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Abstract. Several algorithms exist for creating differentially private counts from contin-
gency tables, such as two-way or three-way marginal counts. The resulting noisy counts
generally do not correspond to a coherent contingency table, so that some post-processing
step is needed if one wants the released counts to correspond to a coherent contingency
table. We present a latent class modeling approach for post-processing differentially private
marginal counts that can be used (i) to create differentially private synthetic data from the
set of marginal counts, and (ii) to enable posterior inferences about the confidential counts.
We illustrate the approach using a subset of the 2016 American Community Survey Public
Use Microdata Sets and the 2004 National Long Term Care Survey.

1. Introduction

National statistical organizations and other data curators, henceforth all called agencies,
often seek to share collected information with outside researchers. Doing so requires methods
that provide privacy protection to data subjects while maintaining statistical relationships
in the data. Many agencies use statistical disclosure control (SDC) methods that blur the
private data in a prescribed way, with the aim to provide some level of privacy protection.
Traditional SDC methods include data swapping, cell suppression, top- or bottom- coding,
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and the addition of random noise (Hundepool et al., 2012). Generally, traditional SDC
techniques have been applied with low intensity, so as not to degrade the quality of the
information in the data. However, with the growth in available data and powerful computing,
many agencies have become concerned that such SDC methods are not adequately protective.

To address this issue, several agencies have turned to using synthetic data methods
(Rubin, 1993; Little, 1993; Reiter, 2005a). The agency releases data that are generated from
some statistical model, estimated with the private data. With a full synthesis, agencies can
ensure that no sensitive values are released on the file, which can reduce disclosure risks.
Further, the agency can offer researchers access to record-level data instead of only summary
statistics or other high-level information. Many different methods have been proposed to
generate synthetic data (e.g., Reiter, 2005b; Woodcock and Benedetto, 2009; Mateo-Sanz
et al., 2004; Slavković and Lee, 2010) and assess the utility and disclosure risk associated
with the data release (Drechsler, 2011; Hundepool et al., 2012; Karr et al., 2006; Reiter
et al., 2014; Snoke et al., 2018). The U.S. Census Bureau has released synthetic data for
the Longitudinal Business Database (Kinney et al., 2011), Survey of Income and Program
Participation (Benedetto et al., 2013), and the LEHD Origin-Destination Employment
Statistics (with the data product being known as OnTheMap) (Machanavajjhala et al., 2008).
Affiliated researchers have proposed methodologies for other national surveys (e.g., federal
administrative data from the Office of Personnel Management (Barrientos et al., 2018)),
and other statistical agencies have developed synthetic data products such as the Scottish
Longitudinal Survey (SLS-DSU, 2018) and the German IAB Establishment Data (Drechsler,
2009).

Most SDC methods, including many synthetic data techniques, do not provide formally
quantifiable privacy guarantees. Instead, agencies evaluate disclosure risks based on as-
sumptions of intruder knowledge and behavior (Hundepool et al., 2012). An alternative
approach is to design and use SDC methods that satisfy differential privacy (DP, (Dwork
et al., 2006b)). Differentially private algorithms exist for releasing counts (e.g., Dwork et al.,
2006b; Ghosh et al., 2012), k-way marginals (Barak et al., 2007; Yang et al., 2012; Li et al.,
2018), regression coefficients (Zhang et al., 2012; Snoke and Slavković, 2018; Awan and
Slavkovic, 2021), and many other quantities that can be viewed as answers to user-specified
queries. Several statistical agencies are interested in combining the privacy guarantees
from differential privacy with the flexibility afforded by synthetic data. For example, the
U.S. Census Bureau uses differentially private synthetic data as the backbone of its 2020
population census data releases (Abowd, 2018). However, it can be challenging to generate
differentially private synthetic data with low error (Garfinkel et al., 2018).

In this article, we propose methodology to generate differentially private synthetic data
sets for multivariate count data, i.e., data from contingency tables. Our approach can be
viewed as a post-processing method for generating synthetic data, a strategy also suggested
in McKenna et al. (2021). Specifically, we first assume that an agency has selected a set of
marginal counts and has used some existing differentially private algorithm to add noise to
those counts. For example, the agency could select the margins for which accurate values
are especially important. Alternatively, the agency could select a set of margins that covers
many types of analyses done by users of the data, e.g., all k-way margins. Second, we specify
a Bayesian latent class model for the underlying confidential data (Dunson and Xing, 2009).
We write the agency-selected margins as functions of the model parameters. Third, we
estimate the parameters in the functions using only the differentially private counts and a
composite likelihood-based approach (Lindsay, 1988). Finally, we sample from the estimated
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model to generate record-level, synthetic data. Agencies can generate multiple copies of the
synthetic datasets, without any extra privacy loss, in order to enable secondary data analysts
to estimate uncertainty and make inferences (Reiter, 2003). Generating differentially private
synthetic data from a user-specified list of summaries can be particularly advantageous for
contingency tables with complex structures, e.g., data with structural zeros (Manrique-Vallier
and Reiter, 2014; Li et al., 2018) or nested data such as individuals in households (Hu et al.,
2018). We illustrate the latter in the online Supplementary Material.

The latent class modeling approach can also be viewed as an engine for approximate
posterior inferences for the underlying confidential counts given a collection of differentially
private counts, under the assumptions implied by the latent class model. Specifically, analysts
can use parameters draws from the Markov chain Monte Carlo (MCMC) sampler to obtain
posterior inferences for any functional of the parameters, i.e., any count in the table.

The remainder of the paper is organized as follows. In Section 1.1 we review related
literature. In Section 2 we present preliminary information on data privacy and latent
class models. In Section 3 we discuss the proposed approach and implementation details.
In Section 4, we illustrate the approach by making posterior inferences from differentially
private counts with a small set of variables from the 2016 American Community Survey
(ACS) Public Use Microdata Sets (PUMS), and compare it to several other approaches from
the literature. In Section 5, we illustrate the approach for both posterior inference and
synthetic data generation using the 2004 National Long Term Care Survey, which has larger
dimensions than the ACS example. For both illustrations, we use the Geometric Mechanism
(Ghosh et al., 2012) to ensure differential privacy in the first stage counts. Finally, in
Section 6 we end with a discussion.

