
Journal of Privacy and Confidentiality
Vol. 11 (2) 2021 Privacy Challenges

Submitted January 2021
Published August 2021

DPSYN: EXPERIENCES IN THE NIST DIFFERENTIAL PRIVACY

DATA SYNTHESIS CHALLENGES

NINGHUI LI, ZHIKUN ZHANG, AND TIANHAO WANG

Department of Computer Science, Purdue University
e-mail address : ninghui@cs.purdue.edu

Control Science Department, Zhejiang University; CISPA Helmholtz Center for Information Security
e-mail address : zhikun.zhang@cispa.de

Department of Computer Science, Purdue University
e-mail address : tianhaowang@purdue.edu

Abstract. We summarize the experience of participating in two differential privacy
competitions organized by the National Institute of Standards and Technology (NIST). In
this paper, we document our experiences in the competition, the approaches we have used,
the lessons we have learned, and our call to the research community to further bridge the
gap between theory and practice in DP research.

1. Introduction

In 2018-2019, the Public Safety Communications Research (PSCR) Division at the National
Institute of Standards and Technology (NIST) ran two challenges regarding differential
privacy. NIST’s prominent history in using competitions to select the Advanced Encryption
Standard (AES) algorithm and various Secure Hash Algorithm (SHA) algorithms immediately
provide a high level of credibility and incentive for participants. Our research group at
Purdue University had been conducting research on data privacy for over a decade at that
point. We have often observed that theoretical utility bounds on DP algorithms are often
not good indicators of their empirical performances. While any research group can perform
empirical comparisons with other approaches, such comparisons cannot be authoritative,
since there are often a large number of parameters that one can choose in any empirical
comparisons. We thus enthusiastically participated in the challenges.

In the first challenge, called the “Unlinkable Data Challenge: Advancing Methods in
Differential Privacy”, contestants submit concept papers proposing a mechanism to enable
the protection of personally identifiable information while maintaining a dataset’s utility
for analysis. We developed an approach that extends our previous algorithm on publishing
k-way marginals called PriView [Qardaji et al., 2014]. In our approach, one first obtains
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multiple marginal tables in a way that satisfies DP, then uses the method in Qardaji et al.
[2014] to make them consistent, and finally synthesizes data based on these marginals. Our
concept paper won 2nd place, while first place went to a proposal using private Generative
Adversarial Network (GAN). While GAN is a powerful and intriguing technique for learning
generative models in domains such as images, our experiences tell us that using GAN is
unlikely to outperform marginal-based approaches on relational data, as marginals are
arguably the most privacy-efficient way to extract information from relational datasets.

In the second challenge, the “Differential Privacy Synthetic Data Challenge”, participants
implement their designs and empirically evaluate their artifacts on real datasets. The 2nd
challenge is organized in three rounds, each lasting about one month. In each round, a sample
dataset is given, and one submits datasets synthesized under different privacy parameters.
Top teams are then invited to submit the code for private synthesis, which are tested on
another dataset that is similar in nature. Our implementation won the 2nd place in all
three rounds. The first two rounds were won by a team of two participants who appear to
be software developers, and the last round was won by Ryan McKenna using approaches
documented in Mckenna et al. [2019]. NIST collected algorithm descriptions from top
finishers of the final round. The approaches from the top 4 teams all used marginals. They
differed in how to select marginals, which marginals to use, and how to use the marginals to
synthesize data.

After the competition, we reflected upon the effort in the manual marginal engineering,
and developed an algorithm to privately select marginals, and further refined and evaluated
our data synthesis algorithm. We documented these results in a paper that has been accepted
to appear in 2021 USENIX Security symposium, and a version of it is available at Zhang et al.
[2021]. For discussions of the data synthesis algorithm, and related work to our approach,
we refer the reader to Zhang et al. [2021].

The rest of this paper is organized as follows. In Section 2, we review background on
publishing marginals under DP. In Section 3, we describe relevant research experiences
and results prior to the competition that enabled us to participate in the competition. In
Section 4, we summarize our submission to the first challenge. In Section 5, we describe
our approach to the second challenge. In Section 6, we discuss the gap between theoretical
analysis and empirical experiments in the design of differentially private mechanisms. We
conclude the paper in Section 7.

2. Background

2.1. Marginal Table. Marginal tables capture the correlations among a set of attributes.
Given a dataset, a marginal table provides the synopsis of the dataset summarized on a
subset of attributes. Figure 1 shows an example dataset and some marginals computed from
it. Marginal tables can be computed with a low degree of noise while satisfying differential
privacy, which we discuss below.

2.2. Differential Privacy. Intuitively, the notion of Differential Privacy (DP) [Dwork
et al., 2006] requires that any single record in a dataset has only a limited impact on the
output.
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Gender Age

v1 male teenager
v2 female teenager
v3 female adult
v4 female adult
· · · · · · · · ·
v100 male elderly

(a) Dataset.

v F(v)

〈male, teenager〉 20
〈male, adult〉 15
〈male, elderly〉 20
〈female, teenager〉 15
〈female, adult〉 20
〈female, elderly〉 10

(b) Full table.

v M{gender}(v)

〈male,∗〉 55
〈female,∗〉 45

(c) Marginal table for gender.

v M{age}(v)

〈∗,teenager〉 35
〈∗,adult 〉 35
〈∗,elderly〉 30

(d) Marginal table for age.

Figure 1. Example of the dataset, the full table, and two marginal tables.

Definition 1 ((ε, δ)-Differential Privacy). A randomization algorithm A satisfies (ε, δ)-
differential privacy ((ε, δ)-DP), where ε > 0, 0 ≤ δ < 1, if and only if for any two neighboring
datasets D and D′ that differ in one record, we have

∀T ⊆Range(A) : Pr [A(D) ∈ T ] ≤ eε Pr
[
A(D′) ∈ T

]
+ δ,

where Range(A) denotes the set of all possible outputs of the algorithm A.

One way to understand DP is that for each individual whose data is included in the
dataset D, one considers a hypothetical world in which the individual’s data is removed
from D (i.e., a world in which D′ instead of D is used as the input). Since this hypo-
thetical world does not contain private data about the individual, it is considered as an
idealized world of privacy for the individual. While information regarding this individual
may still be leaked due to correlation, leakage is not due to usage of the individual’s data.
Satisfying (ε, δ)-DP means simulating the idealized worlds for all individuals simultaneously.
More specifically, if an algorithm A satisfies (ε, 0)-DP, then any output A(D) could also
occur in the idealized world D′, albeit with a different probability (with probability ratio
bounded by eε). If an algorithm A satisfies (ε, δ)-DP, then there may exist bad outcomes for
which leakage of some individual’s information is not bounded by eε; however, the probability
that such outcomes occur is at most δ. Note that to use this justification for DP, all the
data from one individual should be contained in a single record.

There are two different ways of defining when two datasets D and D′ are neighboring.
One is to define it as D′ can be obtained from D by either adding or removing one record,
which results in what is called Unbounded Differential Privacy. The other is to define

neighboring as D′ can be obtained from D by changing the value of exactly one record,
which results in Bounded Differential Privacy. From the point of view that DP simulates
idealized worlds, both definitions are acceptable. In Unbounded DP, the idealized world for
an individual is achieved by removing the individual’s data. In Bounded DP, this is achieved
by overwriting one individual’s data (e.g., with some default values).
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2.3. Basic Primitives. We now give background on the basic primitives for satisfying DP,
and their applications to publish marginals.

Laplace Mechanism. The Laplace mechanism computes a function f on input dataset
D while satisfying (ε, 0)-DP, by adding to f(D) a random noise. The magnitude of the noise
depends on GSf , the global L1 sensitivity of f , defined as,

GSf = max
D'D′

||f(D)− f(D′)||1

When f outputs a single element, the Laplace mechanism is given below:

Af (D) = f(D) + L
(
GSf
ε

)
In the definition above, L (β) denotes a random variable sampled from the Laplace distribu-

tion with scale parameter β; that is, Pr [L (β) = x] = 1
2β e
−|x|/β. When f outputs a vector,

A adds independent samples of L
(
GSf
ε

)
to each element of the vector. The variance of each

such sample is
2GS2f
ε2

.
A marginal table is a function that outputs a vector of record counts. Its global L1

sensitivity is 1 under Unbounded DP (adding or removing one record can change the value
of at most one cell by one), and 2 under Bounded DP (changing one record could decrease
the count of one cell by 1 and increase the count of another by 1).

