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Abstract. Record linkage is the process of identifying records that correspond to the
same real-world entities across different databases. Due to the absence of unique entity
identifiers, record linkage is often based on quasi-identifying values of entities (individuals)
such as their names and addresses. However, regulatory ethical and legal obligations can
limit the use of such personal information in the linkage process in order to protect the
privacy and confidentiality of entities. Privacy-preserving record linkage (PPRL) aims to
develop techniques that enable the linkage of records without revealing any sensitive or
confidential information about the entities that are represented by these records. Over the
past two decades, various PPRL techniques have been proposed to securely link records
between different databases by encrypting and/or encoding sensitive values. However, some
PPRL techniques, such as popular Bloom filter encoding, have shown to be susceptible to
privacy attacks. These attacks exploit the weaknesses of PPRL techniques by trying to
reidentify encrypted and/or encoded sensitive values. In this paper, we propose a taxonomy
for analysing such attacks on PPRL where we categorise attacks across twelve dimensions,
including different types of adversaries, different attack types, assumed knowledge of the
adversary, the vulnerabilities of encoded and/or encrypted values exploited by an attack,
and assessing the success of attacks. Our taxonomy can be used by data custodians to
analyse the privacy risks associated with different PPRL techniques in terms of existing as
well as potential future attacks on PPRL.
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1. Introduction

Data privacy has become a growing concern in application domains including information
sharing, population informatics, financial systems, and cyber-security, as increasingly large
amounts of personal or otherwise sensitive data are being collected from numerous organisa-
tions everyday (Vaidya et al., 2006). The linking of records across databases, known as record
linkage (Herzog et al., 2007), is no exception to such data privacy concerns (Christen et al.,
2020). Because often no common record identifiers are available across the databases to be
linked, record linkage is often based on personal identifying information of people (known
as quasi-identifiers) such as their names, addresses, and dates of birth (Christen, 2012).
However, the use of such personal information can raise privacy and confidentiality concerns,
and organisations are often not willing or allowed to share such sensitive information with
other organisations (Vatsalan et al., 2013). Laws and policies, such as the European Union
General Data Protection Regulation (GDPR)1, are in place in many countries to regulate
how and when sensitive personal data can be used (Christen et al., 2020). The demand
for privacy protection of sensitive data has led to research into privacy-preserving record
linkage (PPRL) (Hall and Fienberg, 2010). PPRL focuses on developing techniques that
enable the linking of records across databases while preserving the privacy of the entities
that are represented by these records (Gkoulalas-Divanis et al., 2021).

Over the last two decades, a variety of PPRL methods have been proposed (Vatsalan
et al., 2013). These methods can be divided into two main categories: (a) secure multi-party
computation (SMC) and (b) perturbation based methods. SMC based methods enable
several parties to be involved in a computation with their sensitive input values, where
at the end of the computation no party learns anything about any other party’s sensitive
input values but all parties learn the final result of the computation (Lindell and Pinkas,
2009). While provably secure, SMC based methods generally incur high computation and
communication costs. Perturbation based methods, on the other hand, transform and encode
sensitive values such that no sensitive information of entities can be obtained from such
encoded data (Vatsalan et al., 2013). Perturbation based methods generally have a trade-off
between linkage quality, scalability to linking large databases, and privacy protection.

One perturbation based PPRL method that has gained popularity is Bloom filter (BF)
encoding. This is due to its ability to efficiently calculate approximate similarities between
records, and the ease of implementation (Schnell et al., 2009). BF encoding is now being
used in several real-world PPRL applications (Boyd et al., 2015; Antoni and Schnell, 2017;
Pita et al., 2018). However, recent research has shown that BF encoding based PPRL
methods are vulnerable to privacy attacks (Kuzu et al., 2011; Niedermeyer et al., 2014;
Christen et al., 2017; Mitchell et al., 2017; Vidanage et al., 2019). To overcome the privacy
weaknesses of BF encoding, alternative perturbation based encoding techniques have recently
been developed (Smith, 2017; Randall et al., 2019; Ranbaduge et al., 2020a). However, some
of these techniques have also shown to be susceptible to certain privacy attacks (Culnane
et al., 2017a; Vidanage et al., 2020b,a).

Different privacy attacks have been discussed not only in PPRL but also in the con-
texts of privacy-preserving data mining, statistical disclosure control, and secure data
publishing (Domingo-Ferrer et al., 2015). These attacks aim to reidentify encoded and/or
anonymised values in a sensitive database in order to disclose the identities of entities
(individuals) represented by those values. Furthermore, real-world data breaches (Narayanan

1See: https://gdpr-info.eu/

https://gdpr-info.eu/
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and Shmatikov, 2008; Culnane et al., 2017b) have highlighted that any technique aimed at
preserving the privacy of sensitive data needs to be carefully analysed before being used in
real-world applications.

Given there are different attack methods that can potentially be applied on PPRL
techniques (Kuzu et al., 2011; Kroll and Steinmetzer, 2015; Christen et al., 2017; Mitchell
et al., 2017; Vidanage et al., 2019), it is important to explore the characteristics of such
attacks in order to understand their suitability in real-world situations. In this paper, we
propose a novel taxonomy of attacks on PPRL, where we categorise attacks using twelve
dimensions. This taxonomy can be used to analyse different aspects of privacy attacks
and will help data custodians to understand the different reasons behind potential privacy
breaches, the level of accessibility to information that an adversary requires in order to be
able to successfully conduct a privacy attack, and to determine the privacy guarantees of
PPRL methods with respect to existing attacks.

The remainder of this paper is structured as follows. In Section 2 we describe the
different types of parties involved in a PPRL protocol and give a brief overview of the PPRL
process. In Section 3 we provide an overview of a general attack on PPRL and describe
the main steps of such an attack. In Section 4 we then propose a taxonomy of attacks on
PPRL based on twelve dimensions that can be used to categorise attacks. We divide these
twelve dimensions into adversarial, technical, and practical aspects. In Section 5 we provide
recommendations that should be considered when conducting real-world PPRL projects.

For the interested reader, we provide an overview of the different adversary models
that can be considered in a PPRL protocol in Appendix A, extend our discussion on an
adversary’s assumed knowledge of the data to be linked in Appendix B, describe the five
types of vulnerabilities that can exist in encoded and plaintext databases in Appendix C,
and discuss existing attacks proposed for different PPRL techniques in Appendix D.

2. Overview of Privacy-Preserving Record Linkage

PPRL (Hall and Fienberg, 2010) addresses the problem of linking databases that contain
sensitive information while preserving the privacy and confidentiality of the entities that are
represented in these databases from parties both internal as well as external to the linkage
process. Generally, the sensitive data that are being linked refer to people (Christen et al.,
2020). For a PPRL technique to be used in real-world linkage applications, it needs to be
able to link the true matching record pairs across different databases correctly and efficiently
while ensuring the privacy of the entities that are represented by the sensitive values in the
databases being linked.

We first discuss the types of parties involved in a PPRL protocol because it is important
to understand the accessibility to data that the different parties in a linkage protocol have.
We then provide a brief overview of the PPRL process of applying an encoding or encryption
method to protect sensitive information, and conducting the linkage using the generated
encodings or encryptions.

2.1. Roles of Parties. In a PPRL protocol, different parties can participate in the linkage
protocol. The roles of these parties can be categorised as follows.

• Database owner (DO): A person or organisation who holds the authority over a database
that is to be linked is named a database owner (Christen et al., 2020). DOs are also
referred to as data owners or data custodians. Depending on the PPRL protocol used,
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DOs do undertake certain operations in the linkage process, such as pre-processing and
encoding of their own databases. Healthcare service providers, business owners, and
government departments are some examples of DOs.

• Linkage unit (LU): A linkage unit is a party that participates in the linkage process
to conduct the linkage using the encoded attribute values it receives from the DOs. A
LU can either be one of the DOs themselves or a party external to the DOs (Vatsalan
et al., 2013; Christen et al., 2020). As we discuss below, in general the LU does not have
access to any of the sensitive data held by the DOs, and it also does not know any of the
parameter settings and the secret key(s) (if any) used in the encoding process.

• Data consumer (DC): A person or organisation who utilises the linked data at the end
of the PPRL process to conduct data analysis is called a data consumer (Bizer et al., 2011;
Christen et al., 2020). Depending on the requirements of (or agreements made prior to) a
PPRL process, a DC will have access to the microdata from the sensitive database and a
set of unique identifiers assigned to matched records. Any sensitive microdata need to be
properly anonymised before they are being made available to a DC to prevent any form of
reidentification (Domingo-Ferrer and Torra, 2003; Taylor et al., 2018). DCs can either be
the DOs whose databases have been linked, or an external party such as a researcher.

Other parties that might also be involved in a linkage protocol can include a global
authority (a party that plays the role of a central, public, and trusted regulatory agency
that creates a global summary using local summaries), a facilitator (a party that helps
the DOs to negotiate and plan their common objectives of a linkage process), and a data
controller (a party that incorporates relevant laws and regulations for a linkage protocol and
that provides permissions to the parties involved in the protocol) (Christen et al., 2020).

2.2. General Encoding and Linkage Process. The general PPRL process consists of
five main steps (Vatsalan et al., 2013): data pre-processing and encoding, private blocking,
private comparison, private classification, and evaluation. Data pre-processing includes
cleaning, normalisation, and standardisation of data before the linkage. This step generally
does not require any privacy technique since it can be conducted independently by each
database owner (DO) (Christen et al., 2020). However, if the employed data pre-processing
methods require the DOs to share metadata (such as attribute values and their frequencies),
potential privacy concerns can occur due to the characteristics of such metadata, for example
the uniqueness of values, that are being shared.

After the databases to be linked have been cleaned, the DOs encode their own databases
using an agreed encoding or an encryption technique. In the process of encoding the sensitive
values in their databases, the DOs first need to agree upon a set of quasi-identifying (QID)
attributes common across all the databases to be used to link records, and an encoding
function enc() with a common set of encoding parameters p, as well as a secret key s to
be used for the encoding. For instance, the list of QIDs can be [FirstName, LastName,
StreetAddress, City, Zipcode].

