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Abstract. Differential privacy provides a rigorous framework for privacy-preserving data
analysis. This paper proposes the first differentially private procedure for controlling the
false discovery rate (FDR) in multiple hypothesis testing. Inspired by the Benjamini-
Hochberg procedure (BHq), our approach is to first repeatedly add noise to the logarithms
of the p-values to ensure differential privacy and to select an approximately smallest p-value
serving as a promising candidate at each iteration; the selected p-values are further supplied
to the BHq and our private procedure releases only the rejected ones. Moreover, we
develop a new technique that is based on a backward submartingale for proving FDR
control of a broad class of multiple testing procedures, including our private procedure,
and both the BHq step-up and step-down procedures. As a novel aspect, the proof works
for arbitrary dependence between the true null and false null test statistics, while FDR
control is maintained up to a small multiplicative factor.

1. Introduction

With the growing availability of large-scale datasets, decision-making in healthcare, infor-
mation technology, and government agencies is increasingly driven by data analyses. This
data-driven paradigm, however, comes with great risk if the databases contain sensitive
information of individuals such as health records or financial data. Without appropriate
adjustments, statistical analysis applied to these databases can lead to privacy violation. For
example, Homer et al. demonstrate that, under certain conditions, it is possible to determine
whether an individual with a known genotype is in a genome-wide association study (GWAS)
even when only minor allele frequencies are revealed [38]. Such privacy issues have serious
implications: at best, individuals and agencies are discouraged from sharing their data for
research purposes due to the concern of privacy leakage, impeding scientific progress [41]; at
worst, potential adversaries could make use of sensitive information to jeopardize the social
foundations of liberal democracy [64].
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Being able to conduct data analysis in a way that preserves privacy, therefore, is key to
removing barriers to scientific research while preventing breaches of personal data. First
introduced by Dwork et al. [25], differential privacy (Definition 2.1) has put private data
analysis on a rigorous foundation. A differentially private algorithm is required to hide the
presence or absence of any individual or small group of individuals, the intuition being that an
adversary unable to tell whether or not a given individual is even a member of the database
surely cannot glean information specific to this individual. In computer science, considerable
efforts have been made to develop private data release mechanisms [25, 47, 2] and private
machine learning algorithms under differential privacy constraints, for example, boosting
[35], empirical risk minimization [15], private PAC learning [4], and deep learning [1, 12].
On the statistical front, differential privacy has been added to and incorporated into many
statistical methods in areas of robust statistics [24], nonparametric density estimation [63],
hypothesis testing [61, 31], finite-sample confidence intervals [40], functional data analysis
[34], network data analysis [39], and linear regression [43, 62].

In this paper, we provide the first differentially private multiple testing procedure. The
problem of multiple testing arises in many privacy-sensitive applications such as a GWAS,
where a large number of single-nucleotide polymorphisms (SNPs) are tested simultaneously
for an association with a disease and the hope is to control some error rate for the significant
SNPs. Perhaps the most popular error rate is the false discovery rate (FDR), which, roughly
speaking, is the expected fraction of erroneously rejected hypotheses among all rejected
hypotheses. This notion of type I error rate was introduced in the seminal work of Benjamini
and Hochberg [5], along with the Benjamini–Hochberg procedure (BHq) that controls the
FDR under certain conditions. This procedure is detailed in Algorithm 1.

Our interest in privacy-preserving FDR control arose as a group of researchers showed
how to use one-way marginals, specifically, allele frequency statistics, together with the DNA
of a target individual and allele frequency statistics for the general population, to determine
the target’s presence or absence in the study [38]. In response, the US National Institutes
of Health and the Wellcome Trust changed the access policy to statistics of this type in
the studies they fund. Although differential privacy has been shown to permit nontrivial
estimates of very large numbers of statistical queries [10, 36], the errors introduced in these
techniques are – and must be [14, 29] – too large for the (typical) setting, where the number
of alleles exceeds the square of the number of data subjects.

