by randomly flipping edges in Y . This can be performed locally
by assigning each node to flip and self-report a subset of its edges. In this way, no single
party ever needs full knowledge of the true adjacency matrix Y . Since differential privacy
is preserved under post-processing (Dwork et al., 2006), any analysis performed on the

3Edge-based definitions of DP implicitly assume that the only sensitive information in the network is
encoded in these relationships. For example, in a community detection setting, we assume that the identities
of nodes are not sensitive but that their relationships are.

4More precisely, in an undirected network, ε–edge local DP implies 2ε–relationship DP (Imola et al., 2021).
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synthetic network Mε(Y ) preserves ε–relationship DP. Edge-flipping mechanisms have been
utilized in several earlier papers and interpreted under various edge DP definitions, including
(central) edge DP (Mülle et al., 2015; Karwa and Slavković, 2016; Karwa et al., 2017), edge
local DP (Qin et al., 2017), and relationship DP (Imola et al., 2021). We include here an
explicit formulation of the edge-flipping procedure from Imola et al. (2021), which we term
the symmetric edge-flip mechanism.

Definition 3.5 (Symmetric Edge-Flip Mechanism). Suppose that ε > 0. For i ∈ [n], let
Mi : {0, 1}n → {0, 1}n be such that

[Mi(x)]j
ind
=


0 i ≥ j

1− xj i < j w.p. 1
1+eε

xj i < j w.p. eε

1+eε ,

and let

T (Y ) =

M1(Y1∗)
...

Mn(Yn∗)

 .

Then the n × n symmetric edge-flip mechanism is the mechanism Mε(Y ) = T (Y ) +
[T (Y )]T .

Theorem 3.6. The symmetric edge-flip mechanism Mε satisfies ε–relationship DP.

Proof. The proof of this follows from Theorem 3 of Imola et al. (2021) and the corresponding
discussion. For completeness, we give a formal proof in Supplementary Material, Section A.5.

The simplicity of the edge-flip mechanism affords it several key advantages: In practice,
it is easy and flexible to implement. In theory, the distribution of the resulting synthetic
network is transparent and tractable. In fact, in Lemma 3.7 we show that the network
generated by the edge-flip mechanism is a mixture of the original non-private network with
an Erdős–Rényi network. This in turn leads to closure and statistical inference properties
that are important and useful, both theoretically and practically. These properties are
demonstrated in the corollaries that follow.

Lemma 3.7. Let Y ∈ {0, 1}n×n be a random, undirected, binary network. Let Z ∼ G(n, 1/2)

be an Erdős–Rényi random graph with n nodes and edge probability 1/2, and let Uij
ind∼

Bernoulli(2/(2eε+1)) for 1 ≤ i < j ≤ n. Define M′(Y ) to be the symmetric mixture network
such that for i < j,

M′(Y )ij = (Zij)
Uij (Yij)

(1−Uij).

Then M′(Y ) is equal in distribution to Mε(Y ).

Proof. It is sufficient to show that the conditional distributions of M′(Y ) |Y and Mε(Y ) |Y
are equivalent. Conditioned on Y , the entries of M′(Y ) and Mε(Y ) are independent, binary
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random variables, and

P (M′(Y )ij = 1 |Y ) = E[M′(Y )ij |Y ]

= E[ E[M′(Y )ij |Y,Z, U ] |Y ]

= E [UijZij + (1− Uij)Yij |Y ]

=
1

eε + 1
+

eε − 1

eε + 1
Yij

=
1

eε + 1
(1− Yij) +

eε

eε + 1
Yij

= E[Mε(Y )ij |Y ]

= P (Mε(Y )ij = 1 |Y ).

Lemma 3.7 provides useful intuition about the edge-flip mechanism. As ε → ∞, our
synthetic network Mε(Y ) approaches the true network Y , and as ε → 0, we approach
an Erdős–Rényi network. For block models, this is a welcome property, as it means the
community structure of the network is exactly preserved. For the SBM in particular, we
have closure of the model family under Mε. The following corollary follows from a simple
extension of the proof of Lemma 3.7.