We represent a sensitive database as Ds = (Qs,M), where Qs is the list of actual
attribute values of records in the selected QIDs to be used, and M are the microdata in Ds

(such as medical or financial details of individuals) that can be used in the analysis of the
linked database. Each DOi then encodes the values in Qs of its own sensitive database Ds

i
using the encoding function enc(), where 1 ≤ i ≤ d and d is the number of databases to be
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linked. We denote the encoding of a database Ds
i using its list of QID values Qs

i as:

Ei = enc(Qs
i ,p, s), (2.1)

where p is the set of encoding parameter values, s is the secret key used, and Ei is the
resulting list of encoded QID values that have been generated.

We represent an encoded database as De = (E,M) where |E| = |Qs|. The microdata,
M, are not encoded in De because these are the values of interest to a data analyst (data
consumer) after the linkage process. However, M can include certain QID values such
as gender, year of birth, and zipcode, that might be useful in an analysis task. In such
a scenario these QID values are often generalised to prevent reidentification before being
published or used for an analysis (Taylor et al., 2018).

After the encoding process, the linkage of encoded QID values Ei of each database De
i

from DOi is conducted. This process includes the steps private blocking, private comparison,
and private classification (Vatsalan et al., 2013). In private blocking encoded records that
likely correspond to matches are grouped into blocks. Private blocking aims to reduce
the quadratic comparison space of all pair-wise comparisons (Ranbaduge, 2017). Private
comparison focuses on calculating the similarities between encoded record pairs that are in the
same block (Karakasidis and Verykios, 2011; Durham, 2012). Next, in private classification,
the compared record pairs are classified into two classes, matches and non-matches, based on
the calculated similarities between them (Christen, 2012). The class of matches are record
pairs that are assumed to refer to the same real-world entity while the class of non-matches
are pairs where their records are assumed not to correspond to the same entity. Finally, the
linkage results (pairs of record identifiers from the class matches) are shared between the
corresponding DOs to conduct further analysis. Alternatively, linkage results can also be
shared with a data consumer (DC) as we discuss below.

Certain linkage protocols employ a third party, commonly known as the linkage unit
(LU), to conduct the linkage of records. When such a LU is employed, the encoded QID
values Ei of each DOi are sent to the LU to conduct the linkage (Gkoulalas-Divanis et al.,
2021; Vatsalan et al., 2013). The LU conducts the private blocking, private comparison, and
private classification steps, and returns the linkage results back to the DOs.

Alternatively, the DOs can collaboratively conduct the linkage process without the
involvement of a LU by communicating directly with each other. Protocols without a LU are
generally more secure compared to protocols that do involve a LU because, by eliminating
the need for a LU, they prevent any type of collusion that might occur between the DOs
and the LU, and also they do not require the disclose of data to an external party.

At the end of the PPRL process, the DOs will only learn which records in their own
sensitive database Ds

i have been matched with records in the other sensitive databases, while
the LU (if a third party is employed) will learn nothing about the sensitive values in any of
the De

i . The final step is evaluating the linkage process in terms of the quality of the linkage
results, scalability of the linkage to large databases, and the privacy protection offered by a
PPRL protocol (Vatsalan et al., 2014; Ranbaduge, 2017).

We now formally define PPRL (Vatsalan et al., 2013; Verykios and Christen, 2013) as:

Definition 2.1. Privacy-preserving record linkage (PPRL)
Let us assume d database owners DO1, DO2, ..., DOd each with a sensitive database, Ds

1,
Ds

2, ..., D
s
d, respectively, where d > 1, that need to be linked. Privacy-preserving record

linkage across all these databases determines which record pairs (ra, rb), where ra ∈ Ds
i ,
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Figure 1: General overview of a privacy attack on PPRL, as described in detail in Section 3.
We use the dashed line box in the top left to illustrate the steps conducted by
the database owners (DOs) in the linkage protocol. The adversary runs an attack
function attack() using the information she has access to, with the aim to reidentify
plaintext QID values for a set of encoded records in E.

rb ∈ Ds
j , 1 ≤ a ≤ |Ds

i |, 1 ≤ b ≤ |Ds
j |, 1 ≤ i, j ≤ d, and i ̸= j, represent the same real-world

entity according to a decision function without revealing any sensitive information about
these entities. At the end of the PPRL process each DO only learns which records in its
sensitive database have been classified as matches with records in any of the other databases
without learning the actual values of any records in the other databases.

3. Overview of Privacy-Preserving Record Linkage Attacks

In this section, we discuss the basic building blocks of an attack on PPRL. We describe the
underlying assumptions that an attack makes in order to successfully reidentify encoded
sensitive values, and then provide an overview of the main steps of a privacy attack. We
discuss actual attack techniques that have been proposed in the context of PPRL following
these steps in Appendix D.

3.1. Underlying Assumptions. In Figure 1 we outline the fundamental steps of a privacy
attack on PPRL. As illustrated, we assume a global underlying population G which is not
seen by an adversary. We also assume the sensitive database Ds = (Qs,M) and the publicly
available plaintext database Dp = (Qp) have been sampled from G. The sensitive database
Ds can be owned by an organisation such as a hospital, a financial institution, a government
department, or a security or military agency. Ds contains a list of QID values Qs for a set of
real-world entities Es. The sensitive database Ds also contains microdata M of the entities
Es. We assume that the sensitive database Ds is deduplicated such that a real-world entity
is represented by a maximum of one record (Christen, 2012).
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Similar to the sensitive database Ds, the plaintext database Dp also contains a list of
QID values Qp for a set of real-world entities Ep. We assume that an adversary has access
to this plaintext database Dp. Such a plaintext database can be sourced externally (such as
a public telephone directory or voter database) or internally (if the attack is conducted by
an insider, as we discuss in Section 4.1.1, who has access to a plaintext database that has
some overlap with the sensitive database Ds). The plaintext database Dp may or may not
contain microdata. If Dp contains any microdata we assume that those are anonymised and
cannot be used in the attack (Domingo-Ferrer et al., 2015; Elliot et al., 2016).

3.2. Main Steps of an Attack on PPRL. Based on the functionalities of existing privacy
attacks on PPRL, we now describe the main steps of a privacy attack. We assume that
an adversary has access to the plaintext database Dp and the encoded database De. The
adversary does not have access to the sensitive database Ds, and therefore she does not
know which set of encoded QID values ei ∈ E belongs to which set of plaintext QID values
qi ∈ Qp, and which record r ∈ De represents which entity ϵ ∈ Ep.

We define an attack function attack(), where this function consists of two steps. The
first step is attribute reidentification, where the adversary runs a set of algorithms on the
encoded data she has access to and aims to identify which plaintext QID values are encoded
in each encoding e ∈ E. For instance, in BF encoding (Schnell et al., 2009), bit patterns
in a set of BFs can be used to identify q-grams that have been encoded in each BF in an
encoded database (Kuzu et al., 2011). Privacy attacks on PPRL aim to identify a possible
relationship between encoded and plaintext values in De and Dp, respectively, and then use
this relationship to reidentify encoded QID values.

The second step of the function attack() is identity reidentification. Based on the QID
values identified in the first step, a set of encodings in E is assigned to a set of records in
Dp. Essentially identity reidentification focuses on assigning encodings e ∈ E to real-world
entities ϵ ∈ Ep. We can formally define the attack function attack() as follows:

Dr = attack(E,Dp,L,p′,a,m), (3.1)

where L are the linkage results (the identifiers of the matched records), p′ is a set of
parameter settings, a is a set of encoding and attack algorithms, and m are the metadata
of encoded sensitive data that the adversary has access to. It is important to note that it
might not be necessary nor possible for an adversary to have access to all the information
mentioned above in a given attack scenario. Different attacks have been proposed (as we
discuss in Appendix D) which require either all or some of the above information. The set of
algorithms a includes encoding, hashing, frequency alignment, pattern recognition, or graph
similarity matching (Christen et al., 2020). The metadata m can contain information about
data quality such as completeness and validity of the data, the date when the data were
recorded, the database size, ownership details of the data, and so on. Dr is the reidentified
database of records that is a subset of records from De. For each encoded record r ∈ Dr,
one or more plaintext records r ∈ Dp can potentially be assigned by the attack.

4. A Taxonomy of Privacy-Preserving Record Linkage Attacks

In this section, we propose a taxonomy of attacks on PPRL, which will help to obtain a
better understanding of existing attacks, identify the limitations and weaknesses of attack
methods, and identify possible future research directions towards privacy attacks on PPRL,
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Taxonomy of Attacks on PPRL

Adversary Aspects

Encoding parameters:

Adversary type:
− Inside adversary

− Outside adversary

− Multi−actor adversary

(4.2.1)

(4.2.2)

− All parameters

− Subset of parameters

− No parameters

Data assumptions: (4.2.3)

− Attribute overlap

− Entity overlap

− Random vs non−random sampling

Non−technical issues: (4.2.4)

− Social engineering

− Human mistakes

− Use of recommended parameters

− Collusion between parties

Practical Aspects

Success:
− Attribute reidentification

− Identity reidentification

Implementation:

− Programmig language

− Automation

− Synthetic data

Evaluation:
− Real data

Scalability:
− Runtime

− Memory consumption

(4.4.1)

(4.4.2)

(4.4.3)

(4.4.4)

Technical Aspects

Attack type:
− Dictionary

− Similarity

− Frequency/ Cryptanalysis

Attack scope:
− Hashing based

− Embedding based

− Reference value based

− Linkage

− Secure multi−party computation

− Numerical encoding

− Differential privacy based

(4.3.1)

(4.3.2)

Complexity: (4.3.4)

Vulnerability:

− Frequency

− Length

− Co−occurrence

− Similarity

− Similarity neighbourhood

(4.3.3)

O − Upper bound of runtime (Big−    )

− Ciphertext−only

Figure 2: A taxonomy of attacks on PPRL described under three main aspects, where twelve
dimensions are considered when characterising an attack. For each dimension we
show the section number where it is being discussed (Vidanage, 2022)

as well as more secure encoding and encryption techniques for PPRL. We first provide an
overview of the taxonomy and then discuss each aspect of the taxonomy in detail in the
following sections.

