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Abstract. We provide a lower bound on the sample complexity of distribution-free parity
learning in the realizable case in the shuffle model of differential privacy. Namely, we show
that the sample complexity of learning d-bit parity functions is Ω(2d/2). Our result extends
a recent similar lower bound on the sample complexity of private agnostic learning of parity
functions in the shuffle model by Cheu and Ullman (12). We also sketch a simple shuffle
model protocol demonstrating that our results are tight up to poly(d) factors.

1. Introduction

The shuffle model of differential privacy (7; 11; 16) has received significant attention from
researchers in the last few years. In this model, agents communicate with an untrusted
analyzer via a trusted intermediary—a communication channel that shuffles all messages,
hence potentially disassociating messages and their senders. Much of the recent interest in
the shuffle model focuses on one-round differentially private protocols. This interest in the
model is motivated, in part, by the potential to improve significantly over what is achievable
in the local model of differential privacy (6; 8; 13; 21). Indeed, for functionalities such as
bit addition, real addition, and histogram computation, shuffle model protocols provide
accuracy comparable to that achievable with a trusted curator (1; 3; 4; 5; 11; 17; 18). See
also Cheu’s survey (10).

Recent works obtain lower bounds on the sample complexity of one-round robust shuffle
model differentially private protocols by establishing a connection to pan-privacy (2; 12).
Robust shuffle model protocols are those where differential privacy is guaranteed when a large
enough fraction of agents participate honestly. In the pan-privacy model (15), individual
information arrives in an online fashion to be processed by a curator. Privacy, however, is
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required to be preserved in presence of a storage breach: as the input stream is processed
by a curator, an attacker chooses a point in time in which it obtains access to observe the
curator’s internal state. Initiating this direction of research, Balcer, Cheu, Joseph, and
Mao (2) provided reductions from pan-privacy to robust shuffle model in which a (robust)
shuffle model protocol for a task is used as the main building block in the construction of a
pan-private algorithm for the same or a related task. Doing so allowed them to apply lower
bounds from pan-privacy to obtain lower bounds on (robust) shuffle model protocols for
tasks such as histograms, uniformity testing, and counting distinct elements. A recent work
of Cheu and Ullman (12) extended this proof paradigm by introducing a class of tasks that
are hard for pan-privacy. This resulted in new lower bounds on the sample complexity of
statistical estimation and learning tasks, including the learning of parity functions, where the
latter is of specific interest because of the equivalence between the local model of differential
privacy and the statistical queries model (21), as well as the impossibility of learning parity
functions in the statistical queries model (22).1

Our results. Our main result is an exponential lower bound on the sample complexity of
distribution-free parity learning in the shuffle model. Our proof has two main components.
We first show how to construct a pan-private parity learner in the uniform distribution
setting given a robust shuffle model distribution-free parity learner. Second, we show how to
transform such a pan-private learner into a pan-private protocol for a distinguishing task
requiring an exponential number of samples. We get:

Theorem 3 (informal). For every realizable distribution-free parity learning algorithm in

the shuffle model, the sample complexity is n = Ω(2d/2).

This result is complemented by a robust shuffle model protocol for distribution-free
parity learning with sample complexity O(d2d/2).

Other related work. Also relevant to our work are the results of Chen, Ghazi, Kumar,
and Manurangsi (9). They prove that the sample complexity of parity learning in the shuffle

model is Ω(2d/(k+1)) for protocols with message complexity k. Comparing with our results,
their lower bound depends on the message complexity of the protocol, whereas our bound
holds regardless of the message complexity. On the other hand, our lower bound holds
only for robust shuffle model protocols, whereas the result of Chen et al. does not require
robustness.

2. Preliminaries

2.1. Differential privacy, pan-privacy, and the shuffle model. Let X be a data
domain. We say that two datasets x, x′ ∈ Xn are neighboring if they differ on exactly one
entry, i.e., |{i : xi ̸= x′i}| = 1.

Definition 1 (differential privacy (14)). A randomized mechanism M : Xn → Y preserves
(ε, δ)-differential privacy if for all neighboring x, x′ ∈ Xn, and for all events T ⊆ Y ,

Pr[M(x) ∈ T ] ≤ eε · Pr[M(x′) ∈ T ] + δ,

1Considering the realizable setting with underlying uniform distribution on samples, the equivalence implies
that no local model protocol exists for parity learning with polynomial round complexity and polynomial
sample complexity.



