
Journal of Privacy and Confidentiality
Vol. 11 (3) 2021 Privacy Challenges

Submitted Jan. 11, 2021
Published Dec 2021

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY

VIA BAYESIAN NETWORKS

ERGUTE BAO, XIAOKUI XIAO, JUN ZHAO, DONGPING ZHANG, AND BOLIN DING

National University of Singapore
e-mail address : ergute@comp.nus.edu.sg

National University of Singapore
e-mail address : xkxiao@nus.edu.sg

Nanyang Technological University of Singapore
e-mail address : junzhao@ntu.edu.sg

National University of Singapore
e-mail address : d-zhang@comp.nus.edu.sg

Alibaba Group
e-mail address : bolin.ding@alibaba-inc.com

Abstract. This paper describes PrivBayes, a differentially private method for generating
synthetic datasets that was used in the 2018 Differential Privacy Synthetic Data Challenge
organized by NIST.

Introduction

This paper describes PrivBayes, a differentially private method for synethetic data generation
that was used in our entry to the NIST Differential Privacy Synthetic Data Challenge 2018.
PrivBayes is based on a method of the same name published in Zhang et al. (2017), but
incorporates a number of modifications to improve its data utility and efficiency.

The high-level idea of PrivBayes is as follows. Given a sensitive input dataset, PrivBayes
first constructs a Bayesian network, which (i) provides a private and succinct model of the
correlation among the attributes in the input dataset and (ii) allows us to approximate
the full distribution of the input dataset using a set of low dimension distributions. After
that, PrivBayes adds noise into each low dimension distribution, resulting in the noisy
approximations of the original distributions. Note that both the construction of the Bayesian
network and the approximation of the low dimension distributions are conducted in a
manner that satisfies differential privacy. Finally, PrivBayes generates synthetic tuples using
the Bayesian network and noisy distributions, and releases them. The main advantage of

Key words and phrases: Differential privacy, synthetic data generation, Bayesian network.
Code accompanying this article can be found at Zhao and Zhang (2021).

www.journalprivacyconfidentiality.org
DOI:10.29012/jpc.776

© E. BAO, X. XIAO, J. ZHAO, D. ZHANG, and B. DING
Creative Commons (CC BY-NC-ND 4.0)

https://www.journalprivacyconfidentiality.org
https://doi.org/10.29012/jpc.776
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

Figure 1. Example Bayesian network N1.

Table 1. Dependence of network N1.

Attribute Parents
age H

higrade {age}
income {higrade}

PrivBayes is that it circumvents the curse of dimensionality by injecting noise into the low
dimension marginal distributions instead of the original high dimension distribution.

In the remainder of the paper, we will first review the problem definition and the basics
of Bayesian networks and differential privacy; after that, we detail our implementation of
PrivBayes.

1. Preliminaries

1.1. Problem Definition. Let D be an input dataset consisting of n participants, each
described by d attributes. We denote the set of attributes as A, with |A| “ d. Then dataset
D can also be regarded as a joint probability distribution over dompAq. We denote this
probability distribution specified by D as P pAq. The goal is to release a synthetic dataset
D˚, which also specifies a distribution over dompAq, denoted as P ˚pAq, such that P ˚pAq
resembles P pAq while preserving the privacy of individual participants in the input dataset
D.

1.2. Bayesian Networks. A Bayesian network over a set of random variables is a way to
compactly describe their joint distribution, by specifying conditional independence among
certain random variables. In the rest of this paper, we abuse notation and use Ai to represent
both a particular attribute Ai itself and also the random variable which takes on value
from the domain of attribute Ai, when the context is clear. Now we can define a Bayesian
network N (Koller and Friedman, 2009) over a set of attributes A as a fully connected set of
attributes tA1, ..., Aku and a set of attribute-parent (AP) pairs, tpAk`1,Πk`1q, . . . , pAd,Πdqu,
for a certain k ě 1. The fully connected set of attributes and the pd ´ kq AP pairs in N
(accompanied with the low dimension distributions) essentially define a way to approxi-
mate P pAq using a joint distribution P pA1, . . . , Akq and pd´ kq conditional distributions
P pA1 | Π1q, P pA2 | Π2q, . . . , P pAk | Πkq. Intuitively, if the network accurately captures the
conditional independence among the random variables in the distribution, then PN pAq would

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 3

be a good approximation of P pAq. We express PN pAq as follows:

PN pAq “ P pA1, ..., Akq ¨
d
ź

i“k`1

P pAi | Πiq.

For example, consider a dataset D1 containing three attributes ‘age’, ‘higrade’, and
‘income’, where ‘income’ and ‘age’ are numerical attributes representing the income and
age of a participant, respectively. For simplicity, we assume that each numeric attribute
has a domain that is discretized into a number of ranges, e.g., attribute ‘age’ with range
r0, 99s may have a discretized domain consisting of 20 subranges r0, 4s, r5, 9s, . . . , r95, 99s.
The ‘higrade’ attribute is a categorical attribute that represents the highest grade of school
attended by the participant. For example, code 04 to 11 represents the first to eighth grade
in elementary school. Let the Bayesian network N1 represent the conditional independence
of attributes in D1, as shown in Figure 1. In this Bayesian network, the fully connected
set consists of only one attribute–‘age’, and there are two AP pairs (‘higrade’,{‘age’}) and
(‘income’,{‘higrade’}), as listed in Table 1. For network N1, we have:

PN1page, higrade, incomeq “ P pageq ¨ P phigrade | ageq ¨ P pincome | higradeq.

1.3. Differential Privacy. We say that two datasets are neighboring if one dataset can
be obtained by adding a record to the other dataset. Hence, the numbers of records in our
notion of neighboring datasets differ by 1. Differential privacy requires that any release of
information about an input dataset should be done via a randomized algorithm M, such
that the output of M does not reveal much information about any particular participant
(tuple) in the input dataset. Roughly speaking, the output distributions of M should be
similar on any two neighboring input datasets. The formal definition of differential privacy
is as follows:

Definition 1.1 (pε, δq-Differential Privacy (Dwork et al., 2006)). A randomized algorithm
M satisfies pε, δq-differential privacy, if for any two neighboring datasets D1 and D2, and
for any subset O of the output domain of M, we have

Pr
“

MpD1q P O
‰

ď eε ¨ Pr
“

MpD2q P O
‰

` δ. (1.1)

In particular, M satisfies ε-differential privacy when δ “ 0.

To achieve pε, δq-differential privacy, we will use the analytic Gaussian mechanism (Balle
and Wang, 2018).

Lemma 1.2 (Analytic Gaussian Mechanism (Balle and Wang, 2018)). Let F : D Ñ Rd be
a function. The analytic Gaussian mechanism that injects Gaussian noise N

`

0, σ2 ¨ I
˘

into
the output of F satisfies pε, δq-differential privacy, if and only if

SpF q

σ
ď
?