Our procedure, which is referred to as PrivateBHq henceforth (Algorithm 4), is derived by
recognizing the iterative nature of the BHq procedure and making each iteration differentially
private. PrivateBHq provides unconditional end-to-end privacy. For now, regarding p-values
as functions of a dataset, our proof of the privacy guarantees of PrivateBHq relies on a new
definition of sensitivity that is tailor-made for p-values (Definition 2.5). Loosely speaking,
this definition evaluates how insensitive p-values are to perturbations of any individual
record in the database. All computations satisfy the definition for some choice of the privacy
parameters, but not all choices of these parameters yield useful results when we enforce
privacy. Popular examples of p-values are described in terms of these privacy parameters in
Section 2.

Another contribution of this paper lies in our proof of the FDR control of PrivateBHq
and beyond. In short, all existing proof strategies for FDR control are invalid for PrivateBHq.
Thus, a new technique for proving FDR control is needed. To this end, we
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(1) Develop a novel proof of FDR control for a class of multiple testing procedures, including
the original (non-private) BHq and many of its variants – a proof requiring different
assumptions than those found in the vast literature on this topic (see Section 3) – and

(2) Relate the FDR control and power properties of PrivateBHq to the corresponding
properties of the non-private version.

The outline of the remainder of the paper is as follows. The next two subsections
elucidate the two contributions, namely developing PrivateBHq and proving FDR control
for a class of procedures, and the following subsection consolidates privacy and inferential
properties together for PrivateBHq. To make this paper self-contained, in Section 2 we
give a brief introduction to differential privacy, followed by the complete development of
the PrivateBHq procedure. Section 3 is devoted to establishing FDR control of a broad
class of multiple testing procedures and, as an application, Section 4 proves FDR control of
PrivateBHq and argues its power as well. The paper is concluded by a discussion in Section
5.

Algorithm 1 BHq (Step-Up) Procedure

Input: nominal level 0 < q < 1 and p-values p1, . . . , pm
Output: a set of rejected hypotheses

1: sort the p-values in increasing order: p(1) ≤ p(2) ≤ · · · ≤ p(m)

2: for j = m to 1 do
3: if p(j) > qj/m then
4: continue
5: else
6: reject p(1), . . . , p(j) and halt
7: end if
8: end for

In words, the BHq (step-up) procedure finds the largest j? such that p(j?) ≤ qj?/m and
rejects all p-values below qj?/m.

1.1. Making BHq private. The original BHq is our starting point in developing the
PrivateBHq procedure. The original procedure is non-private because the data of a single
individual can affect the p-values of all hypotheses simultaneously, possibly changing the
outcome of the BHq procedure dramatically.

To make the BHq private, for now we need two facts about differential privacy: (1)
differential privacy is closed under composition, permitting us to bound the cumulative
privacy loss over multiple differentially private computations. This allows us to build
complex differentially private algorithms from simple differentially private primitives, and
(2) we will make use of the well-known Report Noisy Max (respectively, Report Noisy Min)
primitive [26], in which appropriately distributed fresh random noise is added to the result
of each computation, and the index of the computation yielding the maximum (respectively,
minimum) noisy value is returned. By returning only one index the procedure allows us to
pay an accuracy price for a single computation rather than all computations.

A natural approach to obtaining a private version of BHq is by repeated use of Report
Noisy Max: Starting with j = m and decreasing: use Report Noisy Max to find the
(approximately) largest p-value; estimate that p-value and, if the estimate is above a certain
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more conservative critical value than qj/m, accept the corresponding null hypothesis, remove
it from consideration, and repeat. Once a hypothesis is found with its p-value below the
threshold, reject all the remaining hypotheses. The principal difficulty with this approach
is that every iteration of the algorithm incurs a privacy loss, which can be mitigated only
by increasing the magnitude of the noise used by Report Noisy Max. Since each iteration
corresponds to the failure of rejecting a null hypothesis, this step-up procedure is paying in
privacy precisely for all null hypotheses accepted, which are by definition not the “interesting”
ones. Moreover, recognizing that most null hypotheses in a typical GWAS would be accepted,
it is fundamentally difficult to preserve information content while protecting individual
privacy by emulating the step-up procedure.