DISTRIBUTION-FREE PARITY LEARNING 3

where the probability is over the randomness of the mechanism M .

Definition 2 (pan-privacy (15)). For an online mechanism M : Xn → Y , let S≤t(x)
represent the internal state of M(x) after receiving the t first inputs x1, . . . , xt. The pan-
private protocol starts with an initial state S≤0(x). At each step t + 1, the internal state
S≤t+1(x) is updated by aggregating S≤t(x) and xt+1. We say M is (ε, δ)-pan-private if for
every two neighbouring datasets x, x′ ∈ Xn, for every event T ⊆ Y , and for every 1 ≤ t ≤ n,

Pr[(S≤t(x),M(x)) ∈ T ] ≤ eε · Pr[(S≤t(x
′),M(x′)) ∈ T ] + δ,

where the probability is over the randomness of the online mechanism M .

A one-round shuffle model mechanism M : Xn → Y , as introduced in (11), consists
of three types of algorithms: (i) local randomizers (R1, . . . , Rn) where each randomizer Ri

maps an input xi ∈ X to a collection of messages from an arbitrary message domain; (ii) A
shuffle S receives a collection of messages and outputs it in a random order; and (iii) an
analyzer algorithm A maps a collection of messages to an outcome in Y . The robust shuffle
model considers malicious users who may avoid sending their messages to the shuffle (2). We
denote the local randomizers of such users by ⊥. The output of M = ((R1, . . . , Rn), S,A)
on input x = (x1, . . . , xn) is

A(S(R̂1(x1), . . . , R̂n(xn))),

where R̂i = Ri for honest users and R̂i = ⊥ for malicious users.

Definition 3 (robust one-round shuffle model (2)). A one-round shuffle model mechanism
M = ((R1, . . . , Rn), S,A) is γ-robust and (ε, δ)-differentially private if when at least γn of
the parties are honest for all neighboring x, x′ ∈ Xn and for all events T ⊆ Y ,

Pr[S(R̂1(x1), . . . , R̂n(xn)) ∈ T ] ≤ eε · Pr[S(R̂1(x
′
1), . . . , R̂n(x

′
n)) ∈ T ] + δ,

where the probability is over the randomness of (R̂1, . . . , R̂n) and the shuffle S.

2.2. Private learning. A concept class C is a collection of predicates over the data domain
c : X → {±1}. Let P ∈ ∆(X) be a probability distribution over the data domain X and let
h : X → {±1}. The generalization error of hypothesis h with respect to the concept c is
errorP (c, h) = Prx∼P [h(x) ̸= c(x)].

Definition 4 (PAC learning (24)). A concept class C is (α, β,m)-PAC learnable if there
exists an algorithm L such that for all distributions P ∈ ∆(X) and all concepts c ∈ C,

Pr
[
{xi}mi=1 ∼ P ;h← L

(
{(xi, c(xi)}mi=1

)
; errorP (c, h) ≤ α

]
≥ 1− β,

where the probability is over the choice of x1, . . . , xm i.i.d. from P and the randomness of L.

For an arbitrary distribution over labeled pairs P ∈ ∆(X × {0, 1}) the classification
error a hypothesis h obtains is errP (h) = Pr(x,y)∼P [h(x) ̸= y].

Definition 5 (agnostic PAC Learning (20)). A hypothesis class H is (α, β,m)-agnostic PAC
learnable if there exists an algorithm L, such that for any distribution P over (X × {0, 1}),

Pr

[
{(xi, yi)}mi=1 ∼ P ;h← L

(
{(xi, yi}mi=1

)
; errP (h) ≤ min

h∈H
(errP (h)) + α

]
≥ 1− β,

where the probability is over the choice of (x1, y1), . . . , (xm, ym) i.i.d. from P and the ran-
domness of L.
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Note that Definition 4 is of an improper learner as the hypothesis h need not come from
the concept class C.

Definition 6 (weight k parity). Let PARITYd,k = {cr,b}r⊆[d],|r|≤k,b∈{±1} where cr,b :

{±1}d → {±1} is defined as cr,b(x) = b ·
∏

i∈r xi. When k = d, we omit k and write
PARITYd.

Definition 7. A distribution-free parity learner is a PAC learning algorithm for PARITYd,k.
A uniform distribution parity learner is a PAC learning algorithm for PARITYd,k where the

underlying distribution P is known to be uniform over X = {±1}d.