2
´

a

χ2 ` ε ´ χ
¯

, (1.2)

where 0 and I are a zero vector and a dˆd identity matrix, respectively, and χ is the solution
to

erfc pχq ´ exppεq ¨ erfc
´

a

χ2 ` ε
¯

“ 2δ, (1.3)

4 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

and erfcpq denotes the complementary error function, i.e.,

erfcpxq fi 1´
2
?
π

ż x

0
e´t

2
dt.

Note that Lemma 1.2 is in a slightly different form from the original version (Balle and
Wang, 2018). A proof sketch of Lemma 1.2 is provided in Appendix A.1

2. Solution Overview

In a nutshell, PrivBayes runs in three phases:

1. (Network learning) Construct a Bayesian network N over the attributes in D using the
analytical Gaussian mechanism. Recall that the Bayesian network is represented as a fully
connected set of attributes and a set of attribute-parent (AP) pairs.
2. (Distribution learning) Generate the corresponding joint and conditional distributions for
the Bayesian network learned in the first phase using the analytical Gaussian mechanism.
3. (Data synthesis) From the results of network learning and distribution learning, we
derive an approximate distribution for D, and then generate tuples from the approximate
distribution to form a synthetic dataset D˚.

This paper is different from Zhang et al. (2017) in the following ways. First, we consider
the easy-to-compute score function for attribute pairs (see Eq. (2.1) and (2.2)) suggested
in Section 5.3 of Zhang et al. (2017). Next, we consider a more generalized version of the
Bayesian network. In particular, the head of the network may consist of multiple attributes
in this paper (see Section 2.1.2) while there is only a single head in the original solution. In
addition, we present more detailed explanations on enforcing consistencies on the noisy low
dimension distributions and tuple generation in Section 3. Finally, we adopt pε, δq-DP and
rely heavily on the analytic Gaussian mechanism (Balle and Wang, 2018) in this paper while
the original solution preserves ε-DP and is based on the Laplace mechanism (Dwork, 2006).

Next, we elaborate on the three phases of PrivBayes in detail.

2.1. Network Learning. The network learning phase of PrivBayes consists of two steps.
In the first step, we compute a differentially private score for each pair of attributes, such
that a large score tends to indicate that the attribute pairs are highly correlated, and vice
versa. Next, we derive a Bayesian network based on the differentially private scores, without
using additional information from the input dataset. In other words, the second step does
not consume any privacy budget. In Sections 2.1.1 and 2.1.2, we present the details of the
first and second step, respectively.

2.1.1. Computing the Score of each Attribute Pair. Given two attributes Ai and Aj , a
canonical approach to measure the correlation between Ai and Aj is to compute the mutual
information between random variables Ai and Aj . Formally, let Ai and Aj be random
variables defined over space Ai and Aj , respectively; let P pAi, Ajq be the joint distribution
of attributes Ai and Aj ; and let P pAiqbP pAjq be the product distribution, both determined
by the input dataset D. The mutual information (Cover and Thomas, 2001) between random
variables Ai and Aj is defined as

IpAi, Ajq “ DKLpP pAi, Ajq}P pAiq b P pAjqq,

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 5

Algorithm 1: Generating noisy scores for attribute pairs

Data: The original dataset D
Result: The differentially private score of each attribute pair
foreach attribute pair pAi, Ajq do

compute rSpAi, Ajq Ð SpAi, Ajq `N p0, σNL2q;

end

return rSpAi, Ajq for all i, j;

where DKL is the Kullback–Leibler divergence. As pointed out in Zhang et al. (2017),
however, I has a relatively large sensitivity, which makes it difficult to be utilized effectively
under differential privacy. We consider an alternative. We let n be the number of tuples
in D, then the score of attribute pairs Ai and Aj is defined as n times the total variation
distance between distributions P pAi, Ajq and P pAiq b P pAjq. Formally,

SDpAi, Ajq fi n ¨ δ pP pAi, Ajq, P pAiq b P pAjqq , (2.1)

where δP,Q denotes the total variation distance (TVD) between distributions P and Q
defined over the same sample space Ω, defined as follows:

δP,Q “ sup
XĂΩ

|P pXq ´QpXq|.

We omit the subscript D in SD when the context is clear. To demonstrate the computation
for the right hand side of Eq. (2.1), we let CrXis, CrXjs, and CrXi, Xjs represent the number
of participants whose value of attribute Ai, Aj , and attribute pair AiˆAj belongs to Xi, Xj ,
and XiˆXj , respectively. For example, we have CrXis “ n ¨PrrAi P Xis by definition. If we
let Ai be the attribute ‘age’, Xi be the set tr10, 14s, . . . , r45, 49su, then CrXis represents the
number of individuals whose age falls in the range of r10, 49s in the dataset D. In general,
SpAi, Ajq is computed as follows:

SpAi, Ajq “ sup
XiˆXjĂAiˆAj

ˇ

ˇ

ˇ

ˇ

CrXi, Xjs ´
CrXisCrXjs

n

ˇ

ˇ

ˇ

ˇ

. (2.2)

Observe that SpAi, Ajq is minimized when Ai and Aj are independent of each other,
and it tends to be large when Ai and Aj are highly correlated. Therefore, S could be a good
score function for our purpose. We also extend S to measure the correlation between an
attribute and a set of attributes with the formalization similar to Eq. (2.1). From Eq. (2.2),
it is easy to verify that our score function is of sensitivity at most 2, which is relatively small
compared with its range n. (We note that concurrent work (Zhang et al., 2021) also uses
the same score function and analyzes its sensitivity.) Based on this observation, we generate

a differentially private score rSpAi, Ajq for each attribute pair Ai, Aj using Algorithm 1. In

particular, Algorithm 1 generates rSpAi, Ajq by adding Gaussian noise with variance σ2
NL to

each SpAi, Ajq (i, j P r1, ds). We will explain our choice of σ2
NL in Section 2.4.

2.1.2. Constructing the Bayesian Network based on Noisey Scores. Given the noisy score
rSDpAi, Ajq for each pair of attributes Ai, Aj , we construct a Bayesian network for D by first
invoking Algorithm 2 and then Algorithm 3.