Gaussian Mechanism. Instead of adding Laplace-distributed noises, one could also
add Gaussian noises, for which the magnitude of the noise depends on ∆f , the global L2

sensitivity of f . Such a mechanism A is given below:

A(D) = f(D) +N
(

0,∆2
fσ

2I
)

where ∆f = max
(D,D′):D'D′

||f(D)− f(D′)||2.

In the above, N (0,∆2
fσ

2I) denotes a multi-dimensional random variable sampled from
the normal distribution with mean 0 and standard deviation ∆fσ. The global L2 sensitivity

for publishing a marginal is 1 under Unbounded DP, and
√

2 under Bounded DP.
It is known [Dwork and Roth, 2014] that for any ε < 1 and δ ∈ (0, 1) , when σ =√

2 ln 1.25
δ /ε, the Gaussian mechanism satisfies (ε, δ)-DP. The variance of each such noise is

2∆2
f ln(1.25/δ)

ε2
.

When one needs to publish just one marginal, it is better to use the Laplace mechanism,
since the variance is smaller. When using Gaussian mechanism to satisfy the same ε and a
reasonably small δ, the variance is increased by a factor of ln(1.25/δ).

2.4. Composition of DP Mechanism. When we need to publish multiple marginals
while satisfying DP, we need to analyze the effect of composing multiple DP mechanisms.
Here, there are several tools that we can use.

Basic Sequential Composition. Using the standard sequential composition result, one
can simply add the (ε, δ) values in composition. More specifically, given k mechanisms
A1, . . . ,Ak satisfying (εi, δi)-DP for i = 1, . . . , k respectively, publishing the outputs of all

these mechanisms satisfies (
∑k

i εi,
∑k

i δi)-DP. Using the guarantee of the basic composition
and allocating the privacy budget (ε, δ) equally, publishing k marginals results in each one
having 1

k of the total budget.
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Advanced Composition. The advanced composition bound from Dwork et al.
[2010] states that the composition of k mechanisms that each satisfies (ε, δ)-DP, satisfies

(ε
√

2k log(1/δ′) + kε(eε − 1), kδ + δ′)-DP, for any δ ∈ (0, 1).

Zero Concentrated DP. The notion of zero Concentrated Differential Privacy (zCDP
for short) offers elegant composition properties with tighter bounds. The general idea is to
connect (ε, δ)-DP to Rényi divergence, and then use the properties of Rényi divergence to
achieve tighter composition property. Formally, zCDP is defined as follows:

Definition 2 (Zero-Concentrated Differential Privacy (zCDP) [Bun and Steinke, 2016]). A
randomized mechanism A is ρ-zero concentrated differentially private (i.e., ρ-zCDP) if for
any two neighboring databases D and D′ and all α ∈ (1,∞),

Dα(A(D)||A(D′))
∆
=

1

α− 1
log
(
E
[
e(α−1)L(o)

] )
≤ ρα

Where Dα(A(D)||A(D′)) is called α-Rényi divergence between the distributions of A(D) and
A(D′). Lo is the privacy loss random variable with probability density function f(x) =

log Pr[A(D)=x]
Pr[A(D′)=x] .

The following properties of zCDP (proven in Bun and Steinke [2016]) are useful for our
purpose:

• Gaussian satisfies zCDP. The Gaussian mechanism which answers f(D) with noise
N (0,∆2

fσ
2I) satisfies ( 1

2σ2 )-zCDP.

• Laplace satisfies zCDP. The Laplace mechanism which answers f(D) with noise
L (GSfx) satisfies ( 1

2x2
)-zCDP.

• Linear Composition of zCDP. If two mechanisms A1 and A2 satisfy ρ1-zCDP and
ρ2-zCDP respectively, their sequential composition A = (A1,A2) satisfies (ρ1 + ρ2)-zCDP.

• zCDP implies (ε, δ))-DP. If A provides ρ-zCDP, then A satisfies (ρ+ 2
√
ρ log(1/δ), δ)-

DP for any δ > 0.

2.5. Choosing Appropriate Mechanism. Whether one should use the Laplace mecha-
nism or the Gaussian mechanism, and which composition analysis to use depend on several
parameters: the privacy parameters ε and δ, and the number of marginals we want to
publish, k. Given ε, δ and k, the derivation of the standard deviation for each task can be
found in Theorem 7 of Zhang et al. [2021]. Figure 2 plots the standard deviation of the
noises added to each marginal cell under five approaches when k changes. We can see that
when k is small, the best approach is to use Laplace mechanism with basic composition, and
when k is large, the best approach is to use zCDP together with the Gaussian mechanism.

3. Our Experiences before the Competition

Before the NIST competition, we have developed state-of-the-art algorithms for several tasks
while satisfying (ε, 0)-DP. The experiences and insights we gained in the process played a
key role in developing our approach for the NIST competition, and may be helpful for others
who need to develop DP algorithms. Therefore, we describe some of them here in more
detail. As this competition uses datasets where the number of attributes are in the tens or
close to one hundred, the most relevant work deals with high-dimensional datasets.
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Figure 2. Comparison of the standard deviation of different composition
approaches. The standard deviation of “lap adv” and “lap zcdp” methods
are close to each other (the difference is less than 10); thus the two lines
almost overlap in the log-scale axis. The intersection value of k for “lap basic”
and “gauss zcdp” in four subfigures are (A) 18, (B) 28, (C) 19 and (D) 28.

3.1. The PrivBasis algorithm for Frequent Itemset Mining. Our first work on de-
veloping algorithms for differentially private data analysis is about frequent itemset mining
(FIM) [Li et al., 2012]. In FIM, the dataset consists of a number of transactions, each being
a set of items. The goal is to find the itemsets that appear in at least θ fraction of the
transactions, and output the frequencies of these itemsets. As the number of total items can
be very large (e.g., from hundreds to thousands), the key challenge here is how to deal with
the high dimensionality.

PrivBasis is based on the following observations. First, a transaction dataset can be
viewed as a relational dataset where each item is a binary attribute. A record has 1 in an
attribute if it contains the corresponding item and 0 otherwise. Second, if we are able to
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identify a basis set V of itemsets such that each frequent itemset is a subset of at least one
basis V ∈ V , then obtaining one marginal for every itemset in V yields estimated frequencies
for all frequent itemsets. For example, if {a, b, c}, {b, d}, {c, e}, {a, b, g}, {g, h} are all the
maximal frequent itemsets, then V = {V1 = {a, b, c, d, e}, V2 = {a, b, g, h}} is a basis set.
A marginal for the basis V1 = {a, b, c, d, e} has 25 cells, each corresponding to a subset of
V1. A transaction t contributes 1 to the cell corresponding to t ∩ V1. The frequency of,
e.g., the itemset {a, b, c}, can be obtained by summing over 22 cells in the marginal table.
When the size of a basis is large, then the estimation may be noisier, since it needs to sum
up more noisy estimations. On the other hand, when the size of a basis set is large, each
basis gets allocated less privacy budget, and the estimation is noisier. The main technical
challenge in designing the PrivBasis algorithm lies in finding a suitable set V. We exploit
the fact that an itemset can be frequent only if all its subsets are, and repeatedly use the
Exponential Mechanism (EM) [McSherry and Talwar, 2007] to select frequent items and
pairs to construct V.