Definition 8 (private learning (21)). A concept class C is private PAC learnable by algorithm
L with parameters α, β,m, ε, δ, if L is (ε, δ)-differentially private and L is (α, β,m)-PAC
learns concept class C.

2.3. Hard tasks for pan-private mechanisms. Cheu and Ullman (12) provide a family
of distributions {Pv} for which the sample complexity of any pan-private mechanism distin-
guishing a randomly chosen distribution in {Pv} from uniform is high. Let X = {±1}d be
the data domain. Let U be the uniform distribution over X. For 0 < α ≤ 1/2, a non-empty
set ℓ ⊆ [d], and a bit b ∈ {±1}, define the distribution Pd,ℓ,b,α ∈ ∆(X) to be

Pd,ℓ,b,α(x) =

{
(1 + 2α)2−d if

∏
i∈ℓ xi = b

(1− 2α)2−d if
∏

i∈ℓ xi = −b
Equivalently,

Pd,ℓ,b,α(x) = (1 + 2bα
∏
i∈ℓ

xi) · 2−d.

Note that for α = 1/2 the support of Pd,ℓ,b,α is exactly the set of strings x ∈ {±1}d satisfying∏
i∈ℓ xi = b. Define the family of distributions

Pd,k,α = {Pd,ℓ,b,α(x) : ℓ ⊆ [d], 0 < |ℓ| ≤ k, b ∈ {±1}}.
Let Pd,L,B,α denote the distribution which is chosen uniformly at random from the family of
distributions Pd,k,α, i.e., L is a uniformly random non-empty subset of [d] with cardinality
at most k and B ∈R {±1}.

Theorem 1 ((12), restated). Let M be an (ε, δ)-pan-private algorithm. If dTV (M(Pn
d,L,B,α),M(Un)) ≥

T , then

n = Ω

T

/√√√√ε2α2(
d
≤k

) + δ log

(
d
≤k

)
δ

 .

In particular, when δ log
((

d
≤k

)
/δ
)
= o

(
ε2α2/

(
d
≤k

))
we get that

n = Ω

T ·
√(

d
≤k

)
εα

 .
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Remark. Cheu and Ullman (12) argue agnostic parity learner in the condition of 0 < α <
1/2, where all the parity functions have a positive error. In this work, by setting α = 1/2,
the hypothesis class can be equivalent to the concept class, i.e. there exists a parity function
with error of 0. Then the parity learner can be a realistic learner.

2.4. Tail inequalities.

Theorem 2 (Chebyshev’s inequality). Let X be a random variable with expected value µ
and non-zero variance σ2. Then for any positive number a,

Pr(|X − µ| ≥ a) ≤ σ2

a2
.

2.5. Divisibility of discrete Laplace distribution. The discrete Laplace distribution
can be divided into n differences of two Pólya distributions (3; 23; 19). If Xi and Yi
are independent random variables that follow Pólya(1/n, α), then the random variable

Z =
∑n

i=1Xi − Yi follows the discrete Laplace distribution, where Pr[Z = k] ∝ α|k|.

3. A lower bound on the sample complexity of
parity learning in the shuffle model

3.1. From robust shuffle model parity learner to a pan-private parity learner.
Given a robust shuffle model distribution-free parity learner, we show how to construct a
uniform distribution pan-private parity learner. Our reduction–Algorithm LearnParUnif–is
described in Algorithm 1. We use a similar technique to the padding presented in (2; 12), with
small modifications. To allow the shuffle model protocol use differing randomzers R1, . . . , Rn,
the pan-private learner applies these randomizers in a random order (the random permutation

π). The padding is done with samples of the form (1d, b̂), where b̂ is selected uniformly at
random from {±1}. Finally, as in (12), the number of labeled samples which the pan-private
algorithm considers from its input is binomially distributed, so that if (xi, yi) are such that
xi is uniform in X and yi = cr,b(xi) = b ·

∏
i∈r xi then (after a random shuffle) the input

distribution presented to the shuffle model protocol is statistically close to a mixture of
the two following distributions: (i) a distribution where Pr[(xi, yi) = (1d, b̂)] = 1 and (ii) a
distribution where xi is uniformly selected in {±1}d and yi = cr,b(xi).

Proposition 1. Algorithm LearnParUnif is (ε, δ)-pan-private.

