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Abstract. Local differential privacy (LDP) is a model where users send privatized data
to an untrusted central server whose goal it to solve some data analysis task. In the
non-interactive version of this model the protocol consists of a single round in which a
server sends requests to all users then receives their responses. This version is deployed in
industry due to its practical advantages and has attracted significant research interest.

Our main result is an exponential lower bound on the number of samples necessary to
solve the standard task of learning a large-margin linear separator in the non-interactive
LDP model. Via a standard reduction this lower bound implies an exponential lower
bound for stochastic convex optimization and specifically, for learning linear models with a
convex, Lipschitz and smooth loss. These results answer the questions posed by Smith,
Thakurta, and Upadhyay (IEEE Symposium on Security and Privacy 2017) and Daniely
and Feldman (NeurIPS 2019). Our lower bound relies on a new technique for constructing
pairs of distributions with nearly matching moments but whose supports can be nearly
separated by a large margin hyperplane. These lower bounds also hold in the model where
communication from each user is limited and follow from a lower bound on learning using
non-adaptive statistical queries.

1. Introduction

The primary model we study is distributed learning with the constraint of local differential
privacy (LDP) (Warner, 1965; Evfimievski et al., 2003; Kasiviswanathan et al., 2011). In
this model each client (or user) holds an individual data point and a server can communicate
with the clients. The goal of the server is to perform some statistical analysis on the data
stored at the clients. In addition, the server is not trusted and the communication should not
reveal significant private information about the users’ data. Specifically, the entire protocol
needs to satisfy differential privacy (Dwork et al., 2006). In the general version of the model,
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the executed protocol can involve an arbitrary number of rounds of interaction between the
server and the clients. In practice, however, network latencies significantly limit the number
of rounds of interaction that can be executed. Indeed, currently deployed systems that use
local differential privacy are non-interactive (Erlingsson et al., 2014; Apple’s Differential
Privacy Team, 2017; Ding et al., 2017). Namely, the server sends each client a request; based
on the request each client runs some differentially private algorithm on its data and sends a
response back to the server. The server then analyzes the data it received (without further
communication with the clients).

This motivates the question: which problems can be solved by non-interactive LDP
protocols? This question was first formally addressed by Kasiviswanathan et al. (2011)
who also established an equivalence, up to polynomial factors, between algorithms in the
statistical query (SQ) framework of Kearns (1998) and LDP protocols1. In this equivalence,
non-interactive protocols correspond to non-adaptive SQ algorithms. Unfortunately, most
SQ learning algorithms are adaptive and thus, for most problems, this equivalence only
gives interactive LDP protocols. Using this equivalence, Kasiviswanathan et al. (2011) also
constructed an artificial learning problem which requires an exponentially larger number
of samples to solve by any non-interactive LDP protocol than it does when interaction is
allowed.

Motivated by the industrial applications of the LDP model, Smith et al. (2017) studied
the complexity of solving stochastic convex loss minimization problems by non-interactive
LDP algorithms. In these problems we are given a family of loss functions {`(w; z)}z∈Z
convex in w and a convex body K ⊆ Rd. For a distribution P over Z the goal is to find an
approximate minimizer of

`(w;P ) := E
z∼P

`(w; z).

over w ∈ K. They gave a non-interactive LDP algorithm that uses an exponential in d
number of samples. Additionally, they showed that such dependence is unavoidable for
the commonly used optimization algorithms whose queries rely solely on the information
in the neighborhood of the query point w (such as gradients or Hessians). Their bounds
have been strengthened and generalized in a number of subsequent works (Duchi et al.,
2018; Woodworth et al., 2018; Balkanski and Singer, 2018; Diakonikolas and Guzmán, 2018;
Wang et al., 2018; Bubeck et al., 2019a) but the question of whether a non-interactive LDP
protocol for optimizing convex functions with polynomial sample complexity exists remained
open.

A recent work of Daniely and Feldman (2019a) shows that there exist natural learning
problems that are exponentially harder to solve by LDP protocols without interaction.
Specifically, they consider PAC learning a class C of Boolean functions over a domain X.
A PAC learning algorithm for C receives i.i.d. samples (x, f∗(x)) where x is drawn from

an unknown distribution D and f∗ : X → {−1, 1}, and its goal is to find f̂ : X → {−1, 1}
which achieves a classification error of at most α, namely

errf∗,D(f̂)
.
= Pr

x∼D
[f∗(x) 6= f̂(x)] ≤ α.

Daniely and Feldman (2019a) show that the number of samples required by any non-
interactive LDP protocol to learn C with a non-trivial error is lower bounded by a polynomial
in the margin complexity of C. The margin of a linear separator f over S ⊆ Rd captures how

1More formally, the equivalence is for a more restricted way to measure privacy based on composition of
the privacy parameters of each message sent by a user.
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well the points x with f(x) = 1 are separated from those with f(x) = −1, and is formally
defined as

γ(f, S)
.
= sup

w 6=0
inf
x∈S

f(x)
〈x,w〉
‖x‖2‖w‖2

. (1.1)

The margin complexity of C is the inverse of the largest margin γ that can be achieved
by embedding X into Rd such that every f ∈ C can be realized as a linear separator with
margin at least γ. It is a well-studied notion within learning theory and communication
complexity, measuring the complexity of Boolean function classes and their corresponding
sign matrices in (e.g. (Novikoff, 1962; Aizerman et al., 1964; Boser et al., 1992; Forster et al.,
2001; Ben-David et al., 2002; Sherstov, 2008; Linial and Shraibman, 2009; Kallweit and
Simon, 2011)). There exist known classes of functions, such as decision lists and general linear
separators, that are PAC learnable by (interactive) SQ algorithms but have exponentially
large margin complexity. Thus, non-interactive LDP protocols require an exponentially
larger number of samples for PAC learning such classes than interactive ones. This result
also leads to the question of whether all classes with inverse polynomial margin complexity
can be learned efficiently non-interactively (see Daniely and Feldman (2019b) for a more
detailed discussion). Such large-margin linear classifiers are much more common in practice
and are significantly easier to learn than general linear separators. For example, a simple
Perceptron algorithm can be used instead of the more involved algorithms like the Ellipsoid
method that are used when the margin is exponentially small.

1.1. Our Results. We show that both learning large-margin linear separators and learning
of linear models with a convex loss require an exponential number of samples in the non-
interactive LDP model. Formally, we define the margin relative to a distribution on Rd as
the margin relative to the support of the distribution: γ(f,D)

.
= γ(f, supp(D)). We give

the following lower bound for learning large-margin linear classifiers.

Theorem 1. Fix ε > 0, γ ∈ (0, 1/4], r ∈ (0, 1) and d ≥ γ−2−2r/5. Let A be a randomized,
non-interactive ε-LDP learning algorithm over X = {−1, 1}d using n samples. Assume
that for any linear separator f∗ and distribution D over X with margin γ(f∗, D) ≥ γ,

A outputs a hypothesis f̂ with an expected error of EA[errf∗,D(f̂)] ≤ 1/2 − γ1−r. Then,

n ≥ exp(Cγ−2r/5)/e2ε, where C > 0 depends only on r.

In particular, this lower bound is always exponential either in the margin or in the
dimension of the problem. Note that linear separators with margin γ can be learned with
error α by an ε-LDP algorithm with O(1/γ2) rounds of interaction and using poly(1/(εαγ))
samples. This can be done by using a standard SQ implementation of the Perceptron
algorithm (Blum et al., 1997; Feldman et al., 2015) (after a random projection to remove
the dependence on the dimension) or via a reduction to convex loss minimization described
below together with an LDP algorithm for convex optimization from Duchi et al. (2013a).
Our lower bound is also essentially tight in terms of the achievable error. There exist an
efficient non-interactive algorithm achieving an error of 1/2 − Θ(γ), while 1/2 − γ1−r is
impossible for all r > 0.
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Proof technique: As in the prior work of Kasiviswanathan et al. (2011) and Daniely and
Feldman (2019a), we exploit the connection to statistical query algorithms. Here, we assume
a distribution P over Z = X × Y and instead of i.i.d. samples from P , an SQ algorithm
has access to an SQ oracle for P . Given a query function h : Z → [−1, 1] an SQ oracle
for P with tolerance parameter τ returns the value Ez∼P [h(z)] with some added noise of
magnitude bounded by τ (Kearns, 1998). Such an algorithm is non-adaptive if its queries
do not depend on the answers to prior queries. Our lower bound is effectively a lower bound
against non-adaptive statistical query algorithms together with the known simulation of
a non-interactive LDP protocol by a non-adaptive SQ algorithm (Kasiviswanathan et al.,
2011). The SQ model captures a broad class of learning algorithms and thus our lower
bound can be viewed as showing the importance of interactive access to data beyond the
distributed learning setting.

