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MARTIN AUMÜLLER, CHRISTIAN JANOS LEBEDA, AND RASMUS PAGH

IT University of Copenhagen, Denmark
e-mail address: maau@itu.dk

BARC and IT University of Copenhagen, Denmark
e-mail address: chle@itu.dk

BARC and University of Copenhagen, Denmark
e-mail address: pagh@di.ku.dk

Abstract. Representing a sparse histogram, or more generally a sparse vector, is a
fundamental task in differential privacy. An ideal solution would require space close to
information-theoretical lower bounds, have an error distribution that depends optimally on
the desired privacy level, and allow fast random access to entries in the vector. However,
existing approaches have only achieved two of these three goals.

In this paper we introduce the Approximate Laplace Projection (ALP) mechanism
for approximating k-sparse vectors. This mechanism is shown to simultaneously have
information-theoretically optimal space (up to constant factors), fast access to vector
entries, and error of the same magnitude as the Laplace mechanism applied to dense vectors.
A key new technique is a unary representation of small integers, which we show to be robust
against “randomized response” noise. This representation is combined with hashing, in the
spirit of Bloom filters, to obtain a space-efficient, differentially private representation.

Our theoretical performance bounds are complemented by simulations showing that
the constant factors on the main performance parameters are quite small and supporting
practicality of the technique.

1. Introduction

One of the fundamental results in differential privacy is that a histogram can be made
differentially private by adding noise from the Laplace distribution to each entry of the
histogram before it is released [DMNS16]. The expected magnitude of the noise added to
each histogram entry is O(1/ε), where ε is the privacy parameter, and this is known to be
optimal [HT10]. In fact, there is a sense in which the Laplace mechanism is optimal [KHP15].
However, some histograms of interest are extremely sparse, and cannot be represented in
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explicit form. Consider, for example, a histogram of the number of HTTP requests to various
servers. Already the IPv4 address space has over 4 billion addresses, and the number of
unique, valid URLs has long exceeded 1012, so it is clearly not feasible to create a histogram
with a (noisy) counter for each possible value.

Korolova, Kenthapadi, Mishra, and Ntoulas [KKMN09] showed that it is possible to
achieve approximate differential privacy with space that depends only on the number of
non-zero entries in the histogram. However, for (ε, δ)-differential privacy the upper bound
on the expected per-entry error becomes O(log(1/δ)/ε), which is significantly worse than
the Laplace mechanism for small δ. Cormode, Procopiuc, Srivastava, and Tran [CPST12]
showed how to achieve pure ε-differential privacy with expected per-entry error bounded by
O(log d/ε), where d is the dimension of the histogram, i.e., the number of entries including
zero entries. While both these methods sacrifice accuracy, they are very fast, allowing
access to entries of the private histogram in constant time. If access time is not of concern,
it is possible to combine small space with small per-entry error, as shown by Balcer and
Vadhan [BV19]. They achieve an error distribution that is comparable to the Laplace
mechanism (up to constant factors) and space proportional to the sum n of all histogram

entries—but the time to access a single entry is Õ(n/ε), which is excessive for large datasets.

1.1. Our results. Our contribution is a mechanism that achieves optimal error and space
(up to constant factors) with only a small increase in access time. The mechanism works for
either approximate or pure differential privacy, with the former providing faster access time.
Our main results are summarized in Theorem 1.1.

Theorem 1.1 (Informal Version of Theorems 5.10 and 5.11). Let x be a histogram with d
entries each bounded by some value u, in which at most k entries have non-zero values. Given
privacy parameters ε > 0 and δ ≥ 0, there exists an (ε, δ)-differentially private algorithm to
represent x with per-entry error matching the Laplace mechanism up to constant factors and
the following properties:

• If δ = 0, the representation uses O(k log(d+ u)) bits and the access time is O(log d).
• If δ > 0, it uses O(k log(d+ u) + k log(1/δ)) bits and the access time is O(log(1/δ)).

For simplicity, the memory requirement does not include the space needed for storing
hash functions. Asymptotically, this additional cost shows up for k = o(log d) as an additional
O(log2 d) or O(log(1/δ) log d) term. See the theorem statements in Section 5 for more details.

We present variations on this central result in Sections 6–8. These results provide a
tighter error analysis for large values of ε, as well as a way to improve the access time. The
improvements in running time sacrifice the property that the per-entry error matches the
error of the Laplace mechanism. Table 1 shows an overview of notable properties for each
variation.

1.2. Techniques. On a high level, we treat “small” and “large” values of the histogram
differently. Large values are handled by the thresholding technique developed in [KKMN09,
CPST12]. We represent small entries as fixed-length bit strings using a unary encoding.
From [KKMN09, CPST12], we know that their length is logarithmic in either d (for ε-
DP) or 1/δ (for (ε, δ)-DP). Privacy is achieved by perturbing each bit using randomized
response [War65]. The value of an entry is estimated by finding the unary encoding that is
closest in Hamming distance to the noisy bit string. As it turns out, the unary encoding is
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Section 5 Section 6 Section 7 Section 8

Evaluation time O(log d) O(log(log(d)/ε)) O(log d) O(1)

Error guarantee Additive Multiplicative Additive Additive

Input domain Reals Reals Integers Reals

Strong tail bounds Yes No Yes No

Table 1. Informal overview of our main results for pure differential privacy.
Each mechanism also has an approximate differentially private version for

which 1/δ replaces d in evaluation time.

redundant enough to allow accurate estimation even when the probability of flipping each bit
is a constant bounded away from 1/2. In order to pack all unary representations into small
space, we use hashing to randomize the position of each bit in the unary representation of a
given entry. The access time is linear in the length of the bit representation, given constant
time evaluation of the hash function. Interestingly, although hash collisions can lead to
overestimates, they do not influence the asymptotic error.

We remark here that a direct application of randomized response does not give the
desired O(1/ε) error dependency, but we solve this issue with an initial scaling step that
gives ε-differential privacy when combined with randomized response. Though the discussion
above has been phrased in terms of histograms, which makes the comparison to earlier
work easier, our techniques apply more generally to representing sparse real vectors, with
privacy for neighboring datasets with bounded ℓ1-distance. We also discuss a variant of
our mechanism for the special case of histograms. Here it is possible to get O (1/eε) error
dependency, which is preferred in the low privacy setting.

1.3. Overview. In Section 2 we define differential privacy for vectors, discuss the Laplace
mechanism, and provide probabilistic tools necessary for the analysis. In Section 3 we discuss
related work on differentially private sparse histograms. In Section 4 we introduce the
Approximate Laplace Projection (ALP) mechanism and analyze its theoretical guarantees.
In Section 5 we improve space and access time using techniques from earlier work [KKMN09,
CPST12]. Section 6 discusses using the ALP mechanism on bit length-encoded coordinates
and shows that this improves the running time while incurring a multiplicative error. Section 7
discusses a tighter utility analysis for the special case of histograms. Section 8 discusses
a data structure that achieves constant access time with expected error O(1/ε), but with
weak tail bounds. In Section 9 we evaluate the performance of the ALP mechanism based
on simulations. In Section 10 we present suggestions for practical applications. We conclude
the paper by stating an open problem in Section 11.

2. Preliminaries

Problem Setup. In this work, we consider d-dimensional k-sparse vectors of nonnegative
real values. We say that a vector x ∈ Rd+ is k-sparse if it contains at most k non-zero entries.
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All entries are bounded from above by a value u ∈ R, i.e., maxi∈[d] xi =: ∥x∥∞ ≤ u. Here [d]
is the set of integers {1, . . . , d}. We consider the problem of constructing an algorithm M
for releasing a differentially private representation of x, i.e., x̃ := M(x). Note that x̃ does
not itself need to be k-sparse. In fact, Balcer and Vadhan [BV19] provided a lower bound
for the error of any differentially private mechanism that always outputs a sparse vector.
We discuss this further in Section 3.

Utility Measures. We use two measures for the utility of an algorithm M. We define the
per-entry error as |xi−x̃i| for any i ∈ [d]. We define the maximum error as maxi∈[d] |xi−x̃i| =
∥x− x̃∥∞. We compare the utility of algorithms using the expected per-entry and maximum
error and compare the tail probabilities of the per-entry error of our algorithm with the
Laplace mechanism introduced below.

Differential Privacy. Differential privacy is a constraint to limit privacy loss, introduced
by Dwork, McSherry, Nissim, and Smith [DMNS16]. We use definitions and results as
presented by Dwork and Roth [DR14]. Intuitively, a differentially private algorithm ensures
that a slight change in the input does not significantly impact the probability of seeing any
particular output. We measure the distance between inputs using their ℓ1-distance. In this
work, two vectors are neighbors iff their ℓ1-distance is at most 1. That is for all neighboring
vectors x, x′ ∈ Rd+ we have ∥x− x′∥1 :=

∑
i∈[d] |xi − x′i| ≤ 1. We can now define differential

privacy for neighboring vectors.

Definition 2.1 (Differential privacy [DR14, Def 2.4]). Given ε > 0 and δ ≥ 0, a randomized
algorithm M : Rd+ → R is (ε, δ)-differentially private if for all subsets of outputs S ⊆ R and

pairs of k-sparse input vectors x, x′ ∈ Rd+ such that ∥x− x′∥1 ≤ 1 it holds that:

Pr[M(x) ∈ S] ≤ eε · Pr[M(x′) ∈ S] + δ .

M satisfies approximate differential privacy when δ > 0 and pure differential privacy
when δ = 0. In particular, a pure differentially private algorithm satisfies ε-differential
privacy. The following properties of differential privacy are useful in this paper.

Lemma 2.2 (Post-processing [DR14, Proposition 2.1]). Let M : Rd+ → R be an (ε, δ)-
differentially private algorithm and let f : R → R′ be any randomized mapping. Then
f ◦M : Rd+ → R′ is (ε, δ)-differentially private.

Lemma 2.3 (Composition [DR14, Theorem 3.16]). Let M1 : Rd+ → R1 and M2 : Rd+ →
R2 be randomized algorithms such that M1 is (ε1, δ1)-differentially private and M2 is
(ε2, δ2)-differentially private. Then the algorithm M where M(x) = (M1(x),M2(x)) is
(ε1 + ε2, δ1 + δ2)-differentially private.

Throughout this paper, we restrict the output of all algorithms to the interval [0, u]. An
estimate outside this interval is due to noise, and restricting outputs cannot increase the
error. It follows from Lemma 2.2 that restricting the output does not affect privacy. We
restrict the output implicitly to simplify presentation.
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Probabilistic Tools. The Laplace Mechanism introduced by Dwork, McSherry, Nissim,
and Smith [DMNS16] satisfies pure differential privacy by adding noise calibrated to the
ℓ1-distance to each entry. For completeness, Algorithm 1 provides a formulation of the
Laplace mechanism in the context of releasing an ε-differentially private representation of a
sparse vector.