Instead of starting with the largest p-value and considering the values in decreasing order,
another approach is to start with the smallest p-value and consider the values in increasing
order, rejecting hypotheses one by one until we find a p-value above some threshold. This
widely studied variant is called the BHq step-down procedure, which, in contrast to the
aforementioned BHq step-up procedure, finds the largest j such that p(i) ≤ qi/m for all
i ≤ j and then rejects p(1), . . . , p(j). Their definitions reveal that the step-down procedure
shall be more conservative than its step-up counterpart. This variant, however, can assume
less stringent critical values than the BHq critical values while still offering FDR control,
often allowing more discoveries than the step-up counterpart [32].

If we make the natural modifications to the step-down procedure using Report Noisy
Min, also known as the Private Min (Algorithm 2), instead of Report Noisy Max, then we
pay a privacy cost only for nulls rejected in favor of the corresponding alternative hypotheses,
which by definition are the “interesting” ones. Since the driving application of BHq is to
select promising directions for future investigation that have a decent chance of panning out,
we can view its outcome as advice for allocating resources. Thus, a procedure that finds a
relatively small number of high-quality hypotheses, still achieving FDR control, may be as
useful as a procedure that finds a much larger set.

1.2. A new technique for proving FDR control. While various techniques have been
developed in the literature for proving FDR control, they are not applicable to privacy-
preserving procedures. Any privacy-preserving procedure is necessarily randomized. Conse-
quently, the jth most significant noisy p-value may not necessarily correspond to the jth
most significant true p-value. Even worse, PrivateBHq may compare a noisy p-value to a
critical value with a different rank and, as an inevitable result, a larger p-value may be
rejected while a smaller p-value is accepted. This is in stark contrast to the (non-private)
BHq and most of its variants, which reject p-values that are contiguous in sorted order.

These facts about the PrivateBHq procedure destroy some crucial properties for proving
FDR control in existing approaches. For example, it is not clear how to adapt the elegant
martingale technique for FDR control, proposed by Storey, Taylor, and Siegmund [57]. In
essence, this approach is to construct an empirical process indexed by a threshold under
which a p-value is rejected. In the case of PrivateBHq, unfortunately, no such threshold
exists for singling out p-values for declaring significance. Another technique that appears
frequently in the FDR control literature (see, for example, [7, 53, 30, 50, 11, 37]) is based
on a crucial property of BHq: provided that a p-value is rejected, the effective threshold for
declaring significance is completely determined by the remaining p-values. Unfortunately,
this property is not satisfied by PrivateBHq either.
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To pursue a new strategy for PrivateBHq, we observe that, although PrivateBHq might
skip some of the minimum p-values, nevertheless it preserves a key property with high
probability: if R rejections are made, the largest rejected p-value is roughly upper bounded
by qR/m. This motivates us to give the following definition.

Definition 1.1. Given any cutoffs 0 < q1 ≤ q2 ≤ · · · ≤ qm, a multiple testing procedure is
said to be compliant with {qj}mj=1, if all rejected p-values are always bounded above by qR,
where R is the number of rejections.