In Figure 2 we show the three main aspects that can be considered when characterising
an attack on PPRL. As can be seen, twelve dimensions are identified under these three
aspects (Vidanage, 2022). We first provide a brief overview of each.

• Adversarial Aspects focus on characterising the adversary, assumptions about the
prior knowledge of the adversary, and non-technical issues related to the adversary. We
characterise three different adversary types depending on the information that an adversary
has access to, and the collusion between different parties. The assumptions about an
adversary’s knowledge can be divided into two main dimensions: knowledge about the
encoding parameters and assumptions about the database being attacked. We also
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characterise four different non-technical issues that the adversary can utilise, including
social engineering and human mistakes.

• Technical Aspects cover the dimensions attack type, attack scope, vulnerability, and
complexity. We characterise an attack on PPRL in terms of the actual techniques used to
reidentify encoded sensitive values, and identify the attack scope that defines the encoding
methods upon which an attack can be applied to. We then classify different vulnerabilities
of encoded values that are being exploited by an attack to reidentify encoded sensitive
values, and we describe how the complexity of an attack can be assessed using the big-O
notation.

• Practical Aspects are important in understanding how a privacy attack could be applied
in a real-world situation. We discuss how the success of an attack can be quantified based
on the numbers of correct attribute and identity reidentifications achieved, and how the
scalability of an attack can be measured using runtime and memory consumption. We
also cover different implementation techniques used to develop existing attacks on PPRL,
and the databases used to experimentally evaluate attacks on PPRL, respectively.

In the following, we discuss the twelve dimensions in these three aspects in more detail. We
also provide a characterisation of privacy attacks on PPRL using our taxonomy in Table 1.

4.1. Adversarial Aspects. We first discuss the different types of adversaries who can
conduct an attack and then describe an adversary’s accessibility to encoding function and
parameter settings, and data and domain related information. Finally, we describe the
possible impacts of non-technical issues for an attack.

4.1.1. Different Types of Adversaries. Based on the parties that are internal or external to
a linkage protocol, as we discussed in Section 2.1, there can be three types of adversaries
involved in an attack: an inside adversary, an outside adversary, and a multi-actor adversary.

Inside Adversary (IA): An IA can be a person inside the organisation or a participant
in a linkage protocol who tries to learn information about the sensitive data that are
being encoded. An insider might have access to the encoded database, linkage results,
encoding algorithms, and potentially the encoding parameters and even the secret key(s)
used (Mitchell et al., 2017). All parties discussed in Section 2.1 (DO, LU, and DC) can be
an IA (Vidanage, 2022). An IA can also be someone who is not among the main parties in a
linkage protocol. For instance, an ex-employee who used to work in linkage projects will
potentially know details about the used encoding function and previously used parameter
settings. Furthermore, an employee inside the organisation might gain access to encoded
values using company databases or another employee’s login credentials.

Outside Adversary (OA): An external party that does not participate in a linkage protocol
and does not have access to the encoding algorithms and/or encoding parameters used,
yet that aims to learn about the sensitive information encoded in the databases that are
being linked, can be considered as an OA. An OA can gain access to encoded data, E, or
microdata, M, in different ways. For instance, if M is made public after the encoding or
anonymisation of QID values under the assumption that no information could be linked
to unique entities, these microdata can be accessed by possibly anyone. Such microdata
can contain aggregated QID values such as age groups, gender, and/or zipcode. In such
a scenario an OA can potentially conduct a linkage attack using another known plaintext
database with similar QID values to reidentify records (Sweeney, 2001). We discuss how a
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linkage attack works in Section 4.2. Alternatively, an OA can gain access to the encoded
and/or anonymised data as well as encoding parameter values illegally such as from stolen
hard drives and using social engineering attacks (Vidanage, 2022).

Multi-actor Adversary (MA): An MA is a subset of participating parties in a linkage process
(as we discussed in Section 2.1) that can collude with each other to learn information
about another party’s encoded sensitive values. In such a collusion, each party provides
different information for an attack, such as details about the encoding process (the encoding
parameter settings, algorithms, and secret keys used), details about the sensitive databases,
technical expertise, and sometimes even financial support (Christen et al., 2020). There
can be different types of collusion scenarios depending on the linkage protocol used and the
number of parties involved in the linkage process (Ranbaduge et al., 2020b).

An IA can also seek additional information from a party outside a linkage protocol or
an organisation, such as how certain algorithms work and how to attack them, and/or aim
to gain access to plaintext databases. However, we assume an outside party cannot provide
any additional knowledge about the encoding process that an inside party does not already
know. Therefore, in such a scenario, the outside party becomes an inside party and we
categorise it as an IA.

4.1.2. Knowledge about the Encoding. Knowledge about the encoding includes identifying
the actual encoding method and the used encoding parameters p. Based on the encoded
values in E an adversary might be able to guess which encoding method was used. For
instance, recent PPRL encoding techniques such as two-step hash encoding (Ranbaduge
et al., 2020a) generate sets of integers for each record in a database, while the multiple
match-key encoding method (Randall et al., 2019) generates a list of hash values per record,
obtained by hashing subsets of QID values. Since there are currently no other encoding
methods that generate similar outputs, the adversary can guess the encoding method used
by a simple examination of encoded values. On the other hand, both BF encoding (Schnell
et al., 2009) and tabulation min-hash encoding (Smith, 2017) result in a list of bit vectors
as encodings of QID values. Therefore, it will be difficult for an adversary to guess which
encoding method was used if she only had access to an encoded database of bit vectors.

The encoding parameters p consist of different settings depending on the actual encoding
method used. For instance, parameters used for BF encoding are the BF length, the q-gram
length, the number of hash functions, the hashing method, and the encoding method (Schnell
et al., 2009). Some of these parameters, such as BF length, can be obtained by an adversary
based on the length of the encoded values. However, it is difficult to guess other parameter
values using a simple analysis of encoded values.

Given p and s, the set of parameter values and the secret key used for the encoding,
respectively, and p′, the set of parameter values that the adversary has access to (or can
guess), we define three scenarios:

(1) p′ ≡ p and s: The adversary knows all the encoding parameters including any secret
keys used in the encoding process. It is important to note that for certain encoding
methods (such as BF encoding), having access to all the parameter settings does not
necessarily mean that the adversary can simply reverse-engineer the encoding process
to easily reidentify all values in an encoded database. Such an attack was proposed
by Mitchell et al. (2017) on BF encoding where it was assumed that the adversary was
one of the DOs that knows all encoding parameters and secret key(s) used.
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(2) p′ ⊂ p : The adversary knows a subset of the encoding parameters. This does not
include any secret keys used. Most of the existing attacks on PPRL are proposed under
this assumption. Different attacks make different assumptions about the adversary’s
actual knowledge of the parameter settings, as we discuss in Appendix D. Such prior
knowledge of parameter settings allows the adversary to efficiently conduct a privacy
attack without having to try all possible parameter settings.

(3) p′ = ∅ : The adversary does not know any of the encoding parameters. Without having
access to at least some of the parameter settings used for the encoding most existing
attacks on PPRL will be impossible to perform. In such scenarios, the adversary might
need to consider all possible combinations of values for different parameter settings,
therefore making the attack not practical. However, even if the adversary does not have
access to any of the parameter settings used, with certain encodings, she can potentially
guess the encoding function, enc(), as we described above. Furthermore, real-world
incidents based on linkage attacks (Sweeney, 2001; Narayanan and Shmatikov, 2008;
Culnane et al., 2017b), as we discuss in Section 4.2.1, show that certain methods such
as generalisation and randomisation techniques can be susceptible to privacy attacks
even without the knowledge of the parameter settings used.

4.1.3. Availability and Accessibility to Data. All existing privacy attacks on PPRL assume
that the adversary has access to a plaintext database Dp that has some degree of overlap
with the sensitive database Ds, and therefore by extension with the encoded database De.
Using the plaintext database the adversary can aim to reidentify values in the encoded
database by performing for example frequency alignments between plaintext and encoded
values (Christen et al., 2018a; Vidanage et al., 2019). However, depending upon the actual
overlap of the two databases Dp and Ds, the difficulty of conducting an attack can vary.

Conceptually a database can be considered as a matrix with rows corresponding to the
records of individuals in the database while columns corresponding to the different attributes
(including QIDs), where each record (row) has values for those attributes. A privacy attack
can be more successful if the plaintext database Dp overlaps in both rows and columns with
the sensitive database Ds because as the overlap between the value distributions in these
two databases increases, there is a higher possibility that more encoded values in De can be
reidentified. In Figure 3, we show 25 different scenarios of an adversary’s accessibility to a
plaintext database. Each scenario represents a different overlap of QIDs and records between
the plaintext database Dp and the sensitive database Ds. In the following we briefly discuss
how different types of overlap can increase the difficulty of an attack, while in Appendix B
we discuss the specific scenarios of overlaps in more detail.

Column-wise Overlap: The overlap between columns in Dp and Ds determines how much
information about QIDs, such as FirstName, LastName, and StreetAddress, are common in
both databases. Assuming As and Ap are the sets of QID names in Ds and Dp, respectively,
we define the five different scenarios of availability of QID information to an adversary as
shown in the top row in Figure 3. The amount of information that the adversary has access
to will reduce with less overlap between QID names. Therefore, when going from the first to
the fifth scenario the difficulty of an attack will increase.

