
Journal of Privacy and Confidentiality
Vol. 12 (1) 2022

Submitted Apr. 15, 2021
Published July 2022

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗

CLÉMENT L. CANONNE, GAUTAM KAMATH, AND THOMAS STEINKE

School of Computer Science, University of Sydney
e-mail address : clement.canonne@sydney.edu.au

Cheriton School of Computer Science, University of Waterloo
e-mail address : g@csail.mit.edu

Google Research, Brain Team
e-mail address : dgauss@thomas-steinke.net

Abstract. A key tool for building differentially private systems is adding Gaussian noise
to the output of a function evaluated on a sensitive dataset. Unfortunately, using a
continuous distribution presents several practical challenges. First and foremost, finite
computers cannot exactly represent samples from continuous distributions, and previous
work has demonstrated that seemingly innocuous numerical errors can entirely destroy
privacy. Moreover, when the underlying data is itself discrete (e.g., population counts),
adding continuous noise makes the result less interpretable.

With these shortcomings in mind, we introduce and analyze the discrete Gaussian in the
context of differential privacy. Specifically, we theoretically and experimentally show that
adding discrete Gaussian noise provides essentially the same privacy and accuracy guarantees
as the addition of continuous Gaussian noise. We also present a simple and efficient algorithm
for exact sampling from this distribution. This demonstrates its applicability for privately
answering counting queries, or more generally, low-sensitivity integer-valued queries.

1. Introduction

Differential Privacy (DMNS06) provides a rigorous standard for ensuring that the output
of an algorithm does not leak the private details of individuals contained in its input. A
standard technique for ensuring differential privacy is to evaluate a function on the input
and then add a small amount of random noise to the result before releasing it. Specifically,
it is common to add noise drawn from a Laplace or Gaussian distribution, which is scaled
according to the sensitivity of the function – i.e., how much one person’s data can change

Key words and phrases: discrete Gaussian, privacy mechanisms.
∗ This work was presented at the 34th Advances in Neural Information Processing Systems conference

(NeurIPS 2020) and an extended abstract appears in the conference proceedings volume 33 (CKS20). A
preprint is available at https://arxiv.org/abs/2004.00010. Authors are in alphabetical order.

This work was completed while CC and TS were at IBM Research – Almaden (CC as a Goldstine
Postdoctoral Fellow). GK is supported by an NSERC Discovery grant, a Compute Canada RRG grant, and
a University of Waterloo startup grant.

www.journalprivacyconfidentiality.org
DOI:10.29012/jpc.784

© C. Canonne, G. Kamath, and T. Steinke
Creative Commons (CC BY-NC-ND 4.0)

https://neurips.cc/Conferences/2020
https://neurips.cc/Conferences/2020
https://proceedings.neurips.cc//paper_files/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://arxiv.org/abs/2004.00010
https://www.journalprivacyconfidentiality.org
https://doi.org/10.29012/jpc.784
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 C. CANONNE, G. KAMATH, AND T. STEINKE

the function value. These are two of the most fundamental algorithms in differential privacy,
which are used as subroutines in almost all differentially private systems. For example,
differentially private algorithms for convex empirical risk minimization and deep learning
are based on adding noise to gradients (BST14; ACG+16).

However, the Laplace and Gaussian distributions are both continuous over the real
numbers. As such, it is not possible to even represent a sample from them on a finite
computer, much less produce such a sample. One might suppose that such issues are
purely of theoretical interest, and that they can be resolved in practice by simply using
standard floating-point arithmetic and representations. Unfortunately, this is not the case:
Mironov (Mir12) demonstrated that the näıve use of finite-precision approximations can
result in catastrophic failures of privacy. In particular, by examining the low-order bits of
the noisy output of the Laplace mechanism, the noiseless value can often be determined.1

Mironov demonstrated that this information allows the entire input dataset to be rapidly
reconstructed, while only a negligible privacy loss is recorded by the system. Despite this
demonstration, the flawed methods continue to appear in open source implementations of
differentially private mechanisms. This demonstrates a real need for us to provide safe and
practical solutions to enable the deployment of differentially private systems in real-world
privacy-critical settings. In this work, we carefully consider how to securely implement these
basic differentially private methods on finite computers that cannot faithfully represent real
numbers.

One solution to this problem involves sampling instead from a discrete distribution that
can be sampled on a finite computer. For many natural queries, the output of the function
to be computed is naturally discrete – e.g., counting how many records in a dataset satisfy
some predicate – and hence there is no loss in accuracy when adding discrete noise to it.
Otherwise, the function value must be rounded before adding noise.

The discrete Laplace distribution (a.k.a. two-sided geometric distribution) (GRS12;
BV19) is the natural discrete analogue of the continuous Laplace distribution. That is,

instead of a probability density of ε
2 ·e
−ε|x| at x ∈ R we have a probability mass of eε−1

eε+1 ·e
−ε|x|

at x ∈ Z. Akin to its continuous counterpart, the discrete Laplace distribution provides pure
(ε, 0)-differential privacy when added to a sensitivity-1 value and has many other desirable
properties.

The (continuous) Gaussian distribution has many advantages over the (continuous)
Laplace distribution (and also some disadvantages), making it better suited for many
applications. For example, the Gaussian distribution has lighter tails than the Laplace
distribution. In settings with a high degree of composition – i.e., answering many queries with
independent noise, rather than a single query – the scale (e.g., variance) of Gaussian noise
is also lower than the scale of Laplace noise required for a comparable privacy guarantee.
The privacy analysis under composition of Gaussian noise addition is typically simpler
and sharper; in particular, these privacy guarantees can be cleanly expressed in terms of
concentrated differential privacy (CDP) (DR16; BS16) and related variants of differential
privacy (Mir17; BDRS18; DRS19). (See Section 4 for further discussion.)

Thus, it is natural to wonder whether a discretization of the Gaussian distribution
retains the privacy and utility properties of the continuous Gaussian distribution, as is the
case for the Laplace distribution. In this paper, we show that this is indeed the case.

1We note that this attack is contingent on the specific sampling algorithm used to generate the Laplace
noise. Mironov’s attack is effective against the standard methods of sampling Laplace random variables, and
is practically evaluated against the PINQ system (McS09).

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 3

Definition 1.1 (Discrete Gaussian). Let µ, σ ∈ R with σ > 0. The discrete Gaussian
distribution with location µ and scale σ is denoted NZ

(
µ, σ2

)
. It is a probability distribution

supported on the integers and defined by

∀x ∈ Z, P
X←NZ(µ,σ2)

[X = x] =
e−(x−µ)

2/2σ2∑
y∈Z e

−(y−µ)2/2σ2 . (1.1)

Note that we exclusively consider µ ∈ Z; in this case, the distribution is symmetric
and centered at µ. This is the natural discrete analogue of the continuous Gaussian (which

has density 1√
2πσ2

· e−(x−µ)2/2σ2
at x ∈ R), and it arises in lattice-based cryptography (in a

multivariate form, which is believed to be hard to sample from) (GPV08; Reg09; Pei10; Ste17,
etc.).

1.1. Results. Our investigations focus on three aspects of the discrete Gaussian: privacy,
utility, and sampling. In summary, we demonstrate that the discrete Gaussian provides the
same level of privacy and utility as the continuous Gaussian. We also show that it can be
efficiently sampled on a finite computer, thus addressing the shortcomings of continuous
distributions discussed earlier. Along the way, we both prove and empirically demonstrate
a number of additional properties of the discrete Gaussian, which we believe will be of
interest and useful to those deploying it for privacy purposes. Notably, following the posting
of a previous version of this work (CKS20), the discrete Gaussian mechanism has been
implemented and integrated in the TopDown algorithm to protect the data collected in the
2020 US Census (USC21). We proceed to elaborate on our contributions and findings.

Privacy. The discrete Gaussian enjoys privacy guarantees which are almost identical to those
of the continuous Gaussian. More precisely, in Theorem 2.3, we show that adding noise
drawn from NZ

(
0, 1/ε2

)
to an integer-valued sensitivity-1 query (e.g., a counting query)

provides 1
2ε

2-concentrated differential privacy. This is the same guarantee attained by adding

a draw from N (0, 1/ε2). Furthermore, in Theorem 2.6, we provide tight bounds on the
discrete Gaussian’s approximate differential privacy guarantees. For large scales σ, the
discrete and continuous Gaussian have virtually the same privacy guarantee, although for
smaller σ, the effects of discretization result in one or the other having marginally stronger
privacy (depending on the parameters). Our results on privacy are presented in Section 2.

Utility. The discrete Gaussian attains the same or slightly better accuracy as the analogous
continuous Gaussian. Specifically, Corollary 3.2 shows that the variance of NZ

(
0, σ2

)
is at

most σ2, and that it also satisfies sub-Gaussian tail bounds comparable to N (0, σ2). We
show numerically that the discrete Gaussian is better than rounding the continuous Gaussian
to an integral value. Our results on utility are provided in Section 3.

Sampling. We can practically sample a discrete Gaussian on a finite computer. We present a
simple and efficient exact sampling procedure that only requires access to uniformly random
bits and does not involve any real-arithmetic operations or non-trivial function evaluations
(Algorithm 3). As there are previous methods (see, e.g., Karney’s algorithm (Kar16), which
was an inspiration for our work, and the more recent work of Du, Fan, and Wei (DFW22)),
we do not consider this to be one of our primary contributions. Nonetheless, we include
these results as we consider our methods to be simpler, and in order to make our paper

4 C. CANONNE, G. KAMATH, AND T. STEINKE

self-contained; we also provide open source code implementing our algorithm (Dis20). Our
results on how to sample are provided in Section 5.

We provide a thorough comparison between the discrete Gaussian and the discrete
Laplace distribution in Section 4. This includes statements of the privacy and utility
guarantees for the discrete Laplace, and discussing its performance under composition in
depth.

On a technical note, while the takeaway of many of our conclusions is that the discrete
and continuous Gaussian are qualitatively similar, we comment that such statements are
non-trivial to prove, in particular relying upon methods such as the Poisson summation
formula and Fourier analysis. For instance, even basic statements on the stability property
of Gaussians under linear combinations do not hold for the discrete counterpart, with their
approximate versions being highly involved to establish (see, e.g., (AR16)).

1.2. Related Work. As originally observed and demonstrated by Mironov (Mir12), näıve
implementations of the Laplace mechanism with floating-point arithmetic blatantly fail to
ensure differential privacy, or any form of privacy at all. As a remedy, Mironov introduced
the snapping mechanism, which serves as a safe replacement for the Laplace mechanism in
the floating-point setting. The snapping mechanism performs rounding and truncation on
top of the floating-point arithmetic. However, properly implementing and analyzing the
snapping mechanism can be involved (Cov19), due to the idiosyncrasies of floating-point
arithmetic. Furthermore, the snapping mechanism requires a compromise on privacy and
accuracy, relative to what is theoretically achievable. Our methods avoid floating-point
arithmetic entirely and do not compromise the privacy or accuracy guarantees.

Gazeau, Miller, and Palamidessi (GMP16) gave an alternate and more general analysis
of Mironov’s approach of rounding the output of an inexact sampling procedure.

We note that, to the best of our knowledge, there is currently no known explicit
attack against the Gaussian mechanism with floating-point arithmetic, and we consider this
an interesting open question. Mironov’s attack does not straightforwardly apply to this
setting, as Gaussian random variables are typically sampled using specialized methods. One
example is the celebrated Box-Muller transform (BM58), which takes two samples from
the uniform distribution on the interval [0, 1], and returns two samples from the standard
Normal distribution. A recent work of Holohan and Braghin (HB21) describes an attack
for the special case where both Normal samples output from this procedure are observed.
Jin, McMurtry, Rubinstein, and Ohrimenko (JMRO21) provide a range of attacks against
widely-used sampling procedures for Gaussian sampling (namely, the polar, Box–Muller, and
Ziggurat methods), demonstrating the vulnerability of these standard techniques.2 Crucially,
we emphasize that waiting for further attacks on the floating-point Gaussian mechanism to
be published before trying to address the problem would be dangerous. As always in critical
security applications, it is important to be proactive in defenses against likely attack vectors.

Ghosh, Roughgarden, and Sundarajan (GRS12) proposed and analyzed a discrete version
of the Laplace mechanism, which is also private on finite computers. However, this has

2The authors also provide a different type of attack against the implementation of discrete mechanisms,
including the discrete Laplace and (our proposed implementation of) the discrete Gaussian mechanism:
timing attacks, where the time taken to sample the noise is observed by the attacker. While this type of
attack is mostly relevant in settings where the mechanism is used in an online fashion, this highlights the
importance of carefully assessing the threat model before using any particular implementation. We discuss
this aspect in Section 5.4.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 5

heavier tails than the Gaussian and requires the addition of more noise (i.e., higher variance)
than the Gaussian in settings with a high degree of composition (i.e., many queries). We
provide a detailed comparison in Section 4.

Perhaps the closest distribution to the discrete Gaussian that has been considered for
differential privacy is the Binomial distribution. Dwork, Kenthapadi, McSherry, Mironov,
and Naor (DKM+06) gave a differential privacy analysis of Binomial noise addition, which
was improved by Agarwal, Suresh, Yu, Kumar, and McMahan (ASY+18).3 The advantage of
the Binomial is that it is amenable to distributed generation – i.e., a sum of Binomials with
the same bias parameter is also Binomial.4 The disadvantage of Binomial noise addition,
however, is that its privacy analysis is quite involved. One inherent reason for this is that
the analysis must compare the Binomial to a shifted Binomial, and these distributions have
different supports. If the observed output y is in the support of M(x) but not of M(x′)
(i.e., P [M(x′) = y] = 0), then the privacy loss is infinite; this failure probability must be
accounted for by the δ parameter of approximate (ε, δ)-differential privacy. In other words,
the Binomial mechanism is inherently an approximate differential privacy one (in comparison
to the stronger concentrated differential privacy attainable by the discrete Gaussian). For
large values of n, Binomial(n, p) provides guarantees comparable to N (0, np(1 − p)) or
NZ (0, np(1− p)). This matches the intuition, since Binomial(n, p) converges to a Gaussian
as n→∞ by the central limit theorem.

A concurrent and independent work (Goo20b) analyzed what is, effectively, a truncated
version of the discrete Gaussian. That work provides an almost identical sampling procedure,
but a very different privacy analysis. In particular, it shows that the truncated discrete
Gaussian is close to a Binomial distribution, which is, in turn, close to a rounded Gaussian.
Their privacy analysis is based on this closeness. Our analysis is more direct.

Subsequent to our work, the Skellam distribution, sampled by taking the difference
of two Poisson random variables, has also received study in the context of differential
privacy (AKL21; BZX+22). This discrete distribution may serve as an alternative to the
discrete Gaussian in certain settings, see (AKL21) for more discussion.

Going beyond noise addition, it has been shown that private histograms (BV19) and
selection (i.e., the exponential mechanism) (Ilv20) can be implemented on finite computers.
(Both of these results are for pure (ε, 0)-differential privacy.) We remark that our noise
addition methods can also form the basis of an implementation of these methods. For
example, instead of the exponential mechanism, we can implement the “Report Noisy Max”
algorithm (DR14), which uses Laplace or Exponential (MS20) or Gumbel (Ada13) noise to
perform the same task of selection. McKenna and Sheldon (MS20) show how to sample
from the exponential mechanism or the permute-and-flip mechanism using only uniform
sampling from a discrete set and sampling from Bernoulli(exp(−x)) for some x with a simple
expression (for which we provide a procedure).