Corollary 3.8. If Y ∼ SBM(θ, B), then Mε(Y ) ∼ SBM(θ, τε(B)), where

τε(B) =
1

eε + 1
1k1

T
k +

eε − 1

eε + 1
B. (3.2)

The closure property of Corollary 3.8 may be used to immediately obtain consistency
results for SBM under differential privacy via application of existing non-private results.
This approach, however, comes with two major limitations: First, applying the results of
Lei and Rinaldo (2015) to the private network Mε(Y ) yields error bounds in terms of the
spectrum of τε(B), while for the non-private Y , we obtain bounds in terms of the spectrum
of B. This makes it difficult to make meaningful, general comparisons between the resulting
error bounds. Secondly, while closure holds for SBM, it does not hold for the broader DCBM
family. As a result, this approach offers no theoretical insight on how to perform consistent
community detection outside of the specific case of the SBM.

To facilitate comparisons between private and non-private error bounds and in consider-
ation of the broader DCBM family, we will explore a more generally applicable framework
here, relying instead on a weaker property of the edge-flip mechanism that holds for any
random binary network. Via a small “downshift” transformation to an edge-flipped network,
we can recover a network whose expectation matches that of the original network, up to a
scaling factor.

Corollary 3.9. Let Y ∈ {0, 1}n×n be a random, undirected, binary network, and let
(dε ◦Mε)(Y ) = Mε(Y ) − (eε + 1)−1(1n1

T
n − In) be the downshifted edge-flipped network.

Then

E(dε ◦Mε)(Y ) =
eε − 1

eε + 1
EY.
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Proof. This follows from a slight rewriting of the derivation in the proof of Lemma 3.7,
namely

E[Mε(Y )] = E[ E[Mε(Y ) |Y ] ]

=
1

eε + 1
(1n1

T
n − In) +

eε − 1

eε + 1
EY.

Corollary 3.9 transforms a {0, 1}-valued network into a weighted network in exchange
for the following property: for any random, undirected, binary network Y , the matrices
E[Y ] and E[(dε ◦Mε)(Y )] share the same eigenvectors. This fact leads to a more general
post-processing step under DP that allows us to preserve the expected spectral embeddings
of edge-flipped networks.

4. Modified Clustering Methods with Concentration Bounds

Our goal is to use spectral clustering to estimate the unobserved block membership parameter
θ while satisfying ε-relationship DP. A variety of related clustering algorithms exist under
the umbrella term of spectral clustering (Ng et al., 2002; Von Luxburg, 2007; Rohe et al.,
2011; Lei and Rinaldo, 2015; Binkiewicz et al., 2017). In our setting, we focus on the method
of adjacency spectral clustering with k known, following the framework of Lei and Rinaldo
(2015). In adjacency spectral clustering, we place the leading k eigenvectors (by absolute
value of corresponding eigenvalues) of the observed adjacency matrix Y into an n× k matrix

Û . We consider each row of Û to be the spectral embedding of the respective node in the
network, and we perform a clustering process over these embeddings: for SBM, we perform
simple k-means, and for DCBM, we normalize the embeddings to have unit norm before
performing k-medians clustering. The resulting estimated cluster memberships serve as our
estimator, θ̂.

This approach is theoretically justified by demonstrating that the observed embeddings
Û concentrate around a set of “expected” embeddings U that satisfy appropriate geometric
properties. In particular, let Y ∼ DCBM(θ,ψ, B), let P be the n× n matrix with entries
Pij = ψiψjBθiθj

, and let U be the n× k matrix that holds the leading k eigenvectors of P .
(Note that E[Y ] = P except on the diagonal.) In the case of SBM, it can be shown that the
rows of U correspond to k distinct points, and two nodes belong to the same block if and
only if their expected embeddings are equal. For general DCBM, the rows of U fall along k
rays emanating from the origin, with each ray corresponding to a unique block (Jin, 2015;
Lei and Rinaldo, 2015).

Unfortunately, these geometric properties are not, in general, preserved by the edge-
flipping routine: the embeddings of Mε(Y ) do not have the same geometric properties
as the embeddings of Y . This limitation prevents direct application of standard DCBM
results to Mε(Y ) without modification. However, from Corollary 3.9, we know that the
“downshifted” network (dε ◦ Mε)(Y ) shares the same eigenvectors as the original Y in
expectation, suggesting that the embeddings of (dε ◦ Mε)(Y ) and Y will concentrate in
the same locations. Since (dε ◦Mε)(Y ) is a weighted network, these concentration results
require further extensions of the standard results for binary networks (e.g., Lei and Rinaldo,
2015). Indeed, we state and prove explicit concentration bounds in Supplementary Material,
Lemma A.1. This is the key fact that powers the main results of Section 5.
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To perform spectral clustering on the edge-flipped network, then, we need only to modify
the common algorithms to use the downshifted adjacency matrix (dε ◦Mε)(Y ) in place of
Mε(Y ). Our proposed modified algorithms for SBM and DCBM are given in Algorithms 1
and 2, respectively. The k-means and k-medians problems, as well as their approximations,
are defined in Supplementary Material, Section A.1.