Row-wise Overlap: The individual records represented by the rows in the databases allow
the adversary to perform different operations such as frequency or similarity distribution
analysis of QID values or q-grams. Such operations are usually the fundamental building
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Figure 3: All 25 combinations of column-wise and row-wise overlap between the sensitive and
plaintext databases Ds and Dp. We consider the overlaps between the two sets of
QID names As and Ap, and the two sets of entities Es and Ep in column-wise and
row-wise overlaps, respectively. Each combination illustrates a possible scenario of
an adversary’s accessibility to plaintext values. As can be seen these range from
having access to a database with the same QID values and/or the same entities, to
having access to a database with non-equivalent QID values and different entities
compared to those in the sensitive database.

blocks of a privacy attack (Christen et al., 2020). If there is no overlap in the rows of the
two databases Ds and Dp then conducting a privacy attack will be difficult. Here we assume
that the rows in both databases Ds and Dp have been recorded at the same time with
perfect data quality, and therefore there are no differences between the QID values of the
same real-world entity. However, in practice, there can be significant temporal differences
between Ds and Dp (such as two census snapshots recorded with a large time gap between
them), which can lead to differences in QID values such as LastName and StreetAddress
for the same entity. There can also be various types of errors and missing data in the QID
values of real-world databases (Christen et al., 2020). Assuming each row in the sensitive
and plaintext databases are from two sets of real-world entities Es and Ep, respectively, there
can be five scenarios of accessibility as shown in Figure 3. Similar to column-wise overlap,
the lower the overlap between the sets of entities the less information the adversary will
have access to and therefore the difficulty of an attack will likely increase.

Random versus non-random sampling : In Figure 1 we show that both the sensitive database
Ds and the plaintext database Dp are sampled from the underlying population G either
randomly or non-randomly. While random sampling might be considered (even preferred) in
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a theoretical analysis, this is likely not the case in a practical real-world situation Christen
and Schnell (2021). For instance, assume Ds is a health database from a hospital in a specific
state and Dp is a publicly available voter registration database from the same state. While
the health database will include records about children, non-citizen residents, and travellers,
the voter registration database will only contain records about adult citizens. These aspects
will influence the randomness of the samples in both of these databases.

If both Ds and Dp are sampled randomly, every entity in G has a non-zero probability of
being selected for inclusion into Ds and Dp. Therefore, the characteristics, such as frequency
distribution of QID values, of these databases will likely be more similar to each other, and
the adversary will have access to those similar characteristics which can be used in an attack.
On the other hand, if the databases are sampled non-randomly then different subsets of G
will likely be selected for Ds and Dp and therefore the difficulty of an attack will increase
because of potential biases that can be introduced, resulting in different characteristics of
Ds and Dp such as different frequency distributions of QID values.

4.1.4. Non-Technical Issues. Non-technical issues focus on how human behaviour can affect
both privacy and security2 of a PPRL system. The disclosure of information via non-technical
means can sometimes bypass all technical security measures that have been implemented to
protect the privacy of entities (Winkler, 1996). Furthermore, certain non-technical issues
we discuss below can lead to an OA to become an IA by obtaining confidential information
about a PPRL protocol. Therefore, recognising such non-technical issues is as important as
technical issues in order to control and minimise the privacy risks associated with a PPRL
scenario. In the following, we discuss four such non-technical issues that potentially can be
employed by an adversary in a privacy attack.

Social Engineering: Social engineering is the malicious manipulation of people through
human interaction to gather confidential and/or harming information (Hadnagy, 2010).
Techniques used in social engineering attacks include phishing, vishing, smishing, pretexting,
and so on (Yeboah-Boateng and Amanor, 2014; Vidanage, 2022). Almost all existing privacy
attacks proposed on PPRL make certain assumptions about an adversary’s prior knowledge
about the used encoding methods (Niedermeyer et al., 2014; Kroll and Steinmetzer, 2015;
Christen et al., 2017; Mitchell et al., 2017). Through social engineering attacks, an adversary
can potentially gain access to such required information, as we discussed in Section 3.2.

Human Mistakes: Human mistakes or human errors are a fact that should be taken into
consideration in PPRL, yet they are often disregarded as trivial. Human mistakes refer to
an action of a person that is not intended, not expected by a set of rules or an external
observer, and that move the task or system outside its acceptable limits3. Human mistakes
can occur due to bad decision making, stressful environments, human-computer interface
issues, and poor use of available resources (Christen and Schnell, 2021). An empirical study
by Liginlal et al. (2009) showed that human mistakes in information processing constitute
for most cases of privacy breaches. In PPRL, human mistakes can occur in three main ways.

(1) Use of highly predictable secret keys/passwords: Despite warnings not to, people tend
to use passwords or secret keys that can be easily remembered, such as dates of births,

2While privacy is concerned with protecting the identities of individuals when using their personal
information, security is focused on safeguarding personal or otherwise sensitive data as well as the systems
that those data are stored in (Bansal, 2017)

3See: https://en.wikipedia.org/wiki/Human_error

https://en.wikipedia.org/wiki/Human_error
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or the names of partners or family members. An adversary can potentially predict such
passwords.

(2) Use of PPRL methods and parameter settings that have been shown to be vulnerable to
privacy attacks: Although certain PPRL methods, such as one-way hash encoding, can
be successfully attacked (Vidanage et al., 2020b), some organisations are using these
methods. This might be due to the ease of implementation, or the organisation has built
their infrastructure specific to that method.

(3) Allowing an outside adversary to become an inside adversary due to social engineering:
For instance, an ex-employee of an organisation can gain access to encoded values and/or
encoding parameter settings because the responsible authorities have failed to change
the system passwords or remove that ex-employee from the lists of authorised users.
Such incidents can occur due to irresponsible behaviour of people (Liginlal et al., 2009).

Use of Recommended Parameter Settings: The use of recommended, commonly known, or
published parameter settings is another non-technical issue that can potentially help an
adversary. Often in publications where PPRL methods are proposed, a set of parameter
settings are recommended. In a real-world application of that PPRL method, if the same set
of parameter settings are employed, then an adversary can guess those parameter settings
just by referring to the relevant publication. Even if the PPRL method did not use the
exact same set of recommended parameters, the published parameter settings will provide
the adversary with a likely starting point to estimate the actual parameter values.

Collusion between Parties: In a collusion scenario, two or more parties in a linkage protocol
(from multiple actors as we discussed in Section 4.1.1) work together to learn information
about another party’s sensitive data by sharing their own information such as the parameter
settings used in the encoding process (Vatsalan et al., 2014; Ranbaduge et al., 2020b). As
shown in Table 1, most existing privacy attacks on PPRL make different assumptions about
an adversary’s prior knowledge of certain parameter settings used in the encoding. One
possibility of attaining encoding details is via collusion between parties. Collusion might
happen for various reasons, which include financial gain, intellectual gain, and personal
vendetta (Vidanage, 2022). For instance, a collusion between a DO and a researcher (DC)
can be inspired by the additional information that the researcher can gain access to in order
to conduct more sophisticated data analytics, while the DO can learn more about the linked
data of another DO.

4.2. Technical Aspects. In this section, we describe the main technical aspects related
to attacks on PPRL, which are attack types and their scope, the different vulnerabilities
exploited by these attacks, and measuring the complexity of an attack. We also discuss the
possibility of linkage attacks and ciphertext-only attacks in a PPRL context.

4.2.1. Attack Types. Based on the different techniques used, privacy attacks can be divided
into four categories. Note that some existing attacks can be placed into more than one
category because they use a combination of different techniques.

Dictionary Attacks: A dictionary attack is a method of reidentifying an encoded sensitive
value by encoding a large number of likely possible plaintext values in a given list of values
until a matching encoding is found. In the context of PPRL, a dictionary attack is possible
when the adversary has access to the encoding function enc() and the used set of parameters
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p. In such a scenario the adversary can use enc() and p to encode a large number of QID
values in a plaintext database and see which encoding matches with any encoded values.
However, a dictionary attack becomes difficult if the adversary does not have access to
p, or if the encoding method uses a secret key s (Niedermeyer et al., 2014) to generate
these encodings. In such a scenario a brute-force attack needs to be conducted using all
combinations of possible values for s and/or p.

Frequency Analysis based Attacks: This type of attack analyses the frequency distributions
of values in E and compares these distributions with the distributions of values in Dp.
Frequency analysis of combinations of characters in different languages is commonly used to
break classical ciphers such as substitution and Vigener ciphers (Singh, 2000). A frequency
analysis can be conducted without requiring any or using only limited knowledge about
the encoding function enc() and its parameters p. As we discussed in Section 4.1.3, having
similar frequency distributions in Dp and E will depend on the row-wise overlap and the
random/non-random sampling of the databases. Furthermore, when several QID values in
a record are encoded together into a single encoding (such as record-level BFs (Durham,
2012)) just the alignment of frequent values will not be enough to accurately reidentify
encoded values because only a limited amount of frequency information will be available
that can be extracted (Kroll and Steinmetzer, 2015).

A variation of a frequency attack that utilises additional knowledge about an encoding
method and other techniques along with frequency alignments to reidentify encoded values in
a sensitive database is known as a cryptanalysis attack (Christen et al., 2020). In general, a
cryptanalysis attack starts with a basic frequency alignment of plaintext and encoded values.
The results of such an alignment are then used with other methods to successfully reidentify
encoded sensitive values. These methods can include constraint satisfaction models (Kuzu
et al., 2011), language models (Kroll and Steinmetzer, 2015), correlation analysis (Christen
et al., 2018a), and pattern mining (Vidanage et al., 2019). Most existing privacy attacks
proposed on BF encoding for PPRL can be categorised as frequency based cryptanalysis
attacks, as we describe in Appendix D.

Similarity Attacks: Most PPRL encoding methods calculate approximate similarities between
encoded records. Approximate similarities can also be calculated for plaintext QID values
(for example using corresponding sets of q-grams) in a plaintext database. Often these
similarities calculated using the plaintext and the corresponding encoded values have an
approximate linear relationship (Vidanage et al., 2020a). A similarity attack can exploit such
relationships between similarity distributions to match an encoded value with a plaintext
QID value. One way of identifying such relationships is using similarity graphs to perform a
matching of nodes across graphs (Culnane et al., 2017a; Vidanage et al., 2020a).

There are a number of other types of attacks that are not directly related to PPRL, but
that have been used in the contexts of privacy-preserving data publishing and cryptography.
In the following, we describe two such attack types and briefly discuss why these attack
types have not been used in the context of PPRL.