Algorithm 1: The Laplace Mechanism

Parameters : ε > 0.
Input : k-sparse vector x ∈ Rd+.
Output : ε-differentially private approximation of x.

(1) Let x̃i = xi + ηi for all i ∈ [d], where ηi ∼ Lap(1/ε) is sampled independently.

(2) Release x̃.

Here Lap(1/ε) is the Laplace distribution with scale parameter 1/ε. The PDF and CDF
of the distribution are presented in Definition 2.4 and the expected error and tail bound of
the mechanism are shown in Proposition 2.5. The Laplace mechanism works well for vectors
with low dimensionality and serves as a baseline for our work. However, it is impractical or
even infeasible in the setting of k-sparse vectors. The output vector is dense, and as such
the space requirement scales linearly in the input dimensionality d.

Definition 2.4. The probability density and cumulative distribution functions of the Laplace
distribution centered around 0 with scale parameter 1/ε are

f(τ) =
ε

2
e−|τ |ε .

Pr[Lap(1/ε) ≤ τ ] =

{
1
2e
τε, if τ < 0

1− 1
2e

−τε, if τ ≥ 0

Proposition 2.5 (Expected Error and Tail Bound [DR14, Theorem 3.8]). The expected
per-entry error and the maximum error of the Laplace mechanism are E[|xi − x̃i|] = O(1/ε)
and E[∥x− x̃∥∞] = O(log d/ε), respectively. With probability at least 1− ψ we have

|Lap(1/ε)| ≤ 1

ε
ln

1

ψ
.

Random rounding (also known as stochastic rounding) is used for rounding a real value
probabilistically based on its fractional part. We define random rounding for any real r ∈ R
as follows:

RandRound (r) =

{
⌈r⌉ with probability r − ⌊r⌋
⌊r⌋ with probability 1− (r − ⌊r⌋)

Lemma 2.6. The expected error of random rounding is maximized when r − ⌊r⌋ = 0.5. For
any r we have

E[|r − RandRound (r) |] ≤ 1

2
.

Randomized response was first introduced by Warner [War65]. The purpose of the
mechanism is to achieve plausible deniability by changing one’s answer to some question
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Algorithm Space (bits) Access time Per-entry error Maximum error

Dwork et al. [DMNS16] O(d log(u)) O(1) O
(
1
ε

)
O(log(d)/ε)

Cormode et al. [CPST12] O(k log(d+ u)) O(1) O(log(d)/ε) O(log(d)/ε)

Balcer & Vadhan [BV19] Õ
(
n
ε log(d)

)
Õ
(
n
ε

)
O
(
1
ε

)
O(log(d)/ε)

Theorem 5.10 (this work) O(k log(d+ u)) O(log(d)) O
(
1
ε

)
O(log(d)/ε)

Korolova et al. [KKMN09] O(k log(d+ u)) O(1) O(log(1/δ)/ε) O(log(1/δ)/ε)

Theorem 5.11 (this work) O(k(log(d+ u) + log(1/δ))) O(log(1/δ)) O
(
1
ε

)
O(log(1/δ)/ε)

Table 2. Comparison with previous work. The performance is stated for
worst-case input, and all bounds hold in expectation. Space for storing hash
functions is not considered. The first four rows are results on ε-differential
privacy, and the last two are on (ε, δ)-differential privacy. The Õ-notation

suppresses logarithmic factors.

with probability p and answer truthfully with probability 1 − p. We define randomized
response for a Boolean value b ∈ {0, 1} as follows:

RandResponse (b, p) =

{
1− b with probability p

b with probability 1− p

Universal Hashing. A hash family is a collection of functions H mapping keys from a
universe U to a range R. A family H is called universal if each pair of different keys collides
with probability at most 1/|R|, where the randomness is taken over the random choice of
h ∈ H. A particularly efficient construction that uses O(log |U |) bits and constant evaluation
time is presented in [DHKP97].

Model of Computation. We use the w-bit word RAM model defined by Hagerup [Hag98]
where w = Θ(log(d) + log(u)). This model allows constant time memory access and basic
operations on w-bit words. As such, we can store a k-sparse vector using O(k log(d+ u))
bits with constant lookup time using a hash table. We assume that the privacy parameters
ε and δ can be represented in a single word.

Negative Values. In this paper, we consider vectors with nonnegative real values, but the
mechanism can be generalized for negative values using the following reduction. Let v ∈ Rd
be a real-valued k-sparse vector. Construct x, y ∈ Rd+ from v such that xi = max(vi, 0) and
yi = −min(vi, 0). By construction both x and y are k-sparse and the ℓ1-distance between
vectors is preserved. We can access elements in v as vi = xi − yi. As such, any differentially
private representation of x and y can be used as a differentially private representation of v
with at most twice the error. We can avoid the increased error by instead increasing the
access time. We discuss this variant of our mechanism in Section 10.
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3. Related work

Previous work on releasing differentially private sparse vectors primarily focused on the
special case of discrete vectors in the context of releasing the histogram of a dataset.

Korolova, Kenthapadi, Mishra, and Ntoulas [KKMN09] first introduced an approximately
differentially private mechanism for the release of a sparse histogram. A similar mechanism
was later introduced independently by Bun, Nissim, and Stemmer [BNS19] in another
context. The mechanism adds noise to non-zero entries and removes those with a noisy value
below a threshold t = O(log(1/δ)/ε). The threshold is chosen such that the probability
of releasing an entry with true value 1 is at most δ. The expected maximum error is
O(log(max(k, 1/δ))/ε). Since δ is usually chosen to be negligible in the input size, we assume
that δ ≤ 1/k. As such, the expected maximum error is O(log(1/δ)/ε). We discuss the
per-entry error below. Their mechanism is designed to satisfy differential privacy for discrete
data. We extend their technique to real-valued data as part of Section 5, where we combine
it with our mechanism.

Cormode, Procopiuc, Srivastava, and Tran [CPST12] introduced a differentially private
mechanism in their work on range queries for sparse data. The mechanism adds noise to
all entries and removes those with a noisy value below a threshold t = O(log d/ε). Here
the threshold is used to reduce the expected output size. The number of noisy entries
above t is O(k) with high probability. The construction time of a naive implementation
of their technique scales linearly in d. They improve on this by sampling from a binomial
distribution to determine the number of zero entries to store. They show that their approach
produces the same output distribution as a näıve implementation that adds noise to every
entry. Their mechanism works for real-valued data in a straightforward way.

Since the expected number of non-zero entries in the output is O(k) for both mechanisms
above, their memory requirement is O(k log(d + u)) bits using a hash table. An entry is
accessed in constant time. The expected per-entry error depends on the true value of the
entry. If the noisy value is above the threshold with sufficiently high probability, the expected
error is O(1/ε). However, this does not hold for entries that are likely removed. Consider
for example an entry with a true value exactly at the threshold t. This entry is removed for
any negative noise added. As such the expected per-entry error is O(t) for worst-case input,
which is O(log(1/δ)/ε) and O(log(d)/ε) for the two mechanisms, respectively.

In their work on differential privacy on finite computers, Balcer and Vadhan [BV19]
introduced several algorithms including some with similar utility as the mechanisms described
above. Moreover, they provided a lower bound of Ω(min{log(d), log(ε/δ), n}/ε) for the
expected per-entry error of any algorithm that always outputs a sparse histogram. (See [BV19,
Theorem 7.2] for the precise technical statement.) Here n is the number of rows in the
dataset, i.e., the sum of all entries of the histogram. This lower bound means that an
algorithm that always outputs a O(k)-sparse histogram cannot achieve O(1/ε) expected
per-entry error for all input. They bypass this bound by producing a compact representation
of a dense histogram. Their representation has expected per-entry and maximum error of
O(1/ε) and O(log(d)/ε), respectively. It requires Õ(n log(d)/ε) bits and an entry is accessed

in time Õ(n/ε). Note that their problem setup differs from ours in that each entry is bounded
only by n such that ∥x∥∞ ≤ n. That is, n serves a similar purpose as u does in our setup.
We do not know how to extend their approach to our setup with real-valued input.

In light of the results achieved in previous work, our motivation is to design a mechanism
that achieves three properties simultaneously: O(1/ε) expected per-entry error for arbitrary
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Algorithm 2: ALP1-Projection

Parameters :α, β > 0, and s ∈ N.
Input : k-sparse vector x ∈ Rd+ where s > 2k. Sequence of universal hash

functions from domain [d] to [s], h = (h1, . . . , hm), where m = ⌈β/α⌉.
Output : 1-differentially private representation of x.

(1) Apply random rounding to a scaled version of each non-zero entry of x such that
yi = RandRound (xi/α).

(2) Construct z ∈ {0, 1}s×m by hashing the unary representations of y such that:

za,b =

{
1, ∃i : b ≤ yi and hb(i) = a

0, otherwise

(3) Apply randomized response to each bit of z such that
z̃a,b = RandResponse (za,b, 1/(α+ 2)).

(4) Release h and z̃.

input, fast access, and (asymptotically) optimal space. Previous approaches achieved only
at most two of these properties simultaneously. Moreover, we want the per-entry error to
match the tail bounds of the Laplace mechanism up to constant factors. We construct a
compact representation of a dense vector to bypass the lower bound for sparse vectors by
Balcer and Vadhan [BV19]. The access time of our mechanism is O(log(d)) and O(log(1/δ))
for pure and approximate differential privacy, respectively. Table 2 summarizes the results
of previous work and our approach.

4. The ALP mechanism

In this section, we introduce the Approximate Laplace Projection (ALP) mechanism1 and
give an upper bound on the expected per-entry error. The ALP mechanism consists of
two algorithms. The first algorithm constructs a differentially private representation of a
k-sparse vector and the second estimates the value of an entry based on its representation.

4.1. A 1-differentially private algorithm. We start by considering the special case of
ε = 1 and later generalize to all values of ε > 0. Moreover, the mechanism works well only
for entries bounded by a parameter β. In general, this would mean that we had to set β = u
if we only were to use the ALP mechanism. However, in Section 5 we discuss how to set β
smaller and still perform well for all entries.

In the first step of the projection algorithm, we scale every non-zero entry by a parameter
of the algorithm and use random rounding to map each such entry to an integer. We then
store the unary representation of these integers in a two-dimensional bit-array using a
sequence of universal hash functions [CW79]. We call this bit-array the embedding. Lastly,
we apply randomized response on the embedding to achieve privacy. The pseudocode of the
algorithm is given in Algorithm 2, and we discuss it next.