Algorithm 1: Edge-Flipped Spectral Clustering (k-means)

Data: edge-flipped adjacency matrix A ∈ {0, 1}n×n, number of blocks k,
approximation error γ, privacy budget ε

Result: private estimate of block membership θ̂ ∈ [k]n

Let A↓ =

{
A ε = ∞
A− (eε + 1)−1(1n1

T
n − In) ε < ∞

;

Let û1, . . . , ûk ∈ Rn be the k leading eigenvectors (by absolute value) of A↓ ;

Let θ̂ be a (1 + γ)-approximate solution to the k-means problem over the rows of

Û↓ = [û1 . . . ûk] ∈ Rn×k ;

Algorithm 2: Edge-Flipped Spectral Clustering (Normalized k-medians)

Data: edge-flipped adjacency matrix A ∈ {0, 1}n×n, number of blocks k,
approximation error γ, privacy budget ε

Result: private estimate of block membership θ̂ ∈ [k]n

Let A↓ =

{
A ε = ∞
A− (eε + 1)−1(1n1

T
n − In) ε < ∞

;

Let û1, . . . , ûk ∈ Rn be the k leading eigenvectors (by absolute value) of A↓ ;

Let Û↓ = [û1 . . . ûk] ∈ Rn×k ;

// construct row-normalized matrix Û ′
↓ over non-zero rows

Let I+ = {i ∈ [n] : ∥(Û↓)i∗∥2 > 0}, f : [|I+|] → [n] s.t. f(i) = (I+)i ;

for i = 1, . . . , |I+| do
Let (Û ′

↓)i∗ = (Û↓)f(i)∗/∥(Û↓)f(i)∗∥2 ;

end

Let θ̂
′
be a (1 + γ)-approximate solution to the k-medians problem over the rows of

Û ′
↓ ;

Let θ̂i =

{
1 i ̸∈ I+

θ̂
′
f−1(i) i ∈ I+

, i ∈ [n] ;

To evaluate the performance of the clustering algorithms, we assume knowledge of
ground truth group labels θ and measure two forms of misclassification. The first is an
overall measure of misclassification that captures the proportion of misidentified nodes, up
to a permutation of labelings. Let S[k] denote the set of all permutations σ : [k] → [k], and
let I(·) denote an indicator function. Then the overall misclassification for the estimated
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groups θ̂ is given by

L(θ, θ̂) = min
σ∈S[k]

1

n

n∑
i=1

I(σ(θ̂i) ̸= θi)). (4.1)

As in Lei and Rinaldo (2015), we also consider the worst-case misclassification within a
single community in order to account for trivialities5. This error is given by

L̃(θ, θ̂) = max
j∈[k]

min
σ∈S[k]

1

|Cj |
∑
i∈Cj

I(σ(θ̂i) ̸= j). (4.2)

5. Misclassification Bounds for Private Clustering

We generalize the results of Lei and Rinaldo (2015) developed for the non-private network
setting to derive finite-sample misclassification bounds for spectral clustering of SBM and
DCBM under local differential privacy using the modified spectral clustering algorithms
proposed in Section 4 (Algorithms 1 and 2). We argue in Section 4 and prove in Supplementary
Material, Section A that the spectral embeddings of Y and the weighted network (dε◦Mε)(Y )
will concentrate in the same locations. In Lemma A.1, we also demonstrated that the
concentration weakens with a stronger privacy guarantee (i.e., smaller ε). In this section,
we use these concentration results to derive misclassification bounds for private spectral
clustering of SBM and DCBM; all proofs are provided in Section A of the Supplementary
Material. We begin with the results for SBM.