3.2. The PriView algorithm for Answering Marginal Queries. In Qardaji et al.
[2014], we tackle the problem of answering arbitrary k-way marginal queries in datasets
with binary attributes. Since PriView is the basis of the DPSyn approach we use in the
competition, we describe the PriView approach here. Given a d-dimension binary dataset
D, we aim to construct, in a differentially private way, a synopsis of D, so that one can
relatively accurately compute the marginal table for any set of k attributes, referred to
as k-way marginals. We assume that d, the number of dimensions, is large so that Θ(2d)
running time is infeasible.

One baseline approach, which we call the Direct method, is to add independently
generated noise to every k-way marginal table. Since there are

(
d
k

)
= O(dk) such marginals,

each one is allocated only 1/
(
d
k

)
of the total privacy budget, which is very small when d is

large and k is not too small. Barak et al. [2007] proposed a method of adding noise to the
Fourier coefficients that are needed to compute the marginals one wants to compute. When
applying this method to compute all k-way marginals, it reduces the error slightly over the
Direct method, but still needs to release O(dk) coefficients. Before our work, the problem of
generating marginals had been studied in a series of theoretical papers, see, e.g., [Cheraghchi
et al., 2012, Gupta et al., 2011, Hardt and Rothblum, 2010, Hardt et al., 2012a,b, Thaler
et al., 2012, Ding et al., 2011, Li et al., 2010]; however, these methods do not scale when
2d is large. In summary, the state-of-the-art before our work is that when 2d-complexity is
infeasible, then the Fourier method in Barak et al. [2007] is the best approach, and it scales
poorly due to the need to release O(dk) coefficients.

PriView privately publishes a synopsis of the dataset that takes the form of m size-`
marginals (i.e., each marginal is specified by ` different attributes) that are called views.
Note that when ` is large, each marginal covers more attributes; however, estimations
computed from the marginals will be noisier. We conducted a heuristic analysis, which
showed that choosing ` to be about 8 works the best. The choice of ` is independent from
other parameters such as the dataset size N , the number of attributes d, and the privacy
budget ε. The choice of m, however, will depend on these parameters, especially N and ε.

In Qardaji et al. [2014], we use the idea of covering design from combinatorial the-
ory [Gordon et al., 1995, Gordon, 2021], and choose enough size-8 views so that every t-way
marginal is covered in at least one view. The choice of t depends on N, d, ε, and is typically 2
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or 3. For example, using covering design one can choose 72 eight-way views (i.e., marginals)
to ensure that every 2-way marginals among 64 attributes are covered in at least one view.

Example 1. Given 12 attributes (named from 1 to 12), the following 3 views cover all pairs
(2-way marginals).

v1 = {1, 2, 3, 4, 5, 6, 7, 8} v2 = {1, 2, 3, 4, 9, 10, 11, 12} v3 = {5, 6, 7, 8, 9, 10, 11, 12}

The idea of using covering design in this setting is interesting; however, it turns out
to be unnecessary. Through experiments, we found that one could often achieve similar
performance by simply randomly choosing the views when m and ` are fixed.

Once these views are selected, we can obtain these marginals for the input dataset by
adding a sufficient amount of noise to satisfy the desired DP objective. This is the only step
in the PriView algorithm that needs to access the input dataset. The remaining challenge is
how to effectively use these noisy marginals. Meeting this challenge is the main contribution
of Qardaji et al. [2014]. We developed techniques for achieving consistency among the noisy
views, and a method to construct arbitrary k-way marginals given the views.

Consistency. Since different views overlap, one marginal can be derived from different
views. In Example 1, one could derive the marginal {1, 2, 3, 4} from either v1 or v2. However,
since independent noises are added to v1 and v2, the estimations obtained from them would
be different. In addition, the noisy marginals may contain negative values. The goal of
the consistency step is to ensure that all noisy marginals are non-negative, and whenever
two marginals overlap, they are consistent with each other. This step serves two purposes.
First, it improves the estimation accuracy because averaging over independent perturbations
of the same quantity reduces the variance. Second, consistency enables the next step of
constructing arbitrary k-way marginals.

The technique for ensuring two marginals are consistent while minimizing variance is
known [Hay et al., 2010]. However, ensuring consistency between one pair of marginals may
disturb consistency between other pairs. Our key insight is that by considering the set of
attributes that are included in more than one marginals in the topological sort order (smaller
set first), consistency that was already established is never violated later. For example, in
Example 1, we first ensure consistency on the empty set, which essentially makes all three
marginals have the same total count that is the average of their original counts. After that,
one enforces consistency between v1 and v2 on {1, 2, 3, 4}, consistency between v1 and v3

on {5, 6, 7, 8}, and consistency between v2 and v3 on {9, 10, 11, 12}. We also introduce a
technique for turning negative values in marginals non-negative while preserving consistency.

Generating k-way Marginals. When a k-way marginal q is contained in some view,
it can be computed from the marginal on that view. When a k-way marginal query q is
not fully contained in any of the views, it needs to be estimated. Any view that overlaps
with q provides some information about q that can be viewed as a number of constraints
on cells in q. As q is a k-way marginal, it has 2k cells, and the constraints from all views
form an under-specified system of linear equations on the 2k cell values. We explored several
different methods for computing such a q: using linear programming to compute any solution,
finding the solution with least L2 norm, and finding the solution with the maximum entropy.
Empirically, we found that the Maximum Entropy approach performs the best.

Discussion. Experimental results in Qardaji et al. [2014] show that PriView outperforms
the best of previous methods (sometimes by a few orders of magnitude in terms of L2 error),
even though it lacks a theoretical utility bound. As of this writing, we are unaware of any



DPSYN: EXPERIENCES IN THE NIST DIFFERENTIAL PRIVACY DATA SYNTHESIS CHALLENGES 9

new method that outperforms PriView for this task. One main limitation of PriView is that
it deals only with binary attributes.

While both PriView and PrivBasis rely on marginals, they differ in a few interesting
ways. PrivBasis can deal with datasets with tens of thousands of attributes/items, because
we are interested only in the attributes and their combinations that are frequent. Thus the
key challenge in PrivBasis lies in selecting which marginals to use. In PriView, we do not
assume knowledge regarding which attributes are more interesting to use than others, and
thus the choice of marginals is relatively straightforward. The main challenges lie in how to
effectively use the marginals after we obtained them.

4. DPSyn: Our Response to the Unlinkable Data Challenge

The Unlinkable Data Challenge asks for concept papers that propose a mechanism to enable
the protection of personally identifiable information while maintaining a dataset’s utility for
analysis. We proposed an approach that builds on PriView. In this section, we describe our
original proposed approach. The text is largely taken from the concept paper1 we submitted
to the challenge.

Our technique deals with categorical datasets; and numerical attributes are first bucke-
tized so that they become categorical values. Our approach is to randomly select m size-`
marginals of (e.g., m = 50, ` = 8), compute these marginals on the input dataset in a way
that satisfies differential privacy, and then synthesize a dataset based on these marginals.
The rationale for our approach is as follows. Any analysis one may want to conduct on
a dataset can be performed using the joint distribution of some subset of attributes. On
most subsets of attributes, a synthesized dataset that simultaneously preserves many (from
dozens to hundreds) randomly-chosen marginals would have a distribution close to that of
the original dataset. Under differential privacy, one can answer counting queries with good
accuracy, since they have a low sensitivity (1 under Unbounded DP). Each marginal can be
viewed as a set of counting queries at the same privacy cost of one counting query. Thus
marginals are probably the most privacy-efficient way of extracting information from the
input dataset.

Given a dataset as input, the first step is to generate many randomly selected noisy
marginals on the dataset. The algorithm decides the parameters m (number of marginals)
and `, and then computes these marginals of the input dataset, and finally adds Lapla-
cian/Gaussian noise to them so that differential privacy is satisfied. The way PreView
chooses m and ` depends on the fact that all attributes are binary. Other methods are
needed to choose ` for general categorical attributes.

In the second step, we use techniques developed in PriView to make all noisy marginals
consistent with each other. The techniques presented in PriView were for binary attributes.
We have already extended those techniques to categorical attributes in Zhang et al. [2018b].
One can use these noisy marginals (called private views in PriView) to reconstruct arbitrary
marginals with high accuracy. This suggests that these noisy marginals capture a lot of
information in the input dataset, and can be used for a broad range of data analysis tasks.