Our lower bound for non-adaptive SQ algorithms is based on a new technique for
constructing hard to distinguish pairs of distributions over data. The key technical element
of this construction is a pair of distributions over {−1, 1}d that have nearly matching
moments but whose supports are nearly linearly separable with significant margin. To design
such distributions we rely on tools from the classical moment problem.

Convex loss optimization of linear models: We now spell out the implications of our lower
bound in Theorem 1 for stochastic convex optimization. Our lower bounds will apply to
optimization of the simple class of convex linear models. These models are defined by some
loss function `(w, (x, y)) = ϕ(〈w, x〉, y) for some ϕ that is convex in the first parameter
for every y. In our reduction the label is in {−1, 1} and the loss function can be further
simplified as `(w; (x, y)) = ϕ(y〈w, x〉) for a fixed convex function ϕ : [−1, 1] → R. In our
reduction w and x are in Bd, the unit ball of Rd. We show that there exists L-Lipschitz,
σ-smooth and µ-strongly convex ϕ such that the following lower bound holds.

Theorem 2. For any parameters 0 ≤ µ < σ ≤ ∞, L > 0 and α > 0, there exists a
loss function `(w, (x, y)) = ϕ(y〈w, x〉) where ϕ is convex, L-Lipschitz, σ-smooth and µ-
strongly convex, such that any non-interactive ε-LDP algorithm A that outputs ŵ satisfying
EA[`(ŵ, P )] ≤ infw∈Bd E[`(w,P )] + α, requires

n ≥ min

(
exp

(
cd0.16

)
, exp

(
c

(
min(L, σ)

max(µ, α)

)0.19
))

,

samples, where c > 0 is a universal constant.

This implies that with 1-Lipschitzness and 1-smoothness, the sample complexity is
exponential either in d or in 1/α, and if we add the assumption of µ-strong convexity, the
sample complexity can be exponential in κ

.
= σ/µ. For comparison, for general convex

functions the only known upper bounds are exponential in the dimension (Smith et al.,
2017; Wang et al., 2018). For linear models, by polynomial approximation it is possible to
obtain bounds without an exponential dependence in the dimension: for example, Zheng
et al. (2017) showed that logistic regression can be solved with roughly n = α−O(log log(1/α))

samples and Wang et al. (2019) study general linear models2. Efficient non-interactive
LDP algorithms exist for least squares linear regression (Smith et al., 2017) and principal

2The bound stated by Wang et al. (2019) is n = α−O(log log(1/α)) for arbitrary 1-Lipschitz losses, contra-
dicting the lower bound in Thm. 2. The authors have confirmed a mistake in their analysis and are working
on correcting the bound (Smith and Wang, Nov, 2019).
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component analysis (Wang and Xu, 2019) since for these tasks low order statistics suffice for
finding a solution.

Communication constrained setting: An additional benefit of proving the lower bound via
statistical queries is that we can extend our results to other models known to be related to
statistical queries. In particular, we consider distributed protocols in which only a small
number of bits is communicated from each client. Namely, each client applies a function with
range {0, 1}` to their input and sends the result to the server (for some `� log |Z|). As the
server only has to communicate a random seed which is practically small and can provably
be compressed to O(log log |Z|+ log n) bits, this model is useful when the communication
cost is high and the complete sample z ∈ Z is expensive to send, for example, when its
dimension is large. In the context of learning this model was introduced by Ben-David
and Dichterman (1998) and generalized by Steinhardt et al. (2016). Identical and closely
related models are often studied in the context of distributed statistical estimation with
communication constraints (e.g. (Luo, 2005; Rajagopal et al., 2006; Ribeiro and Giannakis,
2006; Zhang et al., 2013; Steinhardt and Duchi, 2015; Suresh et al., 2017; Acharya et al.,
2020a, 2019b,a, 2020b)). As in the setting of LDP, the number of rounds of interaction
that the server uses to solve a learning problem is a critical resource. Using the equivalence
between this model and SQ learning we immediately obtain analogous lower bounds for this
model. In particular, we show that either ` ≥ Ω(γ−0.39) or n ≥ exp(Ω(γ0.39)) is required for
learning non-interactively. See Section 5 for additional details.

Future work: Our work provides nearly tight lower bounds for learning by non-interactive or
one-round LDP protocols. An important question left open is whether linear classification
and convex optimization can be solved by algorithms using a small number of rounds of
interaction in the above models. Such lower bounds are not known even for the harder
problem considered in Daniely and Feldman (2019a). In contrast, known techniques for
solving these problems require a polynomial number of rounds (see Smith et al. (2017) for a
discussion). We hope that the construction in this paper will provide a useful step toward
lower bounds against multi-round SQ or LDP algorithms. We remark, however, that general
multi-round LDP protocols can be stronger than statistical query algorithms (Joseph et al.,
2019b) and thus may require an entirely different approach.

1.2. Related Work. Most positive results for non-interactive LDP model concern relatively
simple data analysis tasks, such as computing counts and histograms (e.g. (Hsu et al., 2012;
Erlingsson et al., 2014; Bassily and Smith, 2015; Bun et al., 2019; Erlingsson et al., 2018)).
Efficient non-interactive algorithms for learning large-margin classifiers and convex linear
models can be obtained given access to public unlabeled data (Daniely and Feldman, 2019a;
Wang et al., 2021). A number of lower bounds on the sample complexity of LDP algorithms
demonstrate that (non-interactive) LDP protocols are less efficient than the central model of
differential privacy (Kasiviswanathan et al., 2011; Duchi et al., 2013b; Ullman, 2018; Duchi
and Rogers, 2019).

Joseph et al. (2019a,b) explore a different aspect of interactivity in LDP. Specifi-
cally, they distinguish between two types of interactive protocols: fully-interactive and
sequentially-interactive. Fully-interactive protocols place no restrictions on interaction
whereas sequentially-interactive protocols only allows asking one query per user. They
give a separation showing that sequentially-interactive protocols may require exponentially
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more samples than fully interactive ones. This separation is orthogonal to ours since our
lower bounds are against completely non-interactive protocols and we separate them from
sequentially-interactive protocols. Acharya et al. (2020a) implicitly consider another re-
lated model: one-way non-interactive protocols where the server does not communicate the
choice of a randomizer to the clients or, equivalently, cannot share a random string with
clients. They give a polynomial separation between one-way non-interactive protocols and
non-interactive protocols for the problem of identity testing for a discrete distribution over
k elements (O(k) vs Ω(k3/2) samples).

Finally, we would like to add that moment matching was used in prior work to derive
statistical query lower bounds for mixture distributions (Diakonikolas et al., 2017; Chen and
Moitra, 2019), to defend against adversarial examples (Bubeck et al., 2019b), for robust
statistics (Diakonikolas et al., 2019), for mean estimation with general norms (Li et al., 2019)
and in other settings. Their proofs required different constructions from the one appearing
in this paper.

2. Preliminaries

2.1. Models of Computation.
Local differential privacy: In the local differential privacy (LDP) model (Warner, 1965;
Evfimievski et al., 2003; Kasiviswanathan et al., 2011) it is assumed that each of n users
holds a sample of some dataset (z1, . . . , zn) ∈ Zn. In the general version of the model the
users can communicate with the server arbitrarily. The protocol is said to satisfy (ε, δ)-LDP
if the algorithm that outputs the transcript3 of the protocol given the dataset (z1, . . . , zn)
satisfies the standard definition of (ε, δ)-differential privacy (Dwork et al., 2006).

We are interested in the non-interactive (one-round) LDP protocols. Such protocols can
equivalently be described as non interactively accessing the following oracle:

Definition 1. An ε-DP local randomizer R : Z → W is a randomized algorithm that
given an input z ∈ Z, outputs a message w ∈ W , such that ∀z1, z2 ∈ Z and w ∈ W ,
Pr[R(z1) = w] ≤ eε Pr[R(z2) = w]. For a dataset S ∈ Zn, an LRS oracle takes as an input
an index i and a local randomizer R and outputs a random value w obtained by applying
R(zi). An algorithm is non-interactive ε-LDP if it accesses S only via the LRS oracle with
ε-DP local randomizers, each sample is accessed at most once and all of its queries are
determined before observing any of the oracle’s responses.

We remark that for non-interactive protocols, querying the same sample multiple times
(subject to the entire communication satisfying ε-DP) does not affect the model. Also for
non-interactive protocols, allowing (ε, δ)-differential privacy instead of ε-DP does not affect
the power of the model (Bun et al., 2019) (as long as δ is sufficiently small).