5.1. SBM.

Theorem 5.1. Let Y ∼ SBM(θ, B) with maxB ≥ log n/n, and minimum absolute eigen-

value λB > 0. Let ε ∈ (0,∞], and let θ̂ε be the result of Algorithm 1 on Mε(Y ) (where
M∞(Y ) = Y ), using an approximation error of γ. Let

gε(B) =

{
eε+1
eε−1

(
maxB + 1

eε−1

)
, ε < ∞

maxB, ε = ∞
(5.1)

There exists a universal constant c1 such that with probability at least 1− n−1,

L̃(θ, θ̂ε) ≤ c1
(2 + γ)kn

n2
minλ

2
B

gε(B)

and

L(θ, θ̂ε) ≤ c1
(2 + γ)kn′

max

n2
minλ

2
B

gε(B),

provided that

nmin > λ−1
B

√
c1(2 + γ)kn gε(B). (5.2)

5Consider an asymptotic regime with k = 2 where one community is of constant size N1 and the other is

of size n−N1. In this setting, a trivial estimator such as θ̂ = 1n can achieve consistency in the sense that

L(θ, θ̂) → 0.
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Taking ε = ∞ (i.e., the non-private setting) in Theorem 5.1 recovers a result that is
exactly equivalent to the results for SBM in Lei and Rinaldo (2015). Consequently, the cost of
privacy on misclassification is captured by gε(B). Noting that gε(B) is a decreasing function
in ε and that limε→∞ gε(B) = g∞(B), Theorem 5.1 provides a smooth interpolation between
the known finite-sample misclassification bounds without privacy and the corresponding
bounds under local DP.

We can use the finite-sample bounds from Theorem 5.1 to construct particular asymptotic
regimes under which θ̂ε is consistent and derive convergence rates. For a given sequence of
SBM networks, it suffices to show that

kn

n2
min

gε(B) = o(1).

If this holds, condition (5.2) is met for large n, and both measures of misclassification,

L̃(θ, θ̂ε) and L(θ, θ̂ε), tend to zero.
Since gε(B) explains the difference in classification performance between private and non-

private clustering, a comparison of convergence rates can be boiled down to the differences in
asymptotic behavior of gε(B). We note that if ε = ∞, then gε(B) = maxB. This will serve
as our baseline. On the other hand, if ε < ∞, then gε(B) = O(maxB + ζ−1

ε + ζ−2
ε ), where

ζε = eε − 1, an increasing function of ε satisfying ζ0 = 0. (See Supplementary Material,
Fact A.2.) Thus,

L̃(θ, θ̂ε) =

OP

(
kn

n2
minλ

2
B
maxB

)
ε = ∞

OP

(
kn

n2
minλ

2
B
(maxB + ζ−1

ε + ζ−2
ε )
)

ε < ∞

and L(θ, θ̂ε) =

OP

(
kn′

max

n2
minλ

2
B
maxB

)
ε = ∞

OP

(
kn′

max

n2
minλ

2
B
(maxB + ζ−1

ε + ζ−2
ε )
)

ε < ∞
.

From this, it is clear that if ε and maxB are bounded away from zero, we can obtain
the same convergence rate under local DP as in the absence of privacy. For example, for a
fixed privacy budget and a sequence of dense SBMs (i.e., one for which the edge probabilities
do not tend to zero), we can effectively employ local DP at the same cost, asymptotically, as
in the non-private setting (up to a constant). For a sparse SBM (one in which maxB → 0)
with fixed privacy budget, however, this does not hold, as gε(B) = Θ(1) for ε < ∞, but
g∞(B) = maxB = o(1). Thus the convergence rate for sparse SBM slows by a factor of
(maxB)−1.

This slowing of convergence for sparse SBM limits the extent of sparsity that can be
handled under this local DP mechanism. Consider a regime in which k is fixed, communities
grow proportionally (nmin = Θ(n)), and B changes with n only via some scaling parameter
αn → 0, i.e., B = αnB0 for some fixed matrix B0. In this case, we have k constant,
maxB = Θ(αn), λB = Θ(αn), and so the worst-case misclassification is

L̃(θ, θ̂ε) =

OP

(
1

nαn

)
ε = ∞

OP

(
αn+ζ−1

ε +ζ−2
ε

nα2
n

)
ε < ∞.

(5.3)

Theorem 5.1 allows us to choose αn as small as log n/n, so we have consistency for non-private
clustering down to log n/n. For private clustering with a fixed privacy budget, however, we

need αn = ω(n−1/2). The only way to achieve greater sparsity is to allow the privacy budget
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to grow arbitrarily large. For example, choosing ε = log(1 + α−1
n ), we have ζ−1

ε = αn, and
thus we can recover the same convergence rate and accommodate the same level of sparsity
as without privacy—but at the cost of allowing unbounded privacy loss for large n.