1The name is chosen to indicate that the error distribution is approximately like the Laplace distribution,
and that we project the sparse vector to a much lower-dimensional representation. It also celebrates the
mountains, whose silhouette plays a role in a certain random walk considered in the analysis of the ALP
mechanism.
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Figure 1. Embedding with β/α = m = 8, s = 5 and yi = 5.
The ith entry is the only non-zero entry.

Figure 1 shows an example of an embedding before applying randomized response. The
input is a vector x where the ith entry xi is the only non-zero value. The result of evaluating
i for each hash function is shown in the table at the bottom and the m = 8 bits representing
the ith entry in the bit-array are highlighted. In Step (1) of the algorithm, xi is scaled by
1/α and randomized rounding is applied to the scaled value. This results in yi = 5. Using
the hash functions, we represent this value in unary encoding by setting the first five bits to
1 in Step (2), where the jth bit is selected by evaluating the hash function hj on i. The final
three bits are unaffected by the entry. Finally, we apply randomized response in each cell of
the bit-array. The bit-array after applying randomized response is not shown here, but we
present it later in Figure 2. Both the bit-array and the hash functions are the differentially
private representation of the input vector x. We use this construction later when estimating
the value of xi.

The algorithm takes three parameters α, β, and s. The parameters α and s are adjustable
and affect constant factors for space usage, error, and access time. By increasing s, we
reduce the probability of hash collisions while increasing the size of the representation. The
parameter α is used to balance two sources of error: by lowering α, we reduce the error in
the encoding in Step (1), but increase the noise in Step (3). This parameter also affects the
size because it is used to set m. We further discuss these parameters later as part of the
error analysis. In Section 9 we discuss how to select values for α and s. Throughout the
paper we sometimes assume that α is a constant and s is a constant multiple of k, that is,
α = Θ(1) and s = Θ(k). The parameter β bounds the values stored in the embedding. We
discuss β as part of the error analysis as well.

Lemma 4.1. Algorithm 2 satisfies 1-differential privacy.

Proof. We prove the lemma in several steps. Let x, x′ ∈ Rd+ denote two neighboring vectors.
First, the vectors differ only in their ith entry. In this case, we start by assuming that

only a single bit of z is affected by changing x to x′ and that there are no hash collisions.
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We then allow z to differ in several bits and include hash collisions. Finally, we generalize to
the case where x and x′ differ in more than one entry.

Assume that z differs only in a single bit for x and x′. Let Y and Y ′ denote the
events that the affected bit is set to one after running the algorithm with input x and x′,
respectively. Let p = 1/(α+ 2) be the parameter of the randomized response step. Then
we have Pr[Y ] = (1 − r) · p + r · (1 − p), where r = xi/α − ⌊min(xi, x

′
i)/α⌋ denotes the

probability of the bit being one before the randomized response step. Similarly for x′ we
define r′ = x′i/α − ⌊min(xi, x

′
i)/α⌋. The minimum term is needed when max(xi, x

′
i) is a

multiple of α such that max(r, r′) = 1. We find the difference in the probability of Y and Y ′

occurring as

Pr[Y ]− Pr[Y ′] = (p+ r − 2rp)− (p+ r′ − 2r′p)

= (r − r′) · (1− 2p)

=
xi − x′i
α+ 2

.

By symmetry, the absolute difference in probability for setting the bit to either zero
or one is |xi − x′i|/(α + 2). Let Z be an arbitrary output of Algorithm 2. Since x and x′

agree on all but the ith entry, the change in probability of outputting Z depends only on
the affected bit. Now let Y and Y ′ denote the events that the bit agrees with output Z for
input x and x′. Then we find the ratio of probabilities of outputting Z as

Pr[ALP1-Projection(x′) = Z]

Pr[ALP1-Projection(x) = Z]
=

Pr[Y ′]

Pr[Y ]
≤

Pr[Y ] +
|xi−x′i|
α+2

Pr[Y ]

≤
p+

|xi−x′i|
α+2

p
= 1 + |xi − x′i|

≤ e|xi−x
′
i| .

Here the second inequality follows from p ≤ Pr[Y ] ≤ 1 − p. Next, we take hash
collisions into account as follows: Let p′ denote the probability that the bit agrees with
Z for input x after setting the ith entry to zero. That is, we have p ≤ p′ ≤ 1 − p and
Pr[Y ] = (1 − r) · p′ + r · (1 − p). The absolute difference in probability remains bounded
such that Pr[Y ]− Pr[Y ′] ≤ |xi − x′i|/(α+ 2). Therefore, it still holds that

Pr[ALP1-Projection(x′) = Z]

Pr[ALP1-Projection(x) = Z]
≤ e|xi−x

′
i| .

Finally, we remove the assumption that only a single bit of z is affected by composing
probabilities. We provide the following inductive construction. Let x, x′ ∈ Rd+ be vectors
that differ in the ith entry such that exactly two bits of z are affected. We consider the
case of xi < x′i and fix a vector x′′ ∈ Rd+ with xi < x′′i < x′i such that the differences affects
exactly one bit each. Again, let Z be an arbitrary output of Algorithm 2. Applying the
upper bound from above twice, we may bound the change in probabilities by:
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Pr[ALP1-Projection(x′) = Z]

Pr[ALP1-Projection(x) = Z]
=

Pr[ALP1-Projection(x′′) = Z]

Pr[ALP1-Projection(x) = Z]

· Pr[ALP1-Projection(x
′) = Z]

Pr[ALP1-Projection(x′′) = Z]

≤ e|xi−x
′′
i | · e|x′′i −x′i|

= e|xi−x
′
i| ,

which can be applied inductively if changing an entry affects more than two bits of z.
We are now ready to generalize to any vectors x, x′ ∈ Rd+, i.e., where vectors may differ

in more than a single position. Using the bound from above, we can bound the ratio of
probabilities by:

Pr[ALP1-Projection(x′) = Z]

Pr[ALP1-Projection(x) = Z]
≤

∏
i∈[d]

e|xi−x
′
i|

= e
∑

i∈[d] |xi−x′i|

= e∥x−x
′∥1 .

The privacy loss is thus bounded by the ℓ1-distance of the vectors for any output.
Recall that the ℓ1-distance is bounded above by 1 for two neighboring vectors. As such the
algorithm is 1-differentially private as for any pair of neighboring vectors x and x′ and any
subset of outputs S we have:

Pr[ALP1-Projection(x) ∈ S] ≤ e∥x−x
′∥1 Pr[ALP1-Projection(x′) ∈ S]

≤ e · Pr[ALP1-Projection(x′) ∈ S] .

The following lemma summarizes the space complexity of storing the bit-array and the
collection of hash functions.

Lemma 4.2. The number of bits required to store h and z̃ is

O

(
(s+ log d) · β

α

)
.

Proof. By definition m = O(β/α), so that s ·m = O(sβ/α) bits are used to store z̃. Each
hash function uses O(log(d)) bits for a total of O(log(d)β/α) bits to store h.

4.2. Estimating an entry. We now introduce the algorithm to estimate an entry based
on the embedding from Algorithm 2. When accessing the ith entry, we estimate the value
of yi and multiply by α to reverse the initial scaling of xi. The estimate of yi is chosen to
maximize a partial sum. If multiple values maximize the sum, we use their average.
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Algorithm 3: ALP1-Estimator

Parameters :α > 0.
Input :Embedding z̃ ∈ {0, 1}s×m. Sequence of universal hash functions

h = (h1, . . . , hm). Index i ∈ [d].
Output :Estimate of xi.

(1) Define the function f : {0, . . . ,m} → Z as:

f(n) =
n∑
a=1

2z̃ha(i),a − 1

(2) Let P be the set of arguments maximizing f . That is,

P = {n ∈ {0, . . . ,m} : f(a) ≤ f(n) for all a ∈ {0, . . . ,m}}
(3) Let ỹi = average(P )

(4) Return ỹi · α.

Figure 2. Estimation of ith entry from Figure 1.
The partial sum is maximized at indices 3 and 5.
The estimate is 4, while the true value was 5.

Intuition. The first yi bits representing the ith entry are set to one before applying noise
in Algorithm 2, cf. Figure 1. The last m− yi bits are zero, except if there are hash collisions.
Some bits might be flipped due to randomized response, but we expect the majority of
the first yi bits to be ones and the majority of the remaining m− yi bits to be zeros. The
estimate of yi is based on prefixes maximizing the difference between ones and zeros. The
pseudocode for the algorithm is given as Algorithm 3.

Figure 2 shows an example of Algorithm 3. The example is based on the embedding
from Figure 1 after adding noise. The plot shows the value of f for all candidate estimates.
This sum is maximized at positions 3 and 5, and is visualized as the global peaks in the plot.
The estimate is the average of those positions.

Lemma 4.3. The evaluation time of Algorithm 3 is O(β/α).

Proof. We can compute all partial sums by evaluating each bit (z̃h1(i),1, . . . , z̃hm(i),m) once
using dynamic programming. Thus, the evaluation time is O(m) with m = ⌈β/α⌉.
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We now analyze the per-entry error of Algorithm 3. We first analyze the expected error
based on the parameters of the algorithm. The results are presented in Lemma 4.8. In
Lemmas 4.9 and 4.10, we bound the tail distribution of the per-entry error of the algorithm.

Lemma 4.4. The expected per-entry error of Algorithm 3 is bounded by (1/2+E[|yi− ỹi|]) ·α
for entries with a value of at most β.

Proof. It is clear that the error of the ith entry is α times the difference between ỹi and
xi
α .

The expected difference is bounded by:

E
[∣∣∣xi
α

− ỹi

∣∣∣] ≤ E
[∣∣∣xi
α

− yi

∣∣∣]+ E[|yi − ỹi|] ≤
1

2
+ E[|yi − ỹi|] .

The last inequality follows from Lemma 2.6.

We find an upper bound on E[|yi − ỹi|] by analyzing simple random walks. A simple
random walk is a stochastic process such that S0 = 0 and Sn =

∑n
ℓ=1Xℓ, where X

are independent and identically distributed random variables with Pr[Xℓ = 1] = p and
Pr[Xℓ = −1] = 1− p.

Lemma 4.5. Let S be a simple random walk with p < 1/2. At any step n the probability
that there exists a later step ℓ > n such that Sℓ > Sn is p/(1− p).

Proof. Alm [Alm02, Theorem 1] showed that for any p < 1/2 there exists a step ℓ > n such
that Sℓ = Sn+k with probability [(p/(1−p)]k. The Lemma follows from the case of k = 1.