3The transcript is the collection of all messages sent in the protocol.



INTERACTION IS NECESSARY FOR DISTRIBUTED PRIVATE LEARNING 7

Statistical queries: The statistical query model of Kearns (1998) is defined by having access
to a statistical query oracle to the data distribution P instead of i.i.d. samples from P . The
oracle is defined as follows:

Definition 2. Given a domain Z, a statistical query is any (measurable) function h : Z →
[−1, 1]. A statistical query oracle STATP (τ) with tolerance τ receives a statistical query h
and outputs an arbitrary value v such that |v − Ez∼Z [h(z)]| ≤ τ .

To solve a learning problem in this model an algorithm has to succeed for any oracle’s
responses that satisfy the guarantees on the tolerance. In other words, the guarantees of
the algorithm should hold in the worst case over the responses of the oracle. A randomized
learning algorithm needs to succeed for any SQ oracle whose responses may depend on the
all queries asked so far but not on the internal randomness of the learning algorithm.

We say that an SQ algorithm is non-interactive (or non-adaptive) if all its queries are
determined before observing any of the oracle’s responses. Kasiviswanathan et al. (2011)
show that one can simulate a non-adaptive ε-LDP algorithm using a non-adaptive SQ
algorithm.

Theorem 3 ((Kasiviswanathan et al., 2011)). Let A be an ε-LPD algorithm that makes
non-interactive queries to LRS for S ∈ Zn drawn i.i.d. from some distribution P . Then for
every δ > 0 there is a non-adaptive SQ algorithm ASQ that in expectation makes O(n · eε)
queries to STATP (τ) for τ = Θ(δ/(e2εn)) and whose output distribution has a total variation
distance of at most δ from the output distribution of A.

We remark that this simulation extends to interactive LDP protocols as long as they
rely on local randomizers with the sum of privacy parameters used on every point being
at most ε. Such protocols, first defined in Kasiviswanathan et al. (2011) are referred to as
compositional ε-LDP. They are known to be exponentially weaker than the general interactive
LDP protocols although the separation is known only for rather unnatural problems (Joseph
et al., 2019b). The converse of this connection is also known: SQ algorithms can be simulated
by ε-compositional LDP protocols (and this simulation preserves the number of rounds of
interaction) (Kasiviswanathan et al., 2011).

2.2. Boolean Fourier Analysis. Boolean Fourier analysis concerns the Fourier coefficients
of functions of Boolean inputs, h : {−1, 1}d → R. Let Ud be the uniform distribution over
{−1, 1}d, and for any S ⊆ [d], define the coefficient

ĥ(S) = E
x∼Ud

[h(x)χS(x)], where χS(x) =
∏
i∈S

xi.

As {χS(x)}S⊆[d] is an orthonormal basis of the space of functions f : {−1, 1}d → R, h can

be decomposed as h(x) =
∑

S⊆[d] ĥ(S)χS(x). Plancherel’s theorem states that

E
x∼Ud

[h(x)g(x)] =
∑
S⊆[d]

ĥ(S)ĝ(S), (2.1)

and Parseval’s theorem is the special case where g = h. For a distribution D over {−1, 1}d
we define the Fourier coefficients as the coefficients of the function x 7→ PrD[x]/PrUd [x],
namely,

D̂(S) = E
x∼Ud

[
PrD[x]

PrUd [x]
χS(x)

]
= E

x∼D
χS [x]. (2.2)
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Lastly, note that for a distribution D and a function h, it follows from Plancherel’s theorem
that

E
x∼D

[h(x)] = E
x∼Ud

[
h(x)

PrD[x]

PrUd [x]

]
=
∑
S⊆[d]

D̂(S)ĥ(S). (2.3)

2.3. The Classical Moment Problem. Given a probability distribution P and k ∈ N,
it is natural to try and characterize all distributions that have the same first k moments
as P , namely, distributions D with Ex∼D[xi] = Ex∼P [xi] for all i ∈ [k]. There is a great
literature in this topic, e.g. (Akhiezer and Kemmer, 1965; Krein and Nudel’man, 1977) (see
Benjamini et al. (2012) for an application in computer science). The study uses the notion
of orthogonal polynomials:

Definition 3. Let P be a probability distribution over R with all moments finite. We say
that a sequence of polynomials p0, p1, . . . , pk, . . . are orthogonal with respect to P if they
satisfy the following:

• For all m ≥ 0, pm is of degree m and has a positive leading coefficient.
• For all m, ` ≥ 0, Ex∼P [pm(x)p`(x)] = 1m=`.

Denote the above sequence of polynomials as the orthogonal polynomials with respect to P .

It is known that there is a unique sequence of orthogonal polynomials with respect to P ,
hence we call them the orthogonal polynomials (w.r.t P ). Given the orthogonal polynimials
p0, p1, . . . , define the function ρk : R→ R as follows:

ρk(x) =
1∑k

i=0 pi(x)2
. (2.4)

These functions characterize the amount of mass that can be concentrated on the point x by
distributions D that match the first 2k moments of P :

Theorem 4 ((Akhiezer and Kemmer, 1965), Theorem 2.5.2). Let P be a distribution with
finite moments, fix k ∈ N and x ∈ R and let ρk be defined with respect to P . The following
holds:

• There exists a distribution D matching the first 2k moments of P with PrD[x] = ρk(x).
• Any distribution D that matches the first 2k moments of P satisfies: PrD[x] ≤ ρk(x).

3. Proof of Theorem 1

Below we state and prove the lower bound on learning with statistical queries. The lower
bounds for LDP protocols stated in Theorem 1 follows directly from the reduction in Theorem
3.

Theorem 5. Let r ∈ (0, 1), γ ∈ (0, 2−1/(1−r)), n ≥ γ−2−2r/5 and define η = γ1−r. Let
A be a non-adaptive statistical query algorithm such that for any linear separator f∗ and

distribution D over X = {−1, 1}2d with margin γ(f∗, D) ≥ γ, returns a hypothesis f̂

with EA[errf∗,D(f̂)] ≤ 1/2 − η. If A has access to statistical queries with tolerance τ =

exp
(
−cγ−2r/5

)
, then A requires at least exp

(
cγ−2r/5

)
queries, where c > 0 is a constant

depending only on r.
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3.1. Outline. We start with a brief sketch of the proof. Let X = {−1, 1}2d and Y = {−1, 1}.
Our proof is based on a construction of two distributions D0 and D1 over {−1, 1}2d×{−1, 1}
and two linear functions f0 and f1 that are hard to distinguish but they almost always
disagree on the label y. Specifically, the have the following properties:

• Any (x, y) ∈ supp(Db) satisfies y = fb(x) for b ∈ {0, 1}, and additionally, f0 and f1 have
Ω(γ)-classification margin over the supports of D0 and D1, respectively.

• D0 and D1 have nearly the same Fourier coefficients: for any S ⊆ [2d], |D̂0(x)− D̂1(x)| is
exponentially small.
• f0(x) 6= f1(x) for nearly all values of x: Pr(x,y)∼Db [f0(x) = f1(x)] = O(η), for b ∈ {0, 1}

where η := γ1−r.

Given these two distributions, we can create a hard family of distributions containing many
pairs obtained from the original pair by a simple translation. Any efficient SQ algorithm
would find most pairs of distributions impossible to distinguish. That is, the algorithm
cannot distinguish which of the two distributions in the pair is the correct one. As a
consequence, it will not be able to predict the correct label of x for most values of x.

In the rest of this section we describe how D0 and D1 are constructed. The construction
involves multiple consecutive steps that we describe below. We start with two distributions
P and Q over R that satisfy:

(1) P and Q have matching first 2k = γ−Ω(1) moments.
(2) Prp∼P [p ≥ γ] = 1 and Prq∼Q[q ≤ −γ] ≥ 1−O(η), where η = γ1−r.

The distribution P is a mixture in which the value γ has weight 1 − η and a scaled and
shifted exponential distribution defined on [γ,∞) has weight η. To show that there exists a
distribution Q which matches the first 2k moments of P and satisfies PrQ[−γ] ≥ 1−O(η),
it suffices to show that ρk(−γ) ≥ 1−O(η), where ρk is the function from Eq. (2.4), which
is defined by the orthogonal polynomials of P . We calculate these polynomials as a linear
combination of the orthogonal polynomials of the exponential distribution, for which a closed
formula is known. We remark that instead of the exponential distribution other distributions
can be used to get a similar bound on ρk.

Based on P and Q, we create two distributions P1 and P−1 over {−1, 1}d which satisfy:

• P1 and P−1 nearly match all Fourier coefficients.
• Prx∼P1 [

∑
i xi/d ≥ γ/2] = 1 and Prx∼P−1 [

∑
i xi/d ≤ −γ/2] ≥ 1−O(η).