5.2. DCBM. Generalizing the theoretical results for SBM to DCBM requires a bit of care.
As described in Section 3, in the more general setting of DCBM, the expected embeddings
for a given block fall along distinct rays emanating from the origin—in contrast with distinct
points in the case of SBM. It is for this reason that Algorithm 2 is used for DCBM. The key
theorethical result from this more general treatment is given below.

Theorem 5.2. Let Y ∼ DCBM(θ,ψ, B) with maxi∈Cj ψi = 1 for j ∈ [k], maxB ≥ log n/n,

and minimum absolute eigenvalue λB > 0. Let ε ∈ (0,∞], and let θ̂ε be the result of
Algorithm 2 on Mε(Y ) (where M∞(Y ) = Y ), using an approximation error of γ. Let gε(B)
as in Theorem 5.1. There exists a universal constant c2 such that with probability at least
1− n−1,

L(θ, θ̂ε) ≤ c2
(2.5 + γ)

ñminλB

√√√√√k

n

 k∑
j=1

n2
jνj

 gε(B),

provided that

nmin >
c2(2.5 + γ)

√
kn gε(B)

∑k
j=1 n

2
jνj

ñminλB
. (5.4)

As was the case with SBM, the results of Theorem 5.2 for ε = ∞ (non-private setting)
match the original results of Lei and Rinaldo (2015). The cost of privacy is once again
determined by the function gε(B). In this case, however, the bound changes with the square
root of gε(B).

Comparing the results of Theorems 5.1 and 5.2, the more general result involves
additional parameters, of course, but also generally provides a weaker result. Ignoring

constants, condition (5.4) is more stringent than (5.2), as
√∑k

j=1 n
2
jνj/ñmin ≥

√
k. The

resulting upper bound on L(θ, θ̂ε) also results in weaker convergence rates. In keeping with

Lei and Rinaldo (2015), Theorem 5.2 offers no bound on L̃(θ, θ̂ε), as its proof bounds only

the total number of misclassified nodes in the network. A trivial bound for L̃ can be obtained
by observing that:

L̃(θ, θ̂ε) ≤ (n/nmin)L(θ, θ̂ε). (5.5)

To simplify matters, we illustrate an asymptotic regime in which communities grow
proportionally (nj = Θ(n/k) for all j ∈ [k]) and assume that there exists a global lower
bound 0 < a ≤ ψi for i ∈ [n]. Under these conditions, we can state a simple asymptotic
result.

Lemma 5.3. Suppose Y satisfies the conditions of Theorem 5.2, and suppose further that
0 < a ≤ ψi ≤ 1 for all i ∈ [n] and nj = Θ(n/k) for all j ∈ [k]. Then

k2
√

gε(B)

a3λB
√
n

= o(1) =⇒ L(θ, θ̂ε) = OP

(
k
√
gε(B)

a3λB
√
n

)
.
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To compare this to the results seen in Eq. (5.3), consider again the case when B = αnB0

for some fixed matrix B0 and sequence αn → 0. Then since k is fixed, n/nmin = Θ(1), and
so combining Lemma 5.3 with Eq. (5.5) yields a convergence rate of:

L̃(θ, θ̂ε) =


OP

(
1

a3
√
nαn

)
ε = ∞

OP

(√
αn+ζ−1

ε +ζ−2
ε

a3αn
√
n

)
ε < ∞.

For SBM, where a = 1—or more generally for any regime in which a is bounded away from
zero—this bound is precisely the square root of the bound obtained in Eq. (5.3). Once again,
we see that the convergence rate for sparse networks slows under private methods, and while
some sparsity is attainable with privacy through this method, to accommodate the same
level of sparsity with privacy as without, we would again need to allow the privacy-loss
budget ε to grow arbitrarily large.

6. Empirical Evaluations

6.1. Simulation Studies. The theoretical results above suggest that the edge-flip privacy
mechanism can be used to achieve convergence for spectral clustering of SBM and DCBM
networks that is similar in rate for dense networks, while slower for sparse networks. However,
existing work suggests that the established non-private bounds from which we developed our
theory may not be tight (Lei and Rinaldo, 2015; Athreya et al., 2016). Here we evaluate these
results through simulation to assess how empirical performance compares with theoretical.
To facilitate this analysis, we consider two special cases of the SBM and DCBM.

Definition 6.1 (Symmetric SBM). The symmetric SBM is an SBM network consisting
of n nodes, k equal-sized blocks, and B = pIk + r1k1

T
k . For such a network, we write

Y ∼ SSBM(n, k, p, r).