In the case of no rejections (R = 0), as a convention, the (non-existent) rejected p-value is
considered to be bounded above by qR. Compliance is an instance of a more general condition
termed self-consistency [8, 9], which, roughly speaking, requires that any rejected p-value be
upper bounded by a general function of the total number of rejections. Interestingly, the
compliance condition as a special instance of self-consistency has not been considered in the
literature. Here, we prefer to use the compliance condition as self-consistency further allows
a procedure to incorporate prior information about each hypothesis into the cutoffs, which is
beyond the scope of this paper. Using the BHq critical values {qj/m} as the cutoffs (referred
to as BHq-compliance henceforth), however, our condition is sufficiently general to cover many
classical multiple testing procedures, including both the step-down and step-up procedures,
the generalized step-up-step-down procedures [60, 51] and particularly the PrivateBHq
procedure (Proposition 4.1). The compliance condition is solely determined by the number
of rejected p-values and the size of the largest one, without requiring that each rejected
p-value be below its associated critical value. As a consequence, this condition permits
skipping the smallest p-values and this is well-suited for differentially private procedures.

As revealed by this work, FDR control, roughly speaking, is a consequence of BHq-
compliance together with the independence with the null condition (Definition 1.2). As such,
our finding offers more than expected, applying to far more examples than PrivateBHq. In
detail, we consider a generalized FDR [52, 54] defined as

FDRk := E
[
V

R
;V ≥ k

]
,

where V denotes the number of true null hypotheses that are falsely rejected (false discoveries).
The present paper primarily focuses on the case of k ≥ 2 and, whenever clear from the
context, the term FDR control in this paper stands for FDRk control. Note that FDRk

reduces to the usual FDR if the positive integer k is set to 1. This slightly relaxed FDR
permits no more than k− 1 false discoveries without any penalty, trading off for more power
improvement while still maintaining a meaningful interpretation of the rejected hypotheses.
The difference between the original FDR and FDRk becomes negligible if the number of
discoveries R is large. As an aside, we remark that the compliance condition is not satisfied
by the FDRk-controlling procedures developed in [52, 54].

Now we introduce the independence with the null condition, which is concerned with the
distribution of the p-values. This condition is satisfied by the three examples in Appendix B.

Definition 1.2. A set of m test statistics are said to satisfy a condition referred to as
independence within the null, or IWN for short, if the true null test statistics are jointly
independent.

More elaboration on this new condition is carried out following Theorem 2 below.
With the two preparatory definitions in place, we offer the following theorem. Let m0

denote the number of true null hypotheses and π0 := m0/m be the true null proportion.
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Theorem 1 . If the test statistics obey the IWN condition, then any procedure that is
compliant with the BHq critical values {qj/m}mj=1 must satisfy

FDRk ≤ Ckπ0q (1.1)

for every k ≥ 2, where Ck is a universal constant.

We immediately obtain the following corollary.

Corollary 1.3 . If the test statistics obey the IWN condition, both the BHq step-up and
step-down procedures satisfy (1.1) for k ≥ 2.

This bound involves an additional factor Ck, compared with the usual bound π0q in
the FDR literature. Explicitly, letting {ξj}∞j=1 be i. i. d. exponential random variables with
mean 1, the constant is given as

Ck = E
[
max
j≥k

j

ξ1 + · · ·+ ξj

]
. (1.2)

For example, C2 ≈ 2.41, C3 ≈ 1.85, C10 ≈ 1.32, and Ck tends to 1 as k →∞. In particular,
C1 defined in (1.2) is infinite, and this is exactly why Theorem 1 does not apply to the usual
FDR.

Theorem 1 is optimal for all k ≥ 2 as we show next.

Theorem 2 . Given any C < Ck, if q is sufficiently small and m is sufficiently large, then
there exists a BHq-compliant procedure applied to a set of IWN p-values such that

FDRk > Cq.

In the literature, existing FDR-controlling procedures often assume independence be-
tween the true null and false null test statistics (see [5, 6]) or certain sophisticated correlation
structures between these two sets of test statistics, such as the positive regression dependent
on subset (PRDS) property [7, 42, 55] (see also [51, 9]). Roughly speaking, the PRDS
property holds if the test statistics exhibit certain positive dependence on each true null test
statistic. In particular, the dependence between true and false nulls cannot be arbitrary. For
the sake of completeness, we emphasize that the literature has considered a few cases for
FDR control with an arbitrary correlation between the two sets of test statistics [7, 8], but,
unfortunately, the associated procedures are often extremely conservative. As a well-known
example, Benjamini and Yekutieli showed in Theorem 1.3 of [7] that the BHq procedure
gives FDR control using critical values at level q/(1 + 1

2 + · · ·+ 1
m) ≈ q/(logm+ 0.577) in

place of q. In fact, BHq with this log-factor correction could be even more conservative than
the Bonferroni method [45].