To the best of our knowledge, there has been no work on implementing an analogue of
Gaussian noise addition on finite computers. An obvious approach would be to round the
output of some inexact sampling procedure. Properly analyzing this may be difficult, due
to the fact that the underlying inexact Gaussian sampling procedure will be more complex

3Dinur and Nissim (DN03) also analyzed the privacy properties of Binomial noise addition, but this
predates the definition of differential privacy.

4In subsequent work, Kairouz, Liu, and Steinke (KLS21) show that the discrete Gaussian is also amenable
to distributed generation. Sums of discrete Gaussians are very close to a discrete Gaussian.

6 C. CANONNE, G. KAMATH, AND T. STEINKE

than the equivalent for Laplace. Furthermore, in Section 3, we show empirically that our
approach yields better utility than rounding.

In Proposition 2.11 and Corollary 2.12, we give a conversion from Rényi and concentrated
differential privacy to approximate differential privacy. Asoodeh, Liao, Calmon, Kosut,
and Sankar (ALC+20) provide an optimal conversion from Rényi differential privacy to
approximate differential privacy as well as some approximations that subsume ours. Their
optimal result is, by definition, tighter than ours (but only slightly) at the expense of being
more complicated and less numerically stable. See Section 2.3.

Another of our secondary contributions is a simple and efficient method for sampling
from a discrete Gaussian or discrete Laplace; see Section 5. Karney (Kar16) and Du, Fan,
and Wei (DFW22) also provide such algorithms. We consider our method to be simpler.
In particular, our method keeps all arithmetic within the integers or the rational numbers,
where exact arithmetic is possible. In contrast, Karney’s method still involves representing
real numbers, but this can be carefully implemented on a finite computer using a flexible
level of precision and lazy evaluation – that is, although a uniform sample from [0, 1] requires
an infinite number of bits to represent, only a finite (but a priori unbounded) number of these
bits are actually needed and these can be sampled when needed. There are also methods for
approximate sampling (ZSS20), but our interest is in exact sampling.

Finally, we remark that (a multivariate version of) the discrete Gaussian has been
extensively studied in the context of lattice-based cryptography (GPV08; Reg09; Pei10; Ste17,
etc.).

2. Privacy

For completeness, we state the definitions of differential privacy (DMNS06; DKM+06) and
concentrated differential privacy (DR16; BS16).

Definition 2.1 (Pure/Approximate Differential Privacy). A randomized algorithmM : X n →
Y satisfies (ε, δ)-differential privacy if, for all x, x′ ∈ X n differing on a single element and all
events E ⊂ Y , we have P [M(x) ∈ E] ≤ eε · P [M(x′) ∈ E] + δ.

The special case of (ε, 0)-differential privacy is referred to as pure or pointwise ε-
differential privacy, whereas, for δ > 0, (ε, δ)-differential privacy is referred to as approximate
differential privacy.

Definition 2.2 (Concentrated Differential Privacy). A randomized algorithm M : X n → Y
satisfies 1

2ε
2-concentrated differential privacy if, for all x, x′ ∈ X n differing on a single

element and all α ∈ (1,∞), we have Dα (M(x)∥M(x′)) ≤ 1
2ε

2α, where Dα (P∥Q) =
1

α−1 log
(∑

y∈Y P (y)αQ(y)1−α
)

is the Rényi divergence of order α of the distribution P

from the distribution Q.56

5We take log to be the natural logarithm – i.e., base e ≈ 2.718.
6We use the parameterization 1

2
ε2-concentrated differential privacy instead of ρ-concentrated differential

privacy as in the original paper. This is because ε is a more familiar privacy parameter and, by setting
ρ = 1

2
ε2, we put it on the same “scale” as pure or approximate differential privacy. We revert to ρ where it

might otherwise be confusing, e.g., in Corollary 2.12 where we simultaneously discuss concentrated differential
privacy and approximate differential privacy.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 7

Note that (ε, 0)-differential privacy implies 1
2ε

2-concentrated differential privacy and
1
2ε

2-concentrated differential privacy implies
(
1
2ε

2 + ε ·
√

2 log(1/δ), δ
)
-differential privacy

for all δ > 0 (BS16).

2.1. Concentrated Differential Privacy. In this section, we prove our main result on
concentrated differential privacy (CDP), showing that the discrete Gaussian provides the
same CDP guarantees as the continuous one.

Theorem 2.3 (Discrete Gaussian Satisfies Concentrated Differential Privacy). Let ∆, ε > 0.
Let q : X n → Z satisfy |q(x) − q(x′)| ≤ ∆ for all x, x′ ∈ X n differing on a single entry.
Define a randomized algorithm M : X n → Z by M(x) = q(x) + Y where Y ← NZ

(
0,∆2/ε2

)
.

Then M satisfies 1
2ε

2-concentrated differential privacy.

Theorem 2.3 follows from Proposition 2.4 and Definition 2.2 .

Proposition 2.4. Let σ, α ∈ R with σ > 0 and α ≥ 1. Let µ, ν ∈ Z. Then

Dα

(
NZ
(
µ, σ2

)∥∥NZ
(
ν, σ2

))
≤ (µ− ν)2

2σ2
· α. (2.1)

Furthermore, this inequality is an equality whenever α · (µ− ν) is an integer.

It is worth noting that the continuous Gaussian satisfies the same concentrated differential
privacy bound, with equality for all Rényi divergence parameters: Dα

(
N (µ, σ2)

∥∥N (ν, σ2)
)
=

(µ−ν)2
2σ2 · α for all α, µ, ν, σ ∈ R with σ > 0. Thus we see that the privacy guarantee of the

discrete Gaussian is essentially identical to that of the continuous Gaussian with the same
parameters. To prove Proposition 2.4, we use the following well-known (e.g., (Reg09))
technical lemma. Throughout, we let i =

√
−1 denote the imaginary unit.

Lemma 2.5. Let µ, σ ∈ R with σ > 0. Then∑
x∈Z

e−(x−µ)
2/2σ2 ≤

∑
x∈Z

e−x
2/2σ2

. (2.2)

Proof. Let f : R→ R be defined by f(x) = e−x
2/2σ2

. Define its Fourier transform f̂ : R→ R
by

f̂(y) =

∫
R
f(x)e−2πixydx =

√
2πσ2 · e−2π2σ2y2 ,

where i2 = −1. By the Poisson summation formula (poi; Wei), for every t ∈ R, we have∑
x∈Z

f(x+ t) =
∑
y∈Z

f̂(y) · e2πiyt.

(This is the Fourier series representation of the 1-periodic function g : R → R given by

g(t) =
∑

x∈Z e
−(x+t)2/2σ2

.) In particular, f(x) > 0 and f̂(x) > 0 for all x ∈ R. From this
and the triangle inequality, we get∑

x∈Z
e−(x−µ)

2/2σ2
=
∑
x∈Z

f(x− µ) =

∣∣∣∣∣∑
x∈Z

f(x− µ)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
y∈Z

f̂(y)e−2πiyµ

∣∣∣∣∣∣
≤
∑
y∈Z

∣∣∣f̂(y)e−2πiyµ∣∣∣ =∑
y∈Z

f̂(y) =
∑
x∈Z

f(x) =
∑
x∈Z

e−x
2/2σ2

,

proving the lemma.

8 C. CANONNE, G. KAMATH, AND T. STEINKE

Proof of Proposition 2.4. Without loss of generality, ν = 0 and α > 1. Recalling that µ ∈ Z,
we have

e(α−1)Dα(NZ(µ,σ2)∥NZ(0,σ2)) =
∑
x∈Z

P
X←NZ(µ,σ2)

[X = x]α · P
X←NZ(0,σ2)

[X = x]1−α

=
∑
x∈Z

(
e−(x−µ)

2/2σ2∑
y∈Z e

−(y−µ)2/2σ2

)α

·

(
e−x

2/2σ2∑
y∈Z e

−y2/2σ2

)1−α

=

∑
x∈Z exp

(
−x2+2αµx−αµ2

2σ2

)
∑

y∈Z e
−y2/2σ2

= eα(α−1)µ
2/2σ2 ·

∑
x∈Z e

−(x−αµ)2/2σ2∑
y∈Z e

−y2/2σ2

≤ eα(α−1)µ
2/2σ2

,

where the final inequality follows from Lemma 2.5. The inequality is an equality when
αµ ∈ Z.

We remark that, like its continuous counterpart, the discrete Gaussian can also be
analysed in the setting where the scale parameter σ2 is data dependent (BDRS18). This
arises in the application of smooth sensitivity (NRS07; BS19).

2.2. Approximate Differential Privacy. In this section, we prove our main result on
approximate differential privacy; namely, a tight bound on the privacy parameters achieved
by the discrete Gaussian.

Theorem 2.6 (Discrete Gaussian Satisfies Approximate Differential Privacy). Let ∆, σ, ε > 0.
Let q : X n → Z satisfy |q(x) − q(x′)| ≤ ∆ for all x, x′ ∈ X n differing on a single entry.
Define a randomized algorithm M : X n → Z by M(x) = q(x) + Y where Y ← NZ

(
0, σ2

)
.

Then M satisfies (ε, δ)-differential privacy for

δ = P
Y←NZ(0,σ2)

[
Y >

εσ2

∆
− ∆

2

]
− eε · P

Y←NZ(0,σ2)

[
Y >

εσ2

∆
+

∆

2

]
. (2.3)

Furthermore, this is the smallest possible value of δ for which this is true.

This privacy guarantee matches that of the continuous Gaussian: If we replace all occurrences
of the discrete Gaussian with the continuous Gaussian above, then the same result holds
(BW18, Thm. 8). Empirically, these guarantees are very close.

We also provide some analytic upper bounds (proofs can be found at the end of this

section): First, for ∆ = 1 we have δ ≤ e−⌊εσ
2⌉2/2σ2

/
√
2πσ2, where ⌊·⌉ denotes rounding to

the nearest integer. Furthermore, if ε > ∆2

2σ2 and εσ2

∆ ±
∆
2 /∈ N, then

δ ≤ P
X←N (0,σ2)

[
X >

⌊
εσ2

∆
− ∆

2

⌋]
−
(
1− 1√

2πσ2 + 1

)
eε P

X←N (0,σ2)

[
X >

⌊
εσ2

∆
+

∆

2

⌋]
.

(2.4)
In Figure 1, we empirically compare the optimal δ (given by Theorem 2.6) to the bound
attained by the corresponding continuous Gaussian, as well as this analytic upper bound (2.4),
the standard upper bound entailed by concentrated differential privacy, and an improved
upper bound via concentrated differential privacy (Corollary 2.12). We see that the upper

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 9

bounds are reasonably tight. The discrete and continuous Gaussian attain almost identical
guarantees for large σ, but the discretization creates a small difference that becomes apparent
for small σ.

Figure 1: Comparison of approximate (ε, δ)-differential privacy guarantees (δ as a function
of ε). The solid blue line is the optimal bound given by Theorem 2.6, while the
dotted red line is the bound for the corresponding continuous Gaussian. The
dashed green line is the analytic upper bound from (2.4). Finally, the purple line
is the standard bound from CDP, and the dash-and-dotted lime green corresponds
to the improved CDP bound from Corollary 2.12.

To prove Theorem 2.6, we introduce the privacy loss random variable (DRV10; DR16;
BS16) and relate it to approximate differential privacy.7

Definition 2.7 (Privacy Loss Random Variable). Let M : X n → Y be a randomized algo-

rithm. Let x, x′ ∈ X n be neighbouring inputs. Define f : Y → R by f(y) = log
(

P[M(x)=y]
P[M(x′)=y]

)
.8

Let Z = f(M(x)). That is, Z ∈ R is the random variable generated by applying the function
f to the output of M(x). (The randomness of Z comes entirely from the algorithm M .) Then
Z is called the privacy loss random variable and is denoted Z ← PrivLoss (M(x)∥M(x′)).

Concentrated differential privacy can be formulated in terms of the moment generating
function of the privacy loss (BS16). Specifically, for any M : X n → Y, any x, x′ ∈ X n, and
any α ∈ (1,∞), we have

Dα

(
M(x)

∥∥M(x′)
)
=

1

α− 1
log

(
E

Z←PrivLoss(M(x)∥M(x′))

[
e(α−1)Z

])
(2.5)

7In the information theory literature, the term “relative information spectrum” is sometimes used for the
distribution of what we call the privacy loss random variable (SV16; Liu18).

8More formally, f is the logarithm of the Radon-Nikodym derivative of the distribution of M(x) with
respect to the distribution of M(x′). If the distribution of M(x) is not absolutely continuous with respect to
M(x′), then the privacy loss random variable is undefined.

10 C. CANONNE, G. KAMATH, AND T. STEINKE

Approximate differential privacy can also be characterized via the privacy loss as follows.
This characterization is implicit in the work of Bun and Steinke (BS16, Lemma B.2) and
is explicit in the work of Meiser and Mohammadi (MM18, Lemma 1) (see also (Goo20a,
Observation 2) and references therein).

Lemma 2.8. Let ε, δ ≥ 0. Let M : X n → Y be a randomized algorithm. Then M satisfies
(ε, δ)-differential privacy if and only if

δ ≥ E
Z←PrivLoss(M(x)∥M(x′))

[
max{0, 1− eε−Z}

]
(2.6)

= P
Z←PrivLoss(M(x)∥M(x′))

[Z > ε]− eε · P
Z′←PrivLoss(M(x′)∥M(x))

[
−Z ′ > ε

]
(2.7)

=

∫ ∞
ε

eε−z P
Z←PrivLoss(M(x)∥M(x′))

[Z > z]dz (2.8)

for all x, x′ ∈ X n differing on a single element.

Observe that, by Markov’s inequality, for all α > 1, it suffices to set

δ = P
Z←PrivLoss(M(x)∥M(x′))

[Z > ε]

≤ e−(α−1)ε · E
Z←PrivLoss(M(x)∥M(x′))

[
e(α−1)Z

]
= e(α−1)(Dα(M(x)∥M(x′))−ε). (2.9)

This is the usual expression that is used to convert bounds on the privacy loss or Rényi
divergence into approximate differential privacy. Lemma 2.8 and Proposition 2.11 represent
an improvement on this.

Proof. Fix neighbouring inputs x, x′ ∈ X n. Let f : Y → R be as in Definition 2.7. For
notational simplicity, let Y = M(x) and Y ′ = M(x′) and Z = f(Y) and Z ′ = −f(Y ′). This
is equivalent to Z ← PrivLoss (M(x)∥M(x′)) and Z ′ ← PrivLoss (M(x′)∥M(x)). Our first
goal is to prove that

sup
E⊂Y

P [Y ∈ E]− eεP
[
Y ′ ∈ E

]
= E

[
max{0, 1− eε−Z}

]
.

For any E ⊂ Y , we have

P
[
Y ′ ∈ E

]
= E

[
I[Y ′ ∈ E]

]
= E

[
I[Y ∈ E] · e−f(Y)

]
.

This is because ef(y) = P[Y=y]
P[Y ′=y] .

9

Thus, for all E ⊂ Y , we have

P [Y ∈ E]− eεP
[
Y ′ ∈ E

]
= E

[
I[Y ∈ E] · (1− eε−f(Y))

]
.

Now it is easy to identify the worst event as E = {y ∈ Y : 1− eε−f(y) > 0}. Thus

sup
E⊂Y

P [Y ∈ E]−eεP
[
Y ′ ∈ E

]
= E

[
I[1− eε−f(Y) > 0] · (1− eε−f(Y))

]
= E

[
max{0, 1− eε−Z}

]
.

9Here we abuse notation: We use notation that only is well-defined for discrete random variables. However,
the result holds in general under appropriate assumptions.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 11

Alternatively, since the worst event is equivalently E = {y ∈ Y : f(y) > ε}, we have

sup
E⊂Y

P [Y ∈ E]−eεP
[
Y ′ ∈ E

]
= P [f(Y) > ε]−eεP

[
f(Y ′) > ε

]
= P [Z > ε]−eεP

[
−Z ′ > ε

]
.