Linkage Attacks: This type of attack attempts to reidentify entities in an anonymised
database by linking anonymised records with available external information (such as a public
database) based on the uniqueness of the values in these records. Unlike the other attack
types, a linkage attack is not conducted on encoded values in the PPRL context, rather it can
be conducted on generalised and/or randomised QID values or microdata (Domingo-Ferrer
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et al., 2015). Such QID values might include zip code, year of birth, gender, and age group.
A DC can conduct a linkage attack, or a collusion between a DO and a DC can also facilitate
a linkage attack as we discussed in Section 4.1.1, because a DC will have access to the
microdata M from all DOs. No linkage attacks have been proposed in the context of PPRL
because PPRL techniques are focused on encoding sensitive information, not on generalising
and publishing them. However, several real-world linkage attacks have been proposed in the
context of privacy-preserving data publishing (Sweeney, 2001; Narayanan and Shmatikov,
2008; Culnane et al., 2017b).

Ciphertext-only Attacks: In cryptography, ciphertext-only attacks are a basic type of attack
where an adversary analyses ciphertext (or encoded values) with the aim to recover the
plaintext values and/or the secret key using only the ciphertext (Katz and Lindell, 2007).
In such an attack, the adversary exploits common characteristics of a certain language such
as redundancies in words and common occurrences of characters. This type of attack is
different from a known plaintext attack because in a ciphertext-only attack the adversary
does not have access to any plaintext data that she can use in the attack.

In the context of PPRL, to the best of our knowledge, no attack has been proposed
so far to reidentify encoded values in De without using a plaintext database Dp. This is
because PPRL methods encode QID values of people such as their names and addresses
and the characteristics of such values can differ from population to population and can also
change over time. Therefore, a successful attack cannot be conducted using only encoded
data without having access to a plaintext database that contains such QID values.

4.2.2. Attack Scope. The scope of an attack on PPRL defines what PPRL techniques the
attack can be applied on. As we discussed in Section 1, PPRL techniques can be categorised
as SMC based and perturbation based techniques. All existing attacks on PPRL have
been proposed for perturbation based techniques because these techniques do not have
provable privacy guarantees and different privacy weaknesses exist in perturbation based
techniques that can be exploited. However, if a SMC based technique calculates approximate
similarities of records, that technique can potentially be attacked using a similarity attack
as we discussed in the previous section. We divide perturbation based techniques into five
categories:

• Hashing based techniques use one-way hash functions such as secure hash algorithms
(SHA) (Katz and Lindell, 2007) to either convert sensitive plaintext values into hash codes
or to map plaintext values into bit or numerical vectors (Dusserre et al., 1995; Churches
and Christen, 2004; Schnell et al., 2009; Randall et al., 2019).

• Embedding based techniques map plaintext values into multi-dimensional vectors (Scan-
napieco et al., 2007; Yakout et al., 2009), where these vectors are then used to calculate
the similarities between records.

• Reference value based techniques use publicly available lists of reference values to calculate
similarities between sensitive QID values and reference values (Pang et al., 2009; Vaiwsri
et al., 2018). These similarities are then shared between the DOs or sent to a LU to
calculate the similarities between records.

• Differential privacy based techniques focus on anonymising QID values in a sensitive
database by blocking values such that each block satisfies certain differential privacy
requirements (He et al., 2017; Rao et al., 2019). The generated blocks are anonymised by
adding noise, most commonly from the Laplace distribution (Dwork, 2006).
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• Numerical encoding techniques focus on encoding numerical values in such a way that the
distances between numerical values are preserved (Vatsalan and Christen, 2016; Karapiperis
et al., 2017).

We refer the interested reader to the book by Christen et al. (2020) and the survey
by Gkoulalas-Divanis et al. (2021) for further details about different PPRL techniques
proposed under these categories. Almost all existing privacy attacks on PPRL exploit the
weaknesses in hashing based encoding techniques and their different parameter settings (Kuzu
et al., 2011; Kroll and Steinmetzer, 2015; Christen et al., 2017; Vidanage et al., 2020b,a), as
we describe in Appendix D.

4.2.3. Vulnerability. In a privacy attack, an adversary can exploit one or more vulnerabilities
of values in both the plaintext (Dp) and the encoded (De) databases in order to reidentify
encoded sensitive values. A value in either Dp or De becomes vulnerable based on how unique
or rare it is in its corresponding database. Following the concept of k-anonymity (Samarati,
2001), two parameters, ε and k, are used to measure the vulnerability of a value. In the
following, we use D to represent both the plaintext and encoded databases, Dp and De, and
vi to represent a plaintext or an encoded value in one of these databases, where 1 ≤ i ≤ |D|.
Vulnerability of a single value: A value vi ∈ D becomes vulnerable if it is distinguishable
from all other values in D according to some characteristic, such as frequency or length, as
we discuss below. For a value vi ∈ D and the set vi = {vj : func(vi, vj) ≤ ε, vi ̸= vj} of
other values vj ∈ D with a tolerance ε ≥ 0, vi becomes (ε, k)-vulnerable in the database D
with regard to the function func() if 0 ≤ |vi| < k.

Three types of vulnerabilities, which correspond to the function func(), of a single value
can be exploited by an attack on PPRL: frequency, length, and similarity neighbourhood.
We discuss each of these vulnerabilities in detail in Appendix C.

Vulnerability of a pair of values: A pair of values (vi, vj) becomes vulnerable if it is distinguish-
able from other pairs of values in D according to some characteristic, such as co-occurrence
or similarity, as we discuss below. For a pair of values (vi, vj) where vi ∈ D and vj ∈ D,
and the set vi = {(va, vb) : func((vi, vj), (va, vb)) ≤ ε, (vi, vj) ̸= (va, vb)} of other pairs of
values (va, vb) where va ∈ D and vb ∈ D with a tolerance ε ≥ 0, the pair of values (vi, vj)
becomes (ε, k)-vulnerable in D with regard to the function func() if 0 ≤ |vi| < k. Note that
for certain vulnerabilities this definition can be generalised to a set of three or more values.

Two types of vulnerabilities, which corresponds to the function func(), of a pair of
values can be exploited by an attack on PPRL: co-occurrence and similarity. We discuss
these two vulnerabilities in more detail in Appendix C.

It is worth noting that for a reidentification of an encoded value to be successful it not
only needs to be vulnerable within the encoded database, but it also has to be assignable
to a vulnerable plaintext value (Vidanage, 2022). For instance, if an encoded value has a
unique frequency in the encoded database, there also needs to be a vulnerable value in the
plaintext database with a similar frequency (based on ε) in order for that encoded value to
be assignable to that plaintext value. A successful reidentification can occur only based on
such assigned pairs or encoded to plaintext values.
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4.2.4. Complexity. A theoretical analysis of the computational complexity of an attack can
be performed using the big-O notation. The big-O notation describes the asymptotic upper
bound for the complexity requirements of an algorithm in terms of the size of the input.
Given n records in the encoded list of values, n = |E|, the big-O notations of O(log n), O(n),
O(n log n), O(nc), O(cn), and O(n!) represents logarithmic, linear, log-linear, polynomial,
exponential, and factorial complexities, respectively. Only some attacks on PPRL have been
analysed with regard to their computational complexity in terms of the big-O notation.

4.3. Practical Aspects. In this section, we describe the practical aspects related to privacy
attacks on PPRL. We discuss how such an attack can be evaluated based on how accurate
it is in reidentifying encoded QID values, and how scalable the attack is when applied to
(large) real-world databases. We then discuss the implementation aspects of an attack and
the databases that have been used to evaluate attacks on PPRL.

4.3.1. Success. Assessing the success of a privacy attack can be used to quantify the privacy
protection provided by the encoding techniques that are being used in a linkage protocol.
However, neither a unified set of measures nor a standard framework to measure the accuracy
of an attack has been proposed so far. The accuracy measures utilised in existing attack
methods are usually ad-hoc. In the following, we define a set of measures based on disclosure
risks and the evaluations of existing attacks on PPRL to quantify the success of a privacy
attack on PPRL (Christen et al., 2018a; Vidanage et al., 2019).

Attribute Reidentification Accuracy: This is based on attribute disclosure risk and measures
the accuracy of reidentified attribute values in an encoded sensitive database. In attribute
reidentification, the adversary is able to reidentify some of the actual QID values encoded in
De. For instance, the FirstName, StreetAddress, or DateOfBirth values of a record r ∈ Ds

that are encoded in De have been correctly reidentified. However, attribute reidentification
does not necessarily imply that the adversary is able to reidentify the actual real-world entity
or entities represented by these records (Andreou et al., 2017). For instance, if the adversary
was able to reidentify 100 records in Ds with the FirstName ‘John’ and the LastName
‘Smith’, then the adversary cannot distinguish with which record belongs to which actual
John Smith in the real-world.

The construction principles of all existing attacks on PPRL are focused on identifying
QID values encoded in De for individual records. Based on that aspect and the evaluation
methods employed in these attacks, a set of metrics can be defined to measure the attribute
reidentification accuracy of an attack. As used by earlier attacks on PPRL (Christen et al.,
2017, 2018b; Vidanage et al., 2019), for a given total number of reidentifications, the accuracy
of a privacy attack can then be assessed using six measures:

(1) Correct 1-to-1 matches: The number of correct alignments between encoded and plaintext
values (reidentifications) where one encoded value is aligned with one plaintext value.

(2) Correct 1-to-many matches: The number of correct alignments between encoded and
plaintext values where one encoded value is aligned with several plaintext values and
the correct plaintext value is among those alignments.

(3) Correct many-to-1 matches: The number of correct alignments between encoded and
plaintext values where multiple encoded values are aligned with one plaintext value,
where that plaintext value is the correct one for all the encoded values. Note that
many-to-1 matches, where multiple encoded values are aligned with one plaintext value,



20 A. VIDANAGE, T. RANBADUGE, P. CHRISTEN, AND R. SCHNELL

can also be considered as multiple 1-to-1 matches where each encoded value is aligned
with the plaintext value, because the amount of information the adversary was able to
gain in both of these situations is the same.

(4) Correct many-to-many matches: The number of correct alignments between encoded
and plaintext values where multiple encoded values are aligned with multiple plaintext
values, and the correct plaintext values are among those alignments.

(5) Wrong matches: The number of wrong reidentifications in the total number of reidentifi-
cations.

(6) None-matches: The number of encoded values that had no reidentifications, which means
the attack was not able to align any of the plaintext values to any encoded values.