1.1. Related Literature. Protection of counts and contingency tables has been the subject
of many papers in the privacy literature. Some of the first examples of differentially private
(DP) data were counts and histograms perturbed by the Laplace mechanism (Dwork et al.,
2006b). Barak et al. (2007) proposed methodology to produce DP marginal counts by using
Fourier bases. Yang et al. (2012) extended this work to multi-dimensional contingency tables
and noted some theoretical and practical shortcomings to both approaches. Machanavajjhala
et al. (2008) proposed constructing DP contingency tables via a Dirichlet-Multinomial syn-
thesizer, and the Hardt-Ligett-McSherry algorithm (Hardt et al., 2012) used a multiplicative
weights approach.

Park and Ghosh (2014) proposed methodology for synthesis of DP contingency tables by
disintegrating the data into suitable building blocks, injecting noise to these blocks, and using
a Gibbs sampler to draw synthetic samples. Li et al. (2018) proposed to generate synthetic
data by constructing an empirical hashed conditional distribution from the whole histogram
and applying a Stability Based Algorithm to these empirical distributions. McKenna et al.
(2019) proposed constructing DP synthetic data where “suitable building blocks” are a set
of selected marginal counts; they add Laplace noise to the selected counts, fit a graphical
model to the perturbed counts, and sample synthetic data from this model. Similarly,
PrivBayes (Zhang et al., 2017) constructs DP synthetic data sets via Bayesian networks.
These authors use networks to approximate the underlying data distribution through lower
order marginals, add noise to these marginals, and approximate a full data distribution
through the noisy counts and constructed Bayesian network. We note that these two methods
placed first (McKenna et al., 2021) and third (Bao et al., 2021), respectively, in the 2018-2019
National Institute of Standards and Technology Public Safety Communications Research
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division’s Differential Privacy Synthetic Data Challenge (National Institute of Standards
and Technology, 2021); see Bowen and Snoke (2021) for a discussion of the performance
of these methods in the context of the challenge. Similarly, the CIPHER method Eugenio
and Liu (2021) estimates the joint distribution of a table based on a lower-order set of DP
marginals. Their approach can be viewed as a post-processing technique for generating
synthetic data.

Hay et al. (2010) showed that accuracy can be greatly improved by accounting for
the constraints that a contingency table must satisfy in post-processing steps, although
some recent papers argue for post-processing to be part of posterior modeling (e.g., see
Seeman et al. (2020), and references therein). Lee et al. (2015) extended this result by also
accounting for the noise distribution and developed a fast generic approach for solving the
resulting optimization problem.

Bowen and Liu (2020) compared many parametric and nonparametric methods for
differentially private data synthesis, beyond those discussed above, and Charest (2012)
showed that requiring greater privacy can degrade inferential results. Rinott et al. (2018)
discussed several issues related to contingency table release under differential privacy,
including the potential effects of rounding and other post-processing steps. They compared
several simple mechanisms and offered comments on utility in private data releases. Similarly,
Raab (2019) discussed some practical limitations to contingency table protection under
formal privacy guarantees and presented a new method to create differentially private
contingency tables from a subset of marginals via the Laplace mechanism and iterative
proportional fitting.

All of these methods (ours included) are subject to the results of Ullman and Vadhan
(2020). They showed that, even in simple cases, it is impossible to construct a polynomial
time differentially private algorithm that preserves all two-way marginals.

Accounting for the additional privacy-preserving noise in inference also has been discussed
in the literature. Charest (2012) used a simple Bayesian model to account for noise added
under the Beta-Binomial synthesizer. Karwa et al. (2015) accounted for noise by treating the
original data as missing. As the resulting likelihoods are often intractable, they developed
a technique relying on a variational approximation for estimation. Seeman et al. (2020)
showed that naive post-processing (such as direct modification of counts to meet constraints)
can result in loss of information and proposed a Bayesian sampling scheme to post-process
counts based on the noisy counts and outside constraining information. Gong (2019) showed
that approximate Bayesian computing can be used to account for DP noise to obtain draws
from the correct posterior distribution. Karwa et al. (2017) investigated methods to release
DP synthetic networks while also accounting for the additional noise by treating the original
private data as missing and using a likelihood-based approach. While not dealing with DP
tables, Woo and Slavković (2012) proposed several EM algorithms to obtain correct logistic
regression estimates for tables that are protected using the Post Randomization Method
(PRAM) which could be extended to DP settings.

Turning to latent class models, Si and Reiter (2013) used latent class specifications
for missing data imputation in contingency tables using the model of Dunson and Xing
(2009). This latent class model specification belongs to the family of Bayesian nonparametric
techniques, which are well-known for being a flexible modeling choice to capture complex
data patterns. Manrique-Vallier and Reiter (2014) refined these latent class models to
incorporate cases with structural zeros, e.g., a person age five cannot have a college degree.
The full table latent class approach was further extended to handle nested data such as
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people within households (Hu et al., 2018), structural zeros (Akande et al., 2019a), and
missing data (Akande et al., 2019b); see the Supplementary Material for a discussion of the
model presented in Hu et al. (2018) and how our proposed approach can be augmented for
nested data structures.

2. Preliminaries

2.1. Data Privacy Methods.

2.1.1. Synthetic Data. Let X = {(xi1, . . . , xip)}ni=1 be an observed data set comprising n
individuals measured on p confidential categorical variables. For i = 1, . . . , n and j = 1, . . . , p,
each xij ∈ {1, . . . , dj}. We refer to the variables in X using Xj where j = 1, . . . , p. Synthetic
data approaches aim to preserve the joint distribution f(X) of these variables by modeling
them simultaneously, e.g., as in Hu et al. (2018) and Akande et al. (2019b), or by using
sequential modeling of the form,

f(X) = f(X1)f(X2|X1) · · · f(Xp|X1, . . . , Xp−1). (2.1)

Different types of statistical models can be used for the conditional distributions in (2.1),
including classification and regression trees (CART) (Reiter, 2005b), random forests (Caiola
and Reiter, 2010), kernel density estimators (Woodcock and Benedetto, 2009), and combina-
tions thereof (Barrientos et al., 2018). Choice of model depends on both the data structure
and desired privacy levels.

2.1.2. Differential Privacy. Differential privacy is a formal privacy framework that guarantees
privacy protection by bounding the ratio of output densities for all neighboring data
sets. Intuitively, it protects against attackers seeking to learn whether or not any specific
individual’s data were included (or excluded) in the data set over which the output was
calculated. That is, the inclusion (or exclusion) of a single person’s information does not
change the output of the algorithm greatly. In this paper we focus on its strongest form,
ϵ-DP, where ϵ is a privacy-loss parameter, with smaller values indicating stronger protection,
but our model could be modified for other forms of DP.