It only remains to show that

E
[
max{0, 1− eε−Z}

]
=

∫ ∞
ε

eε−zP [Z > z]dz.

This follows from integration by parts: Let u(z) = P [Z > z] and v(z) = 1 − eε−z and
w(z) = u(z) · v(z). Then

E
[
max{0, 1− eε−Z}

]
=

∫ ∞
ε

v(z) · u′(z)dz =

∫ ∞
ε

(
w′(z)− v′(z) · u(z)

)
dz

= lim
z→∞

w(z)− w(ε) +

∫ ∞
ε

eε−zP [Z > z]dz.

Now w(ε) = u(ε) · (1− eε−ε) = 0 and 0 ≤ limz→∞w(z) ≤ limz→∞ P [Z > z] = 0, as required.

Proof of Theorem 2.6. We will use Lemma 2.8, Equation 2.7. Thus our main task is to
determine the distribution of the privacy loss random variable.

Fix neighbouring inputs x, x′ ∈ X n. Without loss of generality, we may assume that
q(x) = 0 and q(x′) > 0. Now we have q(x′) ≤ ∆. Let f : Y → R be as in Definition 2.7.
For notational simplicity, let Y = M(x) ∼ NZ

(
0, σ2

)
and Y ′ = M(x′) ∼ NZ

(
q(x′), σ2

)
and Z = f(Y) and Z ′ = −f(Y ′). This is equivalent to Z ← PrivLoss (M(x)∥M(x′)) and
Z ′ ← PrivLoss (M(x′)∥M(x)). We must show that

P [Z > ε]− eεP
[
−Z ′ > ε

]
≤ P

Y←NZ(0,σ2)

[
Y >

εσ2

∆
− ∆

2

]
− eε · P

Y←NZ(0,σ2)

[
Y >

εσ2

∆
+

∆

2

]
For y ∈ Y, we have

f(y) = log

(
P [Y = y]

P [Y ′ = y]

)
= log

(
e−(y−q(x))

2/2σ2

e−(y−q(x′))2/2σ2

)
=

(y − q(x′))2 − y2

2σ2
=

q(x′) · (q(x′)− 2y)

2σ2
.

Thus, for all y ∈ Y,

f(y) > ε ⇐⇒ −y >
σ2ε

q(x′)
− q(x′)

2
.

We note that Y and −Y and Y ′− q(x′) and q(x′)−Y ′ all have the same distribution. Hence

P [Z > ε] = P [f(Y) > ε] = P
[
−Y >

σ2ε

q(x′)
− q(x′)

2

]
= P

[
Y >

σ2ε

q(x′)
− q(x′)

2

]
and

P
[
−Z ′ > ε

]
= P

[
−Y ′ > σ2ε

q(x′)
− q(x′)

2

]
= P

[
Y − q(x′) >

σ2ε

q(x′)
− q(x′)

2

]
= P

[
Y >

σ2ε

q(x′)
+

q(x′)

2

]
.

12 C. CANONNE, G. KAMATH, AND T. STEINKE

Proofs of the analytical bounds. We now provide the proofs of the two aforementioned
analytical bounds for (ε, δ)-differential privacy our theorem readily implies.

Lemma 2.9. In the setting of Theorem 2.6, for ∆ = 1, we have δ ≤ e−⌊εσ
2⌉2/2σ2

/
√
2πσ2 ,

where ⌊·⌉ denotes rounding to the nearest integer. More generally, δ ≤
∑⌈εσ2/∆+∆/2⌉

k=⌈εσ2/∆−∆/2⌉
e−k2/2σ2

√
2πσ2

Proof. By Theorem 2.6, we have

δ = P
Y←NZ(0,σ2)

[
Y >

εσ2

∆
− ∆

2

]
− eε · P

Y←NZ(0,σ2)

[
Y >

εσ2

∆
+

∆

2

]
≤ P

Y←NZ(0,σ2)

[
Y >

εσ2

∆
− ∆

2

]
− P

Y←NZ(0,σ2)

[
Y >

εσ2

∆
+

∆

2

]

=

⌈εσ2/∆+∆/2⌉∑
k=⌈εσ2/∆−∆/2⌉

P
Y←NZ(0,σ2)

[Y = k]

and the result now follows from the bound on the normalization constant from Fact 3.4.

Lemma 2.10. In the setting of Theorem 2.6, if ε > ∆2

2σ2 and εσ2

∆ + ∆
2 ,

εσ2

∆ −
∆
2 /∈ N then

δ ≤ P
X←N (0,σ2)

[
X >

⌊
εσ2

∆
− ∆

2

⌋]
−
(
1− 1√

2πσ2 + 1

)
eε P

X←N (0,σ2)

[
X >

⌊
εσ2

∆
+

∆

2

⌋]
.

(2.10)

Proof. Let ε > ∆2

2σ2 be such that εσ2

∆ + ∆
2 /∈ N, and set M(ε, σ) :=

⌈
εσ2/∆−∆/2

⌉
and

m(ε, σ) :=
⌊
εσ2/∆+∆/2

⌋
. Then, by Proposition 3.10,

P
X←NZ(0,σ2)

[
X >

εσ2

∆
− ∆

2

]
= P

X←NZ(0,σ2)
[X ≥M(ε, σ)] ≤ P

X←N (0,σ2)
[X ≥M(ε, σ)− 1]

≤ P
X←N (0,σ2)

[
X ≥

⌊
εσ2

∆
− ∆

2

⌋]
.

Conversely, by a comparison series-integral, we can easily show that, for any integer m,
∞∑

n=m

e−n
2/(2σ2) =

∞∑
n=m

∫ n+1

n
e−n

2/(2σ2) dx ≥
∫ ∞
m

e−x
2/(2σ2) dx =

√
2πσ2 P

X←N (0,σ2)
[X ≥ m]

which, combined with Fact 3.4 on the normalization constant of the discrete Gaussian, yields

P
X←NZ(0,σ2)

[
X >

εσ2

∆
+

∆

2

]
= P

X←NZ(0,σ2)
[X ≥ m(ε, σ)] ≥ 1

1 + 1√
2πσ2

P
X←N (0,σ2)

[X ≥ m(ε, σ)].

The result then follows from Theorem 2.6.

2.3. Converting Concentrated Differential Privacy to Approximate Differential
Privacy. We have stated guarantees for both concentrated differential privacy (Theorem
2.3) and approximate differential privacy (Theorem 2.6). Now we show how to convert from
the former to the latter (Corollary 2.12). This is particularly useful if the discrete Gaussian
is being used repeatedly and we want to provide a privacy guarantee for the composition
– concentrated differential privacy has cleaner composition guarantees than approximate

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 13

differential privacy. We include this result for completeness; this result was recently proved
independently (ALC+20, Lem. 1, Eq. 20).

We start with a conversion from Rényi differential privacy to approximate differential
privacy.

Proposition 2.11. Let M : X n → Y be a randomized algorithm. Let α ∈ (1,∞) and ε ≥ 0.
Suppose Dα (M(x)∥M(x′)) ≤ τ for all x, x′ ∈ X n differing in a single entry.10 Then M is
(ε, δ)-differentially private for

δ =
e(α−1)(τ−ε)

α− 1
·
(
1− 1

α

)α

≤ e(α−1)(τ−ε)−1

α− 1
. (2.11)

In contrast, the standard bound (DRV10; DR16; BS16; Mir17) is δ ≤ e(α−1)(τ−ε). Note

that e(α−1)(τ−ε)

α−1 ·
(
1− 1

α

)α
= e(α−1)(τ−ε)

α ·
(
1− 1

α

)α−1
. Thus Proposition 2.11 is strictly better

than the standard bound for α > 1. Equation 2.11 can be rearranged to

ε = τ +
log(1/δ) + (α− 1) log(1− 1/α)− log(α)

α− 1
. (2.12)

Proof. Fix neighbouring x, x′ ∈ X n and let Z ← PrivLoss (M(x)∥M(x′)). We have

E
[
e(α−1)Z

]
= e(α−1)Dα(M(x)∥M(x′)) ≤ e(α−1)τ .

By Lemma 2.8, our goal is to prove that δ ≥ E
[
max{0, 1− eε−Z}

]
. Our approach is to pick

c > 0 such that max{0, 1− eε−z} ≤ c · e(α−1)z for all z ∈ R. Then

E
[
max{0, 1− eε−Z}

]
≤ E

[
c · e(α−1)Z

]
≤ c · e(α−1)τ .

We identify the smallest possible value of c:

c = sup
z∈R

max{0, 1− eε−z}
e(α−1)z

= sup
z∈R

ez−α·z − eε−α·z = sup
z∈R

f(z),

where f(z) = ez−α·z − eε−α·z. We have

f ′(z) = ez−αz(1− α)− eε−αz(−α) = e−αz(αeε − (α− 1)ez).

Clearly f ′(z) = 0 ⇐⇒ ez = α
α−1e

ε ⇐⇒ z = ε− log(1− 1/α). Thus

c = f(ε− log(1− 1/α))

=

(
α

α− 1
eε
)1−α

− eε ·
(

α

α− 1
eε
)−α

=

(
α

α− 1
eε − eε

)
·
(
α− 1

α
· e−ε

)α

=
eε

α− 1
·
(
1− 1

α

)α

· e−αε.

Thus

E
[
max{0, 1− eε−Z}

]
≤ eε

α− 1
·
(
1− 1

α

)α

· e−αε · e(α−1)τ =
e(α−1)(τ−ε)

α− 1
·
(
1− 1

α

)α

= δ.

10This assumption is the definition of (α, τ)-Rényi differential privacy (Mir17).

14 C. CANONNE, G. KAMATH, AND T. STEINKE

Asoodeh, Liao, Calmon, Kosut, and Sankar (ALC+20) provide an optimal conversion
from Rényi differential privacy to approximate differential privacy – i.e., an optimal version
of Proposition 2.11. Specifically, the optimal bound is

δ = inf
{
δ̂ ∈ [0, 1] : ∀p ∈ (δ̂, 1) pα(p− δ̂)1−α + (1− p)α(eε − p+ δ̂)1−α ≤ e(α−1)(τ−ε)

}
.

(2.13)
Clearly, the expression in Proposition 2.11 is simpler than this.

By taking the infimum over all divergence parameters α, Proposition 2.11 entails the
following conversion from concentrated differential privacy to approximate differential privacy.

Corollary 2.12. Let M : X n → Y be a randomized algorithm satisfying ρ-concentrated
differential privacy. Then M is (ε, δ)-differentially private for any ε ≥ 0 and

δ = inf
α∈(1,∞)

e(α−1)(αρ−ε)

α− 1
·
(
1− 1

α

)α

≤ inf
α∈(1,∞)

e(α−1)(αρ−ε)−1

α− 1
. (2.14)

Corollary 2.12 should be contrasted with the standard bound (DRV10; DR16; BS16;
Mir17) of

δ = inf
α∈(1,∞)

e(α−1)(αρ−ε) = e−(ε−ρ)
2/4ρ, (2.15)

which holds when ε ≥ ρ > 0. Bun and Steinke (BS16) prove an intermediate bound of

δ = 2
√
πρ · eε · P

X←N (0,1)

[
X >

ε+ ρ√
2ρ

]
. (2.16)

Efficient computation of δ. For the looser expression in Corollary 2.12, we can analytically
find an optimal α. However, we can efficiently compute a tighter numerical bound: The
equality in Equation 2.14 is equivalent to

δ = inf
α∈(1,∞)

eg(α) where g(α) = (α− 1)(αρ− ε) + (α− 1) · log(1− 1/α)− log(α). (2.17)

We have
g′(α) = (2α− 1)ρ− ε+ log(1− 1/α) (2.18)

and

g′′(α) = 2ρ+
1

α(α− 1)
> 0. (2.19)

Since g is a smooth convex function with11

g′
(
ε+ ρ

2ρ

)
= 0 + log

(
ε− ρ

ε+ ρ

)
< 0 (2.20)

and

g′
(
max

{
ε+ ρ+ 1

2ρ
, 2

})
≥ 1− log 2 > 0, (2.21)

it has a unique minimizer α∗ ∈
(
ε+ρ
2ρ ,max{ ε+ρ+1

2ρ , 2}
)
. We can find the minimizer α∗ by

conducting a binary search over the interval
(
ε+ρ
2ρ ,max{ ε+ρ+1

2ρ , 2}
)
. That is, we want to find

α∗ such that g′(α∗) = 0; if α < α∗, we have g′(α) < 0 and, if α > α∗, we have g′(α) > 0.

11Here we assume ε > ρ, which is the setting of interest.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 15

2.4. Sharp Approximate Differential Privacy Bounds for Multivariate Noise. Next
we consider adding independent discrete Gaussians to a multivariate function. We begin
with a concentrated differential privacy bound:

Theorem 2.13 (Multivariate Discrete Gaussian Satisfies Concentrated Differential Privacy).
Let σ1, · · · , σd > 0 and ε > 0. Let q : X n → Zd satisfy

∑
j∈[d](qj(x)− qj(x

′))2/σ2
j ≤ ε2 for

all x, x′ ∈ X n differing on a single entry. Define a randomized algorithm M : X n → Zd by

M(x) = q(x) + Y where Yj ← NZ

(
0, σ2

j

)
independently for all j ∈ [d]. Then M satisfies

1
2ε

2-concentrated differential privacy.

Theorem 2.13 follows from Proposition 2.4, composition of concentrated differential privacy,
and Definition 2.2. If σ1 = σ2 = · · · = σd, then the concentrated differential privacy
guarantee depends only on the sensitivity of q in the Euclidean norm; if the σjs are different,
then it is a weighted Euclidean norm. Note that we only consider multivariate Gaussians
with independent coordinates.

It is possible to obtain an approximate differential privacy guarantee for the multivariate
discrete Gaussian from Theorem 2.13 and Corollary 2.12. While this bound is reasonably
tight, we will now give an exact bound:

Theorem 2.14. Let σ1, · · · , σd > 0. Let Yj ← NZ

(
0, σ2

j

)
independently for each j ∈ [d].

Let q : X n → Zd. Define a randomized algorithm M : X n → Zd by M(x) = q(x) + Y . Let
ε, δ > 0. Then M is (ε, δ)-differentially private if, and only if, for all x, x′ ∈ X n differing
on a single entry, we have

δ ≥ E [max {0, 1− exp (ε− Z)}] (2.22)

= P [Z > ε]− eε · P [Z < −ε] (2.23)

=

∫ ∞
ε

eε−z · P [Z > z] dz, (2.24)

where

Z :=
d∑

j=1

(q(x)j − q(x′)j)
2 + 2(q(x)j − q(x′)j) · Yj

2σ2
j

. (2.25)

Proof. Fix neighbouring x, x′ ∈ X n. Without loss of generality, we may assume q(x) = 0.
Following the proof of Theorem 2.6, we will apply Lemma 2.8, which requires understanding
the privacy loss random variable.

16 C. CANONNE, G. KAMATH, AND T. STEINKE

Let f : Zd → R be as in Definition 2.7. That is,

f(y) = log

(
P [M(x) = y]

P [M(x′) = y]

)

=
d∑

j=1

log

 P
Yj←NZ(0,σ2

j)
[q(x)j + Yj = yj]

P
Yj←NZ(0,σ2

j)
[q(x′)j + Yj = yj]

=

d∑
j=1

−y2j + (yj − q(x′)j)
2

2σ2
j

=

d∑
j=1

q(x′)2j − 2yj · q(x′)j
2σ2

j

.

Then the privacy loss Z ← PrivLoss (M(x)∥M(x′)) is given by

Z = f(Y) =
d∑

j=1

q(x′)2j − 2q(x′)jYj

2σ2
j

.