The third step is to generate a synthetic dataset given these private views. PriView
only has techniques to reconstruct arbitrary queried marginal. Here we propose to develop
techniques to synthesize a dataset that approximates these views. We plan to investigate

1https://www.herox.com/protected/109/473512/file:DKeSqMQ8rNNfrERUYCFy_2x1y0g

https://www.herox.com/protected/109/473512/file:DKeSqMQ8rNNfrERUYCFy_2x1y0g
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a few alternative methods. One method starts with a randomly generated dataset and
gradually changes it to be consistent with the noisy marginals. Another is to use these noisy
marginals to construct probabilistic graphical models of the dataset, and then synthesize
data from these probabilistic models. The key challenge is efficiency. To be able to preserve
information in datasets with dozens or more attributes, we expect to use dozens or more
noisy marginals, each including 5 − 10 attributes. We expect the implemented software tool
can generate datasets with millions of records in this setting.

Clearly, the larger m (the more marginals), the more marginal information is preserved,
and the better the utility. However, a larger m also means more noise for each marginal,
since the total privacy budget ε is fixed. Fortunately, a larger dataset means that less privacy
budget is needed for each individual marginal. With a dataset 10 times larger, one needs
only 1/10 privacy budget to get marginals of the same accuracy. Furthermore, if we are
willing to go beyond strict ε-DP, and accepts weaker notions such as (ε, δ)-DP, we can use
more advanced composition results to our advantage. Essentially, if one spends 1/10 of
original budget for one marginal, then one is able to publish a lot more than 10 (close to 102)
times the original number of marginals. Thus the DPSyn approach that relies on marginals
to extract information is very promising for large datasets.

5. Fleshing out DPSyn: Participation in the Synthetic Data Challenge

In the Synthetic Data Challenge, we fleshed out the design and implementation of DPSyn.
The main technical development was an algorithm to synthesize a dataset from marginals.
A lot of time during the challenge was spent on designing marginals to achieve high scores
according to the metric used in the competition, and the sample dataset. Usage of meta
information is explicitly allowed because such information is considered public knowledge,
and the evaluation is based on hidden datasets that are similar to, but different from the
sample dataset. We believe that this setup illustrates an important aspect of applying DP
in practice, when there is often a lot of meta information that can be viewed as public
knowledge. Later we developed a method to privately, automatically select marginals, and
refined the data synthesis algorithm. These were presented in Zhang et al. [2021].

5.1. Setup of the Synthetic Data Challenge. This challenge asks the teams to develop
an (ε, δ)-differential privacy algorithm, with δ ≤ 1

N2 , where N is the number of dataset
records, and the ε values range from 0.1 to 10.

Datasets. The challenge consists of three rounds. The first two rounds use the San
Francisco Fire Departments Call for Service dataset. The provided dataset has 305k records
and 32 attributes. The third challenge uses the Public Use Microdata Sample (PUMS) of
the 1940 USA Census Data for the State of Colorado, fetched from the IPUMS USA Website.
The dataset has about 662k records and 98 attributes.

Metrics. Altogether, three metrics were used in the competition. Round one uses only
the first metric; Round two uses both the first and the second; and Round three uses all
three metrics. When multiple metrics are used, they are treated as having equal weights.

• Density Estimation. For this metric, the scoring algorithm randomly samples 300
marginal schemas, each with three randomly chosen attributes. Then for each marginal
schema, compute the normalized marginal tables from the synthetic dataset and from the
ground truth dataset, and then use the L1 distance between the two marginal tables as
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the penalty. Since a normalized marginal table has the property that the sum of all cells
in the table is 1, the penalty is a number ∈ [0.0, 2.0]. A difference of 0.0 means a perfect
match of density distributions, and a difference of 2.0 means that the distributions for
the original and synthetic dataset do not overlap at all. Let s be the average penalty, the
resulting score is defined as S = 106(1− s/2), which has a range of [0, 106].

• Range Query. For this metric, the scoring algorithm randomly samples 300 range
queries and assesses the accuracy of using the synthetic dataset to answer these queries.
To generate a range query, one first randomly samples a subset of attributes, with each
attribute having a 33% chance to be selected. Then, for each selected attribute, a query
condition is randomly generated. For a categorical attribute, the condition is a randomly
picked subset of its possible values (from 1 to maximum number of values). For a numeric
attribute, the condition is a randomly chosen continuous range. A record satisfies the
query if and only if in every attribute that is included in the query, the record has a value
that is included in the corresponding condition.

For i-th range query, let f(o,i) be the fraction of records satisfying the query in the
original dataset, and f(p,i) be that in the synthetic dataset. When selecting the query, it
is guaranteed that in the original dataset there is at least one record that satisfies this
query; thus f(o,i) > 0. The score is calculate as follows:

di = ln
max(f(p,i), 10−6)

f(o,i)
, for i ∈ [1, 300]

S = 106 ·max

0, 1−
(

1

ln 103

)
·

√√√√ 1

300

∑
i∈[1,300]

d2
i


Note that both the Density Estimation metric and the Range Query metric are generic,
and can be applied to any domain.

• Gini Index and Gender Gap. This metric is used only for the IPUMS dataset, and
aims to capture specific application needs. For each possible value in the CITY attribute,
we calculate, based on the SEX and INCWAGE attributes, Gini index and gender pay gap.
We calculate the first score component based on the mean-square deviation between Gini
indices obtained for the original and privatized dataset, averaged over the cities present in
the original dataset. For the second score component, we rank the cities by the gender
pay gap, and calculate the score component based on the mean-square deviation between
the resulting city ranks in the original and privatized datasets. The overall score is the
average between these two score components, and normalized to the [0; 1000000] range.

The three metrics each carries one-third of the weight towards the final score, yet the
third metric relies only on three of the 98 attributes. We thus need to allocate higher
privacy budgets to marginals involving these three attributes.

5.2. Overview of Marginal Engineering. Given our DPSyn approach, we need to select,
for different ε values, the marginal schemas and the privacy budget allocated to each marginal.
We found that which marginals to use has a large impact on the resulting score. This is
especially true when ε is small. We have observed that for larger ε values, the scores are
close to the maximal possible score, and there is little room for improvement. Thus the focus
on marginal engineering is on choosing which marginals to use when the privacy budget is
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small. We thus need to study the given dataset, and meta-data, and manually decide which
configuration to use.

Data Exploration. When given the sample dataset, we examine 1-way marginals on
all attributes to get a feeling of the distribution of these attributes. We also compute
a correlation score for every pair of attributes using a metric which we call Independent
Difference (InDif for short). For any two attributes a, b, InDif calculates the L1 distance
between the 2-way marginal Ma,b and 2-way marginal generated from the one-way marginals
Ma and Mb, assuming that a and b are independent, which we use Ma ×Mb to denote. That
is, InDifa,b = |Ma,b −Ma ×Mb|1.

For pairs of attributes that have low InDif scores (meaning high correlations), we study
their joint distribution to get a sense of the nature of the correlation. We then look at the
meta-data provided in the competition, which provides textual explanation of the attributes
and their values. Almost all correlations can be explained by their semantic meanings.

Parameter Choices. We need to choose which marginals to use, as well as ways to
pre-process attributes. The decisions often depend on the privacy parameter ε, since the
competition considers a wide range of ε values. When we evaluate the results of different
parameter choices, we often compute the accuracy of using synthetic data to estimate all
two-way marginals (we refer the readers to Section 5.5 for details about the data synthesis) .
When we discover meta information from the sample dataset, we have to assess whether such
information is likely to hold in the evaluation dataset. The following two sections discuss
our parameter choice for the competition in more detail.

5.3. Marginal Engineering for the Fire Response Dataset. The basic goal of design-
ing marginal schemas is to capture as many correlations as possible, while keeping both the
number of marginals and the sizes of them (the number of cells) small so that the impact
of noise is small. We developed a few techniques, which could be useful for other domains.
Below we describe these techniques and how we apply them to the Fire Response dataset.
The attributes referred to in the discussions appear in Table 1.