Note that all six measures are calculated for a single QID at a time and can be based on the
top t or all reidentifications that the attack was able to identify.

Identity Reidentification Accuracy: This is based on identity disclosure risk and measures the
accuracy of reidentifying actual real-world entities using the attribute reidentification results
of a privacy attack. If an adversary is able to reidentify individual entities (people) in an
encoded database using a privacy attack then their identities are being compromised. It is
important to note that in certain situations even with low attribute reidentification accuracy,
there can be high identity reidentification risk for some entities due to the uniqueness of the
combination of their QID values (Andreou et al., 2017). For instance, if an attack was only
successful in reidentifying the LastName value of a certain record correctly, and if there is
only one real-world entity that has this LastName value, then the identity of that person is
compromised (Sweeney, 2000).

Despite the fact that certain QID values, such as year of birth, city, gender, and zipcode,
can be more common among a large number of people, the combination of these QID values
can make certain records unique. For instance, consider a scenario where a database has 100
records with the YearOfBirth value ‘1990’ and 500 records with the City value ‘Queanbeyan’,
but when combined, there is only one record with YearOfBirth ‘1990’ and City ‘Queanbeyan’.
Then the identity of that particular person is disclosed. Sweeney (2000) was able to uniquely
identify over 85% of the population in the United States using only the combination of values
in the QIDs Zipcode, Gender, and DateOfBirth. Therefore, it is important to understand
the disclosure risks of identities associated with attacks on PPRL.

Since identity reidentification is directly related to the uniqueness of a record, this
uniqueness can be used to measure the accuracy of reidentification of identities in an attack.
For a given encoded record r ∈ De, assume that c is the set of attribute values reidentified
correctly for that record. The probability of suspicion disclosure risk measure proposed
by Vatsalan et al. (2014) uses the uniqueness of attribute values in a plaintext database to
assess the risk of reidentification. This measure can be adapted to calculate the probability
of suspicion, PS, for a record based on the set of reidentified attribute values c for that
record. For the record r the normalised PS() would be:

PS(r) =
1/nc − 1/n

1− 1/n
, (4.1)

where nc is the number of records in the plaintext database that have the exact same set of
reidentified attribute values c, and n = |Dp| is the total number of records in the plaintext
database Dp. Using the normalised PS() values for all records in De that each has at least
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one reidentified plaintext value assigned to it, four aggregated privacy measures can be
defined (Vatsalan et al., 2014):

(1) Maximum risk: Maximum PS() value of any records in De.
(2) Mean risk: Average PS() value of all the records in De.
(3) Median risk: Median PS() value of all the records in De.
(4) Marketer risk: The ratio of the numer of records in De that have a probability of

suspicion of PS() = 1.

These four aggregated measures can be used to evaluate the overall accuracy of the identity
reidentification of an attack.

4.3.2. Scalability. With the increasing amount of data being collected every day, it is
important to assess the scalability of an attack in order to analyse how practical the attack
can be when conducted on large encoded databases. The scalability of an attack can be
evaluated based on its runtime and memory consumption. Certain existing attacks on PPRL
(as we discuss in Appendix D) that are based on graph matching and maximal frequent
pattern mining will likely not be scalable to very large databases because of their high
memory requirement and long runtimes. However, some attacks that are based on frequency
alignments have shown to be scalable to encoded databases with millions of records, as can
be seen in Table 1.

4.3.3. Implementation. Different programming languages have been used to implement
existing attacks on PPRL. For instance, as we show in Table 1, most existing attacks on
PPRL are implemented using Python. It is important to know whether an attack has been
implemented and evaluated empirically to understand its real-world applicability. Some
attacks proposed in the literature provide source code to facilitate replication of experiments.

It is also important to understand whether an attack is fully automated or whether it
includes manual processes which require human involvement. If an attack consists of manual
processes it will likely reduce the practicality of that attack in certain real-world situations,
especially when applied to large encoded databases. In the attack proposed by Niedermeyer
et al. (2014), several steps have to be conducted manually. All the other attacks on PPRL
we mention in Table 1 are fully automated.

4.3.4. Databases. An attack on PPRL can be evaluated using real or synthetic databases. In
order to conduct a critical evaluation of an attack ideally multiple databases with different
real-world data characteristics, such as different QID combinations, records with missing
values, and attributes with errors, need to be used. However, because it is difficult to always
obtain real databases with sensitive personal information, synthetic databases with similar
characteristics can also be used in the evaluation process (Christen and Vatsalan, 2013). A
comprehensive evaluation of an attack on a set of different databases will provide a better
understanding of how well an attack will perform in different real-world situations. This
will allow DOs to take necessary precautions within a PPRL protocol to prevent possible
reidentification of values from such attacks.
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5. Recommendations for Privacy-Preserving Record Linkage

We now provide a list of recommendations that should be followed when executing a real-
world PPRL project in order to strengthen the privacy of the entities whose records are
being linked. Following these recommendations will make the PPRL process more secure by
making it more resilient to the attacks we discussed in Section 4.2.

5.1. Technical Recommendations. Technical recommendations focus on providing direc-
tions for using suitable encoding techniques and parameters, and testing a sensitive database
both before and after the encoding process for potential vulnerabilities.

(1) Use encoding methods and appropriate parameter settings that are not known to be
vulnerable to any of the existing attack methods. Attribute-level Bloom filters (ABF),
for example, are vulnerable to frequency based attacks (Kuzu et al., 2011; Christen
et al., 2017). Furthermore, the double hashing method and cryptographic long-term key
encoding method for BFs have also shown to be susceptible to certain privacy attacks.
Therefore, when using BF encoding (Schnell et al., 2009), we recommend to (a) use the
random hashing method (Schnell and Borgs, 2016), (b) encode values from several QIDs
into one BF, such as record-level BF encoding as proposed by Durham (2012), and (c)
apply BF hardening techniques that have shown to be resilient to existing attacks on
PPRL (Ranbaduge and Schnell, 2020).

(2) Use salting to generate record specific encodings. Stable and reliable QID values such
as year of birth and place of birth can be used as salts when hashing/encoding other
QID values in records. This is an effective method to reduce the amount of frequency
information that an adversary can gain from an encoded database. As we discussed
in Sections 4.2.1 and 4.2.3, the frequencies of values is one of the main vulnerabilities
that can be exploited by an adversary. However, salting requires QID values that are
complete, clean, and that do not change over time.

(3) Use different encoding settings for different blocks (for example by using salting) if the
used blocking method generates non-overlapping blocks (Vaiwsri et al., 2022). This
can be a strong defence mechanism against existing attacks on PPRL because the
generated encodings in distinct blocks will be different from one another and therefore
the frequency information that can be extracted using encoded values will be reduced.
This will potentially also limit the adversary’s knowledge of the encoding settings as
we discussed in Section 4.1.2. However, this method would not work if the blocks are
overlapping since the same record will have different encodings depending on the blocks
that record have been inserted into.

(4) Assess the trade-off between privacy, linkage quality, and scalability based on the specific
requirements of a linkage project. If the linkage project requires minimal scalability with
improved privacy we recommend to use SMC based techniques (Christen et al., 2020;
Vidanage, 2022) for PPRL because these techniques are provably secure and so far no
attacks have been proposed for SMC based techniques.

(5) Test for the vulnerabilities discussed in Section 4.2.3 in both the plaintext and encoded
sensitive databases. Understanding how vulnerable certain QID values in sensitive
databases are will allow the DOs to make necessary decisions with regard to selecting a
suitable encoding technique, only encoding not vulnerable QID values, and potentially
removing or perturbing certain vulnerable values.
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(6) Test for the overlap between the sensitive database and databases that are publicly
available. As we discussed in Section 4.1.3 and illustrated in Figure 3, both row-wise
and column-wise overlaps can be measured. The column-wise overlap can be restricted
by selecting QID values that are less likely to be publicly available yet which provide
good linkage quality. Row-wise overlap, on the other hand, cannot be directly eliminated
without removing records which is unlikely a feasible option for PPRL projects.

(7) Run existing attacks on PPRL on the encoded database using publicly available databases
to test if it can be successfully attacked. A DO can employ measures described in
Section 4.3.1 to assess the success of an attack. This is a practical approach to investigate
whether there is enough information available in publicly available databases to attack
a sensitive database that is encoded using a certain encoding method and a set of
parameters. Furthermore, such an assessment will also help in deciding if an attack is
feasible on the encoded database in terms of time and memory complexities. If an attack
is possible then the DOs can change the used encoding technique accordingly.

(8) Perform parameter tuning based on the databases and their selected QID values for
a linkage in such a way that the selected parameter values will provide good linkage
quality as well as privacy protection. Not using any recommended parameter settings
(as we discussed in Section 4.1.4) will potentially limit the adversary’s ability to guess
certain parameter values used for the linkage. This is because unlike the recommended
parameter settings, the tuned parameter values for individual databases are not publicly
available and the adversary might not be able to gain access to those parameter values.
However, it is worth noting that some parameter settings used in certain PPRL methods,
such as q-gram length and the hashing method for BF encoding, do only have a small
number of suitable options.

(9) Accrediting of computer systems, software, and algorithms used for PPRL projects will
ensure the security of these systems by evaluating them with regard to different security
standards. Note that accreditation will not guarantee the security or privacy of the
sensitive data themselves rather it will only provide a certification for the computer
system, software, and (possibly) algorithms used.

5.2. Non-Technical Recommendations. These focus on non-technical factors that will
influence the security and privacy of the sensitive data used in a PPRL project.

(1) Provide proper training for the parties and their employees involved in a PPRL project
with suitable programs that instruct employees to effectively recognise and prevent social
engineering attacks (as we discussed in Section 4.1.4). Such training should not be a
one-time undertaking, but a continuous process where employees are regularly trained
on how and when to protect the sensitive data that they are trusted with.