Substituting this expression into Equations 2.6 and 2.8 yields Equations 2.22 and 2.24
respectively.

Next we look at Z ′ ← PrivLoss (M(x′)∥M(x)), which is given by

Z ′ = −f(q(x′) + Y) = −
d∑

j=1

q(x′)2j − 2q(x′)j(Yj + q(x′)j)

2σ2
j

=
d∑

j=1

q(x′)2j + 2q(x′)jYj

2σ2
j

.

Noting that each Yj has a symmetric distribution, we see that Z ′ has the same distribution
as Z. Substituting these expressions into Equation 2.7 yields Equation 2.23.

Theorem 2.14 gives three equivalent expressions for the approximate differential privacy
guarantee of the multivariate discrete Gaussian. All of these expressions are in terms of the
privacy loss random variable Z ← PrivLoss (M(x)∥M(x′)). We now sketch some algorithmic
and analysis details which may be of use to practitioners interested in evaluating these
expressions. Similar algorithms for privacy accounting have been developed (KJPH20;
Goo20a; ZDW21) and the following approach could be combined with these frameworks.

(1) Direct evaluation of the expressions is often impractical. Computing the distribution of
Z entails evaluating an infinite sum. Fortunately the terms decay rapidly, so the sum
can be truncated, but this still leaves a number of terms that grows exponentially in the
dimensionality d. Thus we must find more effective ways to evaluate the expressions.

(2) The approach underlying concentrated differential privacy is to consider the moment

generating function e(α−1)Dα(M(x)∥M(x′)) = E
[
e(α−1)Z

]
. This provides reasonably tight

upper bounds on the approximate differential privacy guarantees. However, this approach
is not suitable for numerically computing exact bounds (McC94).

(3) Instead of the moment generating function, we consider the characteristic function:

Let σ1, · · · , σd > 0. Let Yj ← NZ

(
0, σ2

j

)
independently for each j ∈ [d]. Let µ =

q(x)− q(x′) ∈ Zd and Z :=
∑d

j=1

µ2
j+2µj ·Yj

2σ2
j

. The characteristic function of the discrete

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 17

Gaussian can be expressed two ways. For t ∈ R and all j ∈ [d], we have

E
[
eitYj

]
=

∑
y∈Z e

ity−y2/2σ2
j∑

y∈Z e
−y2/2σ2

j

(2.26)

=

∑
u∈Z e

−(t−2πu)2σ2
j /2∑

u∈Z e
−(2πu)2σ2

j /2
. (2.27)

The equivalence of the second expression (2.27) follows from the Poisson summation
formula. When 2π2σ2

j > 1/2σ2
j , then the second expression converges more rapidly;

otherwise the first expression converges faster. In either case, accurately evaluating the
characteristic function of the discrete Gaussian is easy.

It is then possible to compute the characteristic function of the privacy loss:

E
[
eitZ

]
=

d∏
j=1

e
it

µ2j

2σ2
j · E

[
e
it

µj

σ2
j

Yj

] . (2.28)

(4) Since the discrete Gaussian is symmetric about 0, its characteristic function is real-valued.
Since the discrete Gaussian is supported on the integers, its characteristic function is
periodic: E

[
ei(t+2π)Yj

]
= E

[
eitYj

]
for all t ∈ R and all j ∈ [d].

(5) Assume there exists some γ > 0 such that, for all j ∈ [d], there exists v ∈ Z satisfying
1/σ2

j = γ · v. This assumption holds if σ2
j is rational for all j ∈ [d].

Under this assumption the privacy loss is always an integer multiple of γ – i.e.,
P [Z ∈ γZ] = 1. Consequently the characteristic function of the privacy loss is also

periodic – i.e., E
[
ei(t+2π/γ)Z

]
= E

[
eitZ

]
for all t ∈ R.

(6) It is possible to compute the probability mass function of the privacy loss from the
characteristic function:

∀z ∈ γZ P [Z = z] =
γ

2π

∫ 2π/γ

0
e−itz · E

[
eitZ

]
dt. (2.29)

This can form the basis of an algorithm for computing the guarantee of Theorem 2.13:
The characteristic function can be easily computed from Equations 2.26, 2.27, and
2.28 and then we numerically integrate it according to Equation 2.29 to compute the
probability distribution of the privacy loss and finally we substitute this into Equation
2.22.

The downside of this approach is that (i) it requires numerical integration and (ii) it
only gives us the probabilities one at a time. Both of these downsides could make the
procedure quite slow.

(7) We propose to use the discrete Fourier transform (a.k.a. fast Fourier transform) to avoid
these downsides.

Effectively, we will compute the distribution of Z modulo mγ for some integer m.
(For fast computation, m should be a power of two.) Call this modular random variable
Zm, so that

P [Zm = z] =
∑
k∈Z

P [Z = z +mγk].

Rather than taking Zm to be supported on {0, γ, · · · , (m− 1)γ} as is usual, we will take
Zm to be supported on {(1−m/2)γ, (2−m/2)γ, · · · , (m/2− 1)γ, (m/2)γ}.

We will choose m large enough so that P [Z ̸= Zm] is sufficiently small.

18 C. CANONNE, G. KAMATH, AND T. STEINKE

(8) The inverse discrete Fourier transform allows us to compute the probability mass of Zm

from the characteristic function of Z (which is identical to the characteristic function of
Zm at the points of interest):

P [Zm = z] =
1

m

m−1∑
k=0

e−i2πzk/mγ · E
[
ei2πkZ/mγ

]
. (2.30)

The fast Fourier transform uses a divide-and-conquer approach to allow us to compute
the entire distribution of Zm in nearly linear time from the values E

[
ei2πkZ/mγ

]
for

k = 0 · · ·m− 1. These values can be easily computed using Equations 2.27 and 2.28.
(9) Now we can compute an upper bound on the approximate differential privacy guarantee

(2.22) using the inequality

δ = E
[
max{0, 1− eε−Z}

]
≤ E

[
max{0, 1− eε−Zm}

]
+ P [Z > Zm]. (2.31)

(10) It only remains to bound P [Z > Zm]. For α > 1, we have

P [Z > Zm] = P [Z > (m/2)γ] ≤ E
[
e(α−1)(Z−(m/2)γ)

]
= e(α−1)(Dα(M(x)∥M(x′))−mγ/2).

(2.32)
From the concentrated differential privacy analysis, we have Dα (M(x)∥M(x′)) ≤ α ·∑d

j

µ2
j

2σ2
j
for all α > 1. Assuming mγ >

∑d
j µ

2
j/σ

2
j , we can set α = 1

2 +
mγ

2
∑d

j µ2
j/σ

2
j

> 1 to

obtain the bound

P [Z > Zm] ≤ exp

−
(
mγ −

∑d
j µ

2
j/σ

2
j

)2
8
∑d

j µ
2
j/σ

2
j

 . (2.33)

The value of m should be chosen such that this error term is tolerable. For example, if
the intent is to obtain an approximate (ε, δ)-differential privacy bound with δ = 10−6,
then we should choose m large enough such that Equation 2.33 is less than, say, 10−9.

We should set m = 1
γ ·
(√

8 log(1/δ′)
∑d

j µ
2
j/σ

2
j +

∑d
j µ

2
j/σ

2
j

)
, where δ′ > 0 is the

error tolerance in our final estimate of δ.
To obtain lower bounds on δ, we would use

δ = E
[
max{0, 1− eε−Z}

]
≥ E

[
max{0, 1− eε−Zm}

]
− P [Z < Zm] (2.34)

and, for all α > 1, we have

P [Z < Zm] = P [Z ≤ −γm/2] ≤ E
[
e−α(Z+γm/2)

]
= e(α−1)Dα(M(x′)∥M(x))−αγm/2. (2.35)

(11) The algorithm we have sketched above should be relatively efficient and numerically
stable. The fast Fourier transform requires O(m logm) operations. We must evaluate
the characteristic function of Z at m points; each evaluation requires evaluating the
characteristic function of d discrete Gaussians and multiplying the results together. (Of
course, we must only evaluate coordinates where µj ̸= 0.) The characteristic function of
the discrete Gaussian has a very rapidly converging series representation, so this should
be close to a constant number of operations.

The discrete Fourier transform is also numerically stable, since it is a unitary operation.
(Indeed this is the advantage of the characteristic function/Fourier transform over the
moment generating function/Laplace transform.)

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 19

(12) The main problem for this algorithm would be if γ is extremely small (as the space and
time used grows linearly with 1/γ) or if the assumption that γ exists fails. This depends
on the choice of the parameters σ1, · · · , σd.

In this case, one solution is to “bucket” the privacy loss (KJPH20; Goo20a). That
is, rather than relying on the privacy loss naturally falling on a discrete grid γZ as we
do, we artificially round it to such a grid. Rounding up results in computing an upper
bound on δ, while rounding down gives a lower bound. The advantage of this bucketing
approach is that we have direct control over the granularity of the approximation. The
disadvantage is that we cannot use the Poisson summation formula (2.27) to speed up
evaluation of the characteristic function.

3. Utility

We now consider how much noise the discrete Gaussian adds. As a comparison point, we
consider both the continuous Gaussian and, in the interest of a fair comparison, the rounded
Gaussian – i.e., a sample from the continuous Gaussian rounded to the nearest integral value.
In Figure 2, we show how these compare numerically. We see that the tail of the rounded
Gaussian stochastically dominates that of the discrete Gaussian. In other words, the utility
of the discrete Gaussian is strictly better than the rounded Gaussian (although not by much
for reasonable values of σ, i.e., those which are not very small).

Figure 2: Comparison of tail bounds and variance for continuous, discrete, and rounded
Gaussians.

To obtain analytic bounds, we begin by bounding the moment generating function:

Lemma 3.1. Let t, σ ∈ R with σ > 0. Then E
X←NZ(0,σ2)

[
etX
]
≤ et

2σ2/2.

For comparison, recall that the continuous Gaussian satisfies the same bound, but with

equality: E
X←N (0,σ2)

[
etX
]
= et

2σ2/2 for all t, σ ∈ R with σ > 0.

20 C. CANONNE, G. KAMATH, AND T. STEINKE

Proof. By Lemma 2.5,

E
X←NZ(0,σ2)

[
etX
]
=

∑
x∈Z e

tx−x2/2σ2∑
y∈Z e

−y2/2σ2 =

∑
x∈Z e

−(x−tσ2)2/2σ2 · et2σ2/2∑
y∈Z e

−y2/2σ2 ≤ et
2σ2/2.

The bound on the moment generating function shows that the discrete Gaussian is
subgaussian (Riv12). Standard facts about subgaussian random variables yield bounds on
the variance and tails:

Corollary 3.2. Let X ← NZ
(
0, σ2

)
. Then Var [X] ≤ σ2 and P [X ≥ λ] ≤ e−λ

2/2σ2
for all

λ ≥ 0.

Thus the variance of the discrete Gaussian is at most that of the corresponding continuous
Gaussian and we also have subgaussian tail bounds. In fact, it is possible to obtain slightly
tighter bounds, showing that the variance of the discrete Gaussian is strictly less than that
of the continuous Gaussian. We elaborate in the following subsections, providing tighter
variance and tail bounds. However, these improvements are most pronounced for small σ,
which is not the typical regime of interest for differential privacy. Nonetheless, these facts
may be of independent interest.

3.1. A Few Good Facts. Here, we state and derive some basic and useful facts about
the discrete Gaussian, which will be useful in proving tighter bounds. We start with the
expectation of NZ(µ, σ

2). It is straightforward to see by a change of index that, for µ ∈ Z,
one has E

[
NZ(µ, σ

2)
]
= µ; however, the case µ /∈ Z is not as immediate. Our first result

states that, indeed, NZ(µ, σ
2) has mean µ even for non-integer µ:

Fact 3.3 (Expectation). For all σ ∈ R with σ > 0, and all µ ∈ R, E
[
NZ(µ, σ

2)
]
= µ .

Proof. By the Poisson summation formula (poi; Wei),

E
[
NZ(µ, σ

2)
]
=

∑
n∈Z ne

−(n−µ)2/(2σ2)∑
n∈Z e

−(n−µ)2/(2σ2)
=

∑
n∈Z f̂(n)∑
n∈Z ĝ(n)

,

where f(x) = xe−(n−µ)
2/(2σ2) and g(x) = e−(n−µ)

2/(2σ2). For t ∈ R, we can compute their
Fourier transforms as

f̂(t) =

∫
R
f(x)e−2πixt dx =

√
2πσ2(µ− 2πiσ2t)e−2π

2t2σ2−2πitµ

ĝ(t) =

∫
R
g(x)e−2πixt dx =

√
2πσ2e−2π

2t2σ2−2πitµ

so that

E
[
NZ(µ, σ

2)
]
=

µ
∑

n∈Z e
−2π2n2σ2−2πinµ − 2πiσ2

∑
n∈Z ne

−2π2n2σ2−2πinµ∑
n∈Z e

−2π2n2σ2−2πinµ = µ,

as the second sum in the numerator is zero.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 21

We now turn to the normalization constant of NZ(0, σ
2), comparing it to the normaliza-

tion constant
√
2πσ2 of the corresponding continuous Gaussian.

Fact 3.4 (Normalization constant). For all σ ∈ R with σ > 0,

max{
√
2πσ2, 1} ≤

∑
n∈Z

e−n
2/(2σ2) ≤

√
2πσ2 + 1 . (3.1)

Proof. We first show the lower bound. Clearly
∑

n∈Z e
−n2/(2σ2) ≥ e−0

2/2σ2
= 1. By the

Poisson summation formula,∑
n∈Z

e−n
2/(2σ2) =

∑
n∈Z

√
2πσ2 · e−2π2σ2n2 ≥

√
2πσ2 · 1.

As for the upper bound, it follows from a standard comparison between series and integral:∑
n∈Z

e−n
2/(2σ2) = 1+ 2

∞∑
n=1

e−n
2/(2σ2) ≤ 1 + 2

∞∑
n=1

∫ n

n−1
e−x

2/(2σ2)dx = 1+ 2

∫ ∞
0

e−x
2/(2σ2)dx .

The above bounds, albeit simple to obtain, are not quite as tight as they could be. We
state below a refinement, which can be found, e.g., in (Ste17, Claim 2.8.1):

Fact 3.5 (Normalization constant, refined). For all σ ∈ R with σ > 0,
√
2πσ2 · (1 + 2e−2π

2σ2
) ≤

∑
n∈Z

e−n
2/(2σ2) ≤

√
2πσ2 · (1 + 2e−2π

2σ2
) + e−2π

2σ2
(3.2)

and
1 + 2e−1/(2σ

2) ≤
∑
n∈Z

e−n
2/(2σ2) ≤ 1 + 2e−1/(2σ

2) +
√
2πσ2e−1/(2σ

2). (3.3)

The first set of bounds is better for σ ≥ 1√
2π
, and the second for σ < 1√

2π
.

The bounds obtained in Fact 3.5 are depicted in the figure below.

3.2. Tighter Variance and Tail Bounds. We now analyze the variance of the discrete
Gaussian, showing that it is stricty smaller than that of the corresponding continuous
Gaussian (and asymptotically the same), with a much better variance for small σ.

Proposition 3.6 (Variance). For all σ ∈ R with σ > 0,

Var
[
NZ(0, σ

2)
]
≤ σ2

(
1− 4π2σ2

e4π2σ2 − 1

)
< σ2. (3.4)

Moreover, if σ2 ≤ 1/3 then Var
[
NZ(0, σ

2)
]
≤ 3 · e−1/2σ2

.

To prove Proposition 3.6 we use the following lemma which relates upper bounds on the
variance of a discrete Gaussian to lower bounds on it, and vice-versa.