Compress Attributes. For some attributes, a lot of the values have very low counts. For
such an attribute, we reduce its domain size by merging values with low counts into one
single value. The benefit is that when this attribute is used in a marginal together with
other attributes, the number of cells is reduced. More specifically, after obtaining a noisy
one-way marginal for an attribute, we keep marginal cells that have count above a threshold
θ. For the cells that are below θ, we add them up, if their total is still below θ, we assign
0 to all these cells. If their total is above θ, then we create a new value to represent all
values that have low counts. After synthesizing the dataset, this new value is replaced by
the values it represents using the original noisy marginal, assuming a uniform distribution.

The threshold θ is set using θ = max (4.5σ, 800). Here σ is the standard deviation for
Gaussian noises added to the marginal. The logic for using several multiples of the standard
deviation σ is that values below that are likely to be a result of adding noises to 0 or very
small counts, whereas values above that are much less likely to be just a result of noises.
The number 800 is loosely related to several parameters, including the number of records
and the range of noise standard deviations for two-way marginals. The latter depends both
on the range of privacy parameters ε, δ and on the number marginals we expect to publish,
which depends on the total number of attributes. We expect that the algorithm to perform
similarly when the value 800 is replaced with a similar one, e.g., 600 or 1000.
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Attribute Name # Values Definition

ALS Unit 2 Advance Life Support
Final Priority 2 Final Call Priority (non-emergency or emergency)

Call Type Group 5 Include fire, alarm, potential life threaten and non-life
threaten

Original Priority 8 Initial Call Priority (non-emergency or emergency)
Priority 8 Call Priority (non-emergency or emergency)

City 9 City of incident
Unit Type 10 Include PRIVATE, MEDIC, ENGINE, CHIEF,

TRUCK, SUPPORT, RESCUE CAPTAIN, RESCUE
SQUAD, INVESTIGATION, AIRPORT

Fire Prevention District 11 Bureau of Fire Prevention District
Battalion 11 Emergency Response District

Supervisor District 12 Supervisor District
Call Final Disposition 15 Disposition of the call

Call Type 32 Type of call the incident falls into
Zipcode of Incident 28 Zipcode of incident

Neighborhood District 42 Neighborhood District
Station Area 46 Fire Station First Response Area
Watch Date 101 Watch date when the call is received

Received DtTm 101 Date and time received at the 911 Dispatch Center
Entry DtTm 101 Date and time the 911 operator submits the entry of

the initical call information into the CAD system
Dispatch DtTm 101 Date and time the 911 operator dispatches this unit
Response DtTm 101 Date and time this unit acknowledges the dispatch
On Scene DtTm 101 Date and time the unit records arriving to the location

of the incident
Transport DtTm 101 If this unit is an ambulance, date and time the unit

begins the transport unit arrives to hospital
Hospital DtTm 101 If this unit is an ambulance, date and time the unit

arrives to the hospital
Location-lng 101 Latitude and longitude of address obfuscated either to

the midblock, intersection or call box
Number of Alarms 6 Number of alarms associated with the incident
Available DtTm 101 Date and time this unit is not longer assigned to this

call and it is available for another dispatch
Unit sequence 84 The order this unit was assigned to this call
Location-lat 101 Latitude and longitude of address obfuscated either to

the midblock, intersection or call box
Call Date 101 Date the call is received at the 911 Dispatch Center
Unit ID 742 Unit Identifier

Box 2089 Fire box associated with the address of the incident
Address 17704 Address of midblock point

Table 1. Description of the Fire Response Dataset.
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Recoding Groups of Attributes. Some attributes are semantically correlated so that
when one attribute takes some other values, the other can take only some values in the
domain. We sometimes recode these attributes into one, so that when they appear in a
marginal with other attributes, the domain is smaller. Below are some examples where we
use such group recoding to create new attributes.

• Unit Info: Combine ALS Unit and Unit Type. The ALS Unit attribute describes whether
the unit includes ALS (Advanced Life Support) resources. Clearly this is semantically
correlated with Unit Type.
• Call Type Info: Combine Call Type Group and Call Type. Call Type Group is a more

coarse-grained description of Call Type.
• Priority Info: Combine Final Priority, Original Priority, and Priority. These are all related

to the priority of an incident.

Date/Time Attributes. There are 10 date/time attributes in the Fire Response dataset.
In the competition, these time values are binned into 100 buckets. Since the whole dataset
spans from 2000 to 2018, each bucket represent about 2 months. Since all date/time fields
are related to one incidence, we assume that these attributes are synchronous (only a very
small number of incidences occur across the boundary and thus have different values in
date/time fields).

However, some of these date/time fields may be missing, e.g., Response DtTm may be
missing because there may not be a response, On Scene DtTm may be missing because the
unit may not arrive or be cancelled, and so on. We create a new attribute to identify how
many records have missing date/time attributes.

• Time Availability: Some date/time attributes may be missing. We obtain a marginal
where the included date/time attributes are encoded in a binary form. For each attribute,
there are two possible values: 0 indicates this attribute is missing; and 1 otherwise.

Location Coordinate Attributes. These include Longitude and Latitude. They have
already been binned to 100 values in the given dataset. How they are handled depends on
the available privacy budget.

• When ε is low, we just obtain one-way marginals for them, and do not attempt to recover
their correlations with other attributes.
• With mid-range ε, we recode them into attributes X (for Longitude) and Y (for Latitude),

by removing values that have low count. We then obtain the joint distributions of X, Y
with other geo-location attributes.
• With high-range ε, in addition to recoding Longitude and Latitude into X and Y, we also

obtain a 100× 100 2-way marginal between them, and recode it into a new attribute, for
which we obtain joint marginal of this recoded attribute with the Box attribute and the
Address attribute.

Attributes with Large Domains. They need to be specially handled, because the
average counts for each value are low and are easily overwhelmed by noises. Below we give
two examples on how we handle such attributes.

• The Box attribute has 2089 values. It should be highly correlated with location and other
geo-spatial attributes. When privacy budget is low, such correlation cannot be recovered,
and we simply assign random values to this attribute. When it is high, we use a one-way
marginal to encode Box into a new attribute, and obtain a two-way marginal of Box and
the coordinate attribute.
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• The Address attribute has 17704 values. It should be highly correlated with other geo-
spatial attributes. When the privacy budget is low, we simply assign random values to
this attribute. When it is high, we use a one-way marginal to encode Address into a new
attribute, and obtain a two-way marginal of Box and the coordinate attribute.

Attribute Name #Values Definition

SPLIT 2 Large group quarters that was split up (100% datasets)
SEX 2 Sex

CITIZEN 6 Citizenship status
EMPSTATD 15 Employment status [detailed version]
AGEMONTH 15 Age in months

AGE 130 reports the person’s age in years as of the last birthday
RACED 238 Race [detailed version]

DURUNEMP 100 DURUNEMP is a 2-digit numeric variable that reports how
many consecutive weeks had elapsed since each currently-
unemployed respondent was last employed (i.e., how many
weeks had the person been without a job and looking for
one)

EDUCD 44 Educational attainment [detailed version]
METAREAD 378 Metropolitan area [detailed version]

CITY 1162 The city in which the person lives
INCWAGE 10000000 INCWAGE is a 7-digit numeric code reporting each respon-

dent’s total pre-tax wage and salary income - that is, money
received as an employee - for the previous year

Table 2. Description of the attributes in the IPUMS Dataset mentioned in
the marginal engineering part. The readers can refer to the topcoder website
for the full list of attributes.

5.4. Marginal Engineering for the IPUMS Dataset. The dataset contains close to
100 attributes. There are many complex relationships between these attributes. Table 2
lists the attributes that are mentioned in the discussions below.

Strategy for Attributes. We handle different attributes using different strategies based
on their semantic meanings. In summary, we have used the following strategies:

• For attributes with large domain, we apply several approaches to reduce the domain size.