In particular, Algorithm 2 constructs the first AP pair pAk`1,Πk`1q in the Bayesian
network N , such that (i) the sum of noisy scores over all attribute pairs in Πk`1 Y tAk`1u

6 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

Algorithm 2: Constructing the first AP pair in the Bayesian network N
Data: The noisy scores of all the attribute pairs
Result: An AP pair

Identify the attribute pair pAi, Ajq that maximizes
rSpAi,Ajq

| dompAiq|¨| dompAjq|
;

Initialize Π “ tAju, and A1 “ tAi, Aju;
Initialize x “ τ

| dompAiq|¨| dompAjq|
;

while A1 Ă A do

Identify the attribute Al in AzA1 that maximizes
ř

APΠYtAiu

rSpA,Alq

| dompAq|¨| dompAlq|
;

if x
| dompAlq|

ą 1 then

xÐ x
| dompAlq|

;

Insert Al into Π;

end

Insert Al into A1;
end

return pAi,Πq;

Algorithm 3: Constructing a subsequent AP pair in the Bayesian net-
work N

Data: The network N and the noisy scores of all the attribute pairs
Result: A subsequent AP pair in the network N
Let A1 be the set of attributes that appear in the AP pairs that have been
constructed;

Initialize AP ÐH;

foreach Aj P AzA1 do
Identify the attribute set Π1 Ď A1 that gives the largest value sum of
ř

APΠ1
rSpAj , Aq through a greedy approach, while satisfying:

| dom pΠ1 Y tAjuq| ď τ.
Update AP Ð AP Y tpAj ,Π

1qu;

end
return the best AP pair among all candidates in AP .

is large, and (ii) the size of the domain formed by the attributes in Πk`1 Y tAk`1u is no
larger than a threshold τ . (We will discuss the setting of τ in Section 2.4.) Towards this
end, Algorithm 2 adopts a greedy approach. It first selects the pair of attributes with the

maximum normalized noisy score, defined as rSnormalizedpAi, Ajq “
rSpAi,Ajq

| dompAiq|¨| dompAjq|
. Note

that | dompAiq| and | dompAjq| are public information and hence, computing the normalized
noisy score from the noisy score consumes no privacy budget. After that, it iteratively
selects the attribute among the remaining ones that maximizes its total normalized noisy
scores, and includes it in the selected set of attributes, under the constraint that the size of
domain formed by the selected attributes should be no more than τ . Then, Algorithm 2
returns the first AP pair as pAk`1,Πk`1q. For the example dataset D1, the first AP pair is
(‘higrade’,{‘age’}), where {‘age’} is a set of only one attribute, as shown in Figure 1.

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 7

Algorithm 4: Generating differentially private joint and conditional distributions
corresponding to the network N

Data: The noiseless joint and conditional distributions of the original dataset
Result: The noisy version of the joint and conditional distributions
Initialize P˚ “ H;
Materialize the joint distribution P pA1, ..., Akq;
Generate differentially private P ˚pA1, ..., Akq by adding noise Gaussianp0, σNC

2q;

for i “ k ` 1 to d do
Materialize the joint distribution P pAi,Πiq;

Generate differentially private P ˚pAi,Πiq by adding noise Gaussianp0, σNC
2q;

Set negative values in P ˚pAi,Πiq to 0;

Normalize all values in P ˚pAi,Πiq so that they sum up to 1;

Derive P ˚pAi | Πiq from P ˚pAi,Πiq, and add it to P˚;
end

return P˚;

Let k be the number of attributes in Πk`1 of the first AP pair. We then construct
pd´k´1q AP pairs by invoking Algorithm 3 pd´k´1q times. Specifically, in each invocation,
we first identify the set A1 of attributes that have been selected into the network. Then,
for each attribute that has not been put into the network, i.e. Aj P AzA1, we identify the

attribute set Π1 Ď A1 that gives the largest value sum of
ř

APΠ1
ĂSDpAj , Aq through a greedy

approach similar to Algorithm 2, while satisfying the following condition. The size of domain
formed by the attributes in Π1 Y tAju is no larger than τ . Finally, we take the best AP pair
among all the AP pairs constructed as above. For the example dataset D1, the second (also
the last) AP pair is (‘income’,{‘higrade’}), as shown in Figure 1.

We next explain the reason for using the greedy approach. Note that this problem
instance can be viewed as a variation (the value of one item is based on the items that are
already in the knapsack) of the Knapsack problem, which requires exponential time in the
size of the number of attributes to find the exact optimal solution. Using a greedy approach
avoids such a prohibitive computation cost. Although approximate algorithms (Lawler,
1979) have been developed for the Knapsack problem, it remains unclear how to adapt them
to our setting. Proving theoretical guarantees for Algorithms 2 and 3 or designing general
approximate solutions to this problem may be of independent interest.

Remark. We note that Algorithms 2 and 3 do not consume any privacy budget, since they
utilize only the noisy scores of attribute pairs.

2.2. Distribution Learning. Let k be the number of attributes that appear in the first AP
pair constructed by Algorithm 2, and A1, . . . , Ak denote those k attributes. Let pAi`k`1,Πiq

(i P r1, d´ k´ 1s) denote the i-th AP pair constructed by the i-th invocation of Algorithm 3.
To construct the approximate distribution PN pAq in the Bayesian network N , we need to
approximate the joint distribution P pA1, ..., Akq and conditional distributions P pAi | Πiq

(i P rk ` 1, ds). Algorithm 4 shows the pseudocode for approximating these distributions
while preserving privacy. The algorithm first materializes the joint distribution P pA1, ..., Akq
(Line 2), and then injects Gaussian noise into P pA1, ..., Akq to obtain a noisy distribution
P pA1, ..., Akq (Line 3). For any i P rk ` 1, ds, the algorithm materializes joint distribution

8 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

P pAi,Πiq (Line 5), and then injects Gaussian noise into P pAi,Πiq to obtain a noisy dis-
tribution P pAi,Πiq (Line 6). We denote these noisy distributions as P ˚pA1, ..., Akq and
tP ˚pAi,Πiqu

d
i“k`1. Based on P ˚pAi,Πiq, the algorithm derives P ˚pAi | Πiq by the definition

of conditional probabilities (Line 9).
Next, we explain how to add Gaussian noise to the probability distributions. We take

the marginal distribution for attribute ‘age’ as an example. The same approach also works
for a joint distribution (with more than one attribute) and conditional distributions. For
any subrange of the discretized range of ‘age’, we can compute the number of tuples in
this subrange from the input dataset. The number for all subranges form a histogram of
sensitivity 1. Hence, we can add Gaussian noise with standard deviation σNC to each entry
of the histogram to generate a noisy version of it. We discuss the value of σNC in Section 2.4.
For example, the original histogram may look like p1, 6, . . . , 1q with a total sum of n “ 100.
Namely, there are 1, 6, . . . , 1 participants of age r0, 4s, r5, 9s, . . . , r95, 99s, respectively, in the
original input dataset. The noisy histogram may look like p1, 3, . . . , 0q, with a total sum
of 93. Note that we cannot directly divide the noisy histogram by n “ 100 to derive the
differentially private distribution for ‘age’, since n is sensitive information. Instead, the
noisy marginal distribution for attribute ‘age’ is computed by p 1

93 ,
3
93 , . . .

0
93q, where the

denominator is the sum of all entries in the noisy histogram, instead of n.

2.3. Data Synthesis. Given the constructed Bayesian network and the corresponding noisy
joint distribution (for the fully connected set of attributes) and conditional distributions
(for all AP pairs), one can derive the following closed-form expression in the approximation
for P pAq.