For our analysis, we are concerned with the maximum n such that Sn ≥ 0. For an
infinite random walk where p < 1/2 such an n exists with probability 1.

Lemma 4.6. Let S be a simple random walk with p < 1/2. The expected last nonnegative
step of S is: E[maxn : Sn ≥ 0] = 4(p− p2)/(1− 2p)2.

Proof. We use Lemma 4.5 to find the probability that Sn is the unique maximum in
{Sn, . . . , S∞} as follows:

Pr[Sn > max({Sn+1, . . . , S∞})] = Pr[Xn+1 = −1] · Pr[Sn+1 = max({Sn+1, . . . , S∞})]

= (1− p) ·
(
1− p

1− p

)
= 1− 2p .

The last nonnegative step must have value exactly zero and as such must be at an even
numbered step. The probability that step 2i is the last nonnegative is:

Pr[(max
n

: Sn ≥ 0) = 2i] = Pr[S2i = 0] · Pr[Si > max({Si+1, . . . , S∞})]

=

(
2i

i

)
pi(1− p)i(1− 2p) =

(
2i

i

)
(p− p2)i(1− 2p) .

We are now ready to find the expected last nonnegative step of an infinite simple random
walk as

E[max
n

: Sn ≥ 0] =
∞∑
i=0

2i · Pr[(max
n

: Sn ≥ 0) = 2i] =
∞∑
i=0

2i

(
2i

i

)
(p− p2)i(1− 2p)

= 2(1− 2p)
∞∑
i=0

i

(
2i

i

)
(p− p2)i =

4(p− p2)

(1− 2p)2
.
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The last equality follows from the identity
∑∞

i=0 i
(
2i
i

)
(p − p2)i = 2(p − p2)/(1 − 2p)3.

See Appendix A for a proof of this identity.

We are now ready to bound E[|yi − ỹi|]. We consider entries with value at most β, i.e.,
yi ≤ m.

Lemma 4.7. Let yi ≤ m and γ = (α + 2)/(1 + αk/s) − 2. Then the expected value of
|yi − ỹi| is bounded such that

E[|yi − ỹi|] ≤
4α+ 4

α2
+

4γ + 4

γ2
.

Proof. Recall the definition of P from Algorithm 3. Let ȳi ∈ P denote an element furthest
from yi, that is, |yi − a| ≤ |yi − ȳi| for all a ∈ P . It it clearly sufficient to consider ȳi for
the proof since |yi − ỹi| ≤ |yi − ȳi|. We first consider the case of ȳi ≤ yi. It follows from
the definition of ȳi as a maximum that

∑yi
j=ȳi+1 z̃hj(i),j ≤ 0. As such at least half the bits

(z̃hȳi+1(i),ȳi+1, . . . , z̃hyi (i),yi) must be zero, that is they were flipped by randomized response

in Step (3) of Algorithm 2. As such the length of the longest interval ending at bit z̃hyi (i),yi
where at least half the bits were flipped is an upper bound on the value of yi − ȳi. The
expected size of said interval is bounded by the expected last nonnegative step of a simple
random walk with p = 1/(α+ 2). It follows from Lemma 4.6 that

E[yi − ȳi | ȳi ≤ yi] ≤
4(p− p2)

(1− 2p)2
=

4α+4
(α+2)2

α2

(α+2)2

=
4α+ 4

α2
.

We can use a similar argument when yi ≥ ȳi to show that at least half the bits in
(z̃hyi+1(i),yi+1, . . . , z̃hȳi (i),ȳi) must be 1 since ȳi is a maximum. In this case we have to consider

the possibility of hash collisions. Each hash function maps to [s] and at most k entries result
in a hash collision. The probability of a hash collision is at most k/s using a union bound.
Consequently, for j > yi, Pr[z̃hj(i),j = 1] ≤ (1− k/s) · p+ k/s · (1− p) = (1 + αk/s)/9α+ 20.

We let (1 + αk/s)/(α + 2) = 1/(γ + 2) such that E[ȳi − yi | ȳi ≥ yi] ≤ (4γ + 4)/γ2 by
Lemma 4.6 and the calculation above. We isolate γ to find

1

γ + 2
=

1 + αk
s

α+ 2

(⇔) γ =
α+ 2

1 + αk
s

− 2 .

Note that γ > 0 holds due to the requirement s > 2k of Algorithm 2. By conditional
expectation, we obtain an upper bound on the total expected error:

E[|yi − ỹi|] ≤ E[|yi − ȳi|] ≤ E[yi − ȳi | ȳi ≤ yi] + E[ȳi − yi | ȳi ≥ yi] ≤ 4α+ 4

α2
+

4γ + 4

γ2
.

(4.1)

Therefore, we can bound the expected per-entry error for entries with a true value of at
most β by a function of the parameters α and s. In Section 9 we discuss the choice of these
parameters based on the upper bond and experiments. For any fixed values of α and k/s we
have:
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Lemma 4.8. Let α = Θ(1) and s = Θ(k). Then the expected per-entry error of Algorithm 3
is E[|xi − x̃i|] ≤ max(0, xi − β) +O(1).

Proof. It follows from Lemmas 4.4 and 4.7 that the expected error for any entry bounded
by β satisfies:

xi ≤ β =⇒ E[|xi − x̃i|] ≤
(
1

2
+

4α+ 4

α2
+

4γ + 4

γ2

)
· α ,

where γ = (α+ 2)/(1 + αk/s)− 2. Entries exceeding β have an additional error of up to
xi−β, since yi = m and yi > m are represented identically in the embedding by Algorithm 2.
Since α and k/s are constants,

E[|xi − x̃i|] ≤ max(0, xi − β) +O(1) .

Next, we bound the tail probabilities for the per-entry error of the mechanism. We
bound the error of the estimate ỹi, which implies bounds on the error of the mechanism.

Lemma 4.9. Let γ = (α+ 2)/(1 + αk/s)− 2 and suppose that τ > 0. Let p = 1/(γ + 2).
For any fixed index i ∈ [d] when using Algorithm 3 we have

Pr[|yi − ỹi| ≥ τ ] ≤ 2 · (4(p− p2))τ/2√
π(1− 2p)

,

Proof. Let S be a simple random walk. We find an upper bound on the probability that the
position of the last non-negative step in S is at least τ :

Pr[(max
n

: Sn ≥ 0) ≥ τ ] =

∞∑
j=⌈τ/2⌉

(
2j

j

)
(p− p2)j(1− 2p) ≤ 1− 2p√

π

∞∑
j=⌈τ/2⌉

(4(p− p2))j

=
1− 2p√

π

(4(p− p2))⌈τ/2⌉

1− 4(p− p2)
≤ (4(p− p2))τ/2√

π(1− 2p)
,

where the first inequality follows from
(
2j
j

)
≤ 4j/

√
πj when j ≥ 1 [Elk13]. The last inequality

simply follows from 1− 4(p− p2) = (1− 2p)2 and 4(p− p2) < 1. As discussed in the proof
of Lemma 4.7, the expectation of |yi − ỹi| can be bounded by two random walks each with p
at most 1/(γ + 2).

Lemma 4.10. Let γ = (α+2)/(1+αk/s)− 2 and p = 1/(γ+2). For any fixed index i ∈ [d]
with probability at least 1− ψ for Algorithm 3,

|yi − ỹi| ≤
2 log

(
2

ψ
√
π(1−2p)

)
log(1/(4p− 4p2))

.

Proof. We set ψ = 2 · (4(p− p2))τ/2/
√
π(1− 2p) and isolate τ such that:

τ =
2 log

(
2

ψ
√
π(1−2p)

)
log(1/(4p− 4p2))

.

By Lemma 4.9 we have: Pr[|yi − ỹi| ≤ τ ] ≥ 1− ψ.
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Algorithm 4: ALP-Projection

Parameters :α, β, ε > 0, and s ∈ N.
Input : k-sparse vector x ∈ Rd+, where s > 2k. Sequence of universal hash

functions from domain [d] to [s], h = (h1, . . . , hm), where
m = ⌈βε/α⌉.

Output : ε-differentially private representation of x.
(1) Scale the entries of x such that x̂i = xi · ε.
(2) Let h, z̃ = ALP1-Projectionα,β·ε,s(x̂, h).

(3) Release h and z̃.

Up to constant factors, the tail probabilities of our mechanism are similar to the
properties of the Laplace mechanism summarized in Proposition 2.5. The probabilities
depend on the parameters of the mechanism. In Section 9, we fix the parameters and evaluate
the error in practice. We summarize the tail probabilities for |xi − x̃i| in Lemma 4.11.

Lemma 4.11. Let γ = (α+ 2)/(1 + αk/s)− 2 and p = 1/(γ + 2), and assume that xi ≤ β
and τ ≥ α. For any fixed index i ∈ [d] when using Algorithm 3,

Pr[|xi − x̃i| ≥ τ ] <
2 · (4(p− p2))(τ/2α)−1/2

√
π(1− 2p)

,

Moreover, with probability at least 1− ψ,

|xi − x̃i| <

1 +
2 log

(
2

ψ
√
π(1−2p)

)
log(1/(4p− 4p2))

 · α .

Proof. It is easy to see that |xi − x′i| < (1 + |yi − ỹi|) · α holds, as the error of random
rounding is strictly less than 1. The bounds follow from Lemmas 4.9 and 4.10.

4.3. Generalization to ε-differential privacy. We now generalize the ALP mechanism
from 1-differential privacy to satisfying ε-differential privacy. A natural approach is to use
a function of ε as the parameter for randomized response in Algorithm 2. The projection
algorithm is ε-differentially private if we remove the scaling step and set p = 1/(ε + 2).
However, the expected per-entry error would be bounded by (8ε+ 8)/ε2 by Equation 4.1
(without considering hash collisions), which is as large as O(1/ε2) for small values of ε. Other
approaches modifying the value of p have a similar expectation. In Section 7 we discuss a
special case in which such an approach is useful for large ε.

In the following, we use simple pre-processing and post-processing steps to achieve
optimal error. The idea is to scale the input vector as well as the parameter β by ε
before running Algorithm 2. We scale back the estimates from Algorithm 3 by 1/ε. These
generalizations are given as Algorithm 4 and Algorithm 5, respectively.

Lemma 4.12. Algorithm 4 satisfies ε-differential privacy.

Proof. It follows from the proof of Lemma 4.1 that for any subset of outputs S we have
Pr[ALP1-Projection(x̂′) ∈ S]/Pr[ALP1-Projection(x̂) ∈ S] ≤ e∥x̂−x̂

′∥1 . Therefore, for any
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Algorithm 5: ALP-Estimator

Parameters :α, ε > 0.
Input :Embedding z̃ ∈ {0, 1}s×m. Sequence of universal hash functions

h = (h1, . . . , hm). Index i ∈ [d].
Output :Estimate of xi.