(1) Use external metadata. Sometimes, we are able to use public metadata to reduce
the domain size. For example, the domain size of attribute RACED is 621 (because
its maxval in specs file is 620, starting from 0), but according to the IPUMS website,
the number of legitimate values is 238. There are some values that are not used and
can be ignored.

(2) Compress attributes. We use the attribute compression technique described in
Section 5.3 to further compress values with estimations below the threshold into a
dummy value.
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(3) Bucketize attributes into bins. For some attributes, we use its bucketized
domain to generate marginals with other attributes. At the same time, we also
generate one-way marginals for these attributes using their original value. When
generating the synthetic dataset, the coarse-grained values are used; but after the
synthesizing procedure, we use the distribution of the one-way marginal to replace
the bucketized value.

• Generate 1-way marginal to capture the distribution of single attribute, e.g., AGEMONTH,
DURUNEMP, CITIZEN, etc.
• Generate 2-way marginals to capture the correlation between two attributes, e.g., AGE and

EDUCD, AGE and EMPSTATD, CITY and METAREAD, etc. No additional one-way
marginals are generated for them.
• Directly fill one attribute based on its mapping relationship with another attribute using

the public information. For example, some information is encoded using two attributes: a
detailed version (those with “[detailed version]” in Table 2) and a more general version
with fewer values. Since the general version is determined by the detailed version, and
this mapping is public information, we include only the detailed version in the synthesize
process, and add the general version after the synthesis step.
• Sometimes, two attributes have an approximate one-to-one relationship. While the fact

that such mappings exist can be known based on the semantic meaning, the exact mapping
between the values is not in any public meta-data. For them, we use noisy marginals
to figure out the mapping between two attributes; then, fix one attribute and use this
mapping to fill another attribute.
• Because 1/3 of the score depends on the INCWAGE attribute, we handle it differently.

We use the bucketized value to generate two-way marginals with work-related attributes
and three-way marginal with CITY and SEX, and apply different bucketizing scheme for
different privacy budget.

Because there are over 100 attributes, there are thousands of 2-way marginals. Obtaining
all 2-way marginals would result in too much noise added to each. We thus divide all attributes
into four different groups, where attributes in different groups have low correlation with
each other. Within each group, we can generate 1-way, 2-way or 3-way marginals among all
attributes. Then, one would synthesize four separate datasets and join them, as described
below.

5.5. Synthetic Data Generation. Given a set of noisy marginals, the data synthesis step
generates a new dataset Ds so that its distribution is consistent with the noisy marginals.
We initialize a random dataset and iteratively update its records to make it consistent with
the marginals. In each iteration, we go through all marginals, and for each marginal update
the dataset based on the marginal. Using this approach, we can work with a large number
of marginals.

In Zhang et al. [2021] we discuss in detail the different approaches we have tried in the
data synthesis, and experimentally compare them. Here we just give a high-level overview,
and readers are referred to Zhang et al. [2021] for details.

Our approach for updating a dataset based on a marginal resembles the idea of mul-
tiplicative update [Arora et al., 2012]. As this approach Gradually Updates Ds based on
the Marginals; and we call it GUM. By gradually, we mean that in each iteration we do
not update Ds to ensure that it matches the target marginal; instead, the update ensures
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that the marginal computed from Ds is moving closer to the target. More specifically, we
use a parameter α ∈ (0, 1), so that for each cell that has a value lower than that in the
target marginal, we change the records to increase the cell by min

{
nt − ns, αns

}
, where ns

is the number from Ds, and nt is the number in the target marginal. That is, each cell will
increase by a factor of at most 1 + α. In the competition, we used α = 0.2. After we have
determined the total increase from all cells that need to be increased, we decrease all cells
that need to be decreased by the same proportion so that the total number of records in Ds

remains the same. For self-containment, we put the details of GUM in Appendix A.

6. Discussions and Related Work

There were a series of theoretical results on the hardness of private synthetic data generation,
which might appear to rule out the possibility of success in this challenge. Here we discuss
these results, and also the general gap between theory and practice in DP.

6.1. On Theoretical Impossibility Results. DPSyn is in the non-interactive setting, in
which one publishes a synopsis of the dataset in a way that satisfies DP. From the synopsis,
one can compute answers to queries directly, or generate synthetic data. This differs from
the interactive setting, in which one sits between the users and the database, and answers
queries when they are submitted, without knowing what queries will be asked in the future.

There are a series of negative theoretical results concerning DP in the non-interactive
setting [Dinur and Nissim, 2003, Dwork et al., 2007, Dwork and Yekhanin, 2008, Dwork
et al., 2006]. These results have been interpreted to mean that (1) one cannot answer a
linear (in the database size n) number of queries with small noise while preserving privacy
and (2) an interactive approach to private data analysis where the number of queries is
limited to be small (sub-linear in the n) is more promising.

The success of the NIST competition suggests that this interpretation does not hold
from the empirical perspective. We think there are two reasons for this. First, when the
number of dimensions is small compared to n, the number of marginals that one needs to
query the dataset can be much less than n. For a higher-dimensional dataset, DPSyn and
other similar approaches rely on querying a small number of low-dimenional marginals and
use them to answer queries. While one loses a theoretical guarantee of correctness, this
works well in practice. We conjecture that a synthetic dataset that preserves low-degree
marginals of an original dataset can be used in place of the original dataset in many settings.
Second, when one is willing to accept a constant error bound on the normalized marginal
table (e.g., each cell has noise with standard deviation 10−5), the number of marginals that
one can answer increases linearly in n under (ε, 0)-DP, and close to quadratic under (ε, δ)-DP.
The negative theoretical results are for the case where required error bound decreases when
n increases.

Dwork et al. [2009] proved that there exist data distributions and classes of counting
queries such that there is no efficient algorithm that can synthesize data with provable
accuracy bound. Ullman and Vadhan [2011] strengthen the result by proving that there
exist data distributions such that there is no efficient algorithm that can synthesize data
while preserving accurate two-way marginals. We emphasize that these results do not rule
out efficient algorithms that can synthesize data to well approximate 2-way marginals for
many data distributions that one is likely to encounter in practice. Analogously, that the
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satisfiability problem is NP-Complete does not preclude the existence of SAT solvers that
can solve large SAT instances encountered in practice.

Kasiviswanathan et al. [2010] provided perhaps the strongest negative result, as it
proves that if all k-way marginals are released with error below a certain threshold, one can
reconstruct a large fraction of the dataset, violating privacy. Qardaji et al. [2014] performed
a more in-depth examination of the result and found that the hidden poly-logarithm factors
in the results mean that they are irrelevant for practice. For example, if one considers 6-way
marginals in a dataset with 45 binary attributes and 106 records, the threshold is around
10−64. Since publishing k-way marginals with error 10−5 would be sufficiently accurate for
almost all tasks, this negative result does not apply.

6.2. Gap Between Theory and Practice. A paradoxical phenomenon on DP data
synthesis in particular, and DP data analysis and publishing in general, is that oftentimes
an algorithm that has a theorem proving its utility actually performs poorly in practice. On
the other hand, algorithms that perform well in empirical evaluations tend not to have any
meaningful utility theorem. We discuss this phenomenon here and challenge the research
community to develop techniques and tools that can provide formal utility analysis that is
more illuminating about the behavior of algorithm in practice.

The Multiplicative Weights Exponential Mechanism (MWEM). An illustrating
example of this gap is the MWEM [Hardt et al., 2012a]. This mechanism aims at publishing
an approximate of the input dataset D so that counting queries in a given set Q can be
answered accurately. One starts from an uninformative approximation of D and iteratively
improves this approximation. In each iteration, one computes answers for all queries in Q
using the current approximation, then uses the exponential mechanism to privately select
one query q from Q that has the most error, then obtains a new answer to q(D) in a way
that satisfies the privacy, and finally updates the approximation with this new query/answer
pair, using the multiplicative weight update method.