Definition 2.1. ϵ-Differential Privacy (Dwork et al., 2006b): A randomized algorithm
A satisfies ϵ-differential privacy if for all data sets X = {(xi1, . . . , xip)}ni=1 and X′ differing
on at most one row, and S ⊆ Range(A),

Pr[A(X) ∈ S]

Pr[A(X′) ∈ S]
≤ exp(ϵ) . (2.2)

Differential privacy is a property of the algorithm itself. It is achieved by randomness.
Many different algorithms have been proposed to release differentially private statistics
or data sets, e.g., the Laplace (Dwork et al., 2006b) or Geometric (Ghosh et al., 2012)
mechanisms, which are the most relevant to our setting. Several relaxations and extensions
of differential privacy have been proposed such as (ϵ, δ)-differential privacy (Dwork et al.,
2006a), concentrated differential privacy (Bun and Steinke, 2016), and Rényi differential
privacy (Mironov, 2017); for more, see Dwork et al. (2014).



6 M. NIXON, A. BARRIENTOS, J. REITER, AND A. SLAVKOVIĆ

Many DP mechanisms (ours included) rely on the useful properties of post-processing
and sequential composition. These properties outline how the DP privacy guarantee can be
preserved and how the privacy-loss parameter is propagated through multiple data releases.
Theorem 2.2 shows that DP is preserved through post-processing and is key to our proposed
approach: the augmented Bayesian latent class model and measurement error model is a
post-processing technique for a noisy, privacy-preserving count. Theorem 2.3 shows how the
privacy-loss parameter ϵ propagates through multiple data releases on the same individual.

Theorem 2.2. Post-processing (Dwork et al., 2006b): Let A be any randomized algorithm
such that A(X) is ϵ-differentially private, and let g be any function. Then, g(A(X)) also
satisfies ϵ-differential privacy.

Theorem 2.3. Sequential composition (McSherry, 2009): Let Ai each provide ϵi-differential
privacy. The sequence of Ai(X) provides (

∑
i ϵi)-differential privacy.

2.1.3. Geometric Mechanism. The Geometric Mechanism (Ghosh et al., 2012) adds noise
from a two-sided geometric distribution to achieve DP. Properties of this distribution,
including simulation techniques, are discussed in Inusah and Kozubowski (2006) and its
references.

Definition 2.4. A random variable Y distributed as a two-sided geometric distribution has
probability mass function

P (Y = k) =
1− α

1 + α
α|k|, (2.3)

where 0 ≤ α ≤ 1. We refer to this distribution using two-sided-Geom(α).

Theorem 2.5. Geometric Mechanism (Ghosh et al., 2012): For f : D → Rd, the mechanism
A that adds independently drawn noise from a two-sided-Geom(exp{ −ϵ

∆f }) distribution to

each of the d terms of satisfies ϵ-differential privacy.

This mechanism has several appealing properties for protecting count data. First, the
added noise values are integers, which eliminates the need for a post-processing step to deal
with fractional parts. Second, Ghosh et al. (2012) show that this mechanism is optimal for
every potential user regardless of the side information that they posses when releasing DP
count queries using a Bayesian framework.

2.2. Bayesian Latent Class Models. Dunson and Xing (2009) developed a flexible
methodology for modeling unordered categorical data using a Bayesian nonparametric
mixture model. Their methods are directly applicable to modeling complete contingency
tables.

Suppose each observation i = 1, . . . , n belongs to a latent class denoted by zi ∈ {1, 2, . . . }.
The probability for each unique combination of variable levels is specified according to these
latent classes. For ease of notation, we allow xij to stand for random variables as well as the
observed data. The latent class model is of the form,
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xij |zi, {Ψ(j)
h }∞h=1

ind∼ Multinomial{1,Ψ(j)
zi1

, . . . ,Ψ
(j)
zidj

}, i = 1, . . . , n, j = 1, . . . , p,

zi|{πh}∞h=1
ind∼ Discrete{(1, . . . ,∞), (π1, . . . , π∞)},

πh = Vh

∏
l<h

(1− Vl), Vh ∼ β(1, α),

Ψ
(j)
h ∼ Dirichlet(aj1, . . . , ajdj ),

(2.4)

where Ψ
(j)
h = (Ψ

(j)
h1 , . . . ,Ψ

(j)
hdj

), α > 0, and (aj1, . . . , ajdj) is a vector with positive components.

Under model (2.4), for any feasible set of values (c1, . . . , cp) of the categorical variables, one
has

Pr(xi1 = c1, . . . , xip = cp|{Ψ(j)
h }∞h=1, {πh}∞h=1) =

∞∑
h=1

πh

p∏
j=1

Ψ
(j)
hcj

, (2.5)

which corresponds to a mixture of product multinomials with a Dirichlet process (Ferguson,
1973) as a mixing distribution.

To facilitate posterior computation, we use a finite dimensional approximation of the
model in (2.4), which can be estimated using Gibbs sampling. The approximation relies on
the assumption that zi ∈ {1, . . . , k}, where k < ∞, which is equivalent to truncating the
mixture model (2.5) to k components; see Ishwaran and James (2001) for a discussion of the
truncated Dirichlet processes. Similar approximations along with Gibbs sampling have been
successfully used for private data synthesis, including in Hu et al. (2018), Manrique-Vallier
and Reiter (2014) and Akande et al. (2019b), among others.

2.3. Composite Likelihood Methods. Composite likelihood methods allow analysts to
circumvent the specification of the full joint likelihood function (Lindsay, 1988; Varin et al.,
2011). Instead, analysts can use an approximation to the likelihood function, often with the
assumption of some form of independence, to simplify computation.