(1) Let x̃i = ALP1-Estimatorα(z̃, h, i).

(2) Return x̃i
ε .

pair of neighboring vectors x and x′,

Pr[ALP-Projection(x′) ∈ S]

Pr[ALP-Projection(x) ∈ S]
=

Pr[ALP1-Projection(x̂′) ∈ S]

Pr[ALP1-Projection(x̂) ∈ S]
≤ e∥x̂−x̂

′∥1 = eε·∥x−x
′∥1 ≤ eε .

Lemma 4.13. Let α = Θ(1) and s = Θ(k). The output of Algorithm 4 can be stored using
O((k + log d)βε) bits.

Proof. It follows directly from Lemma 4.2.

Lemma 4.14. Let α = Θ(1) and s = Θ(k). Then the expected per-entry error of Algorithm 5
is E[|xi − x̃i|] ≤ max(0, xi − β) +O(1/ε) and the evaluation time is O(βε).

Proof. It is clear that the error of Algorithm 5 is 1/ε times the error of Algorithm 3 for
entries at most β. As such the expected per-entry error follows from Lemma 4.8. The
evaluation time follows directly from Lemma 4.3.

Lemma 4.15. Let γ = (α+ 2)/(1 + αk/s)− 2 and p = 1/(γ + 2), and assume that xi ≤ β
and τ ≥ α/ε. Then any fixed index i ∈ [d] when using Algorithm 5,

Pr[|xi − x̃i| ≥ τ ] <
2 · (4(p− p2))(τε/2α)−1/2

√
π(1− 2p)

,

With probability at least 1− ψ we have:

|xi − x̃i| <

1 +
2 log

(
2

ψ
√
π(1−2p)

)
log(1/(4p− p2))

 · α
ε
.

Proof. It follows directly from Lemma 4.11.

We are now ready to state the following theorem, which summarizes the properties of
the ALP mechanism.

Theorem 4.16. Let α = Θ(1) and s = Θ(k). Then there exists an algorithm where the
expected per-entry error is O(1/ε) for all entries, the access time is O(uε), and the space
usage is O((k + log d)uε) bits.

Proof. By setting β = u, it follows directly from Lemmas 4.13 and 4.14.
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Algorithm 6: Threshold [CPST12]

Parameters : ε, t > 0.
Input : k-sparse vector x ∈ Rd+.
Output : ε-differentially private representation of x.

(1) Let vi = xi + ηi for all i ∈ [d], where ηi ∼ Lap(1/ε).

(2) Truncate entries below t:

ṽi =

{
vi, if yi ≥ t

0, otherwise

(3) Return ṽ.

The space usage and access time of the mechanism both scale linearly with the parameter
β. As such, the mechanism performs well only for small values of u. However, in many
contexts u scales with the input size. One example is a histogram, where u is the number of
rows in the underlying dataset. Next, we show how to handle such cases.

5. Combined data structure

In this section, we combine the ALP mechanism with techniques from previous work to
improve space requirements and access time. As shown in Theorem 4.16, the ALP mechanism
performs well when all entries are bounded by a small value. The per-entry error is low only
for entries bounded by β but the space requirements and access time scale linearly with β.
Some of the algorithms from previous work perform well for large entries but have large
per-entry error for small values. The idea of this section is to combine the ALP mechanism
with such an algorithm to construct a composite data structure that performs well for both
small and large entries.

To handle large values, we use the thresholding technique from Cormode et al. [CPST12].
It adds noise to each entry, but only stores entries above a threshold. The pseudocode of
the algorithm is given as Algorithm 6.

Lemma 5.1. Algorithm 6 satisfies ε-differential privacy.

Proof. The algorithm is equivalent to the Laplace mechanism followed by post-processing.
The Laplace mechanism satisfies ε-differential privacy, and privacy is preserved under post-
processing as stated by Lemma 2.2.

Lemma 5.2. Let t = 2 ln(d)/ε. Then the output of Algorithm 6 is k-sparse with probability
at least 1− 1/2d.

Proof. Using Definition 2.4, we find that the probability of storing a zero entry of x is:

Pr[Lap(1/ε) ≥ t] = Pr[Lap(1/ε) ≤ −t] = 1

2
e−tε =

1

2d2
.

If the output is not k-sparse there must exists at least one coordinate i such that ṽi ̸= 0 and
xi = 0. By a union bound such a coordinate exists with probability at most 1/(2d).
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Algorithm 7: Threshold ALP-Projection

Parameters :α, ε1, ε2 > 0, and s ∈ N.
Input : k-sparse vector x ∈ Rd+, where s > 2k. Sequence of universal hash

functions from domain [d] to [s], h = (h1, . . . , hm), where
m = ⌈tε2/α⌉.

Output : (ε1 + ε2)-differentially private representation of x.
(1) Let t = 2 ln(d)/ε1.

(2) Let ṽ = Thresholdε1,t(x).

(3) Let h, z̃ = ALP-Projectionα,ε2,t,s(x, h)

(4) Return ṽ, h and z̃.

Algorithm 8: Threshold ALP-Estimator

Parameters :α, ε2 > 0.
Input :Vector ṽ ∈ Rd+. Embedding z̃ ∈ {0, 1}s×m. Sequence of universal

hash functions h = (h1, . . . , hm). Index i ∈ [d].
Output :Estimate of xi.

(1) Estimate the entry using either the vector or the embedding such that:

x̃i =

{
ṽi, if ṽi ̸= 0

ALP-Estimatorε2,α(z̃, h, i), otherwise

(2) Return x̃i.

As discussed in Section 3, the expected per-entry error of Algorithm 6 is O(log(d)/ε) for
worst-case input. We combine the algorithm with the ALP mechanism from the previous
section to achieve O(1/ε) expected per-entry error for any input. We use the threshold
parameter t as value for parameter β in Algorithm 4. The algorithm is presented in
Algorithm 7. We use a separate privacy parameter for each part of the algorithm. Throughout
this section we assume that the ratio between them is fixed such that ε1 = Θ(ε2). After
Lemma 5.5 we discuss what happens if this ratio is not fixed.

Lemma 5.3. Algorithm 7 satisfies (ε1 + ε2)-differential privacy.

Proof. The two parts of the algorithm are independent as there is no shared randomness. The
first part of the algorithm satisfies ε1-differential privacy by Lemma 5.1 and the second part
satisfies ε2-differential privacy by Lemma 4.12. As such it follows directly from composition
(Lemma 2.3) that Algorithm 7 satisfies (ε1 + ε2)-differential privacy.

Lemma 5.4. Let α = Θ(1), s = Θ(k), ε1 = Θ(ε2). Then the output of Algorithm 7 is stored
using O(k log(d+ u) + log2(d)) bits with probability at least 1− 1/2d.

Proof. It follows from Lemma 5.2 that we can store ṽ using O(k log(d + u)) bits with
probability at least 1− 1/2d. Since β = t it follows from Lemma 4.13 that we can store h
and z̃ using O((k + log(d))tε2) = O(k log(d) + log2(d)) bits.

To estimate an entry, we access ṽ when a value is stored for the entry and the ALP
embedding otherwise. This algorithm is presented in Algorithm 8.
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Lemma 5.5. Let α = Θ(1), s = Θ(k), and ε = ε1 + ε2 with ε1 = Θ(ε2). Let ṽ, h, and z̃ be
the output of Algorithm 7 given these parameters. Then the evaluation time of Algorithm 8
is O(log(d)). The expected per-entry error is O(1/ε) and the expected maximum error is
O(log(d)/ε).

Proof. The evaluation time follows from Lemma 4.14. That is, the evaluation time is
O(βε) = O(tε) = O(log(d)).

The error depends on both parts of the algorithm. The expected per-entry error for
the ith entry is max(0, xi − β) +O(1/ε2) when ṽi = 0 by Lemma 4.14. That is, when ηi is
less than β − xi in Algorithm 6. When ṽi ̸= 0 the error is the absolute value of ηi. That is,
we can analyze it using conditional probability and the probability density function of the
Laplace distribution from Definition 2.4.

E[|xi − x̃i|] = E[|xi − x̃i| | ṽi = 0] · Pr[ṽi = 0] + E[|xi − x̃i| | ṽi ̸= 0] · Pr[ṽi ̸= 0]

≤ (max(0, xi − β) +O(1/ε2)) · Pr[Lap(1/ε1) < β − xi]

+

∫ ∞

β−xi
|v − xi| ·

ε1
2
e−|v−xi|ε1 dv

<

∫ β−xi

−∞
(|v − xi|+O(1/ε2)) ·

ε1
2
e−|v−xi|ε1 dv

+

∫ ∞

β−xi
|v − xi| ·

ε1
2
e−|v−xi|ε1 dv

<

∫ ∞

−∞
|v − xi| ·

ε1
2
e−|v−xi|ε1 dv +O(1/ε2)

= O(1/ε1) +O(1/ε2) = O(1/ε) .

The expected maximum error of Algorithm 6 is O(log(d)/ε) and the output of the Algorithm 5
is at most β. Since β = O(log(d)/ε) the expected maximum error is O(log(d)/ε).

The asymptotic properties of the algorithms hold for any fixed ratio between ε1 and ε2.
A natural choice is to set ε1 = ε2. However, the ratio affects constant factors, and it might
not be the best choice in practice. The value of the parameter m and in turn the space
consumption and access time of the projection scales with ε2/ε1. But the parameters also
affect the expected error for each part of the algorithm. Furthermore, the constant factor
for the error of the Laplace mechanism is lower than that of the projection. Therefore, one
could set ε2 higher than ε1 to balance out those constant factors. We explore the constant
factors of Algorithm 3 further in Section 9.

5.1. Removing the dependency on dimension. To make access time independent of
the dimension d, we can turn to approximate differential privacy. This allows us to use a
smaller threshold in the initial thresholding approach, which in turn results in smaller values
for β in the ALP mechanism.

The following algorithm is similar to that introduced by Korolova et al. [KKMN09],
which we discussed in Section 3. It adds noise to non-zero entries only, and uses a threshold
to satisfy approximate differential privacy. Our algorithm differs from the work of Korolova
et al. by using a random rounding step. This step is not needed in a discrete setting, where
at most a single zero-valued entry is changed to a non-zero entry for neighboring vectors.
However, in the real-valued context, several zero entries can change.
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Algorithm 9: Threshold2 (Following technique by [KKMN09])

Parameters : ε, δ > 0.
Input : k-sparse vector x ∈ Rd+.
Output : (ε, δ)-differentially private approximation of x.