To draw x ∼ P1 we first draw p ∼ P and then draw each bit of x independently with mean
p. Similarly, we draw P−1 given Q. The Fourier coefficients of P1 and P−1 correspond to the

moments of P and Q, respectively: P̂1(S) = EP [p|S|] and similarly for P−1 and Q. Hence
the Fourier coefficients of P1 and P−1 nearly match (note that we’ve only shown that P and
Q match the first 2k moments, however, the higher moments are exponentially small and
negligible). The second property of P1 and P−1 follows from the second property of P and
Q (except with some small failure probability which we can condition out).

Next, we explain the distributions D0 and D1 and the functions f0 and f1 that appear

in the first paragraph: f0 is defined as a majority over the first d bits, f0(x) = sign(
∑d

i=1 xi)

and f1 is a majority over the last d bits, f1(x) = sign(
∑2d

i=d+1 xi). To draw (x, y) ∼ D0, we
independently draw y ∼ Unif({−1, 1}), z1 ∼ P1 and z−1 ∼ P−1. Then, we set x = (yz1, yz−1).
We define D1 nearly the same way, with the only difference that x = (yz−1, yz1). From the
properties of P1 and P−1, all properties of D0 and D1 presented in the first paragraph are
satisfied.
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3.2. Proof of Theorem 5. We begin with some notations:

• Given a statistical query h, denote h(D, f) = Ex∼D(h(x, f(x))).
• We use C,C ′, c, c1, · · · > 0 to denote universal constants or constants depending only on r.

In the proof we will allow redundant constants depending on r (e.g. the advantage will be
Cη rather than η).
• Let Unif(A) denote the uniform distribution over a finite set A, let dTV denote the total

variation distance of two distributions and let supp(P ) denote the support of a probability
distribution P .
• In contrast to the presentation in the intro, we conveniently assume that the distributions
D are only over X rather than over X × Y .

The general idea is to split the 2d bits of x into two bit-sets, each containing d bits.
The value of f∗(x) will be a function of one of these sets, however any efficient non-adaptive
algorithm would not be capable of finding the correct subset. Moreover, intuitively speaking,
the incorrect subset will almost always lie by claiming the wrong value for f∗(x).

We begin with two distributions P1 and P−1 that nearly match all Fourier coefficients,

however, sign(
∑2d

i=1 xi) = 1 for any x ∈ supp(P1) while sign(
∑

i xi) = −1 with probability
1−O(η) for x ∼ P−1.

Lemma 1. There exists two distributions, P1 and P−1 over {−1, 1}d, such that the following
holds:

(1) dTV(P1,−P−1) ≤ Cη, where x ∼ −P−1 is obtained by drawing x ∼ P−1 and outputting
−x, and C > 0 is a constant depending only on r.

(2) Any x ∼ supp(P1) satisfies
∑

i xi/d ≥ Cγ.

(3) P1 and P−1 are nearly indistinguishable: for any S ∈ [d], |P̂1(S)−P̂−1(S)| ≤ exp(−cγ−2r/5),
where c > 0 is a constant depending only on r.

The proof utilizes results from the classical moment problem, and involves calculating
the orthogonal polynomials of some distribution, as will be elaborated in Section 3.3.

Given P1 and P−1, we construct two pairs of distribution-function (f0, D0) and (f1, D1)
which are hard to distinguish, in a sense that will be clear later. The function f0 is a

majority of the first d coordinates, f0(x) = sign(
∑d

i=1 xi) and f1 is a majority of the last

d bits, f1(x) = sign(
∑2d

i=d+1 xi). A random x ∼ D0 is drawn by drawing independently
y ∈ Uniform({−1, 1}), z1 ∼ P1, z−1 ∼ P−1 and setting x = (yz1, yz−1). Note that f0(x) = y,
where y is the value drawn above. Similarly, x ∼ D1 is drawn similarly, with the following
distinction: x = (yz−1, yz1). Here, notice that f1(x) = y.

Since P1 is nearly distributed as −P−1, with high probability over x ∼ D0, the majority
of the first d coordinates of x is almost always the opposite of the majority of the last d
coordinates (and similarly when x ∼ D1). In particular, if one does not know whether the
true function f∗ equals f0 or f1, it is impossible to predict f∗(x) given x with probability
significantly greater than a half.

Utilizing the fact that the building blocks of D0 and D1, namely P1 and P−1, nearly
match their Fourier coefficients, we can generate a family of hard distributions by simple
translations of D0 and D1: for any a ∈ {−1, 1}2d define the pairs (fa,0, Da,0) and (fa,1, Da,1)

as follows: fa,0 = sign(
∑d

i=1 aixi) and x ∼ Da,0 is obtained by drawing x′ ∼ D0 and

setting xi = aix
′
i for i ∈ [2d]. Similarly, fa,1 = sign(

∑2d
i=d+1 aixi) and Da,1 is obtained by

drawing x′ ∼ D1 and setting xi = aix
′
i. The following are simple properties of the defined

distributions, which follow mainly from Lemma 1, and are proved in Section 3.4



INTERACTION IS NECESSARY FOR DISTRIBUTED PRIVATE LEARNING 11

Lemma 2. Fix a ∈ {−1, 1}2d. Then, Da,0 and Da,1 satisfy the following properties:

(1) dTV(Da,0, Da,1) ≤ 2dTV(P1,−P−1) ≤ Cη
(2) γ(fa,0, Da,0) ≥ Cγ and γ(fa,1, Da,1) ≥ Cγ
(3) Prx∼Da,0 [fa,0(x) = fa,1(x)] ≤ Cη and Prx∼Da,1 [fa,0(x) = fa,1(x)] ≤ Cη
where C > 0 depends only on r (recall that η = γ1−r).

Next, we claim that for any set of exp(O(γ−2r/5)) statistical queries and for nearly all
values of a, the queries will have nearly the same value for both (fa,0, Da,0) and (fa,1, Da,1).
This follows from the fact that P1 and P−1 have all their Fourier coefficients close to each
other.

Lemma 3. Fix a set of statistical queries h1, . . . , hk for k ≤ exp(c1γ
−2r/5). Then,

Pr
a∈{−1,1}2d

[
∃i ∈ [k], |hi(fa,0, Da,0)− hi(fa,1, Da,1)| ≥ exp(−c2γ

−2r/5)
]
≤ exp(−c3γ

−2r/5),

where c1, c2, c3 > 0 depend only on r.

The proof will be presented in Section 3.5. Next, we define the exact statistical
query setting: define the number of allowed queries k and tolerance τ to ensure that the
algorithm cannot distinguish between (fa,0, Da,0) and (fa,1, Da,1): k = exp(c1γ

−2a/5) and

τ = exp(−c2γ
−2a/5), for the constants c1, c2 from Lemma 3. We define the SQ oracle such

that it gives the same answers to (fa,0, Da,0) and (fa,1, Da,1) for most a: given a statistical
query h, it acts as follows:

• If the true distribution-function pair is (fa,0, Da,0) for some a ∈ {−1, 1}2d then return the
true value h(fa,0, Da,0).
• If the pair is (fa,1, Da,1) and |h(fa,0, Da,0)− h(fa,1, Da,1)| ≤ τ then return h(fa,0, Da,0).
• Otherwise return h(fa,1, Da,1).

To conclude the proof, recall that Lemma 2 states that for nearly all values of x, fa,0(x) 6=
fa,1(x). In particular, if one cannot distinguish between these two functions, then they
cannot know the true classification of x. There is a delicate matter that should be taken
care of: if the total variation distance between Da,0 and Da,1 was large, it would have been
possible, given x, to guess whether it was drawn from Da,0 or Da,1 with a non-negligible
success probability. However, Lemma 2 ensures that this is not the case. The formal proof
is presented below:

Proof of Theorem 5 given the above lemmas. We start by assuming that the algorithm is
deterministic and then extend to randomized algorithms. From this assumption it follows
that the statistical queries h1, . . . , hk are deterministic as well. Fix a such that the responses
of the oracle to (Da,0, Da,1) are the same as for (Da,1, fa,1). From Lemma 3 and from
the definition of the oracle, nearly all a are such. For these a, the algorithm has to learn
some hypothesis without knowing if the true distribution-function pair is (Da,0, fa,0) or
(Da,1, fa,1). Let Aa,b denote the learned hypothesis given (fa,b, Da,b). For these hard values
of a, Aa,0 = Aa,1. Let η′ := Cη, where C is the constant from Lemma 2. Applying Lemma 2
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multiple times, we obtain that for any such a:

Pr
x∼Da,0

[Aa,0(x) = fa,0(x)] + Pr
x∼Da,1

[Aa,1(x) = fa,1(x)]

= Pr
x∼Da,0

[Aa,0(x) = fa,0(x)] + Pr
x∼Da,1

[Aa,0(x) = fa,1(x)]

≤ Pr
x∼Da,0

[Aa,0(x) = fa,0(x)] + Pr
x∼Da,1

[Aa,0(x) 6= fa,0(x)] (3.1)

+ Pr
x∼Da,1

[fa,1 = fa,0(x)]

≤ Pr
x∼Da,0

[Aa,0(x) = fa,0(x)] + Pr
x∼Da,1

[Aa,0(x) 6= fa,0(x)] + η′

≤ Pr
x∼Da,0

[Aa,0(x) = fa,0(x)] + Pr
x∼Da,0

[Aa,0(x) 6= fa,0(x)] + 2η′ (3.2)

= 1 + 2η′.

where Eq. (3.2) follows from the fact that dTV(Da,0, Da,1) ≤ η′. From Lemma 3, the above

holds for a 1− exp(−cγ2r/5)-fraction of the values of a (where c > 0 depends only on r). In
particular,

Pr
a∼Unif({−1,1}2d)

b∼Unif({0,1}),x∼Da,b

[Aa,b(x) = fa,b(x)] ≤ 1/2 + C ′η′, (3.3)

where C ′ depends only on r. Lastly, assume that the algorithm is randomized. Any
randomized algorithm is just a distribution over deterministic algorithms, hence Eq. (3.3)
will hold even if the algorithm is allowed to be randomized and the probability is taken over
a, b, x and the randomness of the algorithm.

3.3. Proof of Lemma 1.
Notation: Throughout the proof we will use the following parameters: η = γ1−r, γ′ = γ1−2r/5

and k = b(η/γ′)2/3c = bγ−2r/5c. From the assumptions in Theorem 5, γ, η, γ′ ∈ (0, 1/2].

Outline: The first step is to find two distributions over R of a particular shape that their
first k moments match. The first distribution P is a mixture that samples 0 with probability
1− η and an exponential random variable with probability η. By calculating the orthogonal
polynomials of P and applying Theorem 4, we find a distribution Q that matches the first k
moments of P , and additionally, PrQ[−γ′] ≥ 1−O(η).

In the second step, we shift, scale and condition P and Q, to obtain two distributions P ′

and Q′ that have nearly matching moments and satisfy the following conditions: PrP ′ [γ] ≥
1−O(η); PrQ′ [−γ] ≥ 1−O(η); P ′ is supported on [γ, 1/2] and Q′ is supported on [−1/2, 1/2].

In the third step, we use P ′ and Q′ to generate P1 and P−1, respectively. To generate
x = (x1, . . . , xd) ∼ P−1, we first draw p ∼ Q′ and then, conditioned on p, we draw each
xi i.i.d. from the distribution over {−1, 1} with expectation p. The distribution P1 is
similarly defined using P ′, except that we additionally condition on the high-probability
event that

∑
i xi/d ≥ γ/2. It follows from a simple argument that the Fourier coefficients

satisfy P̂−1(S) = Ep∼Q′ [p|S|] and similarly, P̂1(S) ≈ Ep∼P ′ [p|S|]. We obtain that all Fourier
coefficients of P1 and P−1 nearly match.

Lastly, we claim that dTV(P1,−P−1) ≤ O(η). To obtain this, first note that dTV(P ′,−Q′) ≤
O(η), as both P ′ and −Q′ have 1−O(η) mass on γ. As P1 and P−1 are obtained from P ′
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and Q′ using nearly the same transformation, we can apply the data processing inequality to
bound dTV(P1, P−1) . dTV(P ′, Q′).

We divide the proof into four parts, according to the steps described above.

Step 1: Distributions P and Q over R that match the first moments. We start by constructing
two distributions over R with matching first 2k moments. Let distribution P be the following
mixture: with probability η sample from the exponential distribution with parameter 1, and
with probability 1− η sample 0. We start with the following lemma:

Lemma 4. There exists a distribution Q that matches the first 2k moments of P and
additionally, Prx∼Q[x = −γ′] ≥ 1− Cη, where C > 0 is a universal constant.

Before proving this lemma, we give some intuition: By Theorem 4, it suffices to show
that ρk(−γ′) ≥ 1−O(η), where ρk is as defined in Section 2.3 with respect to the moments
of P . The same theorem implies that since PrP [0] = 1 − η, then ρk(0) ≥ 1 − η; and
since ρk is continuous, ρk(−y) ≥ 1 − O(η) for any sufficiently small y. To show that
ρk(−γ′) ≥ 1−O(η), we calculate the orthogonal polynomials of P as linear combinations
of the Laguerre polynomials, the orthogonal polynomials for the exponential distribution.
Recall that ρk is defined as a function of these polynomials, which allows us to bound ρk.

First, we present the orthogonal polynomials of the exponential distribution:

Lemma 5 (Spencer (2015), Chapter 3). The orthogonal polynomials for the exponential
distribution with parameter 1 are the Laguerre polynomials

Lm(x) =
m∑
i=0

(
m

i

)
(−1)i

i!
xi.

Using a simple calculation, one obtains that the orthogonal polynomials {pm}∞m=0 for P
equal

pm(x) = µ

(
(m+ η/(1− η))Lm(x)−

m−1∑
`=0

L`(x)

)
,

where
µ−2 = η(m+ η/(1− η))2 + ηm+ η2/(1− η) = η(m2 +m) +O(mη2).

is a normalizing constant. To verify this formula it suffices to check that EP [pm(x)L`(x)] = 0
for ` < m and that EP [pm(x)2] = 1 and these equations uniquely define pm (up to sign
changes).

To get a closed form equation of the orthogonal polynomial, we use the identity

m−1∑
`=i

(
`

i

)
=

(
m

i+ 1

)
,

to obtain that
m−1∑
`=0

L`(x) =
m−1∑
`=0

∑̀
i=0

(
`

i

)
(−1)i

i!
xi =

m−1∑
i=0

m−1∑
`=i

(
`

i

)
(−1)i

i!
xi =

m−1∑
i=0

(
m

i+ 1

)
(−1)i

i!
xi,

hence

pm(x)/µ =
m∑
i=0

(
(m+ η/(1− η))

(
m

i

)
−
(

m

i+ 1

))
(−1)i

i!
xi, (3.4)
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where
(
m
m+1

)
= 0.

Using the above formula, we can prove the following bound on ρk(x):

Lemma 6. Assume that |x| ≤ ηk−3/2. Then, ρk(x) ≥ 1− Cη, where C > 0 is a universal
constant.

Proof. We start by bounding the coefficients of pm(x). Denote pm(x) =
∑m

i=0 ξm,ix
i. For

any i ≤ m, we use that fact that(
m

i+ 1

)
=
m− i
i+ 1

(
m

i

)
≤ (m+ η/(1− η))

(
m

i

)
and Eq. (3.4) to estimate

|ξm,i| ≤ µ(m+ η/(1− η))

(
m

i

)
/i!.

Additionally, it follows from definition of µ that

µ ≤ 1
√
η(m+ η/(1− η))

, (3.5)

hence

|ξm,i| ≤
(
m

i

)
1

i!
√
η
.

For i = 0 and m > 0 we can get a tighter bound using more accurate calculation, Eq. (3.5)
and η ≤ 1/2:

|ξm,0| =
µη

1− η
≤

√
η

m(1− η)
≤

2
√
η

m
.

We proceed with bounding pm for m > 0, using the inequality
(
m
i

)
≤ mi/i!:

|pm(x)| ≤
m∑
i=0

|ξm,i|xi ≤
2
√
η

m
+

m∑
i=1

(
m

i

)
xi

i!
√
η
≤

2
√
η

m
+

m∑
i=1

(mx)i

(i!)2√η
.

For any 1 ≤ m ≤ k, by the requirement of this lemma, mx ≤ kx ≤ η/
√
k ≤ 1, hence

|pm(x)| ≤
2
√
η

m
+
∞∑
i=1

mx

(i!)2√η
≤

2
√
η

m
+
Cmx
√
η
≤

2
√
η

m
+ C

√
η

k
,

where C > 0 is a universal constant. Using the inequality (a+ b)2 ≤ 2a2 + 2b2 we obtain
that

k∑
m=1

pm(x)2 ≤
k∑

m=1

(
8η

m2
+

2C2η

k

)
= C ′η,

for a universal C ′ > 0. Since p0 ≡ 1, we get that

ρk(x) =
1∑k

m=0 pm(x)2
≥ 1

1 + C ′η
≥ 1− C ′η,

as required.
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By definition, γ′ ≤ η/k3/2. Combining Lemma 6 and Theorem 4, the proof of Lemma 4
concludes.