We use composite likelihood methods to approximate the joint likelihood of the latent
class model given an agency-specified set of marginal counts. Let (M1, . . . ,MT ) represent

the list of marginal counts of X with θ =
(
{Ψ(j)

h }k,ph=1,j=1, {πh}
k
h=1

)
. Let Lt(θ;Mt) be the

likelihood function corresponding to Mt induced by Model (2.4). We approximate the joint
likelihood of θ given (M1, . . . ,MT ) using

LC(θ;M1, . . . ,MT ) ≈
T∏
t=1

Lt(θ;Mt). (2.6)

The composite likelihood LC allows for inference about θ only from the marginal counts
(Varin et al., 2011). We note that, while computationally expedient, inference based on only a
subset of counts of X could result in inaccurate estimates of θ (Walker, 2013), particularly for
regions of its distribution that describe the counts excluded from the set of selected marginals.
Furthermore, not all combinations of marginals and (possibly) conditional distributions fully
and uniquely specify the joint distribution; for example, see Fienberg and Slavkovic (2005);
Slavković et al. (2015) within the context of confidentiality protection and more general
related references therein.
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3. Proposed Methods

3.1. Overview. We assume the agency adds noise to the true counts for a set of agency-
specified marginals, (M1, . . . ,MT ), computed from X using the Geometric Mechanism. In
our simulation examples, we use the definition of sensitivity based on changing one row;
hence, the sensitivity for each Mt, where t = 1, . . . , T , equals two.1 We assume the agency
has determined appropriate values of ϵ to control the overall privacy budget. See Section 4
for a discussion in the context of our simulations.

When estimating the parameters of the Bayesian latent class model, we account for the
additional noise due to DP using a measurement error model (Fuller, 2009). Specifically,
we treat the true underlying counts as unknown and incorporate the privacy preserving
mechanism into the model. Let M̃ denote the observed noisy marginal counts. We have

M̃ = (M1 + ε1, . . . ,MT + εT ),

εt
ind∼ two-sided-Geomrt

(
exp

{
−ϵ

∆MtT

})
, t = 1, . . . , T,

Mt|πk,Ψk
ind∼ Multinomialrt(n, Pt(πk,Ψk)), t = 1, . . . , T,

πk = {πh}kh=1, Ψk = {Ψ(j)
h }k,ph=1,j=1,

(3.1)

where each Mt comprises rt counts, εt is a random vector with rt independent components

distributed as two-sided-Geom
(
exp

{
−ϵ

∆Mt

})
, and ∆Mt = 2 is the sensitivity of Mt. We

complete the model specification by assuming the prior distributions for πk and Ψk used in
(2.4). Since the summaries Mt are assumed to be marginal counts, the distribution induced
by X 7→ Mt is multinomial with parameters n and Pt(πk,Ψk), where Pt(πk,Ψk) represents
the probabilities of the counts in Mt and is computed using expression (2.5). We note that
the Geometric Mechanism, which generates noise independently for each count, facilitates
the assumptions of independence of the marginal counts used in the composite likelihood.

The third line of (3.1) represents our “augmented” step (Lindsay, 1988; Varin et al., 2011):
each marginal count is assumed to be independently drawn from multinomial distributions.
We rely on this assumption as it is not obvious how to characterize the joint distribution
for (M1, . . . ,MT )|πk,Ψk. Although the premise of independence leads to a product of
multinomial distributions that places positive probability outside the range of (M1, . . . ,MT ),
we expect such probability to be small since (P1(πk,Ψk), . . . , PT (πk,Ψk)) is a coherent
system of probabilities that accounts for the underlying constraints among M1, . . . ,MT .
Hence, in order to generate synthetic tables that consider such constraints, our strategy is
to sample from the distribution of πk,Ψk|M̃ , and approximate the underlying table cell
probabilities by

Pr(x(n+1)1 = c1, . . . , x(n+1)p = cp|M̃) =∫ ∫
Pr(x(n+1)1 = c1, . . . , x(n+1)p = cp|πk,Ψk)Pr(πk,Ψk|M̃)dπkdΨk.

Here, Pr(x(n+1)1 = c1, . . . , x(n+1)p = cp|πk,Ψk) is defined as in (2.5).
Regardless of which marginal counts are used in estimation, probabilities corresponding

to any cell of the contingency table or marginal count can be estimated through (πk,Ψk). At

1Under other definitions of sensitivity, the sensitivity equals 1 since adding or deleting one row changes at
most one marginal count.
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each iterate, the desired probabilities can be tabulated using the sampled values of (πk,Ψk)
at that iterate. This results in a posterior distribution for each desired probability. Synthetic
data can be created from the full cell counts either by straightforward post-processing (e.g.,
multiply full table probabilities by the desired table size and expand) or by multinomial
sampling of the cells weighted by the full table probabilities.

Any arbitrary set of summary statistics can be fed into the model. However, to increase
the statistical usefulness of the estimated table, we suggest using sets of summary statistics
that include at least one instance of every variable and its corresponding levels, which we do
here. In addition, when privacy budgets are constrained, we recommend using few rather
than many marginal counts. Using a smaller set of marginals allocates more of the privacy
budget to each marginal table, which can improve accuracy for those counts. We note that
the dimension of parameters (π,ψ) to be estimated does not depend on the number of tables
passed to the model.

In general, we expect these results to improve as the accuracy of the formally private
counts improves. However, difficulties can arise with the measurement error step of our
model if it is hard to specify the DP noise generating process.

This approach to differentially private synthesis does not suffer from privacy loss from
running the estimation algorithm. Noise is injected to the marginal counts prior to the
MCMC sampling (Chaudhuri et al., 2013). The algorithm uses these noisy marginals and
knowledge of the noise distribution (which does not violate differential privacy) to estimate
the underlying contingency table through (πk,Ψk).

To satisfy DP without using additional budget, one should set the number of latent
classes k without using the confidential counts. Further, one should not use a k that exceeds
the number of cells in the table; otherwise, the latent class model will have more parameters
than observed cells in the data. We suggest starting with a reasonable number like k = 10
or k = 20, with larger starting sizes based on the size of the table. After fitting the model,
examine the estimates of the mixing weights (i.e., the latent class probabilities) and increase
k until some are very small. For our illustrative examples, this process resulted in values of
k around 10.

3.2. Illustrative Implementation. To illustrate implementations, suppose the agency
has generated all 40 two-way marginal counts from a 25 table. We can write each two-way
marginal probability as a sum over all combinations of the remaining three variables, for
example,

Pr(xi1 = 0, xi2 = 0|πk,Ψk) =

1∑
j=0

1∑
l=0

1∑
m=0

Pr(xi1 = 0, xi2 = 0, xi3 = j, xi4 = l, xi5 = m|πk,Ψk)

=

k∑
h=1

πhΨ
(1)
h0Ψ

(2)
h0

1∑
j=0

1∑
l=0

1∑
m=0

Ψ
(3)
hj Ψ

(4)
hl Ψ

(5)
hm .