Lemma 3.7. For σ > 0,

Var
[
NZ(0, σ

2)
]
= σ2(1− 4π2σ2Var

[
NZ(0, 1/(4π

2σ2))
]
) . (3.5)

22 C. CANONNE, G. KAMATH, AND T. STEINKE

Figure 3: Bounds from Fact 3.5 on the normalization constant
∑

n∈Z e
−n2/(2σ2), as a function

of σ. Note that the normalization constant of the continuous Gaussian,
√
2πσ2

(in dark orange) becomes a very accurate approximation for σ ≫ 1; however, for
σ ≪ 1, it is not, as the upper and lower bound from Fact 3.5 both converge towards
1, as expected. Interestingly, we see that the lower bound (green) empirically
seems to be nearly tight, as it appears to coincide with the exact expression of
the normalization constant (dotted blue) for all σ > 0. The discontinuity in the
upper bound (light orange) happens at σ = 1√

2π
.

Proof. By applying the Poisson summation formula to both numerator and denominator of
the variance, we have

Var
[
NZ(0, σ

2)
]
=

∑
n∈Z n

2e−n
2/(2σ2)∑

n∈Z e
−n2/(2σ2)

=

∑
n∈Z f(n)∑
n∈Z g(n)

=

∑
n∈Z f̂(n)∑
n∈Z ĝ(n)

where f(x) = x2e−x
2/(2σ2), g(x) = e−x

2/(2σ2). Now, for t ∈ R, we can compute

f̂(t) =

∫
R
f(x)e−2πixt dx =

√
2πσ3e−2π

2t2σ2
(1− 4π2t2σ2)

ĝ(t) =

∫
R
g(x)e−2πixt dx =

√
2πσe−2π

2t2σ2
.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 23

Thus

Var
[
NZ(0, σ

2)
]
= σ2

∑
n∈Z e

−2π2n2σ2
(1− 4π2n2σ2)∑

n∈Z e
−2π2n2σ2 = σ2

(
1− 4π2σ2

∑
n∈Z n

2e−2π
2n2σ2∑

n∈Z e
−2π2n2σ2

)

= σ2

(
1− 4π2σ2

∑
n∈Z n

2e−n
2/(2τ2)∑

n∈Z e
−n2/(2τ2)

)
= σ2

(
1− 4π2σ2Var

[
NZ(0, τ

2)
])

where we set τ := 1
2πσ .

Next we have a lower bound on the variance.

Proposition 3.8 (Universal Variance Lower Bound). Let X be a distribution on R such
that D2 (X + 1∥X) ≤ ε2. Then

Var [X] ≥ 1

eε2 − 1
. (3.6)

Proof. We follow the proof Lemma C.2 of Bun and Steinke (BS16). For notational simplicity
we assume X has a probability density with respect to the Lesbesgue measure on the reals,
which we abusively denote by P [X = x]. Let f(x) = log(P [X + 1 = x]/P [X = x]) – i.e., f
is the logarithm of the Radon-Nikodym derivative of the shifted distribution X + 1 with
respect to the distribution of X. Then

eD2(X+1∥X) =

∫
R
P [X + 1 = x]2P [X = x]−1dx

=

∫
R

(
P [X + 1 = x]

P [X = x]

)2

P [X = x]dx = E
[
e2f(X)

]
and

E [X + 1] =

∫
R
xP [X + 1 = x]dx =

∫
R
xef(x)P [X = x]dx = E

[
X · ef(X)

]
.

We also have

E
[
ef(X)

]
=

∫
R

P [X + 1 = x]

P [X = x]
P [X = x]dx =

∫
R
P [X = x]dx = 1.

By Cauchy-Schwarz,

1 = E [X + 1]− E [X] = E
[
X · (ef(X) − 1)

]
≤
√
E [X2] · E

[
(ef(X) − 1)2

]
.

This rearranges to give

E
[
X2
]
≥ 1

E
[
(ef(X) − 1)2

] = 1

E
[
e2f(X) − 2ef(X) + 1

] = 1

eD2(X+1∥X) − 1
.

24 C. CANONNE, G. KAMATH, AND T. STEINKE

The discrete Gaussian NZ
(
0, 1/ε2

)
satisfies the hypotheses of Proposition 3.8 (by

Proposition 2.4), which yields the following corollary.

Corollary 3.9. For all σ > 0,

Var
X←NZ(0,σ2)

[X] ≥ 1

e1/σ2 − 1
. (3.7)

We emphasize that the lower bound of Proposition 3.8 is not specific to the discrete
Gaussian. It applies to any distribution X such that adding X to a sensitivity-1 function
provides 1

2ε
2-concentrated differential privacy.

Proof of Proposition 3.6. Combining Lemma 3.7 with Proposition 3.8 (specifically, Corollary
3.9) yields the first claim:

Var
[
NZ(0, σ

2)
]
= σ2(1− 4π2σ2Var

[
NZ(0, 1/(4π

2σ2))
]
) ≤ σ2

(
1− 4π2σ2

e4π2σ2 − 1

)
.

Now we establish the last part of the proposition. We have (m + 1)2 ≥ 2m + 1 and,
hence,

Var
[
NZ(0, σ

2)
]
=

∑
n∈Z n

2 · e−n2/2σ2∑
n∈Z e

−n2/2σ2 ≤
∑
n∈Z

n2 · e−n2/2σ2
= 2

∞∑
m=0

(m+ 1)2 · e−(m+1)2/2σ2

≤ 2
∞∑

m=0

(m+ 1)2 · e−(2m+1)/2σ2
=

2

e1/2σ2

∞∑
m=0

(m+ 1)2e−m/σ2
.

It only remains to show that
∑∞

m=0(m+ 1)2e−m/σ2 ≤ 3/2 when σ2 ≤ 1/3. For x ∈ (−1, 1),
one can show that

∑∞
m=0(m+ 1)2xm = 1+x

(1−x)3 . Set x = e−1/σ
2
to conclude.

Next we prove tail bounds:

Proposition 3.10. For all m ∈ Z with m ≥ 1 and all σ ∈ R with σ > 0,

P
X←NZ(0,σ2)

[X ≥ m] ≤ P
X←N (0,σ2)

[X ≥ m− 1]. (3.8)

Moreover, if σ ≥ 1/
√
2π, we have

P
X←NZ(0,σ2)

[X ≥ m] ≥ 1

1 + 3e−2π2σ2 P
X←N (0,σ2)

[X ≥ m]. (3.9)

Proof. We have P
X←NZ(0,σ2)

[X ≥ m] =
∑∞

k=m e−k2/2σ2∑
ℓ∈Z e−ℓ2/2σ2 . By Fact 3.4, the denominator is at

least
√
2πσ2. For the numerator, we have

∞∑
k=m

e−k
2/2σ2

=

∫ ∞
m−1

e−⌈x⌉
2/2σ2

dx ≤
∫ ∞
m−1

e−x
2/2σ2

dx =
√
2πσ2 · P

X←N (0,σ2)
[X ≥ m− 1].

Turning to the lower bound, suppose σ ≥ 1/
√
2π; by Fact 3.5, we have

∑
ℓ∈Z e

−ℓ2/2σ2 ≤√
2πσ2 · (1 + 3e−2π

2σ2
), which combined with

∞∑
k=m

e−k
2/2σ2

=

∫ ∞
m

e−⌊x⌋
2/2σ2

dx ≥
∫ ∞
m

e−x
2/2σ2

dx =
√
2πσ2 · P

X←N (0,σ2)
[X ≥ m]

gives the claim.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 25

Note that the above proposition focuses on upper tail bounds, but by symmetry of the
discrete Gaussian one immediately gets similar lower tail bounds. The upshot is that, up to
a small shift or (1 + o(1)) multiplicative factor, discrete and continuous Gaussians display
the same tails.

One can actually slightly refine the above upper bound, by comparing the discrete
Gaussian to the rounded Gaussian Nround(0, σ

2), obtained by rounding a standard continuous
Gaussian to the nearest integer:

Proposition 3.11. For all m ∈ Z with m ≥ 1 and all σ ∈ R with σ > 0,

P
X←NZ(0,σ2)

[X ≥ m] ≤ P
X←Nround(0,σ2)

[X ≥ m] +
1

2
P

X←NZ(0,σ2)
[X = m] .

Proof. On the one hand, by definition of a rounded Gaussian, we have
√
2πσ2 P

X←Nround(0,σ2)
[X ≥ m] =

∫ ∞
m−1/2

e−x
2/(2σ2) dx

=

∫ m

m−1/2
e−x

2/(2σ2) dx+

∫ ∞
m

e−x
2/(2σ2) dx ;

on the other hand, we have

√
2πσ2 P

X←NZ(0,σ2)
[X ≥ m+ 1] =

√
2πσ2

∑∞
n=m+1 e

−n2/(2σ2)∑
n∈Z e

−n2/(2σ2)
≤

∞∑
n=m+1

e−n
2/(2σ2)

by Fact 3.4. Similarly as before, we can write
∞∑

n=m+1

e−n
2/(2σ2) ≤

∞∑
n=m+1

∫ n

n−1
e−x

2/(2σ2) dx =

∫ ∞
m

e−x
2/(2σ2) dx

using monotonicity of x 7→ e−x
2/(2σ2) on [0,∞). Combining the three equations above gives

P
X←NZ(0,σ2)

[X ≥ m] ≤ P
X←NZ(0,σ2)

[X = m] + P
X←Nround(0,σ2)

[X ≥ m]− 1√
2πσ2

∫ m

m−1/2
e−x

2/(2σ2) dx

≤ P
X←NZ(0,σ2)

[X = m] + P
X←Nround(0,σ2)

[X ≥ m]− 1

2

e−m
2/(2σ2)∑

n∈Z e
−n2/(2σ2)

=
1

2
P

X←NZ(0,σ2)
[X = m] + P

X←Nround(0,σ2)
[X ≥ m],

as
∫m
m−1/2 e

−x2/(2σ2) ≥ 1
2e
−m2/(2σ2) and

∑
n∈Z e

−n2/(2σ2) ≥
√
2πσ2 by Fact 3.4.

We highlight the fact that comparing with the rounded Gaussian, as the above proposition
does, is meaningful, since by postprocessing any differential privacy guarantee implied by
adding rounded Gaussian noise to discrete data is at least as good as that implied by adding
continuous Gaussian noise to the same discrete data.

26 C. CANONNE, G. KAMATH, AND T. STEINKE

3.3. Other Discretizations, and Convergence to the Continuous Gaussian. Al-
though we focused in this paper on the discrete Gaussian over Z, one can of course consider
different discretizations, such as the discrete Gaussian over αZ := {αz : z ∈ Z} for some
fixed α > 0. We denote this distribution by NαZ(µ, σ

2). It is defined by

∀x ∈ αZ P
X←NαZ(µ,σ2)

[X = x] =
e−(x−µ)

2/2σ2∑
y∈αZ e

−(y−µ)2/2σ2 . (3.10)

It is immediate that

∀x ∈ αZ P
X←NαZ(µ,σ2)

[X = x] = P
X←NZ(

µ
α
, σ

2

α2)

[
X =

x

α

]
. (3.11)

In particular, all our results on the (standard) discrete Gaussian will translate to the discrete
Gaussian over αZ, up to that change of the parameters µ and σ.

Further, one would expect than, as α→ 0+, the discrete Gaussian NαZ(0, σ
2) converges

to N (0, σ2). We show that this is indeed the case:

Proposition 3.12. For all σ ∈ R with σ > 0, as α→ 0+ the discrete Gaussian NαZ(0, σ
2)

converges in distribution to the continuous Gaussian N (0, σ2).

Proof. Fix any 0 < α ≤
√
2πσ2. By Equation 3.11, for any x ∈ αZ, we have

P
X←NαZ(0,σ2)

[X ≤ x] = P
X←NZ(0,

σ2

α2)

[X ≤ x/α],

and so, by Proposition 3.10,

P
X←N (0, σ

2

α2)

[αX ≤ x− α] ≤ P
X←NαZ(0,σ2)

[X ≤ x] ≤ 1

1 + 3e−2π2σ2/α2 P
X←N (0, σ

2

α2)

[αX ≤ x]

or, equivalently,

P
Y←N (0,σ2)

[Y ≤ x− α] ≤ P
X←NαZ(0,σ2)

[X ≤ x] ≤ 1

1 + 3e−2π2σ2/α2 P
Y←N (0,σ2)

[Y ≤ x] .

Both sides converge to P
Y←N (0,σ2)

[Y ≤ x] as α→ 0+.

In applications where query values are not naturally discrete, it is necessary to round
them before adding discrete noise. A finer discretization (i.e., smaller α) entails less error
being introduced by the rounding.

4. Discrete Laplace

We now compare the discrete Gaussian with the most obvious alternative – the discrete
Laplace. But first we give a formal definition and state some relevant facts.

Definition 4.1 (Discrete Laplace). Let t > 0. The discrete Laplace distribution with scale
parameter t is denoted LapZ(t). It is a probability distribution supported on the integers
and defined by

∀x ∈ Z, P
X←LapZ(t)

[X = x] =
e1/t − 1

e1/t + 1
· e−|x|/t. (4.1)

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 27

The discrete Laplace (also known as the two-sided geometric) was introduced into the
differential privacy literature by Ghosh, Roughgarden, and Sundararajan (GRS12), who
showed that it satisfies strong optimality properties.

Lemma 4.2 (Discrete Laplace Privacy). Let ∆, ε > 0. Let q : X n → Z satisfy |q(x)−q(x′)| ≤
∆ for all x, x′ ∈ X n differing on a single entry. Define a randomized algorithm M : X n → Z
by M(x) = q(x) + Y where Y ← LapZ(∆/ε). Then M satisfies (ε, 0)-differential privacy.

Lemma 4.3 (Discrete Laplace Utility). Let ε > 0 and let Y ← LapZ(1/ε). The distribution is
symmetric; in particular, E [Y] = 0. We have E [|Y |] = 2·eε

e2ε−1 and Var [Y] = E
[
Y 2
]
= 2·eε

(eε−1)2 .

For all λ < ε,

E
[
eλ|Y |

]
=

eε − 1

eε + 1
· e

ε−λ + 1

eε−λ − 1
.

For all m ∈ N,

P [Y ≥ m] = P [Y ≤ −m] =
e−ε(m−1)

eε + 1
.

We remark that the discrete Laplace can also be efficiently sampled. Indeed, it is a key
subroutine of our algorithm for sampling a discrete Gaussian; see Section 5.

There are two immediate qualitative differences between the discrete Laplace and the
discrete Gaussian.12 In terms of utility, the discrete Laplace has subexponential tails (i.e.,
decaying as e−εm), whereas the discrete Gaussian has subgaussian tails (i.e., decaying as

e−m
2/2σ2

). In terms of privacy, the discrete Gaussian satisfies concentrated differential
privacy, whereas the discrete Laplace satisfies pure differential privacy; pure differential
privacy is a qualitatively stronger privacy condition than concentrated differential privacy.

Thus neither distribution dominates the other. They offer different privacy-utility
tradeoffs. If the tails are important (e.g., for computing confidence intervals), then the
discrete Gaussian is to be favoured. If pure differential privacy is important, then the discrete
Laplace is to be favoured.

We now consider a quantitative comparison. To quantify utility, we focus on the variance
of the distribution. (An alternative would be to consider the width of a confidence interval.)
For now, we will quantify privacy by concentrated differential privacy. Pure (ε, 0)-differential
privacy implies 1

2ε
2-concentrated differential privacy; thus both distributions can be evaluated

on this scale.
Consider a small ε > 0 and a counting query. We can attain 1

2ε
2-concentrated differential

privacy by adding noise from either NZ
(
0, 1/ε2

)
or LapZ(1/ε). By Corollary 3.2, Proposition

3.8, and Lemma 4.3, we have

1

ε2
≥ Var

YG←NZ(0,1/ε2)
[YG] ≥

1

eε2 − 1
=

1− o(1)

ε2
and Var

YL←LapZ(1/ε)
[YL] =

2 · eε

(eε − 1)2
=

2± o(1)

ε2
.