P pAq « P ˚N pAq “ P ˚pA1, ..., Akq ¨
d
ź

i“k`1

P ˚pAi | Πiq. (2.3)

A standard approach to generate tuples from P ˚N pAq is to first sample A1, . . . , Ak from the
joint distribution P pA1, ..., Akq directly, and then iteratively sample Ai from P ˚pAi | Πiq

from i “ k ` 1 to d, given the previously sampled outcome. This approach, however, is not
directly compatible with differential privacy. To see this, note that DP noises cause (i) the
existence of negative values in the noisy marginals, and (ii) inconsistencies among marginal
distributions. We illustrate this issue with the example input dataset D1 containing three
attributes ‘age’, ‘higrade’ and ‘income’, with Bayesian network N1, as shown in Figure 1.
Recall attribute ‘age’ consists of 20 subranges r0, 4s, r5, 9s, . . . , r95, 99s and the ‘higrade’
attribute is a categorical attribute that represents the highest grade of school attended by
the participant. For illustration purposes, we let there be only two categories for ‘higrade’,
denoted as 01 and 02. The noisy marginal distributions for attribute ‘age’ and attributes
‘age’ and ‘higrade’ are shown in Tables 2a and 2b, respectively.

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 9

Table 2. Example noisy marginal distributions for network N1.

(a) Marginal distribution for ‘age’

‘age’ probability
r0, 4s 0.04
r5, 9s -0.1
.
r95, 99s 0.08

(b) Marginal distribution for ‘age’ and ‘higrade’

‘age’
‘higrade’

01 02

r0, 4s 0.02 0.02
r5, 9s -0.1 0
.
r95, 99s 0 0

Table 3. Processed noisy marginal distributions for network N1.

(a) Marginal distribution for ‘age’

‘age’ probability
r0, 4s 0.05
r5, 9s 0
.
r95, 99s 0.1

(b) Marginal distribution for ‘age’ and ‘higrade’

‘age’
‘higrade’

01 02

r0, 4s 0.025 0.025
r5, 9s 0 0
.
r95, 99s 0 0

Table 4. Noisy marginal distributions for network N1 that are consistent on at-
tribute ‘age’.

(a) Marginal distribution for ‘age’

‘age’ probability
r0, 4s 0.05
r5, 9s 0
.
r95, 99s 0.067

(b) Marginal distribution for ‘age’ and ‘higrade’

‘age’
‘higrade’

01 02

r0, 4s 0.025 0.025
r5, 9s 0 0
.
r95, 99s 0.0335 0.0335

First, Table 2a contains a negative entry (see the value for entry r5, 9s). Second, the
distributions for ‘age’ are inconsistent in Tables 2a and 2b. For example, the sum of ‘higrade’
01 and 02 under ‘age’ r95, 99s in Table 2b does not equal to the entry for ‘age’ r95, 99s
in Table 2a. Both issues make it impossible to sample directly from Tables 2a and 2b.
To deal with the first issue, we round the negative values to zeros and then normalize
the marginal distributions based on the rounded values, resulting in Tables 3a and 3b.
From these processed tables, it is still impossible to generate tuples directly. For example,
conditioned on the ‘age’ attribute being r95.99s for a tuple, there is no way to generate the
‘higrade’ attribute, since both choices are of zero probability in Table 3b. To deal with this,
we enforce consistency (explained in Section 3.2 in detail) on attribute ‘age’ for Tables 3a
and 3b. We now present the finalized Tables 4a and 4b. From these two tables, we can use
the standard approach discussed as above to generate attributes ‘age’ and ‘higrade’ for a
tuple. For example, the ‘age’ attribute has probability 0.067 to be r95, 99s, and conditioned
on this, the ‘higrade’ attribute has an equal chance to be either 01 or 02.

10 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

2.4. Privacy Analysis. Based on the result of Balle and Wang (2018), we present Lemma 2.1
below for the composition of Gaussian mechanisms.

Lemma 2.1. For m queries F1, F2, . . . , Fm with `2-sensitivity ∆1,∆2, . . . ,∆m with inde-
pendent additive Gaussian noise of standard deviation σi. Then the composition of the m
noisy answers satisfies pε, δq-differential privacy if

g

f

f

e

m
ÿ

i“1

∆2
i

σ2
i

ď
?

2
´

a

χ2 ` ε´ χ
¯

,

with:
erfcpχq ´ eε erfcp

a

χ2 ` εq “ 2δ.

The proof is deferred to Appendix A.2. Based on Lemma 2.1, we now discuss how to
set the Gaussian noise parameters in different phases of PrivBayes to ensure that the whole
algorithm of PrivBayes satisfies pε, δq-differential privacy. Recall in PrivBayes, only the
network learning and distribution learning phases require direct access to the input database.
No access to the original database is invoked during the tuple generation phase. Hence, it
suffices to quantify the privacy cost of the first two phases only.

In the network learning phase, there are m1 “
`

d
2

˘

queries F1, F2, . . . , Fm1 for computing

the scores for all
`

d
2

˘

attribute pairs. For each i P t1, . . . ,m1u, the `2-sensitivity of Fi is
∆i “ 2, and the query result of Fi is added with independent Gaussian noise of standard
deviation σi “ σNL. In addition, there is a query Fm1`1 with `2-sensitivity ∆m1`1 “ 1 to
generate an approximate version n of the size of the input dataset, and we denote the added
Gaussian noise amount by σN . In the distribution learning phase, there are m2 queries
Fm1`2, . . . , Fm1`m2`1 for m2 “ d ´ k ` 1. For each i P tm1 ` 2, . . . ,m2 ` m1 ` 1u, the
`2-sensitivity of Fi is ∆i “ 1, and the query result of Fi is added with independent Gaussian
noise of standard deviation σi “ σNC .

From Lemma 2.1, to guarantee that the whole algorithm of PrivBayes satisfies pε, δq-

differential privacy, it suffices to set
řm
i“1

∆i
2

σi2
“ fpε, δq fi 2

´

a

χ2 ` ε´ χ
¯2

, where χ is

computed as in Lemma 2.1. In general, we can choose σNL such that 4m1
σNL

2 “ β1 ¨ fpε, δq

for some ratio β1 P p0, 1q. Afterwards, we choose σN such that 1
σN 2 “ β2 ¨ fpε, δq for some

ratio β2 P p0, 1q. Finally, we select σNC such that m2
σNC

2 “ p1´ β1 ´ β2q ¨ fpε, δq. The ratios

β1 and β2 are customizable parameters used to balance the quality of network learning
and distribution learning phases in PrivBayes. In our implementation, we set β1 ` β2 to
0.2. For simplicity, we also evenly divide the privacy budget for score computation and
approximating n among all attribute pairs and n˚; and evenly divide the privacy budget for
distribution learning among all low dimension distributions.