(3.2)
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Similarly, we have

Pr(xi1 = 0, xi2 = 1|πk,Ψk) =

k∑
h=1

πhΨ
(1)
h0Ψ

(2)
h1

1∑
j=0

1∑
l=0

1∑
m=0

Ψ
(3)
hj Ψ

(4)
hl Ψ

(5)
hm

Pr(xi1 = 1, xi2 = 0|πk,Ψk) =

k∑
h=1

πhΨ
(1)
h1Ψ

(2)
h0

1∑
j=0

1∑
l=0

1∑
m=0

Ψ
(3)
hj Ψ

(4)
hl Ψ

(5)
hm

Pr(xi1 = 1, xi2 = 1|πk,Ψk) =

k∑
h=1

πhΨ
(1)
h1Ψ

(2)
h1

1∑
j=0

1∑
l=0

1∑
m=0

Ψ
(3)
hj Ψ

(4)
hl Ψ

(5)
hm.

(3.3)

We denote the probabilities in (3.2) and (3.3) by Pt(πk,Ψk) for each corresponding count
in the model in (3.1).

After writing all the two-way marginal counts as functions of the latent class parameters,
we can estimate the posterior distribution of all parameters using a MCMC sampler; see the
Supplementary Material for details. We developed an R package to fit the proposed model
given an arbitrary set of two-way marginals from a 2p contingency table of any size2.

One source of computational overhead for the MCMC sampler is computing all the
marginal probabilities from the model parameters, i.e., Pt(πk,Ψk). The complexity of this
calculation depends on the size of the contingency table, the number of latent classes, and
the total number of marginals used as input. In simulations with our R package, we find
that computing each two-way marginal probability is extremely fast (< 2 milliseconds) when
the dimension is ten or less regardless of the number of latent classes. However, run time
greatly increases for higher dimensions, leading to slower sampling for the overall model
for higher-dimensional tables. Full results are presented in Section 3 of the Supplementary
Material.

4. Application to American Community Survey Data

In this section, we illustrate the proposed approach using data from the ACS PUMS and a
small number of variables; see Table 1. In this illustration, we use the latent class model as a
post-processing algorithm to obtain posterior inferences from a set of released noisy counts.

4.1. Data Description. For each simulation run, we randomly select a subset of 10,000
individuals from the 2016 one-year ACS PUMS. We use five variables on each individual,
namely sex, age, race, citizenship, and income. We recode the latter four variables to binary
variables using the rules in Table 1. Table 2 displays all the 2-way marginal tables from
one such sample, to give a sense of the typical counts. There are a total of 25 table cells
corresponding to

(
5
2

)
× 4 = 40 two-way marginal counts.

To demonstrate our proposed approach, we make several simplifications here as well
as in the NLTCS illustration in Section 5. First, we ignore that fact that the ACS is a
complex survey with weights. We instead analyze the data “as is” without considering the
design. Second, we treat all imputations of missing values as reported data and disregard
any implications of the imputation procedures for computing the sensitivity of the Geometric

2This package, along with all code used in this paper can be found on Github at https://github.com/
michellepistner/BayesLCM, and archived as Nixon (2022).

https://github.com/michellepistner/BayesLCM
https://github.com/michellepistner/BayesLCM
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Table 1: Data description for the ACS recoded variables. Original data was collected from
the 2016 1-year ACS PUMS and recoded according to the guidelines below.

Variable Label Levels
Sex SEX 0: males, 1: females
Age AGE 0: under age 18, 1: over age 18
Race RACE 0: non-white, 1: white
Citizenship CIT 0: non-U.S. citizen, 1: U.S. citizen
Income INC 0: income under federal poverty line

1: income above federal poverty line

Table 2: All two-way marginal tables for one randomly sampled subset of 10,000 observations
from the 2016 ACS PUMS.

Age

Citizenship 0 1

0 11 596
1 443 8,950

Race

Citizenship 0 1

0 299 308
1 1,731 7,662

Sex

Citizenship 0 1

0 273 354
1 4,505 4,888

Income

Citizenship 0 1

0 294 313
1 2,916 6,477

Race

Age 0 1

0 110 344
1 1,920 7,626

Sex

Age 0 1

0 239 215
1 4,539 5,007

Income

Age 0 1

0 445 9
1 2,765 6,781

Sex

Race 0 1

0 945 1,085
1 3,833 4,137

Income

Race 0 1

0 827 1,203
1 2,382 5,587

Income

Sex 0 1

0 1,281 3,497
1 1,929 3,293

Mechanism. Incorporation of survey weights and imputation are important open problems
in formal privacy (Reiter, 2019; Slavkovic and Seeman, 2022).

4.2. Simulation Details. We base our example on the presumption that the agency has
decided that all two-way marginal tables are useful to the end data user and will create
differentially private versions of them. To make the differentially private counts, we add
independent noise drawn from the Geometric Mechanism with ϵ ∈ {.25, .5, 1}. We invoke
sequential composition theorems to adhere to the specified values of ϵ. In particular, each
of the 40 two-way marginal counts belongs to one of

(
5
2

)
= 10 two-way tables. Thus,

each individual contributes to only one cell per table but contributes across all ten tables.
Accordingly, each marginal table should be perturbed with one-tenth of the privacy budget.

After generating the noisy counts in each simulation run, we use a Metropolis-within-
Gibbs sampler to iteratively sample the unknown parameters, (M1, . . . ,MT ,πk,Ψk). Unless
otherwise noted, we set the number of latent classes equal to k = 10. In fitting, generally
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at least four classes have non-trivial mass (as determined by πk); see the Supplementary
Material for model implementation details.

We run the algorithm for 5,000 iterations, discarding the first 2,000 iterations as burn-in.
We monitor convergence of model probabilities using trace plots, a standard practice in
Bayesian data analysis (Gelman et al., 2013; Roy, 2020).3 In each iteration, we compute the
probabilities for all two-way margins and cells in the full table according to the latent class
specification using the sampled parameters (πk,Ψk) at that iterate.

We compare outputs from the latent class model to output generated using PrivBayes
(Zhang et al., 2017), following the architecture for adapting PrivBayes to private data releases
described in Ping et al. (2017). To do so, we adapt their publicly-available Python code,
accessible at https://github.com/DataResponsibly/DataSynthesizer. We also compare
to a graphical model-based approach (McKenna et al., 2019) by adapting their publicly-
available Python code, accessible at https://github.com/ryan112358/private-pgm. We
chose these methods due to their prevalence, performance capabilities, and similarities to
our proposed approach in terms of inputs in the sense that all comparison methods are
created from marginal counts instead of the full, underlying table.