Step 2: Re-scaling and restricting P and Q to obtain P ′ and Q′. For any α, β ∈ R, let
αP + β denote the distribution obtained in the obvious manner, by drawing x ∼ P and
outputting αx+ β. In the same fashion, let P ′ denote the distribution (P + γ′/2)/(8k + 1)
conditioned on [−1/2, 1/2] and Q′ denote (Q+ γ′/2)/(8k + 1) conditioned on [−1/2, 1/2].
Let γ̃ = γ′/(16k + 2) and note that γ̃ = Θ(γ). The following holds with respect to P ′ and
Q′:

Lemma 7. The following holds:

• P ′(γ̃) ≥ 1− Cη and Q′(−γ̃) ≥ 1− Cη.
• For any integer i ≥ 0, |EP ′ [xi]− EQ′ [xi]| ≤ e−ck.

(where c, C > 0 are universal constants.)

Before proceeding with the proof, here is an intuition: the first item follows from the
definitions of P , P ′ and Q′ and Lemma 4. For the second second item, note that the first
k moments of P ′ and Q′ nearly match because P and Q match these moments, and the
remaining moments nearly match since they are small, since P ′ and Q′ are supported on
[−1/2, 1/2]. In the proof we argue that conditioning on [−1/2, 1/2] does not matter much,
by obtaining tail bounds on P and Q, using a generalized Markov’s inequality based on their
first 2k moments.

Proof of Lemma 7. The first item follows from P (0) = 1− η, Lemma 4 which states that
Q(−γ′) ≥ 1− Cη, and from the definitions of P ′, Q′ and γ̃.

Next, we prove the second item of the lemma. First, it is an easy exercise to check
that (P + γ′/2)/(8k + 1) and (Q+ γ′/2)/(8k + 1) match the first k moments, as P and Q
do. Next, we argue that conditioning on [−1/2, 1/2] does not change the first k moments
considerably, which would imply that P ′ and Q′ nearly match those moments. This is
obtained by bounding the tails of (P + γ′/2)/(8k + 1) and (Q+ γ′/2)/(8k + 1). For that
purpose, note that moment m of the exponential distribution equals m!, hence,

E
P

[x2k] = η(2k)! ≤ (2k)2k. (3.6)

Using γ′ ≤ 1, Markov’s inequality, the fact that P and Q match the first 2k moments and
Eq. (3.6), we obtain that for any t ≥ 1/2,

Pr
(Q+γ′/2)/(8k+1)

[|x| ≥ t] ≤ Pr
Q

[
|x| ≥ t(8k + 1)− γ′/2

]
≤ Pr

Q
[|x| ≥ 8kt] = Pr

Q

[
x2k ≥ (8kt)2k

]
≤ E

Q

[
x2k
]
/(8kt)2k = E

P

[
x2k
]
/(8kt)2k ≤ (4t)−2k. (3.7)

Using Eq. (3.7) it is simple to see that for any moment m ∈ [k],∣∣∣∣ E
(Q+γ′/2)/(8k+1)

[xm]− EQ′ [xm]

∣∣∣∣ ≤ e−ck (3.8)

for some universal constant c > 0. From definition of P , it is also easy to see that∣∣∣∣ E
(P+γ′/2)/(8k+1)

[xm]− EP ′ [xm]

∣∣∣∣ ≤ e−ck. (3.9)
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Eq. (3.8), Eq. (3.9) and the fact that (Q+ γ′/2)/(8k + 1) and (P + γ′/2)/(8k + 1) match
their first 2k moments, imply that |EQ′ [xm]− EP ′ [xm]| ≤ 2e−ck for any m ∈ [k].

Lastly, it remains to argue that P ′ and Q′ nearly match the moments m > k. Indeed,

| E
Q′

[xm]− E
P ′

[xm]| ≤ | E
Q′

[xm]|+ | E
P ′

[xm]| ≤ 2−m + 2−m ≤ 2−k+1,

using the fact that P ′ and Q′ are supported on [−1/2, 1/2].

Step 3: moving from R to the Boolean cube. Using the distributions P ′ and Q′ we define
distributions PB, QB over the boolean cube {−1, 1}d, where x ∼ PB is drawn as follows:
first, we draw p ∼ P ′. Conditioned on p, each bit xi is drawn independently such that
E[xi | p] = p. Equivalently, Pr[xi = 1]− Pr[xi = −1] = p. Similarly, QB is defined when P ′

is replaced with Q′. We obtain that for any set S ⊆ [d],

P̂B(S) = E
x∼PB

[∏
i∈S

xi

]
= E

p∼P

[
E

[∏
i∈S

xi

∣∣∣∣∣ p
]]

= E
p∼P

[∏
i∈S

E [xi | p]

]
= E

p∼P

[
p|S|
]
,

and similarly, Q̂B(S) = EQ[p|S|]. Hence, Lemma 7 implies that |P̂B(S)− Q̂B(S)| ≤ e−ck for
any S ⊆ [d].

Notice that PB and QB almost satisfy the requirements of Lemma 1 as P1 and P−1,
however, it is required that sign(

∑
i xi) ≥ Ω(γ) for any x ∈ supp(P1). Hence, we define the

distribution P ′B which equals PB conditioned on
∑

i xi/d ≥ γ̃/2 = Ω(γ). The conditioning
does not change the distribution considerably: since p ∼ P ′ always satisfies p ≥ γ̃, we obtain
by Chernoff’s inequality that

Pr
x∼PB

[
1

d

∑
i

xi ≤ γ̃/2

]
= E

p∼P

[
Pr

[
1

d

∑
i

xi ≤ γ̃/2

∣∣∣∣∣ p
]]

(3.10)

≤ e−dγ̃2/8 ≤ e−kc,

for a universal constant c > 0, using the assumption d ≥ Ω(k/γ2) ≥ Ω(k/γ̃2). In particular,

|P̂B(S)− P̂ ′B(S)| ≤ e−ck for any S, which implies, by the triangle inequality, that

|Q̂B(S)− P̂ ′B(S)| ≤ |Q̂B(S)− P̂B(S)|+ |P̂B(S)− P̂ ′B(S)| ≤ e−ck

for some other c > 0. We set P1 = P ′B and P−1 = QB, and we have shown that these
distributions satisfy statements 2 and 3 of Lemma 1.

Step 4: bounding the total variation between P1 and −P−1. It remains to bound the total
variation between P1 and −P−1. Distributions PB and QB are obtained from P ′ and Q′

using the same transformation and thus, by the data processing inequality, we obtain that

dTV(PB,−QB) ≤ dTV(P ′,−Q′) ≤ Cη
for some universal C > 0, where the last inequality follows from the fact that P ′ and −Q′
both have 1 − O(η) mass on γ̃. From Eq. (3.10) and the definition of P ′B it follows that

dTV(PB, P
′
B) ≤ e−ck, hence we get by the triangle inequality that

dTV(P1,−P−1) = dTV(P ′B,−QB) ≤ dTV(P ′B, PB) + dTV(PB,−QB) ≤ Cη + e−ck ≤ C ′(r)η,
where C ′(r) is a constant that depends only on r, and the last inequality follows from the
fact that k and 1/η are polynomially related for a fixed r, hence e−ck ≤ C ′(r)η.
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3.4. Proof of Lemma 2. We start with proving statement 1 of the lemma. First,
for any four probability distributions P, P ′, Q,Q′ defined on the same probability space,
dTV(P ×Q,P ′ ×Q′) ≤ dTV(P, P ′) + dTV(Q,Q′), hence dTV(P1 × P−1, (−P−1)× (−P1)) ≤
2dTV(P1,−P−1). Next, note that D0 is obtained by drawing x ∼ P1 × P−1, drawing
y ∼ Unif({−1, 1}) and outputting yx, and D1 is obtained from (−P−1)× (−P1) the same
way. Hence, from the data processing inequality ,

dTV(D0, D1) ≤ dTV(P1 × P−1, (−P−1)× (−P1)) ≤ 2dTV(P1,−P−1).