Definition 6.2 (Symmetric DCBM). The symmetric DCBM is a DCBM network
consisting of n nodes, k equal-sized blocks, B = pIk + r1k1

T
k , and ψ ∈ [a, 1]n taking value 1

for the first node of a given block and values randomly drawn from Uniform(a, 1) elsewhere.
For such a network, we write Y ∼ SDCBM(n, k, p, r, a).

Starting with SBM, we simulate two regimes following the symmetric SBM. In the first
setting, we use a dense symmetric SBM. We consider 16 values of n ranging from n = 30
to n = 12000 and ε ∈ {0.5, 0.75, 1, 1.5, 2, 3, 4,∞}, where ε = ∞ represents the original

network (i.e., no privacy). For each n, ε pair, we draw 100 networks Y (i) ∼ SSBM(n, k =

3, p = 0.2, r = 0.05). We then apply Algorithm 1 to Mε(Y
(i)), and report the mean overall

misclassification rate L(θ(i), θ̂
(i)
) of Eq. (4.1). The results of this experiment are plotted on

log–log axes in the left panel of Figure 1. The bounds from Section 5 suggest polynomial
convergence rates in this setting that should be approximately the same without or without
privacy. Indeed, on a log–log scale, there are no clear differences in these curves, although
all seem to exhibit downward curvature suggesting faster than polynomial convergence.

For the second setting, we use a sparse symmetric SBM. Here we consider 13 values of n
ranging from n = 10 to n = 12800 and the same eight values of ε as in the first setting. For
each n, ε pair, we draw 100 networks Y (i) ∼ SSBM(n, k = 2, p = 1.5n−.3, r = .15n−.3), then

apply Algorithm 1 to Mε(Y
(i)), as in the first setting. The results are plotted on log–log
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Figure 1: Proportion of misclassified nodes in simulated SBM networks for various values
of ε, n. Left (dense): Y ∼ SSBM(n, k = 3, p = 0.2, r = 0.05), Right (sparse):
Y ∼ SSBM(n, k = 2, p = 1.5n−.3, r = .15n−.3)

axes in the right panel of Figure 1. Here, the curves corresponding to each value of ε are no
longer parallel: for smaller values of ε, the convergence rate slows.

For DCBM, we simulate two additional regimes, one dense and one sparse, in a manner
similar to the SBM simulations. In the dense setting, we use a dense symmetric DCBM with
the same values of n, ε as used in the dense SBM simulations. For each n, ε pair, we draw 100
networks Y (i) ∼ SDCBM(n, k = 3, p = 0.4, r = 0.05, a = 0.3). In the sparse setting, we use
the same ε values as in the other settings and 12 values of n ranging from n = 20 to n = 12800.
Then we draw 100 networks Y (i) ∼ SDCBM(n, k = 2, p = 2n−.25, r = 0.1n−.25, a = 0.3).
In both DCBM settings, we report the mean overall misclassification rate after applying
Algorithm 2. The results of these simulations are plotted on log–log axes in Figure 2.
In contrast with the SBM simulations, the DCBM simulations generally exhibit slower
convergence. Similar to the SBM simulations, we see a clear slowing of convergence rate for
smaller values of ε in the sparse setting.

While the results of these simulations are generally consistent with the theory of Section 5,
our simulations suggest the bounds given here and in Lei and Rinaldo (2015) are not tight,
in the sense that the observed convergence rates appear to beat the theoretical guarantees,
sometimes by considerable order. This appears consistent with the empirical findings of
Athreya et al. (2017, Section 5), where a related method is evaluated in the non-private
setting. In the private, sparse setting, the precise nature in which convergence slows with
ε is not fully captured by our theoretical results. Specifically, for larger values of ε, the
convergence properties appear more similar to the non-private setting than suggested by the
theoretical bounds.

6.2. Performance on Observed Networks. To assess the practicality of these methods,
we applied the edge-flip mechanism and Algorithm 2 to several real-world datasets, then
compared the performance of spectral clustering on the private networks over various privacy
budgets. We show the trade-offs of privacy loss and accuracy.