In contrast, Theorem 1 makes no assumptions regarding the dependence between the
true nulls and false nulls while still controlling the FDR up to a small multiplicative factor,
as the IWN condition is concerned only with the true nulls. As such, Theorem 1 is a
contribution of independent interest to the vast FDR literature. Notably, the dependence
can even be “adversarial” in the sense that the false null p-values can even be constructed
as arbitrary functions of the true null p-values. This provides positive evidence toward
understanding the robustness of the BHq procedure observed in a wide range of theoretical
and empirical studies [56, 33, 16].
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2. The PrivateBHq Procedure

In this section, we first introduce the differential privacy machinery at a minimal level and
then focus on developing the PrivateBHq procedure.

2.1. Preliminaries on differential privacy. A database D = (d1, d2, . . . , dn) ∈ X n con-
sists of n data items (for example, health records of n individuals), where X is a sample
universe. Data items need not be independent (for example, health records of siblings). Two
databases D,D′ = (d′1, d

′
2, . . . , d

′
n) are said to be neighbors, or adjacent, if they differ only in

one data item. That is, there is exactly one j such that dj 6= d′j . A (randomized) mechanism

M is an algorithm that takes a database as input and releases some (randomized) response
of interest. We denote by range(M) the collection of all possible outputs of the mechanism
M. In the context of genome-wide association studies, a database D records genotypes of
individuals, and M, for example, is a mechanism that releases the minor allele frequency of
a SNP plus some random noise.

Differential privacy, now sometimes called pure differential privacy, was defined and first
constructed in [25]. The relaxation defined next is sometimes referred to as approximate
differential privacy.

Definition 2.1 (Differential Privacy [25, 23]). A (randomized) mechanism M is (ε, δ)-
differentially private for some nonnegative ε, δ if for all adjacent databases D,D′ and for
any measurable event S ⊂ range(M),

P(M(D) ∈ S) ≤ eε P(M(D′) ∈ S) + δ.

Pure differential privacy is the special case where δ = 0. In the definition above,
both databases D,D′ are fixed and the probabilities are taken over the randomness of the
mechanism M. The parameters ε and δ measure the desired privacy protection. With small
ε and δ, this definition states that the likelihood of the released response is indifferent to
changing a single individual in the database, thus leaking little indication of whether a
particular individual is in the database even if all the other individuals are known. This
provides strong privacy protection for each individual in and outside the database.

To report a statistic f = f(D) in a differentially private manner, it is necessary to
randomize the mechanism. As its name suggests, the Laplace mechanism preserves privacy by
perturbing f with noise generated from the Laplace distribution Lap(λ), whose probability
density is exp(−|x|/λ)/(2λ). The scale λ > 0 should be calibrated to the sensitivity of the
statistic f , defined as follows.

Definition 2.2. Let f be a real or vector valued function that takes as input a database.
The sensitivity of f , denoted as ∆f , is the supremum of ‖f(D)− f(D′)‖1 over all adjacent
D,D′, where ‖ · ‖1 denotes the `1 norm.

Formally, for any function f that maps databases to Rr for some positive integer r, we
have the following result.

Lemma 2.3 Laplace Mechanism [25]. The Laplace mechanism ML that outputs

ML(D; f) = f(D) + (Z1, . . . , Zr)

preserves (ε, 0)-differential privacy, where Zj are i. i. d. draws from Lap(∆f/ε).
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Intuitively, sensitivity quantifies the effect of any individual in the dataset on the
outcome of the analysis. In this mechanism, Laplace noise with magnitude proportional
to the sensitivity has the effect of masking the characteristics of any individual, thereby
preserving privacy.