Proof sketch, following (2; 12). Let x and x′ be two neighboring data sets, and let j be the
index where x and x′ differ. Let 1 ≤ t ≤ n/3 be the time an adversary probes into the
algorithm’s memory.

If t ≥ j, then S≤t = (S ◦ (Rπ(1), . . . , Rπ(n/3+t)))((1d, b)n/3, w1, . . . , wt) and, as M is a
robust differentially private mechanism S≤t preserves (ε, δ)-differential privacy. Because
A(sfinal) is post-processing of S≤t the outcome of LearnParUnif is (ε, δ)-pan-private.

If t < j, then S≤t(x) is identically distributed to S≤t(x
′). Note that as M is a robust

differentially private mechanism, we get that

σ = (S ◦ (Rπ(n/3+t+1), . . . , Rπ(n)))(wt+1, . . . , wN ′ , (1d, b), . . . , (1d, b))

preserves (ε, δ)-differential privacy. To conclude the proof, note that (S≤t(x), A(sfinal)) is
the result of post-processing σ.
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Algorithm 1: LearnParUnif, a uniform distribution pan-private parity learner

Let M = ((R1, . . . , Rn), S,A) be a 1/3-robust differentially private distribution-free
parity learner.

Input: n/3 labeled examples (xi, yi) where xi ∈ X and yi ∈ {±1}.
1 Randomly choose a permutation π : [n]→ [n].

2 Randomly choose b̂ ∈R {±1}.
3 Create initial state s0 ← S(Rπ(1)(1

d, b̂), . . . , Rπ(n/3)(1
d, b̂)).

4 Sample N ′ ∼ Bin(n, 2/9).

5 Set N ′ ← min(N ′, n/3).

6 for i ∈ [n/3] do
7 if i ∈ [N ′] then
8 wi ← (xi, yi)

9 else

10 wi ← (1d, b̂)

11 end

12 si ← S(si−1, Rπ(n/3+i)(wi))

13 end

14 sfinal ← S(sn/3, Rπ(2n/3+1)(1
d, b̂), . . . , Rπ(n)(1

d, b̂))

15 return A(sfinal)

Proposition 2 (learning). Let M be a (α, β,m)-distribution-free parity learner, where
α, β < 1/4 and m = n/9. Algorithm LearnParUnif is a uniform distribution parity learner
that with probability at least 1/4 correctly identifies the concept cr,b.

Proof sketch. Algorithm LearnParUnif correctly guesses the label b for 1d with probability
1/2. Assuming b̂ = b the application of M uniquely identifies r, b with probability at least
1/2. Thus, LearnParUnif recovers cr,b with probability at least 1/4.

3.2. From pan-private parity learner to distinguishing hard distributions. In this
section, we use Theorem 1 to obtain a lower bound on the sample complexity of parity
learning in the shuffle model. In Algorithm 2, we provide a reduction from identifying the
hard distribution Pd,ℓ,b,1/2 presented in section 2.3 to pan-private parity learning. Recall
that ℓ is a set of indexes, such that Πi∈ℓxi = b for any example (x1, . . . , xd) from distribution
Pd,ℓ,b,1/2.

Observation 1. The pan-privacy of Algorithm 2 follows from the pan-privacy of algorithm
Π.

Proposition 3. Given a uniform distribution parity learner that with probability at least
1/4 correctly identifies the concept cr,b, algorithm 2 can correctly identify the distribution
Pd,ℓ,b,1/2 with probability at least |ℓ|/4d.

Proof. Note that with probability |ℓ|/d we get that i∗ ∈ ℓ, in which case the inputs x1, . . . , xn
provided to the learner Π in Step 7 are uniformly distributed in {±1}d−1 and yj = b ·∏

i∈ℓ\{i∗} xj [i], i.e., the inputs to Π are consistent with the concept cℓ\{i∗},b.
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Algorithm 2: IdentifyHard, a pan-private algorithm for identifying the distribution
Pd,ℓ,b,1/2

Let Π be a pan-private uniform distribution parity learner.
Input: A sample of n examples z = (z1, z2, . . . , zn), where each example is of the

form zj = (zj [1], zj [2], . . . , zj [d]) ∈ {±1}d
1 Randomly choose i∗ ∈R [d].