Choice of τ . The construction of AP pairs can affect the informativeness of a Bayesian
network and the robustness of marginal distributions. An AP pair that contains a large
number of attributes tends to capture more information from D, but its corresponding
marginal distribution is more vulnerable to noisy injection since the cells in the marginal
distribution table tend to have smaller values. Motivated by this, we impose an upper bound
τ on the number of cells (domain size) allowed in a marginal distribution.

Let pA,Πq be an AP pair and c be the number of cells (size of domain) in the marginal
distribution table. The average count in each cell of the table is n{c. On the other hand, the
standard deviation of the Gaussian noise added in each cell is σNC . Intuitively, n{c should

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 11

be considerably larger than σNC ; otherwise, the signal in the table would be drowned by
the noise. Motivated by this, we require that any AP pair should correspond to a marginal
distribution table with no more than τ “ n˚

c¨p4σ̃NCq
cells, where n˚ is the noisy version of n,

and σ̃NC is the scale of Gaussian noise to be used in the distribution learning under the
pessimistic assumption that k “ 1.

3. Optimizations

This section presents three optimizations we adopt in PrivBayes. Section 3.1 discusses addi-
tional treatments that we apply on attributes with large domains, while Section 3.2 explains
how we post-process the noisy marginal distributions to enforce consistency. Section 3.3
presents an improved approach to generate synthetic data using PrivBayes. We note that
none of these optimizations consume extra privacy budget, and hence, they do not affect
our privacy analysis in Section 2.4.

3.1. Special Treatments for Attributes with Large Domains. Recall that our al-
gorithm requires that each AP pair in the Bayesian network N should correspond to a
marginal distribution with at most a domain size of τ (τ cells). Given this constraint,
attributes with large domains are not likely to be included in an AP pair, since the inclusion
of such attributes would significantly increase the domain size. However, the omission of
large-domain attributes in the AP pair could degrade the quality of the Bayesian network,
especially when those attributes have strong correlations with other attributes.

To address this issue, we propose to (i) generate “coarsened” versions of large-domain
attributes, such that the coarsened attributes have smaller domains, and (ii) add such
coarsened attributes into the input data, so that they could be included in the AP pairs
to improve the quality of the Bayesian network. In particular, for any attribute Ai with

| dompAiq| larger than a threshold θ, we evenly divide the values in dompAiq into | dompAiq|

g

groups (for illustration purpose we let | dompAiq| be a power of g), such that all groups has
g values, where g is a customizable parameter. We then generate a coarsened version A1i of

Ai with a domain of size | dompAiq|

g , such that the i-th value in the domain of A1i corresponds

to the i-th group. In case that | dompA1iq| is still larger than our threshold, we would further
coarsen A1i into another attribute A2i , using the same approach. In our implementation, we
set θ “ g2. We refer to Ai, A

1
i, A

2
i , . . . as a hierarchy on Ai. Note that the generation of

A1i, A
2
i , . . . only depends on the parameter g and the public information of Ai, and does not

utilize any private information in the input dataset D. After the high-level attributes are
generated, we add them into the dataset D to obtain an augmented dataset D1, and then
apply our algorithm on D1 to obtain the Bayesian network N and the noisy low dimension
distributions P˚. After enforcing consistency on these noisy distributions (to be explained
in Section 3.2), we discard all the high-level attributes to obtain the final synthetic dataset.
Discarding high-level attributes does not affect our privacy analysis.

3.2. Enforcing Consistency among Noisy Marginals. Previous work (Hay et al., 2010)
shows that, by enforcing consistency on noisy query results, we can significantly improve
the accuracy of a general class of histogram queries. It also applies to our problem. In
particular, after we generate the noisy marginals in the distribution learning phase of our
algorithm, we post-process the noisy marginals to enforce consistency and improve accuracy.

12 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

Note that such post-processing does not consume any privacy budget, since it only utilizes
the noisy marginals and does not use any other information from the input dataset D.

The input to our post-processing step is a set of noisy marginal distributions, each
corresponding to a set of attributes. The output is the modified versions of these distributions.
The high-level idea is to sequentially compute the best approximations for these distributions
that are consistent on a sequence of sets of attributes. Through this sequence of computations,
latter steps will not invalidate the consistency established in former steps. This property
is crucial to enforcing consistency, since it prevents the algorithm for it from running
indefinitely.

3.2.1. Consistency among Marginals on a Set of Attributes. We first describe the method of
ensuring the consistency among distributions on a set of attributes. Consider, without loss of
generality, marginals TV1 , . . . , TVh consisting of sets of attributes V1, . . . , Vh respectively. Let
C “ V1X . . .XVh, be the common set of attributes in these distributions. We want to ensure
that for any c P dompCq, TVipcq “ TVj pcq for any i, j P rhs. Namely, the distributions should
agree on the marginal distribution on the domain of C. For example, Tables 3a and 3b do
not agree on ‘age’ (see entry r95, 99s) while Tables 4a and 4b are consistent.

Here, we adopt the techniques proposed in Hay et al. (2010) to achieve consistency in two
steps. The first step computes the best approximation for TCpcq for each entry c P dompCq.
We use σ2

i to denote the variance for each entry in the domain of C obtained from the noisy
distribution table TVi . Then, the best approximation of TCpcq that minimizes the overall
variance is the weighted arithmetic mean from all noisy distribution tables, i.e.:

TCpcq “

řh
i“1pwi ¨ TVipcqq

řh
i“1wi

, (3.1)

where wi
wj
“

σ2
j

σ2
i
. For example, let the variance in each cell of Tables 3a and 3b be the same,

then for each value in the domain of ‘age’ attribute, the variance in Table 3a is half as that in
Table 3b. This means that the weights for Tables 3a and 3b are 0.67 and 0.33, respectively.

The second step is to update all entries according to the approximation computed as
above. For each value c P dompCq, along the projection of the table TVi on C do

TVipcq Ð TVipcq `
TCpcq ´ TVipcq

| dompVizCq|
. (3.2)

For example, the weighted average for ‘age’ on the entry r95, 99s for Tables 4a and 4b is
0.067. Accordingly, the increase of 0.067 for ‘age’ on the entry r95, 99s is split equally to the
values of ‘age’“ r95, 99s, code=01 and ‘age’“ r95, 99s, code=01 in Table 4b. In the mean
time, we update the variance in each cell accordingly

σ2
i Ð

ˆ

1´
wi
qi

˙2

σ2
i `

ˆ

wi
qi

˙2

pqi ´ 1qσ2
i `

1

q2
i

m
ÿ

i“2

pw2
i ¨ σ

2
i q, (3.3)

where we use qi as | dompVizCq|.

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 13

3.2.2. Consistency within an Attribute Hierarchy. We now describe the approach for enforcing
consistency on hierarchical attributes. Consider A1i, A

2
i , A

3
i , . . . as a hierarchy on Ai, where a

larger number of superscripts indicates that the attribute is more coarsened. We refer to Ai
as the lowest-level attribute in the hierarchy and A1i, A

2
i , A

3
i , . . . as the high-level attributes.