(2) Encourage all the parties involved in a PPRL project to follow best practice approaches
at all times in every step of the process (as discussed in Section 2.2). These best practices
include implementing organisational structures to protect sensitive information, such as
incident response plans and following the Five Safes framework for risk assessment in
data access (Desai et al., 2016), implementing data access privileges to different parties,
developing data privacy and security policies within the organisation, always tracking
and monitoring the usage of sensitive data, using strong passwords and secret keys that
cannot be easily guessed, and so on.
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(3) Follow ethical and legal standards such as the European Union General Data Protection
Regulation (GDPR), the US Health Insurance Portability and Accountability Act
(HIPAA)4, or the Australian Privacy Principles (APPs)5, as put forth by governments
and other organisations to protect sensitive information and ensure the privacy of entities.

While the combination of these technical and non-technical recommendations will make
a PPRL project more secure, given the lack of provable security of many existing PPRL
methods, further research into more secure PPRL methods is required.

6. Conclusion and Future Work

In this paper, we have presented a novel taxonomy of attacks on privacy-preserving record
linkage (PPRL). We have identified twelve dimensions that can be used to characterise
privacy attacks on PPRL, and have provided a comprehensive discussion of different aspects
related to attacks on PPRL. These include adversary types, assumed knowledge of the
adversary, different attack types, the vulnerabilities exploited by attacks, and measuring the
success of attacks on PPRL. The owners of sensitive databases can evaluate and compare
different attacks on PPRL using our proposed taxonomy in order to identify both strengths
and limitations associated with attacks and if they are successful on their sensitive databases.
To the best of our knowledge, no such taxonomy currently exists in the literature.

Given that most existing attacks on PPRL can only be applied to certain PPRL
techniques, it would be difficult to conduct a comprehensive evaluation of all attacks with
regard to their applicability to different PPRL encoding and encryption techniques. However,
as future work, we aim to perform an experimental evaluation on some of the existing privacy
attacks on PPRL, and compare their success and performance with each other.
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Appendix A. Adversary Models

In the context of privacy-preserving record linkage (PPRL), four different types of adversary
models can be considered: fully trusted, honest-but-curious, malicious, and covert.

• Fully Trusted: In a fully trusted adversary model all parties involved in a linkage
protocol follow all protocol steps without attempting to learn any information about any
other party’s sensitive data (Lindell and Pinkas, 2009). Furthermore, a fully trusted party
does not try to alter the linkage process by sharing invalid or fake data (instead of valid
and correct data) to compromise the integrity of the protocol. Therefore, in practice, a
fully trusted model can be regarded as a model without a potential internal adversary.
However, in real-world scenarios, not every party involved in a linkage situation can be
fully trusted, where some parties might try to learn sensitive information from the data
and linkage results they receive from the other parties.

• Honest-But-Curious (HBC): In the HBC adversary model all parties follow the defined
steps of a linkage protocol without deviating from them, while at the same time attempting
to infer as much information as possible about the sensitive data of other DOs (Lindell
and Pinkas, 2009; Christen et al., 2020). For instance, either the database owners (DOs)
or a linkage unit (LU) who participates in a linkage protocol can use the data they receive
from the other parties (including the linkage results) to conduct certain explorations, such
as frequency alignments or cryptanalysis attacks. Therefore, for a linkage protocol to
be considered as secure under the HBC adversary model, no participant of the protocol
must be able to learn any sensitive information of any other parties’ data. However, as we
discussed in Section 4.1.1, collusion is also possible under the HBC model where more than
one party that participate in the protocol can work together to infer sensitive information
about the data of another party.

• Malicious: Under the malicious adversary model, the parties can behave maliciously
by not following the necessary steps of the protocol (Lindell and Pinkas, 2009; Hall and
Fienberg, 2010; Mohammed et al., 2011). A malicious party can send invalid or falsified
data to other parties, change agreed parameter values, and even refuse to participate in
the protocol. Therefore, in the malicious adversary model, the PPRL techniques used in a
linkage protocol must guarantee that a malicious party will not be able to learn anything
from the information it receives from any other party. Compared to the HBC model,
achieving privacy under the malicious adversary model is more difficult since there are
numerous ways for a party to deviate from the defined steps of a protocol.

PPRL methods developed under the malicious adversary model generally use secure
multi-party computation (SMC) based techniques (Yao, 1986; Lindell and Pinkas, 2009)
to provide strong privacy guarantees to ensure that a malicious party will not be able to
learn any information about the sensitive data of any other party. These PPRL methods
also try to make sure that even if a participating party becomes malicious the protocol will
still be able to compute the correct linkage results. However, SMC based PPRL methods
generally incur high computation and communication costs that make them impractical
for use in real-world linkage applications when large databases have to be linked.
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• Covert: In practice, HBC based linkage protocols generally do not provide enough
security, whereas the malicious model provides improved security at the cost of high
computational complexity. The covert adversary model was proposed as a model that lies
between the HBC and the malicious models, where it is suitable to be used in real-world
linkage scenarios (Aumann and Lindell, 2007; Lindell and Pinkas, 2009). In the covert
adversary model, it is assumed that the parties can behave maliciously and attempt to
learn information about the sensitive data of other parties until they are being caught.
This model assumes that an honest party in a linkage protocol can identify a cheating
party with a defined probability (however, this probability will not be close to 1) (Christen
et al., 2020). This adversary model can be used in real-world linkage situations where the
participating parties cannot be fully trusted, yet they cannot afford to be identified as a
malicious party due to the proceeding consequences such as loss of reputation, facing legal
charges, or financial loss.

Appendix B. Overlap between Databases

In this appendix, we expand the discussion from Section 4.1.3 about the adversary’s assumed
availability and accessibility to plaintext data. Below we describe the overlap between the
sensitive database Ds and the plaintext database Dp based on two overlap types, column-wise
and row-wise, as illustrated in Figure 3.

Column-wise Overlap: Five scenarios of column-wise overlap can occur between the set
of QIDs As from Ds and the set of QIDs Ap from Dp.

(1) Ap ≡ As : The adversary has access to a set of QIDs from Dp that is equivalent to
the set of QIDs in the sensitive database Ds. For instance, if Ds contains the set of
QIDs As = {FirstName, LastName, StreetAddress}, then Dp has the same set of QIDs.
Depending on the number of common records in the two databases, as we discuss below
in row-wise overlap, in this scenario there will likely to be a high overlap between QID
values across both databases. Therefore, compared to the following scenarios, in this
situation the adversary will likely have more information, such as more similar frequency
distributions of QID values, that can be used in a privacy attack.

(2) Ap ⊃ As : The adversary has access to a set of QIDs from Dp that is a superset of the
set of QIDs in Ds. Compared to the above scenario, the adversary has access to the
same set of QIDs used in Ds along with some additional QIDs. This scenario will be
different from the above scenario when the adversary does not have specific knowledge
about the QIDs used for the encoding. The adversary needs to perform an attack using
different subsets of QIDs in Ap.

(3) Ap ⊂ As : The adversary has access to a set of QIDs from Dp that is a subset of the
QIDs in Ds. Compared to the previous two scenarios, under this scenario the amount of
QID information that the adversary has access to is limited. For instance, the set of
QIDs in Ds can be As = {FirstName, LastName, StreetAddress} while the set of QID
in Dp can be Ap = {FirstName, LastName}. An analysis of frequency distributions of
QID values in this scenario can potentially be limited since the adversary does not have
all the required QID attributes in Dp.

(4) Ap ∩ As ̸= ∅ : The adversary has access to a set of QIDs from Dp that has a non-
empty intersection with the set of QIDs in Ds. For instance, Ds has the set of QIDs
As = {FirstName, LastName, StreetAddress}, whereas Dp has the set of QIDs Ap =
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{FirstName, LastName, Zipcode}. In this scenario the adversary does not have access to
all the QIDs used in the encoding process, while she has access to additional QIDs that
are not present in the sensitive database. If the adversary does not know the QIDs used
in the encoding process, conducting the attack will be difficult in this scenario compared
to the previous scenarios.

(5) Ap ∩As = ∅ : The adversary has access to a set of QIDs from Dp that is not equivalent
to the set of QIDs in Ds. If the adversary does not have access to any QIDs used in the
encoding process, the availability of information that can be exploited in an attack, such
as frequency information or relationships in similarities, will be less compared to the
above four scenarios. Therefore, the success of a reidentification of encoded values by an
attack is very unlikely in this scenario. However, having access to QIDs that are closely
related to QIDs in the sensitive database such as FirstName ∈ As and MiddleName
∈ Ap can potentially lead to a frequency alignment of QID values or frequent q-grams.

Row-wise Overlap: Five scenarios of row-wise overlap can occur between the set of entities
Es from Ds and the set of entities Ep from Dp.

(1) Ep ≡ Es : The entities (rows) in both Ds and Dp are equivalent. If these databases also
have similar QIDs (scenarios (1) to (4) as we discussed above in the column-wise overlap
section) their frequency distributions can be highly similar in this scenario. Therefore,
it might be easier to perform an attack using methods such as frequency alignments
between values in records compared to the below scenarios.

(2) Ep ⊃ Es : The entities recorded in Dp are a superset of the entities recorded in Ds.
Unlike the first scenario mentioned above, in this scenario the adversary has an extra
set of entities in Dp. The difficulty of conducting an attack in this scenario (and the
next two scenarios) depends on two additional factors apart from the column-wise
overlap: (a) the size of the row-wise overlap (number of common records) and (b) the
sampling process of the two databases Dp and Ds (random vs non-random) as we
discussed in Section 4.1.3. If the size of the row-wise overlap is larger than the number of
non-overlapping records and if the two databases are assumed to be sampled at random
from the global population G, the frequency distributions of QID values can still be
similar in both databases (Scheaffer et al., 2011). However, smaller row-wise overlaps as
well as a non-random sampling of two databases (as we discussed in Section 4.1.3) can
have an impact on the frequency distributions of values and therefore can reduce the
accuracy of an attack.

(3) Ep ⊂ Es : In this scenario the entities in the plaintext database are a subset of the entities
in the sensitive database. Similar to the above scenario, the similarity in frequency
distributions of the two databases Dp and Ds depend on the size of the row-wise overlap
and the sampling process of the two databases.