The first dataset we considered is a small, classical network used in the SBM literature:
Hansell’s friendship data (Hansell, 1984), which were used in Wang and Wong (1987);
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Figure 2: Proportion of misclassified nodes in simulated DCBM networks for various values
of ε, n. Left (dense): Y ∼ SDCBM(n, k = 3, p = 0.4, r = 0.05, a = 0.3), Right
(sparse): Y ∼ SDCBM(n, k = 2, p = 2n−.25, r = 0.1n−.25, a = 0.3)
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Figure 3: Trade-off of privacy-loss and accuracy of private spectral clustering on a small
dataset, Hansell’s friendship data (Hansell, 1984), with varying privacy-loss ε, and
“NP” denoting non-private data.

Snijders and Nowicki (1997). This is a directed network of n = 27 (13 male, 14 female)
students, and the presence of an edge (i, j) indicates that student i considers student j to
be a friend. We symmetrized the network by setting Yij = max{Yij , Yji}, and we used the
students’ sexes as ground-truth labels.

For this small network, we considered ε ∈ {0.5, 0.75, 1, 1.5, 2, 3, 4,∞}, and for each value
of ε, we applied the privacy mechanism and spectral clustering algorithm 500 times. Box
plots showing the overall classification accuracy, 1−L(θ, θ̂) from Eq. (4.1), for each value of
ε are given in Figure 3. Accuracy remains high for values of ε > 2; for such a small network,
this is about as good as we can expect.

Next, we considered two datasets from the DCBM literature. The first network consists
of n = 1137 Facebook users from Simmons College (Traud et al., 2012; Chen et al., 2018),
and edges represent friendships. Each student belongs to one of k = 4 class years (2006 to
2009). These class years are used as ground-truth group memberships, which are inferred
through their friendships. The second dataset is the well-known network of political blogs
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Figure 4: Trade-off of privacy-loss and accuracy of private spectral clustering on well-known
DCBM datasets, with varying privacy-loss ε, and “NP” denoting non-private data.
Left: Facebook friendships of Simmons College students (Traud et al., 2012),
Right: political blogs network (Adamic and Glance, 2005)

Figure 5: Visualization of congressional voting networks for 70th U.S. Senate (left) and
110th U.S. Senate (right). Democrats are depicted as blue nodes and Republican
as red.

from Adamic and Glance (2005), which has been widely used in the DCBM literature
(Karrer and Newman, 2011; Jin, 2015; Chen et al., 2018; Abbe, 2018). This network consists
of n = 1222 blogs on U.S. politics, which have been categorized as either left-leaning or
right-leaning (k = 2 groups). An edge in this network represents the existence of a hyperlink
between the two blogs, and these hyperlinks are used to infer the left- or right-leaning label
for each node. The performance of the private spectral clustering methods on these networks
is shown in Figure 4. In both of these datasets, we see a steady decline in performance as ε
decreases, without a clear inflection point.

The theoretical and simulated results from earlier suggest that these methods are best
paired with suitably large or dense networks. A relevant collection of networks can be found,
for example, in Andris et al. (2015), where networks of Democrat and Republican members
of the U.S. House of Representatives are constructed based on voting similarity. Using their
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Figure 6: Trade-off of privacy-loss and accuracy of private spectral clustering on U.S. Congres-
sional voting networks. Clockwise from top left: 110th House of Representatives,
70th House of Representatives, 70th Senate, 110th Senate

methods and data from Lewis et al. (2021), we reconstructed these networks for a number
of sessions of the U.S. House of Representatives and U.S. Senate (Hehir, 2022b).6

Changes over time in the patterns of voting among members of Congress offer us a
range of networks that span nearly complete separation of the parties (particularly in recent
years) to networks that exhibit greater levels of connectivity across parties. Figure 5 depicts
two such networks, with the 70th U.S. Senate on the left and the 110th U.S. Senate on the
right. In the 70th Senate, 13% of cross-party pairs are connected, while 76% and 59% of
Democrat and Republican pairs are connected (respectively). In the 110th Senate, 9% of
cross-party pairs are connected, while 98% and 88% of Democrat and Republican pairs are
connected (respectively).

For the 70th Senate (n = 87), 110th Senate (n = 98), 70th House (n = 425), and
110th House (n = 423), we applied the private spectral clustering methods 50 times for
each value of ε ∈ {0.25, 0.33, 0.5, 0.75, 1, 1.5, 2, 3, 4,∞}. The results are depicted in Figure
6. The high density (and relatively low variability of degree) in these networks enables
impressive clustering performance: for the House networks, clustering performance is solid
for all ε considered; in the smaller Senate networks, we see a drop in performance for values
of ε < 0.5.