Next, note that Da,0 is obtained from D0 the same way that Da,1 is obtained from D1,
hence, by the data processing inequality,

dTV(Da,0, Da,1) ≤ dTV(D0, D1) ≤ 2dTV(P1,−P−1) ≤ Cη.
For statement 2, let a′ = (a1, . . . , ad, 0, . . . , 0). Then,

γ(fa,0, Da,0) ≥ inf
x∈supp(Da,0)

fa,0(x)
x>a′

‖x‖‖a′‖

= inf
x∈supp(D0)

fa,0(x)
(x1a1, . . . , x2da2d)

>a′

‖x‖‖a′‖

= inf
x∈supp(D0)

fa,0(x)

∑d
i=1 xi

‖x‖‖a′‖
= inf

x′∈supp(P1)

∣∣∣∑d
i=1 x

′
i

∣∣∣
‖x′‖‖a′‖

= inf
x′∈supp(P1)

∣∣∣∑d
i=1 x

′
i

∣∣∣
√

2d
≥ Cγ√

2
,

where we used Lemma 1 for the last inequality. Similarly, we can lower bound γ(fa,1, Da,1),
using a′ = (0, . . . , 0, ad+1, . . . , a2d).

Lastly, we prove statement 3. To simplify notation, we will assume that a = 1 (the
all-ones vector), however, it is simple to see that the statement holds for any a. Recall
that x ∼ D1,0 is drawn by drawing z1 ∼ P1, z−1 ∼ P−1, y ∼ Unif({−1, 1}) and setting
x = (yz1, yz−1). From section 2 of Lemma 1,

f1,0(x) = sign

(
y

d∑
i=1

(z1)i

)
= y. (3.11)

From section 1 or Lemma 1, dTV(P1,−P−1) ≤ Cη, which implies that with probability

1− Cη, sign(
∑d

i=1(z−1)i) = −1, hence, with probability 1− Cη,

f1,1(x) = sign

(
y

d∑
i=1

(z−1)i

)
= −y. (3.12)

From Eq. (3.11) and Eq. (3.12), the proof follows. A similar statement holds when we replace
D1,0 with D1,1, Da,0 and Da,1.

3.5. Proof of Lemma 3. We will be considering one statistical query.

Lemma 8. Let θ := 2 maxS⊆[d] |P̂1(S) − P̂−1(S)|. Fix a statistical query h : {−1, 1}2d ×
{−1, 1} → [−1, 1]. Then, for any t > 0,

Pr
a∼Unif({−1,1}2d)

[|h(Da,0, fa,0)− h(Da,1, fa,1)| ≥ t] ≤ 2θ2/t2.
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Define the conditional distribution Da,b|y=1 and as the conditional distribution of
x ∼ Da,b given fa,b(x) = 1 and similarly define Da,b|y=−1. This enables us to decompose any
statistical query h in two: h1(x) = h(x, 1) and h−1(x) = h(x,−1). Note that

h(Da,b, fa,b) = E
x∼Da,b

[h(x, fa,b(x))] (3.13)

= Pr
Da,b

[fa,b(x) = 1] E
Da,b|y=1

[h1(x)] + Pr
Da,b

[fa,b(x) = −1] E
Da,b|y=−1

[h−1(x)]

=
1

2
h1(Da,b|y=1) +

1

2
h−1(Da,b|y=−1).

Next, we present and prove a simple lemma:

Lemma 9. Let P , P ′, Q and Q′ be distributions over {−1, 1}d. Then, for any S1, S2 ⊆ [d],

|P̂ ×Q(S1, S2)− P̂ ′ ×Q′(S1, S2)| ≤ |P̂ (S1)− Q̂(S1)|+ |P̂ (S2)− Q̂(S2)|.

Proof. Note that

P̂ ×Q(S1, S2) = E
x1∼P,x2∼Q

[χS1,S2(x1, x2)] = E
x1∼P

[χS1(x1)] E
x2∼Q

[χS2(x2)] = P̂ (S1)Q̂(S2).

Hence,

|P̂ ×Q(S1, S2)− P̂ ′ ×Q′(S1, S2)| = |P̂ (S1)Q̂(S2)− P̂ ′(S1)Q̂′(S2)|

≤ |P̂ (S1)||Q̂(S2)− Q̂′(S2)|+ |Q̂′(S2)||P̂ (S1)− P̂ ′(S1)|.
From Eq. (2.2), each Fourier coefficient of a probability distribution is bounded by 1 in
absolute value, and the proof follows.

As |P̂1(S)− P̂−1(S)| ≤ θ/2 for all S ⊆ [d], we obtain from Lemma 9 that:

∀S ⊆ [2d] : |D̂1,0|y=1(S)− D̂1,1|y=1(S)| = | ̂P1 × P−1(S)− ̂P−1 × P1(S)| ≤ θ,
where 1 is the all-ones vector. We use this inequality to prove the following lemma:

Lemma 10. Fix h1 : {−1, 1}2d → [−1, 1] and t > 0. Then,

Pr
a∼Unif({−1,1}2d)

[|h1(Da,0|y=1)− h1(Da,1|y=1)| ≥ t] ≤ θ2/t2.

Proof. Denote P = D1,0|y=1 and Q = D1,1|y=1. Denote Pa = Da,0|y=1 and Qa = Da,1|y=1,
and notice that x ∼ Pa is obtained by drawing x′ ∼ P and setting xi = aix

′
i, and similarly

Qa is obtained from Q. Hence P̂a(S) = P̂ (S)χS(a), where χS(a) =
∏
i∈S ai. Similarly,

Q̂a(S) = Q̂(S)χS(a).
From Eq. (2.3),

h1(Pa)− h1(Qa) =
∑
S

(P̂a(S)− Q̂a(S))ĥ1(S) =
∑
S

(P̂ (S)− Q̂(S))ĥ1(S)χS(a).
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Squaring both sides, taking expectation over a, we obtain that

E
a

[
(h1(Pa)− h1(Qa))

2
]

= E
a

(∑
S

ĥ1(S)(P̂a(S)− Q̂a(S))

)2


=
∑
S,T

ĥ1(S)ĥ1(T )(P̂ (S)− Q̂(S))(P̂ (T )− Q̂(T ))E
a
χS(a)χT (a)

=
∑
S

ĥ1(S)2(P̂ (S)− Q̂(S))2 (3.14)

≤ θ2
∑
S

ĥ1(S)2 (3.15)

= θ2 E
x∈{−1,1}2d

[h(x)2] (3.16)

≤ θ2. (3.17)

where Eq. (3.14) follows from Ea χS(a)χT (a) = 1S=T , Eq. (3.15) follows from the definitions
of P and Q, Eq. (3.16) is Parseval’s equality (Eq. (2.1)) and Eq. (3.17) is due to the fact
that by definition, h1(x) ∈ [−1, 1] for all x. Therefore, by Chebyshev’s inequality,

Pr
a

[h1(Da,0|y=1)− h1(Da,1|y=1)| ≥ t]

= Pr
a

[|h1(Pa)− h1(Qa)| > t] ≤ Var(h1(Pa)− h1(Qa))/t
2 ≤ θ2/t2.

We are ready to conclude the proof of Lemma 8:

Proof of Lemma 8. From Eq. (3.13),

Pr
a

[|h(Da,0, fa,0)− h(Da,1, fa,1)| ≥ t]

≤ Pr
a

[|h1(Da,0|y=1)− h1(Da,1|y=1)| ≥ t]

+ Pr
a

[|h−1(Da,0|y=−1)− h−1(Da,1|y=−1)| ≥ t]

= Pr
a

[|h1(Da,0|y=1)− h1(Da,1|y=1)| ≥ t]

+ Pr
a

[|h−1(D−a,0|y=1)− h−1(D−a,1|y=1)| ≥ t] (3.18)

≤ 2θ2/t2, (3.19)

where Eq. (3.18) follows from h−1(Da,b|y=1) = h−1(D−a,b|y = 1) and Eq. (3.19) follows from
Lemma 10.

Lastly, we conclude the proof of Lemma 3: Lemma 1 implies that θ ≤ exp(−cγ−2r/5),
where c > 0 is a constant depending only on r. Applying Lemma 8 and taking union bound
over k = exp(c1γ

−2r/5) statistical queries, the proof follows.
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4. Lower bounds on convex optimization

In this section, we describe the implications of our main lower bound learning of linear
models with a convex loss. Consider the task of optimizing a convex function `(w;P ) :=
E(x,y)∼P `(w; (x, y)), where ` is a convex and Lipschitz linear model, namely, `(w; (x, y)) =
ϕ(〈w, x〉y) for a function ϕ : [−1, 1]→ R which is convex and Lipschitz and w is optimized
over Bd, the unit ball in Rd. Additionally, we will let X = Sd−1 be the unit sphere in
Rd.We present two reductions: first, the standard reduction to hinge loss which is used in
the soft-margin support vector machine (SVM) algorithm, and secondly, a reduction to a
different function which is smooth and strongly convex, to show that a lower bound holds
even given these assumptions.