Thus, asymptotically (i.e., for small ε), the discrete Gaussian has half as much variance as
the discrete Laplace for the same level of privacy. In this comparison, the Gaussian clearly
is better.

However, the above quantitative comparison is potentially unfair. Quantifying differential
privacy by concentrated differential privacy may favour the Gaussian. If instead we demand
pure (ε, 0)-differential privacy or approximate (ε, δ)-differential privacy for a small δ > 0,
then the comparison would yield the opposite conclusion. It is fundamentally difficult to

12The entire discussion in this section applies equally well to the continuous analogues of these distributions.

28 C. CANONNE, G. KAMATH, AND T. STEINKE

compare algorithms satisfying different versions of differential privacy, as there is no level
playing field.

There is another factor to consider: A practical differentially private system will answer
many queries via independent noise addition. Thus the real object of interest is the privacy
and utility of the composition of many applications of noise addition.

For the rest of this section, we consider the task of answering k counting queries (or
sensitivity-1 queries) by adding either discrete Gaussian or discrete Laplace noise. We will
measure privacy by approximate (ε, δ)-differential privacy over a range of parameters. The
results are summarized in Figure 4.

Concentrated differential privacy has an especially clean composition theorem (BS16):

Lemma 4.4 (Composition for Concentrated Differential Privacy). Let M1 : X n → Y1
satisfy 1

2ε
2
1-concentrated differential privacy. Let M2 : X n × Y1 → Y2 be such that, for all

y ∈ Y1, the restriction M2(·, y) : X n → Y2 satisfies 1
2ε

2
2-concentrated differential privacy.

Define M∗ : X n → Y2 by M∗(x) = M2(x,M1(x)). Then M∗ satisfies
1
2(ε

2
1 + ε22)-concentrated

differential privacy.

This result can be extended to k mechanisms by induction. Thus, to attain 1
2ε

2-
concentrated differential privacy for k counting queries, it suffices to add noise from
NZ
(
0, k/ε2

)
to each value independently. We then convert the overall 1

2ε
2-concentrated

differential privacy guarantee into approximate (ε′, δ)-differential privacy using Corollary
2.12.

In contrast, analysing the composition of multiple invocations of discrete Laplace noise
addition is not as clean. We use an optimal composition result provided by Kairouz, Oh, and
Viswanath (KOV17; MV18): The k-fold composition of (ε, δ)-differential privacy satisfies
(ε′, δ′)-differential privacy if and only if

1

(1 + eε)k

k∑
ℓ=0

(
k

ℓ

)
max

{
0, eℓε − eε

′+(k−ℓ)ε
}
≤ 1− 1− δ′

(1− δ)k
. (4.2)

In Figure 4, we compare the discrete Gaussian and the discrete Laplace in two ways.
First (on the left), we fix the utility and compare the approximate differential privacy
guarantees. Specifically, we fix the task of answering k = 100 counting queries with the
noise added to each value having variance 502. Both distributions yield different curves
of (ε, δ)-differential privacy guarantees and there are many points to consider. We see
that, for this task, the discrete Gaussian attains better (ε, δ)-differential privacy guarantees
except for extremely small δ – specifically, δ < 10−45. For ε = 1, the discrete Gaussian
provides (1, 10−7)-differential privacy for this task, whereas the discrete Laplace only provides
(1, 206× 10−7)-differential privacy. If we demand pure differential privacy, then the discrete
Laplace provides (2.83, 0)-differential privacy, but the discrete Gaussian cannot provide pure
differential privacy. The separation becomes more pronounced as the number of queries
grows.

Second (on the right of Figure 4), we fix the privacy goal to approximate (1, 10−6)-
differential privacy. We vary the number of counting queries (from k = 1 to k = 100) and
measure the variance of the noise that must be added to each query answer. For a small
number of queries (k ≤ 10), the discrete Laplace gives lower variance. However, as the
number of queries increases, we see that the discrete Laplace requires higher variance; for
k = 100, the variance is 69% more.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 29

Figure 4: Comparison of discrete Gaussian and Laplace noise addition. Left: Utility is fixed
(i.e., answer k = 100 counting queries each with variance 502) and we consider
the curve of approximate (ε, δ)-differential privacy guarantees that we can achieve.
Right: Privacy is fixed (i.e., approximate (1, 10−6)-differential privacy) and we
consider the utility (i.e., variance of noise added to each answer) as we vary the
number of counting queries to be answered.

Overall, Figure 4 demonstrates that the discrete Gaussian provides a better privacy-
utility tradeoff than the discrete Laplace, except in two narrow parameter regimes: Either a
small number of queries or if we demand something very close to pure differential privacy.
We only compared variances; if we compare confidence interval sizes instead, then this would
further advantage the Gaussian, which has lighter tails.

5. Sampling

In this section, we show how to efficiently sample exactly from a discrete Gaussian on a
finite computer given access only to uniformly random bits. Such algorithms are already
known (Kar16; DFW22). However, we include this for completeness because we believe
that our algorithms are simpler than the prior work. A sample Python implementation is
available online (Dis20).

For simplicity, we focus our discussion of runtime only on the expected number of
arithmetic operations; each such operation will take time polylogarithmic in the bit complexity
of the parameters (e.g., in the representation of σ2 as a rational number). We elaborate on
this at the end of the section.

In Algorithm 3, we present a simple and fast algorithm for discrete Gaussian sampling,
with the following guarantees:

Theorem 5.1. On input σ2 ∈ Q, the procedure described in Algorithm 3 outputs one sample
from NZ

(
0, σ2

)
and requires only a constant number of operations in expectation.

30 C. CANONNE, G. KAMATH, AND T. STEINKE

At a high level, the idea behind the algorithm is to first sample from a discrete Laplace
distribution and then “convert” this into a discrete Gaussian by rejection sampling. In order
to do so, we provide two subroutines, which we believe to be of independent interest: the
first, to efficiently and exactly sample from a Bernoulli with parameter e−γ , for any rational
parameter γ ≥ 0 (Proposition 5.2). The second, to efficiently and exactly sample from a
discrete Laplace with scale parameter t, for any positive integer t (Proposition 5.3).

5.1. Sampling Bernoulli(exp(−γ)). Our first subroutine, Algorithm 1, describes how to
reduce the task of sampling from Bernoulli(exp(−γ)) to that of sampling from Bernoulli(γ/k)
for various integers k ≥ 1. This procedure is based on a technique of von Neumann
(vN51; For72) and avoids complex operations, such as computing the exponential function.
Thus, for a rational γ, this can be implemented on a finite computer. Specifically, for
n, d ∈ N, to sample Bernoulli(n/d) it suffices to draw D ∈ {1, 2, . . . , d} uniformly at random
and output 1 if D ≤ n and output 0 if D > n. (To sample D ∈ {1, 2, · · · , d} we can again

use rejection sampling – that is, we uniformly sample D ∈ {1, 2, · · · , 2⌈log2 d⌉} and reject and
retry if D > d.)

In the rest of the analysis, we assume for the sake of abstraction that sampling
Bernoulli(n/d) given n, d ∈ N requires a constant number of arithmetic operations in expec-
tation.

Proposition 5.2. On input (rational) γ ≥ 0, the procedure described in Algorithm 1
outputs one sample from Bernoulli(exp(−γ)), and requires a constant number of operations
in expectation.

Proof. First, consider the case where γ ∈ [0, 1]. For the analysis, we let Ak denote the value
of A in the k-th iteration of the loop in the algorithm, and K∗ denote the final value of K
upon exiting the loop. Then, for all k ∈ {0, 1, 2, · · · }, we have

P [K∗ > k] = P [A1 = A2 = · · · = Ak = 1] =
k∏

i=1

P [Ai = 1] =
k∏

i=1

γ

i
=

γk

k!
.

Thus

P [K∗ odd] =
∞∑
k=0

P [K∗ = 2k + 1] =
∞∑
k=0

(P [K∗ > 2k]− P [K∗ > 2k + 1]) =
∞∑
k=0

(
γ2k

(2k)!
− γ2k+1

(2k + 1)!

)
which is equal to e−γ as desired. Further, the expected number of operations is simply
T (γ) = O(E [K∗]) = O(

∑∞
k=0 P [K∗ > k]) = O(eγ) = O(1).

Now, if γ > 1, the procedure performs (at most) ℓ := ⌊γ⌋+ 1 independent sequential
recursive calls, getting ℓ independent samples B1, · · · , Bℓ−1 ∼ Bernoulli(exp(−1)) and C ∼
Bernoulli(exp(−(γ − ⌊γ⌋))). Its output is then distributed as a Bernoulli random variable
with parameter

P [B1 = B2 = · · · = Bℓ−1 = C = 1] =
∏ℓ

i=1 P [Bi = 1] · P [C = 1] = exp(−1)⌊γ⌋ · exp(γ −
⌊γ⌋) = exp(−γ), as desired.

The number of recursive calls is at most ℓ. However, the recursive calls will stop as soon
as B = 0 for the first time. We have P [B = 0] = 1 − e−1. Thus the number of recursive
calls follows a truncated geometric distribution. The expected number of recursive calls is
constant and, therefore, the expected number of operations is too.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 31

Algorithm 1 Algorithm for Sampling Bernoulli(exp(−γ)).
Input: Parameter γ ≥ 0.
Output: One sample from Bernoulli(exp(−γ)).
if γ ∈ [0, 1] then

Set K ← 1.
loop

Sample A← Bernoulli(γ/K).
if A = 0 then break the loop.

if A = 1 then set K ← K + 1 and continue the loop.

if K is odd then return 1.
if K is even then return 0.

else
for k = 1 to ⌊γ⌋ do

Sample B ← Bernoulli(exp(−1)) ▷ Recursive call.
if B = 0 then break the loop and return 0.

Sample C ← Bernoulli(exp(⌊γ⌋ − γ)) ▷ Recursive call. γ − ⌊γ⌋ ∈ [0, 1].
return C.

5.2. Sampling from a Discrete Laplace. Now we show how to efficiently and exactly
sample from a discrete Laplace distribution; see Section 4 for more about this distribution.
Other methods for sampling from the discrete Laplace distribution are known (SWS+19).

At a high level, our sampling algorithm (Algorithm 2) works as follows. As building blocks
we have the ability to sample a (discrete) uniform random variable on {0, 1, . . . , t− 1} and
the ability to sample Bernoulli random variables with exponential parameters (Algorithm 1).
Using these building blocks we can generate geometric random variables with increasingly
complex parameters, using the previous to obtain the next: First we generate samples from
Geometric(1−e−1), then we use this to sample from Geometric(1−e−1/t) for t ∈ N, until finally
we obtain samples from Geometric(1− e−s/t). Once we can sample Y ∼ Geometric(1− e−s/t),
we combine Y with an additional independent random sign to obtain a two-sided Geometric
random variable, which is exactly the desired LapZ(t/s). When combining the Geometric
random variable with a random sign, we must be careful to not double the probability mass
at 0; that is, we must reject one of +0 and −0. We can sample V ∼ Geometric(1 − e−1)
by repeatedly sampling Bernoulli(exp(−1)) and counting the number of 1s we draw before

the first 0. To sample X ∼ Geometric(1− e−1/t) we independently sample the “high order
bits” V = ⌊X/t⌋ and the low order bits U = X mod t. The distribution of V is simply
V ∼ Geometric(1 − e−1), which we have already covered. The distribution of U can be
obtained by first sampling U uniformly from {0, 1, . . . , t− 1} and then performing rejection
sampling, where we accept with probability Bernoulli(exp(−U/t)). Finally, given a sample

X ∼ Geometric(1−e−1/t), we can generate a sample Y ∼ Geometric(1−e−s/t) as Y = ⌊X/s⌋.

Proposition 5.3. On input s, t ∈ Z with s, t ≥ 1, the procedure described in Algorithm 2
outputs one sample from LapZ(t/s), and requires a constant number of operations in expec-
tation.

Proof. To prove the theorem, we must verify two things: (1) we must show that, for each
attempt (i.e., for each iteration of the outer loop), conditioned on outputting a value Z
(henceforth referred to as success, and denoted ⊤), the distribution of the output Z is

32 C. CANONNE, G. KAMATH, AND T. STEINKE

Algorithm 2 Algorithm for Sampling a Discrete Laplace

Input: Parameters s, t ∈ Z, s, t ≥ 1.
Output: One sample from LapZ(t/s).
loop ▷ Repeat until successful

Sample U ∈ {0, 1, 2, · · · , t− 1} uniformly at random.
Sample D ← Bernoulli(exp(−U/t)). ▷ Use Algorithm 1.
if D = 0 then reject and restart.

Initialize V ← 0.
loop ▷ Generate V from Geometric(1− e−1).

Sample A← Bernoulli(exp(−1)). ▷ Use Algorithm 1.
if A = 0 then break the loop.

if A = 1 then set V ← V + 1 and continue.

Set X ← U + t · V . ▷ X is Geometric(1− e−1/t).

Set Y ← ⌊X/s⌋ ▷ Y is Geometric(1− e−s/t).
Sample B ← Bernoulli(1/2).
if B = 1 and Y = 0 then reject and restart.

return Z ← (1− 2B) · Y . ▷ Success; Z is a discrete Laplace.

LapZ(t/s) as desired; (2) we must lower bound the probability that a given loop iteration is
successful. This ensures that the loop terminates quickly, giving the bound on the runtime.

To begin, we show that, conditioned on D = 1, X follows a geometric distribution with
parameter τ := 1/t. Specifically, P [X = x | D = 1] = (1− e−τ) · e−xτ for every integer x ≥ 0.
For any such x, let ux := x mod t and vx = ⌊x/t⌋, so that x = ux + t · vx. It is immediate
to see that, as defined by the algorithm, V is independent of both U and D and follows a
geometric distribution with parameter 1− e−1: that is, P [V = k] = (1− e−1) · e−k for every
integer k ≥ 0. We thus have

P [X = x | D = 1] = P [U = ux, V = vx | D = 1] = P [U = ux | D = 1] · P [V = vx]

=
P [U = ux]

P [D = 1]
· P [D = 1 | U = ux] · (1− e−1) · e−vx

=
1/t

(1/t)
∑t−1

k=0 e
−k/t

· e−ux/t · (1− e−1) · e−vx

= (1− e−1/t) · e−(ux/t+vx) = (1− e−1/t) · e−x/t

as claimed.
We then claim that Y = ⌊Xs ⌋ (conditioned on D = 1) follows a Geometric(1 − e−s/t)

distribution – i.e., P [Y = y | D = 1] = (1− e−s/t) · e−y·s/t for all integers y ≥ 0. This is an
immediate consequence of the following fact.

Fact 5.4. Fix p ∈ (0, 1]. Let G be a Geometric(1 − p) random variable, and n ≥ 1 be an
integer. Then

⌊
G
n

⌋
is a Geometric(1− q) random variable for q = pn.

Proof. For any integer k ≥ 0,

P [⌊G/n⌋ = k] = P [nk ≤ G < (k + 1)n] =

(k+1)n−1∑
ℓ=kn

(1− p)pℓ = (1− pn)pnk = (1− q)qk.