7. Discussion

Just as SBM and DCBM are fundamental network models featuring community structure, the
edge-flip mechanism is a fundamental network privacy mechanism providing local differential
privacy on networks at the edge level. A great advantage of the edge-flip mechanism is

6Although these networks are produced from public information, networks involving public figures like
members of Congress illustrate a case where edge privacy is particularly relevant, since the set of nodes is
public knowledge, but their interactions or relations may be sensitive.
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that it produces a synthetic network with clear distributional properties. In particular,
the explicit mixture distribution of Mε(Y ) described in Lemma 3.7—in contrast with the
unclear distributional properties of some alternative mechanisms—greatly facilitates the
process of accounting for privacy in various statistical procedures. Moreover, by nature of
producing a synthetic network, any number of statistical procedures can be applied to the
single output Mε(Y ) with a fixed privacy budget ε.

Our work demonstrates how to use the clear distribution of Mε(Y ) to extend the theory
of consistent community detection to the local DP setting. This is, to our knowledge, the
first attempt to address this important problem. Algorithms 1 and 2 represent modest
extensions to the algorithms originally proposed in Lei and Rinaldo (2015), requiring only
the addition of a small “downshift” transformation to unlock a powerful privacy guarantee
with a clear accounting of the cost to clustering performance. In fact, Corollary 3.8 suggests
that for SBM networks in particular, this downshift transformation is optional, as Mε(Y ) is
itself an SBM whose community structure is identical to Y .

Focusing on the specific case of SBM, we may ask whether it is preferable to perform
clustering for SBM on (dε◦Mε)(Y ), as prescribed by Algorithm 1, or to proceed with ordinary
spectral clustering on Mε(Y ) per the closure property of Corollary 3.8. By combining the
closure property with the ε = ∞ case of Theorem 5.1, one can obtain performance bounds
in terms of the matrix τε(B) of Eq. (3.2). In some cases, these bounds may be superior to
the bounds resulting from Theorem 5.1 alone.7 Nonetheless, we have opted to present the
results for the downshifted procedure for the sake of generality. This allows us to keep the
SBM misclassification bounds in terms of the smallest absolute eigenvalue of B instead of
that of τε(B), where a general relationship between these two quantities is elusive.

The benefits of the edge-flip mechanism’s tractable distribution are, of course, not
limited to the network models considered in this paper, nor to the field of network clustering.
For example, Karwa et al. (2017) have previously shown how to adjust inferential procedures
for exponential random graph models using the edge-flip mechanism. These examples are
likely only scratching the surface of the theory that can be extended to accommodate privacy
under the edge-flip mechanism.

The primary drawback to the edge-flip mechanism is its relationship to sparse networks.
We posit that this limitation is inherent to working with a local-DP synthetic network, in
which the magnitude of noise required for privacy begins to dwarf the signal present in a
sparse network. Looking at the edge-flip mechanism in particular, for a sparse network Y ,
the mixture Mε(Y ) will be considerably more dense, and a disproportionate number of its
edges will result from the privacy mechanism, not the original network of interest. Although
these changes preserve key properties of SBM and DCBM networks, reductions in sparsity
dilute the signal-to-noise ratio considerably. While the theory supports the claim that these
methods are consistent for SBM and DCBM networks exhibiting mild sparsity, empirical
performance for sparse networks indicates a considerable utility loss when a very strong
privacy guarantee is applied to a sparse network. Other privacy mechanisms preserving
the sparsity of a network, especially non-local mechanisms, could be considered for greater
performance in these cases.

7For example, if B is positive definite, then one can show that g∞(τε(B))/λ2
τε(B) < gε(B)/λ2

B via Weyl’s

inequality.
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The trade-off of privacy-loss and accuracy that we observe for label recovery on dense
networks such as the Congressional voting networks, where considerable accuracy is main-
tained at ε = 0.5, suggests that the methods employed here are of more than just theoretical
interest. By comparison, in their work with exponential random graph models and the
edge-flip mechanism, Karwa et al. (2017) use values of ε ranging from 3 to 6 on a network
of similar size. Nonetheless, it would be useful to develop theoretical results for alternative
privacy mechanisms that can accommodate greater sparsity.

Lastly, while the results given here focus on spectral clustering of SBM and DCBM,
some of the insights from these techniques are suggestive of further theoretical developments
in related fields. For example, concentration bounds for the spectral embeddings of the
downshifted private network could potentially be extended to the more general family of
random dot product graphs (Athreya et al., 2017). Doing this would open a wide range of
avenues for future work.
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