In the first reduction, we set `(w; (x, y)) = max(0, γ − 〈w, x〉y). This loss has the nice
property that if w ∈ Sd−1 classifies (x, y) correctly with margin γ, namely, if 〈w, x〉y ≥ γ,
then `(w; (x, y)) = 0. At the same time, if w misclassifies (x, y), namely, 〈w, x〉y ≤ 0, then
`(w; (x, y)) ≥ γ (essentially, ` can be viewed as a scaled surrogate loss function). Thus, if
the distribution P is linearly separable with margin γ, then minw∈Bd `(w;P ) = 0, and any
w satisfying `(w;P ) = γ/3 is an approximate linear separator: Pr(x,y)∼P [sign(〈w, x〉) 6= y] ≤
1/3. Hence, we can reduce solving linear models to classification, obtaining the following
result:

Theorem 6. For any α > 0 there exists a loss function `(w, (x, y)) = ϕ(y〈w, x〉) where ϕ is
convex and 1-Lipschitz, such that any non-interactive ε-LDP algorithm A that outputs ŵ
satisfying EA[`(ŵ;P )] ≤ infw∈Bd `(w;P ) + α, requires

n ≥ min
(

exp
(
α−Ω(1)

)
, exp

(
dΩ(1)

))
/e2ε.

Proof. Fix such algorithm A. As discussed above, by simulating A we can approximately
solve any classification problem with margin of at least 3α. Denote γ = max(3α, d−1/(2+1/5)).

Applying the lower bound on classification (Theorem 1), we derive that n ≥ exp(γ−Ω(1)),
and the result follows.

Before proceeding, we define smoothness and strong convexity:

Definition 4. A differentiable function f : [−1, 1]→ R with derivative f ′(x) is σ-smooth
and µ-strongly convex for 0 ≤ µ ≤ σ, if for any x, x′ ∈ [−1, 1],

f ′(x)(y − x) +
µ

2
(y − x)2 ≤ f(y)− f(x) ≤ f ′(x)(y − x) +

σ

2
(y − x)2.

Next, we define the following convex loss function ϕγ : [−1, 1]→ R:

ϕγ(t) =
(1− t)2

8
+


1− 2t/γ −1 ≤ t ≤ 0

(t− γ)2/γ2 0 ≤ t ≤ γ
0 γ ≤ t ≤ 1.

Note that ϕγ(t)− (1− t)2/8 is non-negative, 2/γ-Lipschitz, 2/γ2-smooth and convex. This
implies that ϕγ(t) is non-negative, monotonic non-decreasing, 2/γ + 1/2 ≤ 3/γ-Lipschitz,
2/γ2 + 1/4 ≤ 3/γ2-smooth and 1/4-strongly convex. Additionally, the following holds:

Claim 1. For any t ≥ γ, it holds that ϕγ(t) ≤ ϕγ(γ) ≤ 1/8, while for any t ≤ 0, ϕγ(t) ≥
ϕγ(0) ≥ 9/8.
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Given a classification problem with distribution P over X × Y and margin γ, we reduce
it to the convex optimization problem with the loss function `γ(w; (x, y)) = ϕγ(〈w, x〉y).
Claim 1 and Markov’s inequality imply the following connection between the classification
error and the convex loss:

Claim 2. For any vector w ∈ Bd,

errP (w) ≤ `γ(w;P )

9/8
≤ `γ(w;P ),

where errP (w) is the classification error of the function x 7→ sign(〈w, x〉). Additionally,
infw∈Bd `γ(w;P ) ≤ 1/8 (in particular, any unit-norm vector that classifies correctly with
γ-margin would achieve this loss).

Based on the above claim, we derive the following relationship between the expected
error and expected loss:

Claim 3. Let A be a (randomized) algorithm that for some distribution P over Sd−1×{−1, 1}
outputs ŵ ∈ Bd that satisfies

E
A

[`γ(ŵ;P )] ≤ inf
w∈Bd

`γ(w;P ) + 1/8.

Then, EA[errP (ŵ)] ≤ 1/4.

Proof. Applying both statements in Claim 2, we obtain that

E
A

[errP (ŵ)] ≤ E
A

[`γ(ŵ;P )] ≤ inf
w∈Bd

`γ(w;P ) + 1/8 ≤ 1/4.

We are ready to state our lower bound for learning of a linear model with smooth and
strongly convex loss:

Theorem 7. For any parameters 0 ≤ µ < σ ≤ ∞, L > 0 and α > 0, there exists a
loss function `(w, (x, y)) = ϕ(y〈w, x〉) where ϕ is convex, L-Lipschitz, σ-smooth and µ-
strongly convex, such that any non-interactive ε-LDP algorithm A that outputs ŵ satisfying
EA[`(ŵ;P )] ≤ infw∈Bd `(w;P ) + α, requires

n ≥ exp

(
cmin

((
L

max(µ, α)

)2/5·(1−ξ)
,

(
σ

max(µ, α)

)1/5·(1−ξ)
, d1/6·(1−ξ)

))
,

where ξ can be any number in (0, 1) and c > 0 depends only on ξ.

Proof. In the proof we will allow redundancy in the parameters up to universal constants (e.g.,
requiring ` to be Ω(µ) rather than µ strongly convex). Assume that max(µ, α) ≤ min(L, σ),
otherwise the bound trivially follows. Denote θ = max(µ, α) and let

γ := max

(
max(µ, α)

L
,

(
max(µ, α)

σ

)1/2

, d−1/(2+2/5)

)
= max

(
θ

L
,

(
θ

σ

)1/2

, d−1/(2+2/5)

)
.

Consider the function θϕγ : its Lipschitz constant is bounded by 3θ/γ ≤ 3L, the smoothness
parameter is bounded by 3θ/γ2 ≤ 3θ/(σ/θ) = 3σ and the strong convexity parameter equals
θ/4 ≥ µ/4. Let A be an algorithm which finds an α/8-optimal solution to the linear model
defined by the function θϕγ (in expectation). Then, A finds an α/(8θ) ≤ 1/8-optimal
solution to optimization of linear models with loss defined by ϕγ . By Claim 3, A finds
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approximate linear separator to any classification problem with margin γ. Since γ is defined
to satisfy d ≥ γ−2−2/5, by the lower bound on classification (Theorem 1), for any r ∈ (0, 1),
the sample complexity satisfies

n ≥ exp(c(γ−2r/5)),

where the constant c > 0 may depend only on r. Taking r = 1− ξ, completes the proof.

5. Implications for distributed learning with communication constraints

In this section we briefly define the model of bounded communication per sample, state
the known equivalence results to the SQ model and spell out the immediate corollary of
our lower bound. In the bounded communication model (Ben-David and Dichterman, 1998;
Steinhardt et al., 2016) it is assumed that the total number of bits learned by the server
about each data sample is bounded by ` for some `� log |Z|. As in the case of LDP this is
modeled by using an appropriate oracle for accessing the dataset. For simplicity we only
introduce the non-interactive version of this model.

Definition 5. We say that a (possibly randomized) algorithm R : Z → {0, 1}` extracts ` bits.
For a dataset S ∈ Zn, an COMMS oracle takes as an input an index i and an algorithm R
and outputs a random value w obtained by applying R(zi). A non-interactive algorithm is
`-bit communication bounded if it accesses S only via the `-bit COMMS oracle, each sample
is accessed once and all of its queries are determined before observing any of the oracle’s
responses.

As first shown by Ben-David and Dichterman (1998), it is easy to simulate a single
query to COMM applied to a random sample from distribution P using a single query to
STATP (τ). The simulation has been strengthened in Feldman et al. (2012) and generalized
to the COMM oracle that can access each sample more than once in Steinhardt et al. (2016).

Theorem 8 ((Steinhardt et al., 2016)). Let A be a non-interactive `-bit communication
bounded algorithm that makes queries to COMMS for S ∈ Zn drawn i.i.d. from some
distribution P . Then for every δ > 0, there is an SQ algorithm ASQ that makes 2n` non-

adaptive queries to STATP

(
δ/(2`+1n)

)
and produces the same output as A with probability

at least 1− δ.

A direct corollary of Theorems 5 and 8 is the following lower bound:

Corollary 1. Fix γ ∈ (0, 1/2), r ∈ (0, 1) and d ≥ γ−2−2r/5. Let A be a non-interactive
`-bit communication bounded algorithm with n users. Assume that for any classification

problem (D, f∗) over Rd with margin γ(f∗, D) ≥ γ, the algorithm outputs a hypothesis f̂ with

expected loss EA[errf∗,D(f̂)] ≤ 1/2 − γ1−r. Then, either ` ≥ cγ−2r/5 or n ≥ exp(cγ−2r/5),
where c > 0 is a constant depending only on r.

The lower bound for learning linear models with convex loss can be extended analogously.
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