The codes for these two methods return different outputs. PrivBayes returns a synthetic
data set, which we convert into probabilities for the full table. The graphical model-based
approach returns a vector of numbers (not necessarily counts) summing to the sample size
that corresponds to “counts” for each of the full table cells. We normalize these numbers
to create probabilities for the full table. We note that, unlike our proposed latent class
approach, neither of these methods generate uncertainty estimates.

4.3. Results. Before turning to the results using differentially private marginals, we first
study the usefulness of the composite likelihood approach and the corresponding assumption
of independent counts absent privacy concerns, i.e., with ϵ = ∞.

4.3.1. Performance Absent Privacy Concerns. We estimate the augmented latent class model
for the underlying table without adding privacy-preserving noise to the marginal counts.
To do, we fit model (3.1) using the true (M1, . . . ,MT ) and without the measurement error
components in the first two lines of that model.

Figure 1 displays posterior modes from one run of the simulation for the marginal and
full table probabilities. Results from additional runs are very similar. Both marginal and full
cell probabilities are estimated accurately. The independence assumption appears to have
minimal negative effects on estimation of the marginal probabilities, while also returning
reasonable estimates for the full table cell probabilities. We note that this latter fact stems
from the absence of strong three-way (and higher) interaction effects among the variables.
In general, one should not expect accurate estimates for the full table; rather, one should
expect accurate estimates of the marginal counts used in the estimation routines.

4.3.2. Performance with Noisy Counts. We next generate differentially private counts and
corresponding posterior inferences for the data described in Section 4.1, using the algorithm
described in Section 3.

3Due to potential identifiability issues due to label-switching Gelman et al. (2013), monitoring convergence
of (πk,Ψk) is infeasible. Instead, we monitor estimated full and marginal probabilities.

https://github.com/DataResponsibly/DataSynthesizer
https://github.com/ryan112358/private-pgm


LATENT CLASS MODELS FOR DP SYNTHETIC DATA AND INFERENCE 13

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75
True Probability

E
st

im
at

ed
 P

ro
ba

bi
lit

y

0.0

0.1

0.2

0.0 0.1 0.2
True Probability

E
st

im
at

ed
 P

ro
ba

bi
lit

y

Figure 1: True versus estimated two-way marginal (top) and full table (bottom) probabilities
for the ACS simulation with no noise added for privacy. True counts without
added noise used as input. The number of latent classes is k = 10. As two-way
margins were used as inputs, we see more accurate estimation of the marginal
probabilities. Accurate estimation of the full cell probabilities is not guaranteed
but can occur.

Figure 2 displays posterior means for the estimated marginal and full cell probabilities
from one run of the simulation. Results from additional runs are very similar. The results
exhibit some expected trends. As the privacy loss budget ϵ increases, the amount of added
noise decreases, resulting in better estimates of marginal and full cell probabilities. In
the case of marginal probabilities, results for all values of the privacy loss budget return
estimates that coincide well with the underlying probabilities, as shown in Figure 2. The
results demonstrate this behavior for all values of ϵ. For the full table probabilities, the
proposed approach reasonably reconstructs the underlying probabilities even though full
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Figure 2: Plots of true marginal probabilities versus estimated marginal probabilities (left)
and true full table probabilities versus estimated probabilities (right) for ϵ ∈
{.25, .5, 1}. Estimated marginal probabilities are the posterior means of the
corresponding marginal probabilities. As expected, estimation accuracy visually
increases as ϵ grows.
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Table 3: Average coverage probabilities (“Cov.”) and average credible interval length
(“Length”) for the 40 two-way marginal counts.

ϵ = .25 ϵ = .5 ϵ = 1 ϵ = ∞
Cov. Length Cov. Length Cov. Length Cov. Length

Average: 0.839 0.049 0.896 0.041 0.945 0.038 0.969 0.038

table counts are not used in estimation. In general, there is more variation from the truth
when compared to the estimates of the marginal probabilities. This also corresponds with the
privacy budget: lower values of ϵ display more disagreement from the true values compared
to higher values. This is reasonable to expect as only the marginal counts were used directly
in estimation.

We also conducted repeated simulations to assess how well the procedure captures the
underlying marginal counts for each value of ϵ. To do so, we repeat the entire procedure
100 times. Each time we sample 10,000 observations from the full original data, compute
all two-way marginals, apply the Geometric Mechanism, and implement our method. For
each marginal count, we examine the posterior distribution of the corresponding marginal
probability and construct 95% credible intervals using its 2.5th and 97.5th quantiles. We
record the coverage of the true probability, that is, whether or not the population count is
inside the posterior interval.

Table 3 displays the averages of the coverage probabilities and average interval lengths for
all 40 two-way probabilities. Results for each of the 40 cells are shown in the Supplementary
Material; we summarize the results here. In general, the credible intervals are close to
or exceed the nominal coverage rate when ϵ = ∞, confirming the usefulness of the latent
class approach absent privacy concerns. The coverage rates stay high for ϵ = 1, with
a few coverage rates for small probabilities dipping to around 70%. The coverage rates
degrade noticeably when ϵ = .25, especially for the small probabilities. Overall, we notice
that coverage probabilities for cells corresponding to statistically insignificant terms in the
log-linear model typically perform worse than other counts. This is because the noise has
greater impact on small counts, and in a sample of size 10,000 many of these low probability
cells have very few sampled cases. The undercoverage also relates, in part, to the sample
size in our simulation design. We repeated the simulation using samples of 100,000 records
and found coverage rates at or exceeding the nominal rates for all cell probabilities and all
four values of ϵ.