Note that different noisy distribution tables obtained from the distribution learning phase
can contain the same attribute in the hierarchy of Ai, but each table can contain at most
one attribute in the hierarchy. This is ensured by the rule of network construction. The
overall mechanism for enforcing hierarchical consistency is as follows:

‚ For each distribution table with a less generalized attribute, we extend the distribution
table with its corresponding more generalized attributes, by padding extra dimensions.
For example, for a distribution table with attribute A3i , we extend the distribution table
to all coarsened attributes of Ai but A2i , A

1
i and Ai itself.

‚ We sequentially enforce consistency across different distribution tables from the most gen-
eralized to the least generalized hierarchical attribute, following the mechanism described
in the previous subsection.

‚ For each distribution table containing multiple attributes within the hierarchy (e.g., Ai and
A1i), we enforce the within-table consistency in a top-down manner: we fix the higher-level
and adjust the lower-level iteratively. At last, we discard all of the higher-level information
from the table while keeping only the attribute of the lowest level.

In the second step, enforcing consistency on a less generalized attribute does not
invalidate the consistency established from all previous steps on more generalized attributes.
After the second step, the consistency across tables are assured. But there is still an issue
worth mentioning: the consistency within a hierarchy in each table. We next adjust the
distribution of a less generalized attribute based on the distribution of the corresponding
more generalized attribute. The update rule is similar to that of mutual consistency among
tables (see Eq. (3.1), (3.2) and (3.3)). We apply this update rule repeatedly from the most
generalized attribute to the least generalized. At last we discard all higher level attributes.
It is obvious that enforcing consistency within a table does not invalidate the consistency
established across tables previously, and we omit the proof here.

3.2.3. Overall Consistency. Finally we describe the overall mechanism to ensure that all
noisy distribution tables are consistent. The challenge here is to determine the order of
enforcing consistency such that the overall consistency is achieved in a finite number of
steps. For the example network N1 (see Figure 1), we should first enforce consistency on
‘age’ for two tables consisting of attribute ‘age’ (P ˚pageq) and attributes ‘age’ and ‘higrade’
(P ˚phigrade | ageq) and then enforce consistency on ‘higrade’ on the two tables consisting of
‘higrade’ and ‘age’ (P ˚phigrade | ageq), and ‘income’ and ‘higrade’ (P ˚pincome | higradeq).
For more general cases, we adopt the technique proposed in Qardaji et al. (2014) with some
minor adjustment, due to hierarchical attributes. We first need to introduce the definition
of order:

Definition 3.1 (Order of Sets). Consider a set of containing all attributes and their coarsened
versions, A fi tA1, A

1
1, . . . , A2, . . . , Adu and all subsets of A. We define the following partial

order: Si ă Sj if Si Ă Sj for Si, Sj Ă A.

Now we can apply the following procedure adapted from (Qardaji et al., 2014) to ensure
the overall consistency. At first, we enforce consistency on H, i.e., we make the sum of entries

14 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

Algorithm 5: Enforce consistency among marginals

Data: Noisy tables TSi , i “ 1, . . .
Result: Consistent noisy tables TSi , i “ 1, . . .
B ÐH ; foreach pair of tables TSi , TSj do

B Ð B Y tSj X Sju;
end
Topological sort on B;
foreach B P B following the topological sorting (in ascending order) do

enforce consistency on B across all tables TSi ’s where B Ă Si
end

return tTSiu;

Table 5. Histograms for tuple generation

(a) Histogram for ‘age’

‘age’ count
r0, 4s 500
r5, 9s 0
.
r95, 99s 670

(b) Histogram for ‘age’ and ‘higrade’

‘age’
‘higrade’

01 02

r0, 4s 250 250
r5, 9s 0 0
.
r95, 99s 335 335

Table 6. Histograms for tuple generation after generating one tuple.

(a) Histogram for ‘age’

‘age’ count
r0, 4s 500
r5, 9s 0
.
r95, 99s 669Ó

(b) Histogram for ‘age’ and ‘higrade’

‘age’
‘higrade’

01 02

r0, 4s 250 250
r5, 9s 0 0
.
r95, 99s 334Ó 335

in each table identical. Then we extend each table that contains a less generalized attribute to
include all its more generalized attributes. For example, we include attributes A11, A

2
1, . . . , for

all tables containing attribute A1. Then we compute the intersection of attributes for all pairs
of tables; these intersections of sets form a partial ordering defined as above. We then apply
a topological sorting on these sets and enforce consistency on each intersection following the
ascending partial order. By definition, a latter step will not invalidate consistency established
in former steps; and following any topological ordering will result in the same consistent
tables. Algorithm 5 shows the pseudo-code for enforcing consistency across tables. At last,
for each table that contains hierarchical attributes, we enforce within-table consistency and
discard all but the least generalized hierarchical attributes. We remark that these extra
pre and post processing steps for hierarchical attributes do not invalidate the correctness of
the original algorithm. The proof for the original algorithm can be found in Qardaji et al.
(2014).

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 15

3.3. Tuple Generation. Recall from Section 2.3 that we generate synthetic data by sam-
pling each tuple independently based on Eq. (2.3). The shortcoming of this “sampling
with replacement” strategy is that we may never generate a tuple which has a low but
non-zero frequency in the original input dataset. This motivates us to consider an alternate
approach for tuple generation, namely, sampling without replacement. To explain, suppose
that we are given the Bayesian network structure in Figure 1 and the noisy marginal tables
in Tables 4a and 4b. We first transform the distributions of Tables 3a and 3b to histograms
by multiplying the probabilities by N (say N “ 10, 000), the number of tuples to generate,
resulting in Tables 5a and 5b. Now, we generate one tuple at a time. The first tuple is
generated by sampling from Table 5a and then Table 5b. Then, after the generation of
a tuple we update Tables 5a and 5b by subtracting 1 from the entries corresponding to
the generated tuple in both Tables 5a and 5b. For example, after generating a tuple of
‘age’ r95, 99s and ‘higrade’ 01, we obatin updated Tables 6a and 6b. We repeat the same
process until all tuples are generated. During our experiments, we found that our strategy of
sampling without replacement performs significantly better than sampling with replacement
for the regression task (defined in Section 4).

3.3.1. Tuple generation from inconsistent noisy marginal distributions. One may want to
follow the standard approach described in Section 2.3 to generate a tuple from inconsistent
noisy marginal distributions directly without enforcing consistency. However, it may happen
during the generation of one tuple that all values for an attribute that we want to sample from
form an empty histogram (recall the example noisy distributions corresponding to Tables 3a
and 3b in Section 2.3). As we have discussed, the reason is that the noisy distributions are
very unlikely be consistent after rounding and normalizing, neither do the noisy histograms
deduced from the noisy distributions. In this case, we propose a heuristic approach. In
particular, we fall back to the previous step in the generation of the tuple, i.e., the previous
histogram corresponding to the previous AP pair. From there, we repeat the same sampling
process in the hope of sampling a different value for the attribute. If we end up with empty
histograms repeatedly (say we set the threshold to 10), we go back 1 step further and repeat
the process until the tuple is generated.