2 /* Apply the uniform distribution parity learner Π: */

3 for j ∈ [n] do
4 yj ← zj [i

∗]

5 xj = zj
6 xj [i

∗] = ⊥ /* i.e., xj equals zj with entry i∗ erased */

7 Provide (xj , yj) to Π.

8 end

9 (r, b)← Π((x1, y1), . . . , (xn, yn))

10 ℓ← r ∪ {i∗}
11 return (ℓ, b)

On the uniform distribution, the generalization error of any parity function is 1/2. On
Pd,ℓ,b,1/2 Algorithm 2 succeeds with probability |ℓ|/4d to identify ℓ, b. Algorithm 3 evaluates
the generalization error of the concept learned in Algorithm 2 towards exhibiting a large
total variance distance on Pn

d,L,B,1/2 and Un.

Algorithm 3: DistPU: Distinguisher for Pn+m
d,L,B,1/2 and Un+m

Let M = ((R1, . . . , Rn), S,A) be the pan-private algorithm described in Algorithm 2.
Input: A sample of m+ n examples z = (z1, z2, . . . , zn+m), where

m = max{512d/k, 64
√
2d/k/ε} and each example is of the form

zj = (zj [1], zj [2], . . . , zj [d]) ∈ {±1}d.
1 Let (ℓ, b) be the outcome of executing M on the first n examples z1, . . . , zn.

2 c← Lap(1/ε) /*Adding the laplace noise to make the internal state differentially
private*/

3 for i ∈ [m] do
4 if

∏
j∈ℓ zi+n[j] = b then c← c+ 1

5 end

6 c∗ ← c+ Lap(1/ε)

7 if c∗ ≥ 3m/4 then return 1 else return 0

Observe that if z ∼ Pn+m
d,L,B,1/2 then in every execution of Algorithm 3 there exist ℓ ⊂ [d]

of cardinality at most k and b ∈ {±1} such that z ∼ Pn+m
d,ℓ,b,1/2. In Proposition 4, we compute

that if z ∼ Pn+m
d,ℓ,b,1/2, the probability of DistPU(z) = 1 is at least |ℓ|/8d. In Proposition 5,

we use the result of Proposition 4 to compute that if z ∼ Pn+m
d,L,B,1/2, the probability of

DistPU(z) = 1 is at least |ℓ|/32d. In Proposition 6, we evaluate the upper bound of
Prz∼Un+m [DistPU(z) = 1]. Then we show that the total variance distance of DistPU(Un+m)
and DistPU(Pn+m

d,L,B,1/2) is at least a constant.
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Proposition 4. Prz∼Pn+m
d,ℓ,b,1/2

[DistPU(z) = 1] ≥ |ℓ|/8d.

Proof. For any z ∼ Pn+m
d,ℓ,b,1/2, we have

∏
i∈ℓ zi = b, so

Pr
z∼Pn+m

d,ℓ,b,1/2

[DistPU(z) = 1] ≥ Pr[DistPU correctly identifies (ℓ, b)] · Pr[c∗ ≥ 3m/4]

≥ |ℓ|
4d
· Pr[Lap(1/ε) + Lap(1/ε) ≥ −m/4]

≥ |ℓ|
4d
· 1
2

(by symmetry of Lap around 0)

=
|ℓ|
8d

.

Proposition 5. Prz∼Pn+m
d,L,B,1/2

[DistPU(z) = 1]) ≥ k/32d.

Proof.

Pr
z∼Pn+m

d,L,B,1/2

[DistPU(z) = 1] =
∑

ℓ∈[d],|ℓ|≤k,b∈{±1}

Pr
z∼Pn+m

d,ℓ,b,1/2

[DistPU(z) = 1] · Pr[(L,B) = (ℓ, b)]

≥
∑

ℓ∈[d],k/2≤|ℓ|≤k,b∈{±1}

Pr
z∼Pn+m

d,ℓ,b,1/2

[DistPU(z) = 1] · Pr[(L,B) = (ℓ, b)]

≥
∑

ℓ∈[d],k/2≤|ℓ|≤k,b∈{±1}

k

16d
· Pr[(L,B) = (ℓ, b)]

=
k

16d
· Pr[|L| ≥ k/2]

=
k

16d
·

(
d
≤k

)
−
(

d
≤k/2

)(
d
≤k

) ≥ k

32d
.

The last inequality follows from
( d
≤k)−(

d
≤k/2)

( d
≤k)

≥ 1/2. 2

Proposition 6. Prz∼Un+m [DistPU(z) = 1] ≤ k/64d.