A simple algorithm that integrates the Laplace mechanism is the Private Min, which
is better known as the Report Noisy Min in the literature [26] and will be the building
block of PrivateBHq, introduced in Section 2.3. Consider a collection of scalar functions
f1, . . . , fm. The Private Min adds Laplace noise to each fj and then reports the smallest
noisy count (with fresh noise added) and its index. A formal description of Private Min is
given in Algorithm 2. The following lemma concerns its privacy property.

Lemma 2.4 . The Private Min, as detailed in Algorithm 2, is (ε, 0)-differentially private.

A peek at the proof of this well known lemma, which for completeness appears in the
appendix, reveals that reporting each of j? and fj?(D) + Z is (ε/2, 0)-differentially private,
hence leading to a total privacy loss of (ε/2, 0) + (ε/2, 0) = (ε, 0). Here we have used
the simple fact that differential privacy loss adds up under the composition of sequential
mechanisms, that is, the union of the outputs of a sequence of mechanisms that each
preserve (εj , δj)-differential privacy is (

∑
εj ,
∑
δj)-differentially private [25]. As an aside,

the Advanced Composition Theorem [27] (see Lemma 2.9 in Section 2.4), provides a much
tighter bound on this privacy degradation.

Algorithm 2 Private Min (Report Noisy Min)

Input: database D, functions f1, . . . , fm each with sensitivity at most ∆, and privacy
parameter ε

Output: index j? and approximation to fj?(D)
1: for j = 1 to m do

2: set f̃j = fj(D) + Zj , where Zj is independently sampled from Lap(2∆/ε)
3: end for
4: return j? = argmin

j
f̃j and fj?(D) + Z, where Z is a fresh draw from Lap(2∆/ε)

Looking ahead, and omitting some technicalities, PrivateBHq will operate on differentially
private approximations to the logarithms of p-values, returned by multiple invocations of
Private Min. Since differential privacy is closed under post-processing [26], any subsequent
computation on these differentially privately obtained values can never increase privacy loss.
Thus, PrivateBHq is indeed differentially private, for all p-value functions. Its statistical
properties will depend on the kinds of p-value computations that are performed, which we
turn to next.

2.2. Multiplicative sensitivity of p-values. Multiple testing procedures ubiquitously act
on a set of p-values that are computed by functions that operate on databases. A p-value in
our context is frequently referred to as the function on databases for computing the p-value
instead of its numerical value, in contrast with the vast statistical literature that often does
not distinguish between the function that maps a database to a p-value and the result of the
mapping.

We now consider making p-value computations private as the first step toward developing
a private multiple testing procedure. In many important p-value computations (see Example
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2.6), a larger p-value is affected more in magnitude by the change of a single data item than
a smaller p-value. As a result, directly adding noise to the p-values may overprotect privacy
and completely overwhelm signals in small p-values. This would inevitably lead to significant
detection power loss as the smallest p-values are more likely to correspond to promising
hypotheses.

Our solution will be to (very carefully) work with the logarithms of the p-values. This
strategy is motivated by the observation that, although the (additive) sensitivity of a p-value
may vary greatly, oftentimes the relative change (that is, the ratio) of a p-value on two
neighboring databases is very stable, regardless of the magnitude of the p-value, unless it
is extremely small. In light of this observation, the sensitivity of a p-value, that is, the
worst-case change due to the replacement of an individual in the database, is best measured
multiplicatively. Below, η and ν are nonnegative.

Definition 2.5 (Multiplicative Sensitivity). A p-value function p is said to be (η, ν)-
multiplicatively sensitive, or (η, ν)-sensitive for short, if for all adjacent databases D and D′,
either both p(D), p(D′) ≤ ν or

e−ηp(D) ≤ p(D′) ≤ eηp(D).