4. Experiments

This section empirically evaluates PrivBayes using the data and performance metrics from
the 2018 NIST Challenge. The input dataset is the Colorado Public Use Microdata Sample
(PUMS) data, which consists of 662, 000 records of 98 categorical and numerical variables.
The performance metrics are as follows1:

‚ Clustering: For this metric, we compare the 3-way marginal distributions between the
original and synthetic datasets on randomly selected marginals. We first calculate the
absolute difference of the low dimension distributions for the original and synthetic datasets,
which belongs to the range between 0 (perfect match) and 2 (no overlap at all). The
resulting score is defined as 106 times the result of 1 minus half the absolute difference,
averaged over 100 repeats.

1The detailed implementation of the metrics can be found in https://apps.topcoder.com/forums/

?module=Thread&threadID=933618&start=0.

https://apps.topcoder.com/forums/?module=Thread&threadID=933618&start=0
https://apps.topcoder.com/forums/?module=Thread&threadID=933618&start=0

16 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

2´1 20 21 22
0.7

0.8

0.9

1
¨106

ε

sc
or

e

clustering

2´1 20 21 22
0.7

0.8

0.9

1
¨106

ε
sc

or
e

classification

2´1 20 21 22
0.7

0.8

0.9

1
¨106

ε

sc
or

e

regression

consistent, without replacement
consistent, with replacement
inconsistent

Figure 2. The performance of PrivBayes measured by the three metrics.

‚ Classification: For this metric, we first randomly pick one third of the attributes. If a
particular attribute is categorical, we randomly select a subset of the possible values;
otherwise, we select a random range of values. We then identify the frequencies of tuples
in the original dataset and in the synthetic dataset that match the selected value and
apply natural logarithm on the frequencies. The classification score is computed as the
root mean squared difference on the log-frequencies between the original and synthetic
datasets over 300 repeats, divided by ln p1{1000q and then times 106.

‚ Regression: This metric is the average of two scores. The first score is the the mean
squared error between the Gini coefficients (Gini, 1936) (measured on the joint distribution
of gender and income) of the original and synthetic datasets for all cities. For the second
score, we rank the cities by the gender pay gap for both datasets, and calculate the score
component based on the mean-square deviation between the resulting city ranks. The
final score is the average of these two scores normalized to the range r0, 106s.

We evaluate the performance of PrivBayes when ε varies in t0.5, 1, 2, 4u and δ “ 10´9.
Figure 2 illustrates the performance of PrivBayes measured by the three evaluation metrics
described as above. We consider three variants of PrivBayes: sampling with replacement
from consistent noisy distributions, sampling without replacement from consistent noisy
distributions, and sampling from inconsistent noisy distributions. Overall, PrivBayes yields
better data utility when given with more privacy budget (i.e., a larger ε). Among the three
metrics, the clustering score is more aligned with the original optimization goal of PrivBayes
in Zhang et al. (2017), namely, approximating low dimension marginal distributions of
the input dataset. As a result, PrivBayes performs well on clustering. Although we did
not optimize PrivBayes for the task of regression or classification (defined as above), the
regression score of PrivBayes is much better than its classification score. This may be
because classification is a more difficult task to perform than regression. In addition, there
is a negligible difference between sampling from inconsistent distributions and consistent
distributions, for clustering and classification. For regression, the former even outperforms
the latter under strong privacy guarantees (small ε). This surprising result indicates the
effectiveness of the heuristic approach that we adopted for sampling from inconsistent noisy
marginal distributions (see Section 3.3.1).

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 17

5. Summary and Future Work

This paper details the implementation of PrivBayes that we used to participate in the
2018 NIST Differential Privacy Synthetic Data Challenge, and presents experimental results
based on the data and performance metrics from the challenge. After the challenge was
concluded, we have looked into methods that can address two limitations of PrivBayes that
we observed. First, as we discuss in Sections 2.3 and 3.2, inconsistencies in low dimension
noisy distributions forbid us from generating tuples directly. In addition to enforcing
consistency, we find that this issue could also be mitigated using the graphical-model-based
algorithm in McKenna et al. (2019), as it circumvents the issue of inconsistency. Second,
the Bayesian network constructed by PrivBayes has at most d low dimension distributions,
where d is the number of attributes in the input dataset. This restricts the modelling
capability of PrivBayes, which in turn affects the utility of the synthetic data it generates.
To address this issue, we are developing a new algorithm that can construct more effective
graphical models for synthetic data generation.

Acknowledgment

The authors wish to thank the reviewers for their thoughtful and constructive comments.
This work was supported by the the Ministry of Education Singapore (Number MOE2018-T2-
2-091), and by the National Research Foundation, Singapore under its Strategic Capability
Research Centres Funding Initiative. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the authors and do not reflect the views of
the funding agencies.

References

B. Balle and Y. Wang. Improving the gaussian mechanism for differential privacy: Analytical
calibration and optimal denoising. In Proceedings of the 35th International Conference on
Machine Learning, ICML, pages 403–412, 2018. http://proceedings.mlr.press/v80/
balle18a.html.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 2001. https:

//doi.org/10.1002/0471200611.
C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006. https://doi.org/10.1007/
11787006_1.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Theoretical
Computer Science, 9(3-4):211–407, 2013. https://doi.org/10.1561/0400000042.

C. Dwork and G. N. Rothblum. Concentrated differential privacy. CoRR, abs/1603.01887,
2016. http://arxiv.org/abs/1603.01887.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography Conference, pages 265–284, 2006.
https://doi.org/10.1007/11681878_14.

C. Gini. On the Measure of Concentration with Special Reference to Income and Statistics.
Colorado College Publication, 1936.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private
histograms through consistency. Proceedings of the VLDB Endowment, 3(1-2):1021–1032,
2010. https://doi.org/10.14778/1920841.1920970.

http://proceedings.mlr.press/v80/balle18a.html
http://proceedings.mlr.press/v80/balle18a.html
https://doi.org/10.1002/0471200611
https://doi.org/10.1002/0471200611
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1561/0400000042
http://arxiv.org/abs/1603.01887
https://doi.org/10.1007/11681878_14
https://doi.org/10.14778/1920841.1920970

18 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009. https://doi.org/10.1017/S0269888910000275.