4.3.3. Comparisons to Other Methods. We next compare the performance of our approach to
PrivBayes and the graphical models approach. We ensure that all methods satisfy ϵ-DP with
the same ϵ and use consistent definitions of sensitivity. For the graphical models approach,
we use all two way marginals as inputs. For PrivBayes, we set the maximum degree of
the Bayesian network to two. Results are shown in Figure 3 for one run of each method.
Results for other runs are similar. In general, all approaches return reasonable estimates for
the marginal probabilities. Again, quality is dependent of the level of privacy. For smaller
values of ϵ, variability is most pronounced. While all methods offer accurate point estimates
for ϵ = 1, one benefit of the latent class modeling approach is that it generates posterior
inferences that account for the measurement error introduced by the privacy protection.
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Table 4: Description of NLTCS variables. All variables had two levels: “yes” and “no.”
Variable Description Counts by Level
SCN 15 A Y04 Problem eating by self “yes”: 416; “no”: 15,220
SCN 15 B Y04 Problem getting in/out of bed by self “yes”: 862; “no”: 14,774
SCN 15 C Y04 Problem getting in/out of chairs by self “yes”: 1,054; “no”: 14,582
SCN 15 D Y04 Problem walking inside without help “yes”: 1,763; “no”: 13,873
SCN 15 E Y04 Problem going outside without help “yes”: 2,435; “no”: 13,201
SCN 15 F Y04 Problem dressing without help “yes”: 929; “no”: 14,707
SCN 15 G Y04 Problem bathing without help “yes”: 1,358; “no”: 14,278
SCN 15 H Y04 Problem going to the bathroom without help “yes”: 842; “no”: 14,794
SCN 15 I Y04 Incontinence “yes”: 1,355; “no”: 14,281
SCN 17 A Y04 Prepare meals without help “yes”: 13,670; “no”: 1,966
SCN 17 B Y04 Do laundry without help “yes”: 13,465; “no”: 2,171
SCN 17 C Y04 Light housework without help “yes”: 13,853; “no”: 1,783
SCN 17 D Y04 Shop for groceries without help “yes”: 12,678; “no”: 2,958
SCN 17 E Y04 Manage money without help “yes”: 13,737; “no”: 1,899
SCN 17 F Y04 Take medicine without help “yes”: 14,031; “no”: 1,605
SCN 17 G Y04 Make phone calls without help “yes”: 14,251; “no”: 1,385

PrivBayes, the graphical models, and our latent class modeling approach need not be
viewed as mutually exclusive competitors; rather, they can be used together. For example,
one can use PrivBayes to determine which marginal tables should be released and how to
approximate the full table. One then could take the resulting noisy and incoherent marginal
tables obtained through PrivBayes and apply the graphical models approach to create a
coherent set of these marginal tables. One can use this coherent set as the starting point
for (M1, . . . ,MT ) in the MCMC algorithm for the latent class approach. We illustrate these
complementary uses in the next section.

5. Application to the National Long-Term Care Survey

In this section we illustrate the latent class approach on a large-scale dataset from the
National Long Term Care Survey (NLTCS).

5.1. Data Description. The NLTCS is a longitudinal survey sponsored by the U.S. National
Institute on Aging4. First developed in 1982, the survey selects participants from Medicare
enrollment files. All participants are over the age of 65, and new participants are added
to the survey every five years (National Institute on Aging, 2021). Access to the data is
restricted but can be obtained through an approved protocol (Manton, 2010). For this
analysis, we restricted ourselves to the 2004 wave of the NLTCS. In addition, we focused
on sixteen variables representing markers of daily living as defined in Table 4. Participants
with missing or unknown values for any of these variables were dropped, resulting in a 216

contingency table comprised of n = 15, 636 observations.

4The NLTCS (National Long Term Care Study) is sponsored by the National Institute of Aging and was
conducted by the Duke University Center for Demographic Studies under Grant No. U01-AG007198.
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Figure 3: Plots of true full table probabilities versus estimated full table probabilities for
ϵ ∈ {.25, .5, 1}. Comparison of latent class modeling approach with a graphical
models-based approach and PrivBayes for ϵ = .25 (left), .5 (middle), and 1 (right).
For the latent class modeling approach, estimated full cell probabilities denote the
mean of the corresponding posterior distribution.

5.2. Implementation Details. The 16 binary variables make
(
16
2

)
= 120 two-way marginal

tables and 120× (2× 2) = 480 marginal counts. We selected important margins using the
first half of the PrivBayes routine using a quarter of our privacy budget. While this allocates
some of our privacy budget, it greatly reduces the number of marginals used in estimating
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Figure 4: Plot of average log distance by marginal count for ϵ ∈ {.5, 1, 2, 5}. A log distance of
0 indicates that the true and estimated probabilities are identical. Values greater
than 0 imply that the estimated probability is larger than the truth. Marginal
counts are arranged in ascending order with the smallest counts on the left.

model parameters. This resulted in 29 two-way margins. All counts were used for each pair,
corresponding to 29× (2× 2) = 116 marginal counts.

As before, we used a Metropolis-within-Gibbs algorithm to sample from the posterior
distribution of πk, ψk and (M1, . . . ,Mk). To avoid overparametrization of the model, we set
the number of latent classes to seven, ensuring that the number of estimated parameters (118)
is roughly equal to the number of input marginals (116). We follow a similar implementation
strategy as our ACS example; see the Supplementary Material for details. We run the
chain for 12,000 iterations with the first 2,000 discarded as burn-in. We use four values
of ϵ ∈ {.5, 1, 2, 5}. We estimate the two-way marginal probabilities at each iteration using
πk and ψk. As with the ACS, we ignore the complications from using survey weights and
imputations for the NLTCS.

5.3. Results. For each of the 116 marginal counts, we compare the estimated and orig-
inal (non-noisy) two-way probabilities. Figure 4 displays the log ratio (or difference e.g.,
log(Pest/Ptrue)) by ϵ. This metric is inspired by compositional data since the marginal
probabilities are constrained to sum to one. Equivalence between estimates corresponds to
a log ratio of zero. The leftmost estimates correspond to the smallest observed marginal
counts whereas the rightmost estimates correspond the the largest observed marginal counts.
The average log difference across all counts ranges from .173 for ϵ = .5 to .050 for ϵ = 5.
The estimates with ϵ = .5 are improved over using the noisy marginal counts directly: the
noisy marginal counts had an average log difference of -.297 for ϵ = .5. However, when ϵ = 5,
the results from the noisy counts are better, having an average log difference of .002.

Two observations are readily apparent from Figure 4. First, log differences appear to
decrease as a function of ϵ with higher values corresponding to greater similarity between the
estimated and true marginal probabilities. Second, log differences appear to be greater for
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smaller marginal probabilities regardless of ϵ.5 This result is unsurprising when considering
the structure of our model: the variance of the binomial distribution directly corresponds
to the probability. In fact, for the sample size of the data, the variance at the minimum
marginal probability is 46 times smaller than the corresponding variance at 25%. This
effect is not as extreme at larger probabilities as the maximum marginal probability is
approximately 92.5%.