Given T rounds, a basic version of MWEM keeps all T +1 versions of the approximation,
and performs a single update with each new query/answer pair. Finally, for each query it
uses the average of the answers obtained from all T + 1 approximations. This did not fully
utilize the information one obtains from the query/answer pairs. The more practical method
proposed in Hardt et al. [2012a] uses two improvements. First, in each round, after obtaining
a new query/answer pair, it goes through all known query/answer pairs 100 iterations to do
multiplicative updates; this causes the approximation to converge to a state that is consistent
with all known query/answer pairs. Second, it uses the last, and almost certainly the most
accurate approximation to answer all queries.

While the two improvements provide much better empirical accuracy, they are done “at
the expense of the theoretical guarantees” [Hardt et al., 2012a], because a utility theorem is
proven for the basic version, which would perform poorly in practice. There is no utility
theorem for the improved version, which is the version that actually works and for which
empirical evaluation is based. A large part of the reason is that theoretical analysis can only
be applied to algorithms that are simple, e.g., doing only 1 round of multiplicative update
instead of 100 rounds. On the other hand, well-performing algorithms are likely difficult to
analyze in the traditional framework, because they tend to exploit features that are satisfied
by common datasets, but can be violated by pathological examples.
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Frequent Itemset Mining. For another example, consider Frequent Itemset Mining
(FIM). In Bhaskar et al. [2010], a formal definition of utility, (δ, η)-useful for FIM, was
introduced. In Zeng et al. [2012], it is proven that for an ε-DP algorithm which is (δ, η)-useful
for reasonable choice of δ, η, the ε must be over a certain value. Given the parameters from
commonly used datasets, the bounds on ε have to be so large that they provide no meaningful
privacy. This, however, does not prevent several algorithms for FIM from performing quite
well empirically on datasets commonly used as benchmarks for FIM.

Bridging the Gap. We believe that new theoretical tools are needed to enable more
meaningful utility analysis of private algorithms. In the current approach, one aims at proving
asymptotic worst-case utility guarantees for proposed methods. This often results in methods
that have limited applicability to practical scenarios for a number of reasons. First, a method
with an appealing asymptotic utility guarantee often actually underperforms naive methods
except for very large parameters for which applying the method is infeasible or unrealistic in
practice. Second, the asymptotic analysis ignores constant (and sometimes poly-logarithmic)
terms, whereas oftentimes these terms constitute the main difference between competing
methods. Third, practically effective algorithms are sometimes complex, and difficult to
analyze, resulting in utility bounds often proven for “toy” algorithms. Fourth, as the
utility guarantee must hold for all datasets (including pathological ones), such guarantees are
typically so loose that they are meaningless once we plug in the actual parameters. Practically
effective mechanisms often need to exploit features shared by commonly encountered datasets,
and cannot provide meaningful utility guarantees for pathological datasets. We hope that
some of these challenges can be overcome with the development of new theoretical tools.

6.3. Additional Related Work. Blum et al. [2008] introduced a theoretical algorithm for
generating a synthetic dataset while preserving accuracy on a set of queries. The algorithm
uses the Exponential Mechanism [McSherry and Talwar, 2007] to select a dataset among
exponentially many possible datasets, using the query accuracy as the quality function. This
algorithm takes exponential time in the number of records in the dataset. Barak et al. [2007]
proposed a method for the case where the domain size for record is not large, by using linear
program to compute a full contingency table that is close to marginals extracted from a
dataset. This method does not scale when the domain is large.

More practical methods can be classified into three approaches. (1) Game Based
Methods that formulate the dataset synthesis problem as a zero-sum game [Hardt et al.,
2012a, Gaboardi et al., 2014, Vietri et al., 2020]. (2) Graphical Model Based Methods
use marginals to estimate a graphical model that approximates the distribution of the
original dataset in a differentially private way, and include Zhang et al. [2017], Bindschaedler
et al. [2017], Mckenna et al. [2019], Chen et al. [2015]. (3) Generative Adversarial Network
(GAN)-based approaches that include Zhang et al. [2018a], Beaulieu-Jones et al. [2019],
Abay et al. [2018], Frigerio et al. [2019], Tantipongpipat et al. [2019]. We discussed these
approaches in more detail and experimentally compared with the most promising ones among
them in Zhang et al. [2021].

7. Conclusion and Future Work

We find the experiences of participating in the competition very rewarding. The competition
forced us to develop and refine our algorithm for synthesizing data from marginals, making
it much more efficient and effective than what we originally had. The competition also
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demonstrated what is possible under DP. When each round starts, the scores from all the
teams are generally low, but they rapidly increase over time. The final scores achieved by
the top teams were significantly higher than what we thought were possible at the beginning
of the competition. For example, the dataset in Round 3 had 98 attributes and 0.62 million
records, making it challenging to preserve information under DP. This success is in part
because for these real-world datasets, there are lots of meta-data information one can exploit
to select marginals to achieve better results. An interesting research direction is to study how
to effectively utilize existing public datasets to improve the publishing of private datasets.

We believe that by running the competitions, NIST performed a valuable service for
the research community and society at large. The competitions were competently set up
and executed, and brought researchers and practitioners together to push the boundary on
what is known to be possible regarding publishing synthetic data under differential privacy.
We are looking forward to more of similar efforts in the future. We suggest consideration of
competitions using randomly synthetic data in future. When using real datasets, the final
results often depend on how well one discovers and utilizes meta-data, more than on how
well the data synthesis algorithm works. A large amount of our time (and likely other teams’
time) was spent on marginal engineering, which includes understanding the data schema,
finding semantic relationships that we can use to reduce the number of marginals needed
and making them smaller. In the future, it would help to have a competition that is set up
in a way that participants can focus on the algorithmic aspects of private data synthesis,
instead of how to best use meta-data information. Perhaps the datasets used in evaluation
can be generated by a data generalization process, such as a generative model. The data
generation process should be public, so that every team automatically has access to the
same meta-data information that can be used. The generation process should have hidden
sources of randomness so that the distributions and marginal correlations for generated test
datasets are unknown.
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Appendix A. Data Generation Method from PrivSyn

To be self-contained, we provide the detailed description of the data generation method from
PrivSyn [Zhang et al., 2021].

Given a set of noisy marginals, the data synthesis step generates a new dataset Ds so
that its distribution is consistent with the noisy marginals. Existing methods [Zhang et al.,
2017, Mckenna et al., 2019] put these marginals into a graphical model, and use the sampling
algorithm to generate the synthetic dataset. As each record is sampled using the marginals,
the synthetic dataset distribution is naturally consistent with the distribution.

The drawback of this approach is that when the graph is dense, existing algorithms do
not work. To overcome this issue, we use an alternative approach. Instead of sampling the
dataset using the marginals, we initialize a random dataset and update its records to make
it consistent with the marginals.

A.1. Strawman Method: Min-Cost Flow (MCF). Given the randomly initiated dataset
Ds, for each noisy marginal, we update Ds to make it consistent with the marginal. A
marginal specified by a set of attributes is a frequency distribution table for each possible
combination of values for the attributes. The update procedure can be modeled as a graph
flow problem. In particular, given a marginal, a bipartite graph is constructed. Its left side
represents the current distribution on Ds; and the right side is for the target distribution
specified by the marginal. Each node corresponds to one cell in the marginal and is associated
with a number. Figure 3 demonstrates an example of this flow graph. Now in order to
change Ds to make it consistent with the marginal, we change records in Ds.

Current Dist Target Dist

0.3

0.3

0.4

0.5

0.2

0.3

0.3

0.0

0.0

0.2
0.1

0.1

0.3

0.0

0.0

<Teenager, *>

<Adult, *>

<Elderly, *>

Figure 3. Running example of MCF. The left nodes represent current
distribution from Ds; and the right nodes give the target distribution specified
by the noisy marginal. The min-cost flow is to move 0.1 from adult to teenager,
and 0.1 from elderly to teenager. To change the distribution, we find matching
records from Ds and change their corresponding attributes.