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 33

With this in hand, we analyze the distribution of Z conditioned on ⊤ (success), i.e.,
conditioned on D = 1 and (B, Y) ̸= (1, 0).13 Let α := s/t for convenience. Recalling B is
independent of D and that B and Y (conditioned on D = 1) are independent, we have

P [(B, Y) ̸= (1, 0) | D = 1] = P [B = 1, Y > 0 | D = 1] + P [B = 0 | D = 1] =
1

2
(e−α + 1) .

For every z ∈ Z, we have, recalling that B and Y are independent,

P [Z = z | ⊤] = P [(1− 2B)Y = z|(B, Y) ̸= (1, 0), D = 1]

=
P [(1− 2B)Y = z, (B, Y) ̸= (1, 0) | D = 1]

P [(B, Y) ̸= (1, 0) | D = 1]

=
P [Y = |z|, B = I[z < 0] | D = 1]

P [(B, Y) ̸= (1, 0) | D = 1]

=
P [Y = |z| | D = 1] · P [B = I[z < 0] | D = 1]

P [(B, Y) ̸= (1, 0) | D = 1]

=
P [Y = |z| | D = 1]

2P [(B, Y) ̸= (1, 0) | D = 1]

=
(1− e−α) · e−|z|·α

e−α + 1
,

by our previous computations. Thus, conditioned on success, Z follows a LapZ(1/α) distri-
bution.

We then bound the probability that a fixed iteration of the loop succeeds:

P [⊤] = P [(B, Y) ̸= (1, 0) | D = 1]P [D = 1]

=
1 + e−α

2
· 1
t

t−1∑
u=0

e−u/t

=
1 + e−α

2

1− e−1

t(1− e−1/t)
≥ 1− e−1

2
.

It follows that the number N of iterations of the outer loop needed to output a value Z is
geometrically distributed and satisfies E [N] ≤ 2

1−e−1 < 3.2. Moreover, each iteration of the
outer loop requires a constant number of operations in expectations. This is because each of
the subroutines requires a constant number of operations in expectation and the inner loop
runs a geometrically-distributed number of times which is constant in expectation.

5.3. Sampling from a Discrete Gaussian. In Algorithm 3, we prove Theorem 5.1 and
present our algorithm that requires O(1) operations on average to sample from a discrete
Gaussian NZ

(
0, σ2

)
.

13Note that this later condition is added to the algorithm to avoid double-counting the probability that
Z = 0.

34 C. CANONNE, G. KAMATH, AND T. STEINKE

Algorithm 3 Algorithm for Sampling a Discrete Gaussian

Input: Parameter σ2 > 0.
Output: One sample from NZ

(
0, σ2

)
.

Set t← ⌊σ⌋+ 1
loop ▷ Repeat until successful

Sample Y ← LapZ(t) ▷ Use Algorithm 2
Sample C ← Bernoulli(exp(−(|Y | − σ2/t)2/2σ2)). ▷ Use Algorithm 1
If C = 0, reject and restart.
If C = 1, return Y as output. ▷ Success; Y is a discrete Gaussian.

Proof of Theorem 5.1. Fix any iteration of the loop, and let t← ⌊σ⌋+1 and τ := 1/t. Since
Y ← LapZ(1/τ), we have that C is a Bernoulli with parameter

E [C] = E [E [C | Y]] = E
[
e−

(|Y |−σ2τ)2

2σ2

]
=

1− e−τ

1 + e−τ

∑
y∈Z

e−
(|y|−σ2τ)2

2σ2 −|y|τ

=
1− e−τ

1 + e−τ
e−

σ2τ2

2

∑
y∈Z

e−
y2

2σ2 .

Thus, for any y ∈ Z, conditioned on C = 1 (i.e., on Y being output) we have

P [Y = y | C = 1] =
P [C = 1 | Y = y]P [Y = y]

P [C = 1]
=

e−
(|y|−σ2τ)2

2σ2 · 1−e−τ

1+e−τ · e−|y|τ

E [C]

=
e−

(|y|−σ2τ)2

2σ2 · e−|y|τ

e−
σ2τ2

2
∑

y′∈Z e
− y′2

2σ2

=
e−

y2

2σ2∑
y′∈Z e

− y′2
2σ2

.

That is, conditioned on outputting a value, this value is indeed distributed according to
NZ
(
0, σ2

)
.

We now turn to the runtime analysis. First, recalling (1) that σ2τ2 < 1 and σ ≥ t− 1,

by our choice of t = 1/τ = ⌊σ⌋+ 1 > σ, and (2) the bound
∑

y∈Z e
− y2

2σ2 ≥ max{1,
√
2πσ2}

from Fact 3.4, we have

E [C] ≥ 1− e−1/t

1 + e−1/t
e−

1
2 max{1,

√
2πσ} ≥ e−1/2

√
2π

2
(1− e−1/t)max{1, t− 1} > 0.29.

Therefore the probability that the algorithm succeeds and outputs a value in any given
iteration of the loop is lower bounded by a positive constant. Thus the number of iterations
of the loop follows a geometric distribution and is constant in expectation. Since, for each
iteration, the expected number of operations required to sample Y and C is constant (by
Propositions 5.3 and 5.2) the overall number of operations is constant in expectation.

5.4. Runtime Analysis. We have stated that our algorithms require a constant number of
operations in expectation. We now elaborate on this.

We assume a Word RAM model of computation. In particular, we assume that arithmetic
operations on the parameters count as one operation. Specifically, we assume that the
parameter σ2 is represented as a rational number (i.e., two integers in binary) and that

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 35

this fits in a constant number of words. If we measure complexity in terms of bits (rather
than words), then all operations run in time polynomial in the description length of the
input σ2. We emphasize that, if the parameter σ2 is rational, then all operations are
over rational numbers; we only apply basic field operations and comparisons and do not
evaluate any functions like the exponential function or the square root14 that would require
approximations or moving outside the rational field. The memory (i.e., number of words)
used by our algorithms is logarithmic in the runtime and constant in expectation. (The only
way the memory usage grows is the counters associated with some loops.)

The runtime of our algorithms is random. Beyond showing that the number of operations
is constant in expectation, it is possible to show, for all of our algorithms, that it is a
subexponential random variable. We give a precise definition of this term.

Definition 5.5. A nonnegative random variable X is said to be λ-subexponential if
E
[
eX/λ

]
≤ e. And X is said to be subexponential if it is λ-subexponential for some

finite λ > 0.

The constant e in the definition is arbitrary. Note that, if X is λ-subexponential, then
P [X ≥ t] ≤ E

[
e(X−t)/λ

]
≤ e1−t/λ for all t ≥ 0.

Our algorithms effectively consist of a constant number of nested loops and the number
of times each of them runs is subexponential. For most of our loops, they have a constant
probability of terminating in each run, which means the number of times they run follows a
geometric distribution, which is a subexponential random variable.

It turns out that such nested loops also have a subexpoential runtime. Specifically, one
can show that, if X1, . . . , Xn, . . . are independent subexponential random variables and T is
a stopping time that is subexponential, then

∑T
n=1Xn is still subexponential:

Lemma 5.6. Let α, β > 1. Suppose (Xn)1≤n≤∞ are independent non-negative α-subexponential

random variables and T is a β-subexponential stopping time. Then S :=
∑T

n=1Xn is αβ-
subexponential.

Proof. We will require the following simple result:

Claim 5.7. Let (Yn)n≥1 be independent random variables satisfying E[eYn] ≤ 1 for all n,

and let T be a stopping time such that T <∞ almost surely. Then E[e
∑T

n=1 Yn] ≤ 1.

Proof. For n ≥ 0, let Mn := e
∑n

k=1 Yk ≥ 0 (so that M0 = 1). Note that E[Mn+1 |
M1, . . . ,Mn] = E[eXn+1]Mn ≤ Mn, i.e., (Mn)n≥0 is a supermartingale. By the optional
stopping theorem for non-negative supermartingales (cf., e.g., (Wil91, Corollary 10.10(d))),

as T is a.s. finite we get E[MT] ≤ E[M0] = 1 , that is, E[e
∑T

n=1 Yn] ≤ 1.

Applying Claim 5.7 to Yn := Xn/α − 1, we get E
[
eS/α−T

]
= E[e

∑T
n=1 Xn/α−T] ≤ 1 .

Now, by Hölder’s and Jensen’s inequalities,

E
[
eS/αβ

]
= E

[
e(S/α−T)/β · eT/β

]
≤ E

[
eS/α−T

]1/β
·E
[
eT/(β−1)

]1−1/β
≤ 11/β ·E

[
eT/β

]
≤ e.

Thus S is αβ-subexponential.

14We do compute t = ⌊
√
σ2⌋+ 1 = inf{n ∈ N : n2 > σ2} and count this as a single operation; this can be

done exactly with rational operations (and binary search).

36 C. CANONNE, G. KAMATH, AND T. STEINKE

In our case, T corresponds to the number of times the loop runs and Xn corresponds
to the number of operations required inside the n-th run of the loop. Applying the above
lemma to each nested loop shows that the overall runtimes of Algorithm 1, Algorithm 2,
and Algorithm 3 are all subexponential random variables.

This means in particular that, for any δ ∈ (0, 1), to generate a batch of k samples from
NZ
(
0, σ2

)
(i.e., k runs of Algorithm 3), the probability of requiring more than O(k+log(1/δ))

arithmetic operations is at most δ.15 Each arithmetic operation corresponds effectively to a
constant number of operations in the Word RAM model. However, if the runtime is T then
the loop counters could require O(log T) words. Thus the number of Word RAM operations

is at most Õ(k+ log(1/δ)) with probability at least 1− δ. (We do not consider an amortized
complexity analysis.)

Thus, our algorithms have a highly concentrated runtime. This is important: If they
do not terminate in time, then this may result in a failure of differential privacy. While
there is the possibility for our approach to run unboundedly long, one could consider a
hard stopping variant. The concentrated runtime provides a very sharp bound on the
impact that this variant would have on the privacy parameter δ. Specific analysis would be
implementation dependent and is beyond the scope of our work, though we suspect it would
be negligible in settings which are not extremely time-sensitive. There is also the potential
for timing attacks. Indeed, subsequent to the initial posting of our work and non-optimized
demonstration code (CKS20; Dis20), Jin, McMurtry, Rubinstein, and Ohrimenko (JMRO21)
demonstrated a timing attack against our implementation. Balcer and Vadhan (BV19) argue
that differentially private algorithms should have a deterministic running time to avoid these
issues altogether. However, this is a highly restrictive model. We cannot exactly sample the
discrete Gaussian (or any unbounded distribution) in this model. It is not even possible to
exactly sample from Bernoulli(1/3) in this model (since, if we only have access to ℓ random
bits, we can only generate probabilities that are a multiple of 2−ℓ).

By terminating (and outputting 0) after a pre-specified time limit, our algorithms can
be made to have a deterministic runtime. However, this comes at the expense of now only
satisfying approximate (ε, δ + δ′)-differential privacy or δ′-approximate 1

2ε
2-concentrated

differential privacy (BS16), where δ′ is the probability of reaching the time limit. Since the
running time is roughly subexponential, this failure probability δ′ can be made astronomically
small with no cost in accuracy and very little cost in runtime (i.e., only milliseconds overall).
Realistically, a far greater concern than this failure probability is that the source of random
bits is not perfectly uniform (GL20).

Practical remark. We have implemented the algorithms from Algorithms 1, 2, and 3 in
Python (using the fractions.Fraction class for exact rational arithmetic and using
random.SystemRandom() to obtain high-quality randomnesss). Overall, on a standard
personal computer, our basic (non-optimized) implementation is able to produce over 1000
samples per second even for σ2 = 10100. The source code is available online (Dis20).

15Generating batches of samples, rather than one sample at a time, means we only need to pay one
log(1/δ) in our analysis, rather than O(k · log(1/δ)) if we analyse each sample separately. (If X1, · · · , Xk are

the number of operations of the k runs, then P [X1 + · · ·+Xk ≥ t] ≤ E
[
e(X1+···+Xk−t)/λ

]
≤ ek−t/λ, where

λ is the subexponential constant of Algorithm 3’s number of operations. Setting t = λ(k + log(1/δ)) ensures
this probability is at most δ.)

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 37

Acknowledgments

We thank Shahab Asoodeh, Damien Desfontaines, Peter Kairouz, and Ananda Theertha
Suresh for making us aware of several related works.

References

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 308–318, 2016. https://doi.org/10.1145/2976749.2978318.

[Ada13] Ryan Adams. The gumbel-max trick for discrete distributions. https://lips.

cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/,
2013.

[AKL21] Naman Agarwal, Peter Kairouz, and Ziyu Liu. The Skellam mech-
anism for differentially private federated learning. In Advances in
Neural Information Processing Systems 34, NeurIPS ’21. Curran Asso-
ciates, Inc., 2021. https://proceedings.neurips.cc/paper/2021/hash/

285baacbdf8fda1de94b19282acd23e2-Abstract.html.
[ALC+20] Shahab Asoodeh, Jiachun Liao, Flávio P. Calmon, Oliver Kosut, and Lalitha

Sankar. A better bound gives a hundred rounds: Enhanced privacy guarantees via
f-divergences. In IEEE International Symposium on Information Theory, ISIT
2020, Los Angeles, CA, USA, June 21-26, 2020, pages 920–925. IEEE, 2020.
https://doi.org/10.1109/ISIT44484.2020.9174015.

[AR16] Divesh Aggarwal and Oded Regev. A note on discrete Gaussian combinations of
lattice vectors. Chic. J. Theoret. Comput. Sci., pages Art. 7, 11, 2016. https:

//doi.org/10.4086/cjtcs.2016.007.
[ASY+18] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Ku-

mar, and Brendan McMahan. cpsgd: Communication-efficient and differentially-
private distributed sgd. In Advances in Neural Information Processing Systems,
pages 7564–7575, 2018. https://proceedings.neurips.cc/paper/2018/hash/
21ce689121e39821d07d04faab328370-Abstract.html.

[BDRS18] Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke. Composable
and versatile privacy via truncated cdp. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, pages 74–86, 2018. https:
//doi.org/10.1145/3188745.3188946.

[BM58] G. E. P. Box and Mervin E. Muller. A note on the generation of random normal
deviates. Ann. Math. Statist., 29:610–611, 1958. https://doi.org/10.1214/

aoms/1177706645.
[BS16] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,

extensions, and lower bounds. In Theory of Cryptography Conference, pages
635–658. Springer, 2016. https://doi.org/10.1007/978-3-662-53641-4_24.

[BS19] Mark Bun and Thomas Steinke. Average-case averages: Private algorithms for
smooth sensitivity and mean estimation. In Advances in Neural Information
Processing Systems, pages 181–191, 2019. https://proceedings.neurips.cc/

paper/2019/hash/3ef815416f775098fe977004015c6193-Abstract.html.

https://doi.org/10.1145/2976749.2978318
https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/
https://lips.cs.princeton.edu/the-gumbel-max-trick-for-discrete-distributions/
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://doi.org/10.1109/ISIT44484.2020.9174015
https://doi.org/10.4086/cjtcs.2016.007
https://doi.org/10.4086/cjtcs.2016.007
https://proceedings.neurips.cc/paper/2018/hash/21ce689121e39821d07d04faab328370-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/21ce689121e39821d07d04faab328370-Abstract.html
https://doi.org/10.1145/3188745.3188946
https://doi.org/10.1145/3188745.3188946
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1007/978-3-662-53641-4_24
https://proceedings.neurips.cc/paper/2019/hash/3ef815416f775098fe977004015c6193-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3ef815416f775098fe977004015c6193-Abstract.html

38 C. CANONNE, G. KAMATH, AND T. STEINKE

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk
minimization: Efficient algorithms and tight error bounds. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 464–473. IEEE,
2014. https://doi.org/10.1109/FOCS.2014.56.