Proof. For all (ℓ, b), we have that Prz∼U [
∏

j∈ℓ z[j] = b] = 1/2, so we have

Pr
z∼Un+m

[DistPU(z) = 1] = Pr[Bin(m, 1/2) + Lap(1/ε) + Lap(1/ε) ≥ 3m/4]

≤ Pr[|Bin(m, 1/2) + Lap(1/ε) + Lap(1/ε)−m/2| ≥ m/4]

≤ m/4 + 2/ε2 + 2/ε2

m2/16
(Theorem 2)

= 4/m+ 64/ε2m2

≤ k

128d
+

k

128d
=

k

64d
.

2If k = d then
(

d
≤k

)
≥ 2

(
d

≤k/2

)
. Otherwise (k < d) we get for 0 ≤ i ≤ ⌊k/2⌋ that the difference between

⌊k/2⌋+ 1+ i and d/2 is smaller than the difference between ⌊k/2⌋ − i and d/2 hence
(

d
⌊k/2⌋−i

)
<

(
d

⌊k/2⌋+1+i

)
,

thus
(

d
≤k

)
=

∑
0≤i≤⌊k/2⌋

(
d
i

)
+

∑
⌊k/2⌋+1≤i≤k

(
d
i

)
> 2

∑
0≤i≤⌊k/2⌋

(
d
i

)
= 2

(
d

≤k/2

)
.
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Combining Propositions 6 and 5 we can now get a lower bound on the statistical distance
between DistPU(Un+m) and DistPU(Pn+m

d,L,B,1/2):

dTV (DistPU(Un+m),DistPU(Pn+m
d,L,B,1/2))

≥ Pr
z∼Pn+m

d,L,B,1/2

[DistPU(z) = 1]− Pr
z∼Un+m

[DistPU(z) = 1]

≥ k

32d
− k

64d
=

k

64d
.

In particular, for all k we get that dTV (DistPU(Un+m),DistPU(Pn+m
d,L,B,1/2)) ≥ k/64d and

for k = d we get dTV (DistPU(Un+m),DistPU(Pn+m
d,L,B,1/2)) ≥ 1/64. We can now conclude our

main result:

Theorem 3. For any (ε, δ, 1/3)-robust private distribution-free parity learning algorithm in
the shuffle model, where ε = O(1), the sample complexity is

n = Ω

(
2d/2

ε

)
.

Proof. Let k = d, applying Theorem 1, DistPU has sample complexity

n+m = Ω

(
2d/2

ε

)
.

Since k ≥ 1, ε = O(1), then m = O(d/ε). By the reduction of Algorithm DistPU from
a (ε, δ, 1/3)-robust private parity learning algorithm, any (ε, δ, 1/3)-robust private parity
learning algorithm has sample complexity

n = Ω

(
2d/2

ε

)
.

3.3. Tightness of the lower bound. We now observe that Theorem 3 is tight as there
exists a 1/3-robust agnostic parity learner in the shuffle model with an almost matching
sample complexity. For every possible hypothesis (ℓ, b) (there are 2d+1 hypotheses), the
learner estimates the number of samples that are consistent with the hypothesis, conℓ,b =
|{i : b ·

∏
j∈ℓ xi[j] = yi}|. Let N be the number of labeled examples.

One possibility for counting the number of consistent samples is to use the protocol
by Balle et al. (3), which is an (ε, δ)-differentially private one-round shuffle model protocol
for estimating

∑
ai where ai ∈ [0, 1]. The outcome of this protocol is statistically close to∑

ai +DLap(1/ε) and the statistical distance δ can be made arbitrarily small by increasing
the number of messages sent by each agent. (We use the notation DLap(1/ε) for the discrete

Laplace distribution, where the probability of selecting i ∈ Z is proportional to e−ε|i|.) The
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protocol uses the divisibility of discrete Laplace distribution, generating discrete Laplace
noise ν as the sum of differences of Pólya random variables:

ν =

n∑
i=1

(
Pólya(1/n, e−ε)−Pólya(1/n, e−ε)

)
.

To make the protocol γ-robust, we slightly change the noise generation to guarantee (ε, δ)
differential privacy in the case where only n/3 parties participate in the protocol. This can
be done by changing the first parameter of the Pólya random variables to 3/n, resulting in

ν =
n∑

i=1

(
Pólya(3/n, e−ε)−Pólya(3/n, e−ε)

)
.