(1) Apply random rounding to non-zero entries below 1 such that:

yi =

{
RandRound (xi) , if 0 < xi < 1

xi, otherwise

(2) Let vi = yi + ηi for all non-zero entries, where ηi ∼ Lap(1/ε).

(3) Let t = log(1/δ)/ε+ 2.

(4) Truncate entries below t:

ṽi =

{
vi, if yi ̸= 0 and vi ≥ t

0, otherwise

(5) Return ṽ.

Lemma 5.6. Algorithm 9 satisfies (ε, δ)-differential privacy.

Proof. Let x and x′ be neighboring vectors. We consider two additional vectors x̂ and x̂′

such that:

x̂i =

{
min(1, x′i), if xi ≤ 1

xi, otherwise;

x̂′i =

{
1, if x′i < 1 and 1 < xi

x′i, otherwise.

The vectors are constructed such that x and x̂ can only differ for entries at most 1 in both
vectors. The same holds for x′ and x̂′. Additionally, the ℓ1-distance is still at most 1 between
any pair of vectors.

We find the probability of outputting anything for an entry less than or equal to 1 to be

xi ≤ 1 =⇒ Pr[ṽi ̸= 0] = Pr[yi = 1] · Pr[Lap(1/ε) ≥ t− 1] = xi · Pr[Lap(1/ε) ≤ −(t− 1)]

= xi ·
1

2
e−(t−1)ε = xi ·

1

2
e− ln(1/δ)−ε =

xiδ

2 · eε
.

Since x and x̂ only differ for entries less than or equal to 1, any subset of outputs S,

Pr[Threshold2(x) ∈ S] ≤ Pr[Threshold2(x̂) ∈ S] +
∑
i∈[d]

|x̂i − xi|
δ

2 · eε

≤ Pr[Threshold2(x̂) ∈ S] +
δ

2 · eε
.

The inequality holds in both directions and for the pair of x′ and x̂′ as well.
By definition x̂ and x̂′ only differ for entries of at least 1. Consequently, we can ignore

the random rounding step, so that

Pr[Threshold2(x̂) ∈ S] ≤ e∥x̂−x̂
′∥1ε Pr[Threshold2(x̂′) ∈ S] ≤ eε · Pr[Threshold2(x) ∈ S] .
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Using the inequalities above we have:

Pr[Threshold2(x) ∈ S] ≤ Pr[Threshold2(x̂) ∈ S] +
δ

2eε

≤ eε · Pr[Threshold2(x̂′) ∈ S] +
δ

2eε

≤ eε ·
(
Pr[Threshold2(x′) ∈ S] +

δ

2eε

)
+

δ

2eε

≤ eε · Pr[Threshold2(x′) ∈ S] + δ .

Lemma 5.7. Suppose that δ = O(1/k). Then the expected maximum error of Algorithm 9
is O(log(1/δ)/ε).

Proof. The expected maximum error added by the Laplace noise is O(log(k)/ε), since we
add noise to at most k entries. By removing entries we add error of up to O(log(1/δ)/ε).
As such the expected maximum error for worst-case input is:

E[∥x− ṽ∥∞] ≤ O

(
log(k)

ε

)
+O

(
log(1/δ)

ε

)
= O

(
log(1/δ)

ε

)
.

In the following, we use Algorithm 9 instead of Algorithm 6 in Step (2) of Algorithm 7.

Lemma 5.8. Let α = Θ(1), s = Θ(k), ε = ε1 + ε2 with ε1 = Θ(ε2), and δ > 0 with
δ = O(1/k). By using Algorithm 9 in Algorithm 7 the access time is O(log(1/δ)). The
expected per-entry error is O(1/ε) and the expected maximum error is O(log(1/δ)/ε). The
combined mechanism satisfies (ε, δ)-differential privacy.

Proof. The proof is the same as the proofs of Lemmas 5.3 and 5.5.

Lemma 5.9. Let α = Θ(1), s = Θ(k), and ε1 = Θ(ε2). Then the memory require-
ment of combining Algorithm 9 and the ALP mechanism is O(k log(d+ u) + k log(1/δ) +
log(d) log(1/δ)).

Proof. The output of Algorithm 9 is always k-sparse, and we represent it using O(k log(d+u))
bits. We set β = ln(1/δ)/ε2 + 2, and therefore h and z̃ are represented using O(k log(1/δ) +
log(d) log(1/δ)) bits by Lemma 4.13.

We are now ready to summarize our results for both pure and approximate differential
privacy.

Theorem 5.10. Let α = Θ(1), s = Θ(k), and ε > 0. Then there exists an ε-differentially
private algorithm with O(1/ε) expected per-entry error, O(log(d)/ε) expected maximum error,
access time of O(log(d)), and space usage of O(k log(d + u) + log2(d)) with probability at
least 1− 1/2d.

Proof. It follows directly from Lemmas 5.3, 5.4 and 5.5.

Theorem 5.11. Let α = Θ(1), s = Θ(k), and ε, δ > 0. Then there exists an (ε, δ)-
differentially private algorithm with O(1/ε) expected per-entry error, O(log(1/δ)/ε) expected
maximum error, access time of O(log(1/δ)), and space usage of O(k log(d+u)+ k log(1/δ)+
log(d) log(1/δ)).

Proof. It follows directly from Lemmas 5.6, 5.8 and 5.9.
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6. Faster evaluation with multiplicative error

From the previous sections, we know how to achieve evaluation time O(log d) and O(log(1/δ)),
respectively. In this section, we improve the evaluation time to O (log(log(d)/ε)) and
O (log(log(1/δ)/ε)) at the cost of a multiplicative error O (1). That is, this technique can
be used if it sufficient to estimate the order of magnitude of an entry. We first describe the
data structure and the estimation algorithm, and then state and analyze its properties.

Projection. Let α, ε > 0, B > 1, β ≥ max{1, 1/ ln(B)}, and s ∈ N. Given a k-sparse vector
x ∈ Rd+ with xi ≤ β, define ẋ ∈ Rd+ by ẋi = max{logB(xi lnB), 0} for all xi > 0. Run
Algorithm 4 with input ẋ and a sequence of universal hash functions from domain [d] to [s],
h = (h1, . . . , hm), where m = ⌈logB(β lnB)ε/α⌉. Let z̃ be the output of Algorithm 4.

Estimation. Given z̃, h, and an index i ∈ [d], let ẍi be the output of Algorithm 5 with
parameters α and ε. Return the value x̃i = Bẍi/ lnB as an estimate for xi.

Lemma 6.1. The projection algorithm satisfies ε-differential privacy.

Proof. By Lemma 4.12, Algorithm 4 satisfies ε-differential privacy for neighboring inputs.
We have to show that the mapping xi 7→ max{logB(xi lnB), 0} preserves the neighborhood
relation for neighboring x and x′. The function f(x) = logB(x lnB) is Lipschitz continuous
in R>1/ lnB since if x ≥ 1/ lnB, the absolute value of the derivative f ′(x) = 1/(x lnB) is at
most 1, and thus for x, x′ ≥ 1/ lnB,

|| logB(x lnB)− logB(x
′ lnB)||1 ≤ 1 · ||x− x′||1.

Since the mapping xi 7→ max{logB(xi lnB), 0} is constant for xi ≤ 1/ lnB, we conclude that
it is neighborhood-preserving.

We next consider the properties of this data structure.

Lemma 6.2. Let ε > 0 and x ∈ Rd+ be a k-sparse vector with each coordinate xi ≤ β.
Let α = Θ(1) and s = Θ(k). Let γ = (α + 2)/(1 + αk/s) − 2 and p = 1/(γ + 2), and set

B = (4(p− p2))−ε/(4α). Then

• for all xi ≥ 1/ lnB, the (multiplicative) expected per-entry error is

E[max{x̃i/xi, xi/x̃i}] = O (1) ;

• the evaluation time is O(log(β)); and
• the space is O((k + log(d)) log(β)) bits.

Proof. Let ẋ be the transformed input for Algorithm 4 and ẍ the estimate returned by
Algorithm 5. The multiplicative estimation errors of x̃i/xi and xi/x̃i are bounded by B|ẍi−ẋi|.
Let S be a simple random walk with parameter p. We can bound the estimation error by
considering the last nonnegative step of S similar to the proof of Lemma 4.7. The absolute
error between ẋiε/α and the estimate computed in Step (3) of Algorithm 3 is at most one
more than the length of longest interval in which half the bits are flipped due to rounding.
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Using the definition of the expectation and the calculations from Lemma 4.9, we upper
bound the expected multiplicative error as follows:

E [max{x̃i/xi, xi/x̃i}] ≤
∞∑
τ=0

B
(2τ+1)α

ε · 2Pr[(max
n

: Sn ≥ 0) = 2τ ]

≤ (2− 4p)Bα/ε
∞∑
τ=0

(
B2α/ε4

(
p− p2

))τ
We set B =

(
4(p− p2)

)−ε/(4α)
such that

(2− 4p)Bα/ε
∞∑
τ=0

(
B2α/ε4

(
p− p2

))τ
=

2− 4p

(4p− 4p2)1/4

∞∑
τ=0

(√
4p− 4p2

)τ
=

2− 4p

(4p− 4p2)1/4 − (4p− 4p2)3/4
= O(1) .

With our choice of B, logB(x) = O(log(x)/ε) and logB(ln(B)) < 1 holds for any choice
of B. The statements about running time and space usage follow directly from Theorem 4.16
using u = 1 +O(log(β)/ε).

We remark that capping ẋ to zero means that we treat entries where xi ≤ 1/ lnB
as 4α/(ln(1/(4p − 4p2))ε) = Θ(1/ε) for our choice of B, incurring an additive error of
Θ(1/ε) for small entries. The proof above shows that the expected multiplicative error
is bounded by a constant for any fixed α. If α is not fixed we can choose the value to
minimize the multiplicative error. As an simplified example, we ignore hash collisions such
that p = 1/(α + 2). Then the equation for the constant above is minimized with value
≈ 4.83 when α ≈ 20.26. However, the additive error is minimized for α ≈ 3.07 where
1/ lnB ≈ 26.89/ε. Thus, the choice of α depends on the trade-off between the two kinds
of error. It is worth noting that the analysis for the expected multiplicative error is not
tight. Simulations similar to those in Section 9 can be used to balance the trade-off based
on empirical mean error.

6.1. Applications. We summarize the properties of the data structure in the settings
studied before:

(1) If we do not combine the data structure with the thresholding technique as described in
Section 5, we instantiate the algorithm described above with β = u. The running time
is O(log u) and the data structure uses O((k + log(d)) log u) bits.