The MCF method enforces a min-cost flow in the graph and updates Ds by changing
the values of the records on the flow. For example, in Figure 3, there are two changes to Ds.
First, one third of the adults needs to be changed to teenagers. Note that we change only the
related attribute and keep the other attributes the same. Second, one fourth of the elderly
are changed to teenager. We iterate over all the noisy marginals and repeat the process
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multiple times until the amount of changes is small. The intuition of using min-cost flow is
that, the update operations make the minimal changes to Ds, and by changing the dataset
in this minimal way, the consistency already established in Ds (with previous marginals)
can be maintained. The min-cost flow can be solved by the off-the-shelf linear programming
solver, e.g., Ahuja et al. [1988].

When all marginals are examined, we randomly shuffle the whole dataset Ds. Since the
modifying procedure would invalidate the consistency established from previous marginals,
MCF needs to iterate multiple times to ensure that Ds is almost consistent with all marginals.

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high male adult
v4 high male teenager
v5 high female elderly

(a) Dataset before
updating.

v S{I,G}(v) T{I,G}(v)

〈low, male,∗〉 0.0 0.0
〈low, female,∗〉 0.0 0.0
〈high, male,∗〉 0.8 0.2
〈high, female,∗〉 0.2 0.8

(b) Marginal table for
{Income, Gender}, where
red and blue stands for
over-counted and under-
counted cells, respectively.

Income Gender Age

v1 high male teenager
v2 high male adult
v3 high female elderly
v4 high female teenager
v5 high female elderly

(c) Dataset after updating.

Figure 4. Example of the synthesized dataset before and after updating
procedure. In (a), blue stands for the records to be added, and brown stands
for the records to be changed. In (c), v4 only changes income and gender
attributes, while v3 changes the whole record which is duplicated from v5.
Notice that in this example, we have α = 2.0, β = 0.5 and the marginal
distribution in (c) do not completely match T{I,G}(v) of [0.0, 0.0, 0.2, 0.8];

instead, it becomes [0.0, 0.0, 0.4, 0.6].

A.2. Gradually Update Method (GUM). Empirically, we find that the convergence
performance of MCF is not good. We believe that this is because MCF always changes Ds

to make it completely consistent with the current marginal in each step. Doing this reduces
the error of the target marginal close to zero, but increases the errors for other marginals to
a large value.

To handle this issue, we borrow the idea of multiplicative update [Arora et al., 2012]
and propose a new approach that Gradually Update Ds based on the Marginals; and we
call it GUM. GUM also adopts the flow graph introduced by MCF, but differs from MCF in
two ways: First, GUM does not make Ds fully consistent with the given marginal in each
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step. Instead, it changes Ds in a multiplicative way, so that if the original frequency in a
cell is large, then the change to it will be more. In particular, we set a parameter α, so that
for cells that have values are lower than expected (according to the target marginal), we
add at most α times of records, i.e., min

{
nt − ns, αns

}
2, where nt is the number in the

marginal and ns is the number from Ds. On the other hand, for cells with values higher than
expected, we will reduce min

{
ns − nt, βns

}
records that satisfy it. As the total number of

record is fixed, given α, β can be calculated.
Figure 4 gives a running example. Before updating, 4 out of 5 records have the

combination 〈high,male〉, and 1 record has 〈high, female〉. To get closer to the target
marginal of 0.2 and 0.8 for these two cells, we want to change 2 of the 〈high,male〉 records
to be 〈high, female〉. In this example, we have α = 2.0, β = 0.5 3 and do not completely
match the target marginal of 0.2 and 0.8. To this end, one approach is to simply change the
Gender attribute value from male to female in these two records as in MCF. We call this a
Replace operation. Replacing will affect the joint distribution of other marginals, such as
{Gender,Age}. An alternative is to discard an existing 〈high,male〉 record, and Duplicate
an existing 〈high, female〉 record (such as v5 in the example). Duplicating an existing
record helps preserve joint distributions between the changed attributes and attributes not
in the marginal. However, Duplication will not introduce new records that can better reflect
the overall joint distribution. In particular, if there is no record that currently has the
combination 〈high, female, elderly〉, duplication cannot be used.

Therefore, we need to use a combination of Replacement and Duplication (which is
the case in Figure 4). Furthermore, once the synthesized dataset is getting close to the
distribution, we would prefer Duplication to Replacement, since at that time there should
be enough records to reflect the distribution and Replacement disrupts the joint distribution
between attributes in a marginal and those not in it. We empirically compare different record
updating strategies and validate that introducing the Duplication operation can effectively
improve the convergence performance.

A.3. Improving the Convergence. Given the general data synthesize method, we have
several optimizations to improve its utility and performance. First, to bootstrap the
synthesizing procedure, we require each attribute of Ds follows the 1-way noisy marginals
when we initialize a random dataset Ds.

Gradually Decreasing α. The update rate α should be smaller with the iterations to
make the result converge. From the machine learning perspective, gradually decreasing α can
effectively improve the convergence performance. There are some common practices [Stanford
University, 2017] of setting α.

• Step decay: α = α0 · kb
t
s
c, where α0 is the initial value, t is the iteration number, k is

the decay rate, and s is the step size (decrease α every s iterations). The main idea is to
reduce α by some factor every few iterations.
• Exponential decay: α = α0 · e−kt, where k is a hyperparameter. This exponentially

decrease α in each iteration.

2Notice that α could be greater than 1 since ns < nt. In the experiments, we always set α to be less than
1 to achieve better convergence performance.

3We have α = nt−ns

ns for under-counted cells and β = ns−nt

ns for over-counted cells. The number of records

for under-counted cell 〈high, female,∗〉 increase from 1 to 3; thus α = 3−1
1

= 2. The number of records for

over-counted cell 〈high, male,∗〉 decrease from 4 to 2; thus β = 4−2
4

= 0.5.
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• Linear decay: α = α0
1+kt .

• Square root decay: α = α0√
1+kt

.

We empirically evaluate the performance of different decay algorithms and find that step
decay is preferable in all settings. The step decay algorithm is also widely used to update
the step size in the training of deep neural networks [Krizhevsky et al., 2012].

Attribute Appending. The selected marginals X can be represented by a graph G. We
notice that some nodes have degree 1, which means the corresponding attributes are included
in exactly one marginal. For these attributes, it is not necessary to involve them in the
updating procedure. Instead, we could append them to the synthetic dataset Ds after other
attributes are synthesized. In particular, we identify nodes from G with degree 1. We then
remove marginals associated with these nodes from X . The rest of the noisy marginals are
fed into GUM to generate the synthetic data but with some attributes missing. For each of
these missed attributes, we sample a smaller dataset Ds’ with only one attribute, and we
concatenate Ds’ to Ds using the marginal associated with this attribute if there is such a
marginal; otherwise, we can just shuffle Ds’ and concatenate it to Ds. Note that this is a
one time operation after GUM is done. No synthesizing operation is needed after this step.

Separate and Join. We observe that, when the privacy budget is low, the number of
selected marginals is relatively small, and the dependency graph is in the form of several
disjoint subgraphs. In this case, we can apply GUM to each subgraph and then join the
corresponding attributes. The benefit of Separate and Join technique is that, the convergence
performance of marginals in one subgraph would not be affected by marginals in other
subgraph, which would improve the overall convergence performance.

Filter and Combine Low-count Values. If some attributes have many possible values
while most of them have low counts or do not appear in the dataset. Directly using these
attributes to obtain pairwise marginals may introduce too much noise. To address this issue,
we propose to filter and combine the low-count values. The idea is to spend a portion of
privacy budget to obtain the noisy one-way marginals. After that, we keep the values that
have count above a threshold θ. For the values that are below θ, we add them up, if the
total is below θ, we assign 0 to all these values. If their total is above θ, then we create a
new value to represent all values that have low counts. After synthesizing the dataset, this
new value is replaced by the values it represents using the noisy one-way marginal. The
threshold is set as θ = 3σ, where σ is the standard deviation for Gaussian noises added to
the one-way marginals.
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