Observe that ν is distributed as the sum of three independent DLap(1/ε) random variables.
Using this protocol, it is possible for the analyzer to compute a noisy estimate of the
number of samples consistent with each hypothesis, c̃onℓ,b = conℓ,b + ν, and then output

(ℓ, b) = argmaxℓ,b(c̃onℓ,b). The sample complexity of this learner is Oα,β,ε,δ(d2
d/2).

Algorithm 4: LearnParity: an agnostic parity learning algorithm

Let ε′ = ε

4
√

2d ln(1/δ∗)
. Let ShuffleCount be an (ε′, δ′, γ)-robust shuffle protocol that

compute the sum of {0, 1} bits.

Input: N ≥ max

{
36((d+2) ln 2−lnβ)

α2 ,
48(ln 3+(d+2) ln 2)

√
2d ln 1/δ∗

αε

}
labeled examples

(xi, yi), where xi ∈ {±1}d and yi ∈ {±1}.
1 for ℓ ⊆ [d], b ∈ {±1} do
2 Apply ShuffleCount to obtain a noisy count c̃onℓ,b of samples for which

b ·
∏

j∈ℓ xi[j] = yi.

3 end

4 (ℓ̂, b̂)← argmaxℓ,b({c̃onℓ,b}ℓ⊆[d],b∈{±1})

5 return (ℓ̂, b̂)

Proposition 7 (privacy). For ε < 1, LearnParity is (ε, δ, γ)-robust private, where δ =
k · δ′ + δ∗.

Proof. LearnParity performes k counting computations applying ShuffleCount and then se-
lects the largest one. By the corollary of advanced composition, setting ε′ = ε/2

√
2k ln 1/δ∗

can make LearnParity (ε, δ)-differentially private. Since ShuffleCount is γ-robust, LearnParity
is γ-robust.

To prove that LearnParity is an (α, β)-agnostic parity learner, we show that (i) the true
number of samples that agree with the parity function is close to the expected number of
samples that agree with the parity function (Proposition 8); (ii) the noisy estimate produced
by ShuffleCount is close to the true number of samples that agree with the parity function
(Proposition 9).

Let pℓ,b represent the probability that one example agrees with the parity function
Parℓ,b.
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Proposition 8.

Pr

[
|pℓ,b ·N − conℓ,b| ≤

αN

4

]
≥ 1− e−

α2·N
36

Proof. conℓ,b agrees with the distribution Bin(N, pℓ,b), by Chernoff bound,

Pr[conℓ,b > (pℓ,b + α/4) ·N ] = Pr[conℓ,b > (1 + α/4pℓ,b) · pℓ,bN ] ≤ e
− α2·N

32pℓ,b+4α ≤ e−
α2·N
36

Pr[conℓ,b < (pℓ,b − α/4) ·N ] = Pr[conℓ,b < (1− α/4pℓ,b) · pℓ,bN ] ≤ e
− α2·N

32pℓ,b ≤ e−
α2·N
36

Proposition 9.

Pr

[
|c̃onℓ,b − conℓ,b| ≤

αN

4

]
≥ 1− 3 · e−

αNε′
12 ,

Proof. The noise added in ShuffleCount amounts to the sum of three DLap(eε) variables .
The probability that a DLap(eε) variable exceeds αN/12 is

Pr[|DLap(eε)| > αN/12] = 2 · e
ε′ − 1

eε′ + 1
· ((eε′)−

αN
12

−1 + (eε
′
)−

αN
12

−2 + . . .)

= 2 · e
ε′ − 1

eε′ + 1
· e

−ε′·(αN
12

+1)

1− e−ε′

=
2 · e−

αNε′
12

eε′ + 1

< e−
αNε′
12 .

Hence, by union bound, the probaility the sum of three DLap(eε) variables exceeds

αN/4 is at most 3 · e−
αNε′
12 .

Let OPT be the lowest possible error of the hypothesis taken from all parity functions.
If c̃onℓ,b −Npℓ,b < αN/2 for all (ℓ, b), the error of hypothesis outputted by the algorithm is
less than OPT + α.

Proposition 10. LearnParity is (α, β)-agnostic learning.

Proof. By union bound,

β ≤ k · e−
α2n
36 + k · 3 · e−

αnε′
12 ≤ β/2 + β/2 = β.
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