(4) Ep ∩ Es ̸= ∅ : There is a non empty overlap between records (rows) in the encoded and
plaintext databases. However, both databases contain entities that are not common.
Hence, this scenario can be considered as a more practical scenario related to many
real-world situations. Even with non-common records in both databases, if the number
of overlapping records is larger than the number of non-overlapping records, there will
likely be similar QID value distributions (Scheaffer et al., 2011) and the adversary can
perform a frequency analysis of QID values to reidentify encoded values in De.

(5) Ep ∩ Es = ∅ : The overlap between records in the plaintext and sensitive database is
empty. Hence, there are no real-world entities common in the two databases. Compared
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to the previous scenarios, conducting an attack in this situation will likely be more
difficult. Without enough frequency information on QID values, most existing privacy
attacks cannot be performed (Kuzu et al., 2011; Niedermeyer et al., 2014; Christen et al.,
2017). However, if the two databases are considered as samples from a population with
similar QID value distributions across different categories (such as two samples from
different age categories in the same state with similar name distributions), an attack can
still likely be performed. For instance, if the sensitive database has two records with the
name ‘Peter Miller’ and three records with the name ‘Jackson Miller’, and the plaintext
database has five records with the name ‘James Miller’, even though the two databases
do not contain records about the same entities the frequencies of the value ‘Miller’ will
be the same. Conversely, if the two databases are from a population with different QID
value distributions (for instance, two voter registration databases from the US states
New York and Florida), identifying similarities in QID value distributions will likely be
difficult.

Appendix C. Types of Vulnerabilities

Here we extend the discussion from Section 4.2.3 and describe five types of vulnerabilities
that can exist in both encoded and plaintext databases. An adversary can exploit these
vulnerabilities in order to reidentify sensitive plaintext values from encoded data.

(1) Frequency vulnerability is based on whether the frequency of a value is distinguishable
from the frequencies of all other values in D. For instance, if ‘Smith’ and ‘Williams’ are
the most and the second most frequent last names in D with frequencies 500 and 450,
respectively, then the value ‘Smith’ becomes frequency vulnerable under the privacy
parameter settings ε < 50 and k > 0.

(2) Length vulnerability is based on whether the length of a value is distinguishable from
the lengths of all other values in D. For instance, if ‘Eve’ and ‘Peter’ are the shortest
and the second shortest first names in D with lengths of 3 and 5 characters, respectively,
then the value ‘Eve’ becomes length vulnerable under the privacy parameter settings
ε < 2 and k > 0.

(3) Similarity neighbourhood vulnerability is based on whether the similarity neighbourhood
of a value is distinguishable from the similarity neighbourhoods of all other values in
D. Given a similarity graph (Culnane et al., 2017a; Vidanage et al., 2020a) where
nodes are the values in D and edges are the similarities calculated between these values,
the neighbourhood of a value can be represented as a set of features calculated for
that value based on its connected neighbours. These features can include the degree
(number of neighbours), minimum, maximum, and average pairwise similarities between
the value and its neighbours, the egonet and centrality of the value, and other graph
characteristics (Vidanage et al., 2020a).

(4) Co-occurrence vulnerability is based on whether the co-occurrence frequency of a pair of
values is distinguishable from the co-occurrence frequencies of all other pairs of values in
D. For instance, let us assume that the privacy parameters are set to ε < 20 and k > 0.
The values ‘Peter’, ‘Hank’, and ‘Parker’ that have individual frequencies of 100, 95,
and 85, respectively, will not be frequency vulnerable under the defined ε and k values.
However, if the co-occurrence frequencies of (‘Peter’, ‘Hank’) and (‘Peter’, ‘Parker’) are
50 and 25, respectively, the value pair (‘Peter’, ‘Hank’) becomes co-occurrence vulnerable
if no other pair of values in D has a co-occurrence frequency between 30 and 70.
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(5) Similarity vulnerability is based on whether the similarity between a pair of values is
distinguishable from the similarities between all other pairs of values in D. For instance,
let us assume that the privacy parameters are set to ε < 0.05 and k > 0. The Jaro string
similarity (Christen, 2012) between ‘Charlie’ and ‘Charles’ is 0.91, and if no other pair
of values in D has a similarity between 0.86 and 0.96, then the pair (‘Charlie’, ‘Charles’)
becomes similarity vulnerable for these privacy parameter settings.

Appendix D. Existing Attacks on Privacy-Preserving Record Linkage

We now discuss, in chronological order, privacy attacks that have been proposed in the
context of PPRL. We briefly describe how each of these attacks can reidentify encoded
sensitive values by exploiting certain vulnerabilities in specific encoding methods. We also
conceptually evaluate existing privacy attacks on PPRL in Table 1 with regard to the
taxonomy illustrated in Figure 2, as we discussed in Section 4.

The first attack method for PPRL was proposed by Kuzu et al. (2011) for BF encod-
ing (Schnell et al., 2009). The attack was based on two assumptions: (a) the sensitive
database, Ds, is a sample derived from a global database, G, and the adversary has access
to G, and (a) the adversary knows the number of hash functions that were used to encode
plaintext values into BFs. Using a frequency-aware constraint satisfaction problem (CSP)
solver, the attack aligned frequent q-grams with matching BFs such that a certain set of
constraints are satisfied. Once q-grams that have been hashed into different bit positions in
BFs have been identified, the attack then reidentified the QID values that could have been
encoded in each BF.

The second attack, as proposed by Niedermeyer et al. (2014), was a partially manual
attack on BFs encoded using a single QID value. It exploits a weakness of the double
hashing method used in the original BF encoding method proposed by Schnell et al. (2009).
The attack assumed that the adversary knows the number of hash functions used for BF
encoding, and has access to a plaintext database, Dp, that has similar frequency distribution
to one of the encoded values in E. The attack aligned the most frequent q-grams with
the most frequent bit patterns in BFs that can encode a single q-gram (called atoms) to
reidentify encoded QID values. Kroll and Steinmetzer (2015) extended this attack into a fully
automated cryptanalysis of BFs encoded using multiple QID values. Using an optimisation
algorithm, the attack was able to identify the relationships between pairs of q-grams and
pairs of atoms that were then used to reidentify encoded QID values.

Christen et al. (2017, 2018a) proposed a cryptanalysis attack on BF encoding that
exploits the weaknesses of the BF construction principle. This attack can be considered a
more practical and efficient attack method than the previous attacks. In the first step of
the attack, the most frequent plaintext values and the most frequent BFs are aligned to
identify sets of possible and not-possible q-grams for each bit position in BFs. Using the
q-grams assigned to each bit position, the attack then reidentifies the QID values encoded
into these frequent BFs. The attack assumes that the adversary has knowledge about the
q-gram length and the QID combinations used for the BF encoding. Christen et al. (2018a)
improved the accuracy of the attack by analysing the co-occurrences of bit positions and
q-grams to expand the sets of q-grams that can be identified for each bit position.

A graph based attack on BF encoding was proposed by Mitchell et al. (2017). The
attack assumes that the adversary has access to all the encoding information including the
encoding function, enc(), and corresponding encoding algorithms, a, encoding parameter
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values, p, and the secret key, s, if any. Using a dictionary based technique, for each BF the
attack first identifies a set of q-grams that can potentially be hashed into that BF. For each
BF, a directed graph is built using the identified q-grams. These generated graphs are then
traversed to reidentify encoded sensitive values by filtering only the feasible paths.

A similarity based graph attack was proposed by Culnane et al. (2017b) on a PPRL
encoding method developed by the UK Office for National Statistics (2013a,b). This encoding
method uses a keyed-hash message authentication code (HMAC) (Krawczyk et al., 1997) and
similarity tables for the encoding of sensitive QID values. The similarity tables generated
were used to build a graph where nodes in the graph represent the encoded QID values,
and the edges represent the similarities between these values. A set of subgraphs was then
generated using a plaintext database that is assumed to be accessible by the adversary.
The attack then matched nodes across graphs using a graph isomorphism approach and
reidentified encoded values from aligned nodes across two such graphs.

Christen et al. (2018b) and Vidanage et al. (2019) proposed a cryptanalysis attack on BF
encoding using a pattern mining based approach. This is one of the most practical attacks
on BF encoding for PPRL because it does not require knowledge of the encoding settings
nor any frequent BFs in the encoded database. The attack only assumes that the adversary
has access to a plaintext database, Dp, and knows the q-gram length and QID combinations
used for the BF encoding. First, the most frequent q-grams and their frequencies were
identified in the plaintext database. Next, the attack employed a maximal frequent pattern
mining approach to identify all co-occurring bit positions in BFs that can encode these
frequent q-grams. The attack identified further q-grams and the bit positions they were
hashed into using a language model where conditional probabilities between occurrences of
q-gram pairs are analysed. All the identified q-grams and their corresponding bit positions
are then used to reidentify encoded sensitive values in each BF.

Vidanage et al. (2020b) have recently proposed a privacy attack on the multiple dynamic
match-key encoding method developed by Randall et al. (2019). This attack was based on
aligning frequent plaintext QID combinations (called plaintext match-keys) with frequent
encoded match-keys from the encoded database. The attack employs a set of statistical
correlation measures to compare the frequency distributions of encoded match-key values
with the frequency distributions of plaintext match-key values. The evaluation of this attack
method using large real-world databases illustrated that the most frequent encoded sensitive
values can be successfully reidentified by this frequency analysis.

The most recently proposed privacy attack on PPRL by Vidanage et al. (2020a) was a
similarity attack which can be applied to any encoding method that calculates approximate
similarities between encoded values. The attack assumes that the adversary has access
to a plaintext database, Dp, and knows the q-gram length and the QID combinations
used for the encoding of sensitive values. Two similarity graphs are first built using the
plaintext and the encoded databases where nodes in each graph represent the records in
the corresponding database while edges represent the similarities calculated between those
records. The attack aligns nodes in the encoded graph with nodes in the plaintext graph by
comparing their similarity neighbourhoods based on a set of graph features such as degree,
minimum, maximum, and average pairwise similarities between the value and its neighbours,
and egonet and centrality of the value, and so on. This alignment allowed the attack to
reidentify encoded sensitive values with high accuracy when applied on three different PPRL
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encoding techniques: Bloom filters (Schnell et al., 2009), tabulation min-hashing (Smith,
2017), and two-step hashing (Ranbaduge et al., 2020a).
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