(2) When combined with the thresholding technique with threshold O(log(d)/ε) for pure
differential privacy or O(log(1/δ)/ε) for (ε, δ)-differential privacy, we may set β to these
values, respectively. This results in running time O(log(log(d)/ε)) and O(log(log(1/δ)/ε))
with a space usage of O((k + log(d)) log(log(d)/ε)) and O((k + log(d)) log(log(1/δ)/ε))
bits, respectively, not accounting for the space needed for the threshold data structure.
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Algorithm 10: Histogram-Projection

Parameters : ε > 0, and β, s ∈ N.
Input : k-sparse histogram x ∈ Nd where s > 2k. Sequence of universal hash

functions from domain [d] to [s], h = (h1, . . . , hβ).
Output : ε-differentially private representation of x.

(1) Construct z ∈ {0, 1}s×β by hashing the unary representations of x such that:

za,b =

{
1, ∃i : b ≤ xi and hb(i) = a

0, otherwise

(2) Apply randomized response to each bit of z such that
z̃a,b = RandResponse (za,b, 1/(e

ε + 1)).
(3) Release h and z̃.

7. Improvements for Sparse Integer-valued Vectors

The algorithms we introduced so far work with real-valued vectors as input. In this section,
we discuss a variation of the ALP mechanism if we restrict the input to integers. Recall that
two vectors x, x′ ∈ Rd+ are defined as neighboring iff ∥x − x′∥1 ≤ 1. Under this definition
neighboring vectors might disagree on several entries. As an example, two neighboring
k-sparse vectors can differ by 1/2k in 2k entries. However, for the special case of histograms,
that is x, x′ ∈ Nd, neighboring input may only disagree on one entry. We can utilize this
to design a version of the ALP mechanism with improved accuracy for some values of ε.
Algorithm 10 shows a projection algorithm for histograms. It is similar to Algorithm 4
without the scaling and rounding steps, and with a flip probability in randomized response
that depends on ε.

Lemma 7.1. Algorithm 10 satisfies ε-differential privacy.

Proof. Neighboring histograms only differ in a single entry. As such at most one bit in z is
changed from replacing x with x′. For randomized response with p = 1/(eε + 1) it holds for
each b ∈ {0, 1} that

Pr[RandResponse (b, p) = b]

Pr[RandResponse (b, p) = 1− b]
=

1− p

p
= eε .

By symmetry the mechanism is ε-differentially private.

A key feature of Algorithm 10 is that the parameter for randomized response is a
function of ε. For comparison, in Algorithm 4 it depends on the adjustable parameter α,
and ε is only used for a linear scaling. For this reason Algorithm 10 is preferred for large
values of ε since the noise is significantly reduced as we show next. However, the technique
used in Algorithm 4 is still preferred for small ε.

For the error analysis, we first consider the expected error when there are no hash
collisions. We later include hash collisions in the analysis. We estimate the value of an entry
with Algorithm 3. We assume that the true value is at most β. If this is not true there is an
additional error, as shown in Lemma 4.8.

Lemma 7.2. The expected per-entry error when using Algorithm 3 on output from Algo-
rithms 10 for entries at most β is bounded by 8 · eε/(eε − 1)2 if there are no hash collisions.
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Proof. By the argument used in the proof of Lemma 4.7 we can bound the error by examining
simple random walks with p = 1/(eε + 1). The expected error is at most twice the expected
last nonnegative step in the random walk. By Lemma 4.6 this is 4(p− p2)/(1− 2p)2, so we
can bound the expected error by

2 · 4(p− p2)

(1− 2p)2
= 8 ·

eε

(eε+1)2

(eε−1)2

(eε+1)2

=
8eε

(eε − 1)2
.

Recall from Lemma 4.14 that the expected error of Algorithm 5 is O(1/ε). Therefore,
we expect the above algorithm to perform better for “large” values of ε as the expectation
approaches O(1/eε) for ε → ∞. However, it performs worse for “small” values as the
expectation approaches O(1/ε2) for ε → 0. In Section 9 we compare the error of the two
algorithms for varying values of ε.

Next we consider the effect of hash collisions on the expected error. From previous
sections, we know that it is sufficient to bound the probability of hash collisions by a constant
for the general ALP mechanism. That is however not sufficient for large ε as the probability
used for randomized response is very low. That is, a hash collision has a bigger impact on
the probability of outputting a one for larger ε.

Lemma 7.3. The expected per-entry error when using Algorithm 3 on output from Algo-
rithms 10 for entries at most β is bounded by

4eε

(eε − 1)2
+

4eε+4
1+(eε−1) k

s

− 4(
eε+1

1+(eε−1) k
s

− 2

)2 .

Proof. We know from the proof of Lemma 4.7 that the expected last non-negative step
of a simple random walk with p = 1/(γ + 2) is (4γ + 4)/γ2. Since we use universal hash
functions and store at most k ones in each column the probability of hash collisions is at
most k/s. Therefore, we can bound the probability of changing a bit from zero to one by
(eε − 1) · (k/s)/(eε + 1). By setting

1

γ + 2
=

1 + (eε − 1)ks
eε + 1

and solving for γ, we get

γ =
eε + 1

1 + (eε − 1)ks
− 2.

Thoerfore, we can bound the positive error by

4γ + 4

γ2
=

4eε+4
1+(eε−1) k

s

− 4(
eε+1

1+(eε−1) k
s

− 2

)2 .

The expected negative error is still bounded by 4eε/(eε − 1)2 since hash collisions have no
impact.
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Algorithm 11: Max-Projection

Parameters : ε > 0, and s ∈ N.
Input : x ∈ Rd+. A universal hash function h from domain [d] to [s].
Output : ε-differentially private representation of x.

(1) Initialize y ∈ Rs to the all zeroes vector.

(2) For each i ∈ [s], set yi = maxh(j)=i xj .

(3) For each i ∈ [s], sample ηi ∼ Lap(1/ε)

(4) Release h and ỹ = y + (η1, . . . , ηs).

If we apply the thresholding techniques before running Algorithm 10, the number of bits
needed to store z̃ is O((s log d)/ε) and O((s log(1/δ))/ε), respectively. By setting s = Θ(k)
we bound the probability of hash collisions by a constant. This works decently for small
values of ε, but we need to use more space for large values. When the probability of a hash
collision is q, the probability of flipping a bit from zero to one is at least q/2. This would put
a lower bound on the error for any ε. We can use some extra space to get error O(1/ε) or
O(1/eε) expected error for large epsilon as summarized below. The corollary follows directly
from plugging in different choices of s into Lemma 7.3.

Corollary 7.4. Assuming that the threshold technique for ε-DP (Algorithm 6) was applied,
using Algorithm 3 on output from Algorithms 10 has the following properties:

(1) Let s = Θ(kε) and ε > 1. Then the expected error for ε→ ∞ is O(1/ε) and z̃ is stored
in O(k log d) bits.

(2) Let s = Θ(keε) and ε > 1. Then the expected error for ε→ ∞ is O(1/eε) and z̃ is stored
in O(eεk log(d)/ε) bits.

The results extend naturally to the case of (ε, δ)-DP using Algorithm 9.

8. Constant Access Time with Optimal Expected Error

In this section, we discuss a data structure that achieves access time O(1) with expected
per-entry error O(1/ε), improving on the mechanisms discussed in previous sections. As
a downside, the error bound is only in expectation and the data structure does not have
strong tail bounds as compared to the ALP mechanism, cf. Lemma 4.11. The data structure
is inspired by the Count-Min sketch [CM05].

8.1. The data structure. Algorithm 11 shows the projection algorithm that returns a
differentially private data structure that can be used for estimation. Given a k-sparse vector
x ∈ Rd+ and a random hash function h mapping from [d] to [s], the algorithm returns a
vector ỹ ∈ Rs for a parameter s to be chosen later. The idea is that, before noise, each
coordinate yi stores the maximum entry in x for all coordinates of x that are mapped to i
by h. We use the Laplace mechanism on y to release ỹ as the differential private version of
x. Given a coordinate i ∈ [d], we estimate xi as ỹh(i).

Lemma 8.1. Algorithm 11 satisfies ε-differential privacy.

Proof. Let x and x′ be such that ||x − x′||1 ≤ 1, and define y and y′ as in Line (2) of
Algorithm 11. Each coordinate i such that xi and x

′
i differ can contribute a change of not
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more than |xi − x′i| to ||y − y′||1. Thus, ||y − y′||1 ≤ 1. Adding Laplace noise with scale 1/ε
guarantees ε-differential privacy.

Lemma 8.2. Given x ∈ Rd+ and ε > 0, let h, ỹ be the output of Algorithm 11 with
s = Ω(ε||x||1). For each i ∈ [d], E[|xi − ỹh(i)|] = O(1/ε). The evaluation of a single
coordinate takes time O(1).

Proof. The running time statement follows because the algorithm evaluates a single hash
function value.

Let J be the set of coordinates of the non-zero entries in x. We can use that the hash
function is universal to bound the expected difference between xi and yh(i) by

E
[
|xi − yh(i)|

]
≤

∑
j∈J

Pr(h(i) = h(j)) ·max(xj − xi, 0)

≤ 1

s

∑
j∈J

xj =
∥x∥1
s

.

The expected error from the Laplace noise is O(1/ε) by Proposition 2.5. For s = Ω(ε||x||1),
the expected error is O(1/ε) for zero entries. Since each non-zero entry xj with h(i) = h(j)
potentially contributes to yh(i), the expected error is only smaller for non-zeroes.

Corollary 8.3. If ε > 0 and x ∈ Rd+, then
(1) If ||x||1 = n, the data structure described above uses space s = O(εn) words, guarantees

constant access time, and has expected error O(1/ε);
(2) If x is k-sparse, then the data structure uses O(k log d) words, has constant access time,

and has expected error O(1/ε).

Proof. If ||x||1 = n is known, we can use s = Θ(nε) as the size of the table. If the vector is
k-sparse, we use the thresholding technique (Algorithm 6) with threshold O (log(d)/ε) and
store the entries below the threshold using Algorithm 11. Restricting on the elements below
the threshold, we know that ||x||1 = O (k log(d)/ε), and the result follows.

This approach guarantees constant access time with expected error O(1/ε), but does
not guarantee good tail bounds similar to the ALP mechanism and the Laplace mechanism.
Let us focus on the case that we use s = O(k log d) for a k-sparse vector x ∈ Rd+. The
probability that one of the d − k zero entries collides with a non-zero is O(1/ log d). All
of the non-zero entries can be as large as O(log(d)/ε). Thus, we expect (d− k)/ log d zero
entries to have error O(log(d)/ε).