E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979. ISSN 0364765X, 15265471. http://www.jstor.

org/stable/3689221.
R. McKenna, D. Sheldon, and G. Miklau. Graphical-model based estimation and inference

for differential privacy. In Proceedings of the 36th International Conference on Machine
Learning, pages 4435–4444, 2019. http://proceedings.mlr.press/v97/mckenna19a.

html.
National Institute of Standards and Technology. Differential privacy synthetic data

challenge. https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/

past-prize-challenges/2018-differential-privacy-synthetic, 2018.
W. Qardaji, W. Yang, and N. Li. PriView: Practical differentially private release of

marginal contingency tables. In Proceedings of ACM SIGMOD International Conference
on Management of Data, pages 1435–1446, 2014. https://doi.org/10.1145/2588555.

2588575.
J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. PrivBayes: Private

data release via Bayesian networks. ACM Trans. Database Syst., 42(4):25:1–25:41, 2017.
https://doi.org/10.1145/3134428.

Z. Zhang, T. Wang, N. Li, J. Honorio, M. Backes, S. He, J. Chen, and Y. Zhang. PrivSyn:
Differentially private data synthesis. In Usenix Security Symposium, 2021. http://www.
usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun.

J. Zhao and D. Zhang. Code for: PrivBayes - Private Data Release via Bayesian Networks,
Dec. 2021.

https://doi.org/10.1017/S0269888910000275
http://www.jstor.org/stable/3689221
http://www.jstor.org/stable/3689221
http://proceedings.mlr.press/v97/mckenna19a.html
http://proceedings.mlr.press/v97/mckenna19a.html
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://doi.org/10.1145/2588555.2588575
https://doi.org/10.1145/2588555.2588575
https://doi.org/10.1145/3134428
http://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun
http://www.usenix.org/conference/usenixsecurity21/presentation/zhang-zhikun

SYNTHETIC DATA GENERATION WITH DIFFERENTIAL PRIVACY VIA BAYESIAN NETWORKS 19

APPENDIX

A.1. Proof of Lemma 1.2.

Proof. We start with the definition of the privacy loss random variable (Dwork and Roth,
2013). Let L be the privacy loss random variable defined on two neighboring datasets D1

and D2 and a randomized algorithm M, then:

LM,D1,D2pyq fi log

ˆ

PrrMpD1q “ ys

PrrMpD2q “ ys

˙

. (A.1)

The randomness in LM,D1,D2 is over the coin flips by the random algorithm M on input
dataset D1. By Theorem 5 in Balle and Wang (2018), a mechanism M is pε, δq-DP if and
only if the following holds for every neighboring datasets D1 and D2:

PrrLM,D1,D2 ě εs ´ eε PrrLM,D2,D1 ď ´εs ď δ. (A.2)

To convert a function F : D Ñ Rd to a differentially private function, we inject a Gaussian
noise sampled from N p0, σ2 ¨ Iq to the outcome of F . Namely, MpDq “ F pDq ` Z, where

Z „ N p0, σ2 ¨ Iq. We denote η “ S2pF q
2σ2 . Then the privacy loss random variable of the

Gaussian mechanism also follows a Gaussian distribution N pη, 2ηq (Dwork and Rothblum,
2016). We proceed on the left hand side of Eq. (A.2):

PrrLM,D1,D2 ě εs ´ eε PrrLM,D2,D1 ď ´εs “ PrrN pη, 2ηq ě εs ´ eε PrrN pη, 2ηq ď ´εs
“ PrrN pη, 2ηq ě εs ´ eε PrrN pη, 2ηq ě 2η ` εs

“ PrrN p0, 1q ě ε´ η
?

2η
s ´ eε PrrN p0, 1q ě ε` η

?
2η
s

“
1

2

ˆ

erfcp
ε´ η

2
?
η
q ´ eεerfcp

ε` η

2
?
η
q

˙

Let χ “ ε´η
2
?
η , we have:

a

χ2 ` ε´ χ “
?
η.

Then Eq. (A.2) holds if and only if

erfcpχq ´ eεerfcp
a

χ2 ` εq ď 2δ,

where

erfcpxq fi 1´
2
?
π

ż x

0
e´t

2
dt.

20 E. BAO, X. XIAO, J. ZHAO, D. ZHANG, AND B. DING

A.2. Proof of Lemma 2.1.

Proof. We consider m queries Q1, Q2, . . . , Qm with `2-sensitivity ∆1,∆2, . . . ,∆m. The query
result of Qi on a input database is added with independent Gaussian noise of standard
deviation σi.

The proof can be regarded as a simple extension from the proof of Lemma 1.2. We first
recall our proof for a general Q, where we add Gaussian noise of standard deviation σ to the
result. The way we show that injecting additive Gaussian satisfies pε, δq-DP is to show that
Eq. (A.2) holds for every neighboring dataset D1 and D2. Now we extend this result to a
concatenated query Q “ pQ1, . . . , Qmq. Suppose the mechanism M inject Gaussian noises
with zero mean variance σ2

1, . . . , σ
2
m to each dimension of Q, then by Theorem 5 in Balle

and Wang (2018), it suffices to show that for every neighboring datasets D1 and D2:

PrrLM,D1,D2 ě εs ´ eε PrrLM,D2,D1 ď ´εs ď δ, (A.3)

where

LM,D1,D2pyq fi log

ˆ

PrrMpD1q “ ys

PrrMpD2q “ ys

˙

. (A.4)

To proceed, we use Mi to denote the mechanism that injects Gaussian noise of standard
deviation σi to query Qi. Then we can write M “ pM1, . . . ,Mmq and y “ py1, . . . , ymq.
Accordingly, the privacy loss of the composed mechanism M can be written as:

LM,D1,D2pyq “
m
ÿ

i“1

log

ˆ

PrrMipD1q “ yis

PrrMipD2q “ yis

˙

. (A.5)

Recall each random variable log
´

PrrMipD1q“yis
PrrMipD2q“yis

¯

follows a Gaussian distribution of mean ηi

and variance 2ηi, where ηi “
∆2

i

2σ2
i

for i “ 1, . . . ,m (Dwork and Rothblum, 2016). Since each

Mi samples the Gaussian noise independently, random variable LM,D1,D2 follows a Gaussian
distribution LM,D1,D2 „ N p

řm
i“1 ηi, 2

řm
i“1 ηiq. Similar to the proof for Lemma 1.2, plugging

the distribution for LM,D1,D2 into Eq. (A.3) completes the proof.

This work is licensed under the Creative Commons License Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit https://creativecommons.
org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, 171 Second St, Suite
300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	1. Preliminaries
	1.1. Problem Definition
	1.2. Bayesian Networks
	1.3. Differential Privacy

	2. Solution Overview
	2.1. Network Learning
	2.2. Distribution Learning
	2.3. Data Synthesis
	2.4. Privacy Analysis

	3. Optimizations
	3.1. Special Treatments for Attributes with Large Domains
	3.2. Enforcing Consistency among Noisy Marginals
	3.3. Tuple Generation

	4. Experiments
	5. Summary and Future Work
	Acknowledgment
	References
	APPENDIX
	A.1. Proof of Lemma 1.2
	A.2. Proof of Lemma 2.1