[BV19] Victor Balcer and Salil P. Vadhan. Differential privacy on finite computers. J.
Priv. Confidentiality, 9(2), 2019. https://doi.org/10.29012/jpc.679.

[BW18] Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential
privacy: Analytical calibration and optimal denoising. In Jennifer G. Dy and
Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 403–412.
PMLR, 2018. http://proceedings.mlr.press/v80/balle18a.html.

[BZX+22] Ergute Bao, Yizheng Zhu, Xiaokui Xiao, Yin Yang, Beng Chin Ooi, Benjamin
Hong Meng Tan, and Khin Mi Mi Aung. Distributed skellam mechanism: a
novel approach to federated learning with differential privacy, 2022. https:

//openreview.net/forum?id=gWGexz8hFH.
[CKS20] Clément L. Canonne, Gautam Kamath, and Thomas Steinke. The dis-

crete Gaussian for differential privacy. In Advances in Neural Informa-
tion Processing Systems 33, NeurIPS ’20, pages 15676–15688. Curran As-
sociates, Inc., 2020. https://proceedings.neurips.cc/paper/2020/hash/

b53b3a3d6ab90ce0268229151c9bde11-Abstract.html.
[Cov19] Christian Covington. Snapping mechanism notes. 2019. https:

//github.com/ctcovington/floating_point/blob/master/snapping_

mechanism/notes/snapping_implementation_notes.pdf.
[DFW22] Yusong Du, Baoying Fan, and Baodian Wei. An improved exact sampling algorithm

for the standard normal distribution. Comput. Stat., 37(2):721–737, 2022. https:
//doi.org/10.1007/s00180-021-01136-w.

[Dis20] 2020. https://github.com/IBM/discrete-gaussian-differential-privacy.
[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 486–503. Springer, 2006. https://doi.org/10.1007/
11761679_29.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Proceedings of the
Third Conference on Theory of Cryptography, TCC’06, pages 265–284, Berlin,
Heidelberg, 2006. Springer-Verlag. http://dx.doi.org/10.1007/11681878_14,
https://doi.org/10.1007/11681878_14.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In
Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 202–210, 2003. https://doi.org/10.

1145/773153.773173.
[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407,
2014. https://doi.org/10.1561/0400000042.

[DR16] Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. arXiv
preprint arXiv:1603.01887, 2016. http://arxiv.org/abs/1603.01887.

https://doi.org/10.1109/FOCS.2014.56
https://doi.org/10.29012/jpc.679
http://proceedings.mlr.press/v80/balle18a.html
https://openreview.net/forum?id=gWGexz8hFH
https://openreview.net/forum?id=gWGexz8hFH
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://github.com/ctcovington/floating_point/blob/master/snapping_mechanism/notes/snapping_implementation_notes.pdf
https://github.com/ctcovington/floating_point/blob/master/snapping_mechanism/notes/snapping_implementation_notes.pdf
https://github.com/ctcovington/floating_point/blob/master/snapping_mechanism/notes/snapping_implementation_notes.pdf
https://doi.org/10.1007/s00180-021-01136-w
https://doi.org/10.1007/s00180-021-01136-w
https://github.com/IBM/discrete-gaussian-differential-privacy
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
http://dx.doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/773153.773173
https://doi.org/10.1561/0400000042
http://arxiv.org/abs/1603.01887

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 39

[DRS19] Jinshuo Dong, Aaron Roth, and Weijie J. Su. Gaussian differential privacy, 2019.
http://arxiv.org/abs/1905.02383, arXiv:1905.02383.

[DRV10] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential
privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 51–60. IEEE, 2010. https://doi.org/10.1109/FOCS.2010.12.

[For72] George E Forsythe. Von neumann’s comparison method for random sampling from
the normal and other distributions. Mathematics of Computation, 26(120):817–826,
1972. https://doi.org/10.2307/2005864.

[GL20] Simson L. Garfinkel and Philip Leclerc. Randomness concerns when deploying
differential privacy, 2020. https://arxiv.org/abs/2009.03777, arXiv:2009.
03777.

[GMP16] Ivan Gazeau, Dale Miller, and Catuscia Palamidessi. Preserving differential privacy
under finite-precision semantics. Theoretical Computer Science, 655:92–108, 2016.
https://doi.org/10.1016/j.tcs.2016.01.015.

[Goo20a] Google Differential Privacy Team. Privacy loss distributions, June 2020. https:
//perma.cc/HBY5-KGGC.

[Goo20b] Google Differential Privacy Team. Secure noise generation, June
2020. https://github.com/google/differential-privacy/blob/master/

common_docs/Secure_Noise_Generation.pdf.
[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard

lattices and new cryptographic constructions. In STOC, pages 197–206. ACM,
2008. https://doi.org/10.1145/1374376.1374407.

[GRS12] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-
maximizing privacy mechanisms. SIAM Journal on Computing, 41(6):1673–1693,
2012. https://doi.org/10.1137/09076828X.

[HB21] Naoise Holohan and Stefano Braghin. Secure random sampling in differential
privacy. In Elisa Bertino, Haya Shulman, and Michael Waidner, editors, Computer
Security - ESORICS 2021 - 26th European Symposium on Research in Computer
Security, Darmstadt, Germany, October 4-8, 2021, Proceedings, Part II, volume
12973 of Lecture Notes in Computer Science, pages 523–542. Springer, 2021.
https://doi.org/10.1007/978-3-030-88428-4_26.

[Ilv20] Christina Ilvento. Implementing the exponential mechanism with base-2 differential
privacy. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages 717–742. ACM, 2020.
https://doi.org/10.1145/3372297.3417269.

[JMRO21] Jiankai Jin, Eleanor McMurtry, Benjamin I. P. Rubinstein, and Olga Ohrimenko.
Are we there yet? timing and floating-point attacks on differential privacy systems.
CoRR, abs/2112.05307, 2021. https://arxiv.org/abs/2112.05307.

[Kar16] Charles FF Karney. Sampling exactly from the normal distribution. ACM
Transactions on Mathematical Software (TOMS), 42(1):1–14, 2016. https://doi.
org/10.1145/2710016.

[KJPH20] Antti Koskela, Joonas Jälkö, Lukas Prediger, and Antti Honkela. Tight ap-
proximate differential privacy for discrete-valued mechanisms using fft, 2020.
https://arxiv.org/abs/2006.07134, arXiv:2006.07134.

[KLS21] Peter Kairouz, Ziyu Liu, and Thomas Steinke. The distributed discrete gaussian
mechanism for federated learning with secure aggregation. In ICML, volume 139

http://arxiv.org/abs/1905.02383
http://arxiv.org/abs/1905.02383
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.2307/2005864
https://arxiv.org/abs/2009.03777
http://arxiv.org/abs/2009.03777
http://arxiv.org/abs/2009.03777
https://doi.org/10.1016/j.tcs.2016.01.015
https://perma.cc/HBY5-KGGC
https://perma.cc/HBY5-KGGC
https://github.com/google/differential-privacy/blob/master/common_docs/Secure_Noise_Generation.pdf
https://github.com/google/differential-privacy/blob/master/common_docs/Secure_Noise_Generation.pdf
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1137/09076828X
https://doi.org/10.1007/978-3-030-88428-4_26
https://doi.org/10.1145/3372297.3417269
https://arxiv.org/abs/2112.05307
https://doi.org/10.1145/2710016
https://doi.org/10.1145/2710016
https://arxiv.org/abs/2006.07134
http://arxiv.org/abs/2006.07134

40 C. CANONNE, G. KAMATH, AND T. STEINKE

of Proceedings of Machine Learning Research, pages 5201–5212. PMLR, 2021.
http://proceedings.mlr.press/v139/kairouz21a.html.

[KOV17] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem
for differential privacy. IEEE Trans. Inf. Theory, 63(6):4037–4049, 2017. https:
//doi.org/10.1109/TIT.2017.2685505.

[Liu18] Jingbo Liu. Information theory from a functional viewpoint. PhD thesis, Princeton
University, 2018. http://gateway.proquest.com/openurl?url_ver=Z39.

88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:

pqm&rft_dat=xri:pqdiss:10685999.
[McC94] Peter McCullagh. Does the moment-generating function characterize a dis-

tribution? The American Statistician, 48(3):208–208, 1994. https://www.

tandfonline.com/doi/abs/10.1080/00031305.1994.10476058, arXiv:https:

//www.tandfonline.com/doi/pdf/10.1080/00031305.1994.10476058, https:

//doi.org/10.1080/00031305.1994.10476058.
[McS09] Frank McSherry. Privacy integrated queries: An extensible platform for privacy-

preserving data analysis. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, pages 19–30, New York, NY,
USA, 2009. ACM. https://doi.org/10.1145/1559845.1559850.

[Mir12] Ilya Mironov. On significance of the least significant bits for differential privacy.
In Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, page 650–661, New York, NY, USA, 2012. Association for
Computing Machinery. https://doi.org/10.1145/2382196.2382264.

[Mir17] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF), pages 263–275. IEEE, 2017. https://doi.org/
10.1109/CSF.2017.11.

[MM18] Sebastian Meiser and Esfandiar Mohammadi. Tight on budget? tight bounds for
r-fold approximate differential privacy. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 247–264, 2018.
https://doi.org/10.1145/3243734.3243765.

[MS20] Ryan McKenna and Daniel Sheldon. Permute-and-flip: A new mechanism
for differentially private selection. In Hugo Larochelle, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. https://proceedings.neurips.cc/paper/2020/hash/
01e00f2f4bfcbb7505cb641066f2859b-Abstract.html.

[MV18] Jack Murtagh and Salil P. Vadhan. The complexity of computing the optimal
composition of differential privacy. Theory Comput., 14(1):1–35, 2018. https:

//doi.org/10.4086/toc.2018.v014a008.
[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and

sampling in private data analysis. In David S. Johnson and Uriel Feige, editors,
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, June 11-13, 2007, pages 75–84. ACM, 2007. https:

//doi.org/10.1145/1250790.1250803.
[Pei10] Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In Advances in

cryptology—CRYPTO 2010, volume 6223 of Lecture Notes in Comput. Sci., pages
80–97. Springer, Berlin, 2010. https://doi.org/10.1007/978-3-642-14623-7_

http://proceedings.mlr.press/v139/kairouz21a.html
https://doi.org/10.1109/TIT.2017.2685505
https://doi.org/10.1109/TIT.2017.2685505
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10685999
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10685999
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10685999
https://www.tandfonline.com/doi/abs/10.1080/00031305.1994.10476058
https://www.tandfonline.com/doi/abs/10.1080/00031305.1994.10476058
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00031305.1994.10476058
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/00031305.1994.10476058
https://doi.org/10.1080/00031305.1994.10476058
https://doi.org/10.1080/00031305.1994.10476058
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1109/CSF.2017.11
https://doi.org/10.1109/CSF.2017.11
https://doi.org/10.1145/3243734.3243765
https://proceedings.neurips.cc/paper/2020/hash/01e00f2f4bfcbb7505cb641066f2859b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/01e00f2f4bfcbb7505cb641066f2859b-Abstract.html
https://doi.org/10.4086/toc.2018.v014a008
https://doi.org/10.4086/toc.2018.v014a008
https://doi.org/10.1145/1250790.1250803
https://doi.org/10.1145/1250790.1250803
https://doi.org/10.1007/978-3-642-14623-7_5

THE DISCRETE GAUSSIAN FOR DIFFERENTIAL PRIVACY ∗ 41

5.
[poi] Poisson summation formula. Proof Wiki. https://proofwiki.org/wiki/

Poisson_Summation_Formula.
[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-

tography. Journal of the ACM (JACM), 56(6):1–40, 2009. https://doi.org/10.
1145/1568318.1568324.

[Riv12] Omar Rivasplata. Subgaussian random variables: An expository note. 2012.
http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf.

[Ste17] Noah Stephens-Davidowitz. On the Gaussian measure over lattices. Phd the-
sis, New York University, 2017. https://cs.nyu.edu/media/publications/

stephens-davidowitz_noah.pdf.
[SV16] Igal Sason and Sergio Verdu. f -divergence inequalities. IEEE Transactions on

Information Theory, 62(11):5973–6006, Nov 2016. https://doi.org/10.1109/

TIT.2016.2603151.
[SWS+19] Aaron Schein, Zhiwei Steven Wu, Alexandra Schofield, Mingyuan Zhou, and

Hanna Wallach. Locally private Bayesian inference for count models. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5638–5648, Long Beach, California, USA, 09–15 Jun 2019. PMLR.
http://proceedings.mlr.press/v97/schein19a.html.

[USC21] DAS implementation overview, 2021. https://github.com/

uscensusbureau/DAS_2020_Redistricting_Production_Code/wiki/

DAS-Implementation-Overview [Accessed on 2022-01-29].
[vN51] John von Neumann. Various techniques used in connection with random digits.

In A. S. Householder, G. E. Forsythe, and H. H. Germond, editors, Monte Carlo
Method, volume 12 of National Bureau of Standards Applied Mathematics Series,
chapter 13, pages 36–38. US Government Printing Office, Washington, DC, 1951.
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf.

[Wei] Eric W. Weisstein. Poisson sum formula. MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/PoissonSumFormula.html.

[Wil91] David Williams. Probability with martingales. Cambridge Mathematical Text-
books. Cambridge University Press, Cambridge, 1991. https://doi.org/10.

1017/CBO9780511813658.
[ZDW21] Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential

privacy via characteristic function. arXiv preprint arXiv:2106.08567, 2021. https:
//arxiv.org/abs/2106.08567.

[ZSS20] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: compact and
scalable arbitrary-centered discrete gaussian sampling over integers. In Jintai Ding
and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings, volume
12100 of Lecture Notes in Computer Science, pages 284–303. Springer, 2020.
https://doi.org/10.1007/978-3-030-44223-1_16.

This work is licensed under the Creative Commons License Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Com-
mons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://proofwiki.org/wiki/Poisson_Summation_Formula
https://proofwiki.org/wiki/Poisson_Summation_Formula
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
http://www.stat.cmu.edu/~arinaldo/36788/subgaussians.pdf
https://cs.nyu.edu/media/publications/stephens-davidowitz_noah.pdf
https://cs.nyu.edu/media/publications/stephens-davidowitz_noah.pdf
https://doi.org/10.1109/TIT.2016.2603151
https://doi.org/10.1109/TIT.2016.2603151
http://proceedings.mlr.press/v97/schein19a.html
https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code/wiki/DAS-Implementation-Overview
https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code/wiki/DAS-Implementation-Overview
https://github.com/uscensusbureau/DAS_2020_Redistricting_Production_Code/wiki/DAS-Implementation-Overview
https://mcnp.lanl.gov/pdf_files/nbs_vonneumann.pdf
https://mathworld.wolfram.com/PoissonSumFormula.html
https://doi.org/10.1017/CBO9780511813658
https://doi.org/10.1017/CBO9780511813658
https://arxiv.org/abs/2106.08567
https://arxiv.org/abs/2106.08567
https://doi.org/10.1007/978-3-030-44223-1_16
https://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.1. Results
	1.2. Related Work

	2. Privacy
	2.1. Concentrated Differential Privacy
	2.2. Approximate Differential Privacy
	2.3. Converting Concentrated Differential Privacy to Approximate Differential Privacy
	2.4. Sharp Approximate Differential Privacy Bounds for Multivariate Noise

	3. Utility
	3.1. A Few Good Facts
	3.2. Tighter Variance and Tail Bounds
	3.3. Other Discretizations, and Convergence to the Continuous Gaussian

	4. Discrete Laplace
	5. Sampling
	5.1. Sampling Bernoulli(exp(-))
	5.2. Sampling from a Discrete Laplace
	5.3. Sampling from a Discrete Gaussian
	5.4. Runtime Analysis

	Acknowledgments
	References