9. Experiments

In this section, we discuss the per-entry error of ALP1-Estimator (Algorithm 3) in practice.
Let γ = (α + 2)/(1 + αk/s) − 2. By Lemma 4.4 and 4.7 the expected per-entry error of
ALP1-Estimator is upper bounded by:

E[|xi − x̃i|] ≤
(
1

2
+

4α+ 4

α2
+

4γ + 4

γ2

)
· α .

Figure 3(a) shows the upper bound for varying values of k/s and α. Recall that k/s is
a bound on the probability of a hash collision. We see that the effect of hash collisions on
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(a) Upper bound on expected per-entry error (b) Observed mean per-entry error

Figure 3. Theoretical expected per-entry error and experiment results.
Note that the y-axes for the plots use different scales.

the error increases for large values of α, as each bit in the embedding is more significant.
We discuss how the upper bound compares to practice next.

Experimental Setup. We designed experiments to evaluate the effect of the adjustable
parameters α and s on the expected per-entry error of ALP1-Estimator. The experiments
were performed on artificial data. For our setup, we set β equal to 5000 and chose a true
value xi uniformly at random in the interval [0;β]. We run only on artificial data, as uniform
data does not benefit the algorithm, and we can easily simulate worst-case conditions for
hash collisions. We simulate running the ALP1-Projection algorithm by computing yi,
simulating hash collisions, and applying randomized response. The probability for hash
collisions is fixed in each experiment, and the same probability is used for all bits. This
simulates worst-case input in which all other non-zero entries have a true value of at least β.
We increment α by steps of 0.1 in the interval [0.1, . . . , 10] and the probability of a hash
collision by 0.05 in the interval [0, . . . , 0.2]. The probability of 0 serves only as a baseline, as
it is not achievable in practice for k > 1. The experiment was repeated 105 times for every
data point.

Figure 3(b) shows plots of the mean absolute error of the experiments. As α is increased,
the error drops off at first and slowly climbs. The estimates of yi are more accurate for large
values of α. However, any inaccuracy is more significant, as ỹi is scaled back by a larger
value. The error from the random rounding step also increases with α. The plots of the
upper bound and observed error follow similar trajectories. However, the upper bound is
approximately twice as large for most parameters.

Fixed Parameters. The experiments show how different values of α and s affect the
expected per-entry error. However, the parameters also determine constant factors for space
usage and access time. The space requirements scale linearly in s/α, and the access time is
inversely proportional to α. As such, the optimal parameter choice depends on the use case
due to space, access time, and error trade-offs.
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Figure 4. Error distribution of Algorithm 3.
(ε = 1, α = 3, and collision probability = 0.1)

To evaluate the error distribution of the ALP1-Estimator algorithm we fixed the param-
eters of an experiment. We set α = 3 and the hash collision probability to 0.1. We repeated
the experiment 106 times.

The error distribution is shown in Figure 4. The mean absolute error of the experiment
is 6.4 and the standard deviation is 11. Plugging in the parameters in Lemma 4.11, with
probability at least 0.9 the error is at most

|xi − x̃i| < 3 +
6 log

(
5

0.12
√
π

)
log

(
25

19.24

) ≈ 75.33 .

The error of the observed 90th percentile is 15.78, which is shown in Figure 4 using vertical
lines. Again, this shows that the upper bounds are pessimistic.

For comparison, the plots include the Laplace distribution with scale parameters 1 and
4.5. Note that the Laplace distribution with parameter 1 is optimal for the privacy budget.
The standard deviation of the distribution with scale 4.5 is 6.36 and the mean absolute error
is similar to the ALP mechanism.

The distribution is slightly off-center, and the mean error is 2.33. This is expected due
to hash collisions. The effect of hash collisions is also apparent for the largest observed
errors. The lowest observed error was −114, while the highest was 274. There is a clear
trade-off between space usage and per-entry error. We reran the experiment with hash
collision probability 0.01 using the same value for α. The error improved for all the metrics
mentioned above. The mean absolute error is 4.8, the standard deviation is 7.8, the mean
error is 0.18, the 90th percentile is 11.5, and the largest observed error is 147.

Histograms. Next we compare the expected per-entry error of ALP-Projection (Algo-
rithm 4) with the variant designed for histograms introduced in Section 7. As discussed in
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Figure 5. Mean per-entry error of Algorithms 4 and 10

the section, Algorithm 10 is more sensitive to ε than Algorithm 4. The experiment in this
section compares the effect of changing ε on both algorithms. In particular, the experiments
are designed to examine when Algorithm 10 is preferred.

For our setup, we again set β to 5000. We increment ε by 0.05 in the interval [0.25, . . . , 10].
For algorithm 10 we choose an integer uniformly in [0, . . . , β]. We set α equal to 3 based
on the previous experiments. Recall that Algorithm 4 introduces error in the scaling step
if xi is not a multiple of α/ε. For this reason we uniformly select a multiple of α/ε in the
interval [0;β]. The experiment was repeated 105 times for each data point.

We ran both simulations with no probability of hash collisions as a baseline. We denote
this as s = ∞. We ran Algorithm 4 with a probability of 0.1 for hash collisions. We denote
this as s = 10k in the legend. For Algorithm 10 we ran the experiment with probabilities
of hash collisions of 0.1/eε and 0.1/ε. However, we use 0.1 for ε < 1. The result of the
experiment is shown in Figure 5. The y-axis has a logarithmic scale and the functions 1/ε
and 1/eε are included for comparison.

The plots show that, as expected, the preferred algorithm depends on the value of ε. We
see that Algorithm 10 is preferred when ε is approximately 0.7 and above. Also as expected,
the error of Algorithm 10 is O(1/eε) and O(1/ε) for large epsilon if the probabilities of hash
collisions is Θ(1/eε) and Θ(1/ε), respectively. However, it still outperforms Algorithm 4 for
large ε by more than an order of magnitude.

Note that Algorithm 4 is much preferred for small ε even though it is not as clearly
visible from the Figure. As discussed in Section 7, Algorithm 10 uses more space and the
expected error scales roughly as O(1/ε2) for ε < 1. We ran the experiment with ε = 0.05
and Algorithm 4 outperformed the mean error of Algorithm 10 by an order of magnitude.
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10. Suggestions to Practitioners

The ALP mechanism introduced in this paper combines the best of three worlds: It
has low error similar to the Laplace mechanism, produces compact representations using
asymptotically optimal space, and has an access time that scales only with O(log d).

In an application that wants to make use of differentially private histograms/vectors,
one first has to get an overview of the assumed properties of the data before making a
choice on which approach to use. If d is small or the data are assumed to be dense, the
Laplace mechanism will offer the best performance. If the data are sparse and the dimension
d is large, the analyst must know which error guarantee she wishes to achieve, and which
access time is feasible in the setting where the application is deployed. If a larger error
is acceptable for “small” entries or access time is crucial, just applying the thresholding
technique [KKMN09, CPST12] is the better choice. Otherwise, if small error is paramount
or an access time of O(log d) is sufficient, the ALP mechanism will provide the best solution.

Variants. We assume in this paper that k is a known bound on the sparsity of the input
data. However, in some applications the value of k itself is private. Here we briefly discuss
approaches in such settings. We use the value of k to select the size of the embedding, such
that the probability of hash collisions is sufficiently small. When k is not known, we can
still bound the probability of hash collisions.

If the input is a histogram the sparsity differs by at most 1 for neighboring datasets. As
such we can use a fraction of the privacy budget to estimate the sparsity. Note that this
is not possible for real-valued vectors, as the difference in sparsity can be as large as d for
neighboring datasets.

If ∥x∥1 = n is known, then we have ∥x̂∥1 = nε for the scaled input. We can bound the
probability of hash collisions by a constant when the size of the embedding is Θ(nε) bits.
We also have ∥x∥∞ ≤ n and as such we can set u = n if no better bound is known. If ∥x∥1
is unknown, we can estimate it using a fraction of the privacy budget. Note that the space
differs from the k-sparse setting, and remains Θ(nε) bits when applying the thresholding
techniques.

In both cases the estimate affects space and error of our mechanism. We discuss
estimating k here, but the same principle applies to estimating ∥x∥1. Let k̃ be the estimate

of k used to set s such that s = Θ(k̃). It is clear that the space requirement now scales

with k̃ instead of k. However, the error guarantees of our mechanism depend on k/s. We
can bound this by a constant when k is known, but doing so might introduce large error if
k̃/k is small. This is only likely to happen if the true value of k is small. If a small error

is more important than space, we can estimate k̃ such that k ≤ k̃ with high probability.
For example, we can set k̃ = k + Lap(1/ε) + ln(d/2)/ε such that k ≥ k̃ only happens with
probability at most 1/d.

In Section 2 we gave a simple reduction from real-valued data to nonnegative, real-valued
data with increased error. It is possible to extend our mechanism to negative values by
instead paying an increase in access time. The thresholding techniques in Algorithms 6
and 9 are easily extended to real values by releasing noisy entries with a large absolute value.
However, Algorithm 9 only releases entries whose true and noisy values have the same sign
to preserve the privacy guarantees. We extend Algorithm 2 by using twice as many columns
to store z. The last m columns store nonnegative values as before. The first m columns store
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the negative values. The bits are set to 1 by default and changed to 0 to encode negative
values. Algorithm 3 is unchanged, but an offset is used for the returned value.

An implementation of a variant of the ALP mechanism is available as part of the open
source project OpenDP (https://opendp.org/) in the repository https://github.com/

opendp/opendp.

11. Open problems

The main open problem that we leave is if it is possible to achieve similar space and error
with constant time access. In Section 8 we demonstrated how to achieve optimal expected
error with constant time access and space within a logarithmic factor of optimal. However,
this method does not have strong tail bounds on the error.
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Appendix A. Closed-form proof of Lemma 4.6

Here we provide a closed-form expression used in the proof of Lemma 4.6.
In the proof, we will make use of general binomial coefficient([GKP94, Equation 5.1]):(

r

k

)
=
r(r − 1) . . . (r − k + 2)(r − k + 1)

k!
,

and the binomial theorem ([GKP94, Equation 5.12]):

(1 + z)r =

∞∑
k=0

(
r

k

)
(z)k .

Starting from an infinite series with z < 1/4, we simplify as follows:
∞∑
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)
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.

Finally, let z = p− p2 for p < 1/2. This gives us the closed-form expression:
∞∑
k=0

k

(
2k

k

)
(p− p2)k =

2(p− p2)

(1− 4(p− p2))3/2

=
2(p− p2)

(1− 2p)3
.
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