Furthermore, the vast majority of the log differences at these lower counts are positive,
indicating that the estimated marginal probability is greater than the true marginal proba-
bility. We believe that this result is amplified by the inherent non-negativity of the counts
and the sum-to-one constraints for some model parameters (e.g., the mixing weights and
related latent class probabilities).

The main benefit of the latent class modeling approach is the capability to facilitate
posterior inferences and to generate synthetic data. For the former, we compute 95% credible
intervals for each marginal probability by selecting the 2.5th and 97.5th quantiles of the
posterior draws. To generate synthetic data, we randomly select an iteration of the MCMC
chain, and use the set of parameter draws to sample 15,636 synthetic records. We compute
various sums of these 15,636 synthetic records to estimate probabilities in the full table. We
repeat this process for 20 sufficiently spaced iterations in the chain, resulting in 20 synthetic
data sets. We compute the marginal probabilities in each synthetic data set and combine
the estimates using the approach in Reiter (2003), resulting in 95% confidence intervals.
Table 5 and Table 6 display the credible intervals and synthetic data inferences, respectively,
for three randomly selected marginal sub-tables. The posterior intervals and synthetic data
intervals are quite similar and typically capture the non-noisy estimate of the marginal
probabilities, especially for larger values of ϵ.

6. Concluding Remarks

We present a novel method for posterior inferences and creating differentially private synthetic
data for contingency tables based on marginal counts. The simulation results indicate that
the latent class modeling approach can offer reasonably accurate estimates of the counts used
as inputs to construct the underlying tables (in our example, two-way marginals). While
it also did reasonably well in preserving counts from the full table in our illustrative data,
analysts generally should not expect this to be the case. Rather than as a mechanism for
generating data coherent with the full table probabilities, we view the approach as a means
to make posterior inferences and generate synthetic data that are coherent with the marginal
counts used as inputs. Thus, we advise agencies to tell data users what counts are used as
inputs, so that data users do not expect the synthetic data to be accurate for other counts.

More generally, our approach is to define summary statistics as functions of model
parameters, and use composite likelihood approximations to estimate those parameters. This
general strategy can be extended to more complex data structures. For example, and as
illustrated in the Supplementary Material, the strategy could be used to generate synthetic
data for people nested within households, using the latent class model of Hu et al. (2018) as
the underlying model. Developing methods for practical implementation in such complex
models is an area for future research.

5In the true data, the smallest marginal probability is roughly .5%, and about half of all marginal
probabilities are smaller than 5%.
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Table 5: Posterior intervals for selected marginal counts in the NLTCS example. For each
cell, we also present the non-noisy estimate (“Est.”) and the noisy estimate
obtained after adding geometric noise only; the latter is the input for our latent
class modeling approach. Intervals are the 2.5th and 97.5th quantile of the posterior
distribution from the latent class modeling approach.

ϵ = .5 ϵ = 1 ϵ = 2

Noisy Noisy Noisy
Variable Cell Est. Est. 95% CI Est. 95% CI Est. 95% CI

00 .041 .033 (.053, .065) .041 (.044, .052) .041 (.040, .048)
SCN 15 E 01 .114 .112 (.093, .107) .117 (.106, .113) .114 (.107, .116)
SCN 17 D 10 .769 .776 (.762, .783) .770 (.764, .774) .768 (.768, .780)

11 .075 .076 (.062, .080) .075 (.070, .077) .076 (.065, .076)
00 .853 .846 (.839, .851) .849 (.842, .849) .854 (.853, .858)

SCN 17 B 01 .008 .007 (.016, .033) .010 (.013, .028) .008 (.007, .011)
SCN 17 C 10 .033 .039 (.032, .059) .033 (.035, .043) .033 (.030, .034)

11 .106 .102 (.067, .102) .107 (.089, .102) .107 (.102, .106)
00 .021 .018 (.013, .025) .021 (.011, .019) .021 (.015, .021)

SCN 15 C 01 .046 .046 (.024, .044) .036 (.034, .045) .046 (.045, .050)
SCN 17 A 10 .853 .864 (.846, .861) .854 (.855, .866) .852 (.853, .859)

11 .080 .084 (.079, .105) .085 (.079, .093) .080 (.076, .081)

Table 6: Interval estimates based on 20 synthetic data sets for selected marginal counts in
the NLTCS example. For each cell, we also present the non-noisy estimate (“Est.”)
and the noisy estimate obtained after adding geometric noise only; the latter is
the input for our approach. Point estimates and 95% confidence intervals from the
synthetic data computed using the combining rules of Reiter (2003).

ϵ = .5 ϵ = 1 ϵ = 2

Point Point Point
Variable Cell Est. Est. 95% CI Est. 95% CI Est. 95% CI

00 .041 .057 (.053, .061) .044 (.041, .048) .044 (.040, .047)
SCN 15 E 01 .114 .080 (.076, .085) .091 (.086, .096) .107 (.102, .112)
SCN 17 D 10 .769 .806 (.798, .815) .793 (.786, .800) .779 (.772, .786)

11 .075 .056 (.050, .061) .072 (.067, .076) .070 (.066, .074)
00 .853 .879 (.873, .886) .869 (.864, .875) .860 (.854, .865)

SCN 17 B 01 .008 .017 (.014, .019) .012 (.010, .015) .008 (.007, .010)
SCN 17 C 10 .033 .034 (.030, .039) .030 (.027, .033) .030 (.028, .033)

11 .106 .070 (.061, .078) .088 (.083, .093) .102 (.097, .106)
00 .021 .016 (.013, .018) .011 (.008, .013) .017 (.015, .019)

SCN 15 C 01 .046 .023 (.018, .028) .032 (.029, .036) .046 (.042, .049)
SCN 17 A 10 .853 .886 (.880, .892) .882 (.876, .887) .860 (.855, .866)

11 .080 .076 (.070, .081) .075 (.071, .080) .077 (.073, .081)
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In the NLTCS example, we show that the latent class model can be estimated from
subsets of the full count; not all marginals are required. We leave it to future research to
study methods for selecting the marginals, and, similarly, methods for allocating the privacy
budget across these marginals. For both of our examples, we equally allocated the privacy
budget. However, equal allocation may not be optimal in all problems.

Contingency tables can have very high dimensions and differing numbers of categories
across variables. These can lead to potential sparsity issues. The simulation results suggest
that, like many formally private algorithms, the latent class method has more difficulty with
small counts. While conceptually our approach should work for larger tables, we leave full
investigation to future research.
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