Our PrivateBHq algorithm will make explicit use of both parameters in ensuring privacy.
The parameter ν is introduced in recognition of the fact that a very small p-value may
jump or fall by a relatively large multiplicative factor between adjacent databases. This
parameter is normally much less than the Bonferroni level q/m (see, for example, [19]),
resulting in essentially no power loss for truncating p-values at ν. A p-value can satisfy
different pairs of (η, ν)-multiplicative sensitivities. In short, the two parameters η and ν
exhibit a certain trade-off relationship in the sense that one can increase (resp. decrease) η
and decrease (resp. increase) ν in a careful way such that a p-value still satisfies this condition.
Every p-value satisfies (η, ν)-sensitivity for some values of the parameters. Moreover, given
p-value functions p1, p2 with multiplicative sensitivities (η1, ν1) and (η2, ν2) respectively, it
is immediate that both functions satisfy (max{η1, η2},max{ν1, ν2})-sensitivity, so given a
collection of p-values there always exist η, ν so that all of the p-values in the collection are
(η, ν)-sensitive.

Given an (η, ν)-sensitivity p-value function p and a database D, we work with the
logarithmic mapping

θ(D; p, ν) = log max{ν, p(D)}
This statistic satisfies θ(D)− η ≤ θ(D′) ≤ θ(D) + η for all neighboring databases D,D′. In
other words, θ has an additive sensitivity bounded by η. Hence, Lemma 2.2 ensures that
adding Laplace noise Lap(η/ε) to θ(D) preserves (ε, 0)-differential privacy.

We will see below via examples that two large and important classes of p-value computa-
tions are (η, ν)-sensitive for some small η and ν, with rigorous proofs given in Appendix A;
as a consequence of this, preserving privacy for these p-values only requires a small amount
of noise, leading to negligible accuracy loss. Recall that m denotes the total number of
hypotheses.

Example 2.6 (Binomial Distribution). Suppose the n individuals in D are, respectively,
associated with n i. i. d. Bernoulli variables ξ1, . . . , ξn, each of which takes the value 1 with
probability α and the value 0 otherwise. Let T denote the sum. A p-value p(D) for testing
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H0 : α ≤ 1
2 against the alternative H1 : α > 1

2 is defined as

p(D) =
n∑
i=t

1

2n

(
n

i

)
,

where t is the realization of T on the database D. Denote by t′ the counterpart of t on
a neighboring database D′. Without loss of generality, assume t′ = t + 1. The difference
between the two p-values, |p(D) − p′(D)| = 1

2n

(
n
t

)
, attains its maximum at t = bn/2c or

b(n + 1)/2c (bxc denotes the greatest integer that is less than or equal to x) and decays
rapidly as t deviates from n/2. This implies that additive sensitivity is not a good measure
of the variability of this p-value construction.

Instead, we fix a (very) small ν and denote by η the maximum of log p(D)
p(D′) subject to

the constraint p(D′) ≥ ν. The p-value by definition is (η, ν)-sensitive. To evaluate η, observe
that the log-likelihood ratio

log
p(D)

p(D′)
= log

∑n
i=t

1
2n

(
n
i

)∑n
i=t+1

1
2n

(
n
i

) = log

[
1 +

(
n
t

)∑n
i=t+1

(
n
i

)] ≤ (
n
t

)∑n
i=t+1

(
n
i

) .
In the appendix, it is shown that

(
n
t

)
/
∑n

i=t+1

(
n
i

)
.
√

logn
n under the constraint p(D′) ≥

m−1−c for any small constant c > 0 if m ≤ poly(n) (that is, m grows at most polynomially

in n) as n→∞. Therefore, we can set ν = m−1−c and η �
√

logn
n . Note that this choice of

ν is much below the Bonferroni level q/m.

Example 2.7 (Truncated Exponential Distribution). Let ζ1, . . . , ζn be i. i. d. random vari-

ables sampled from the density λe−λx

1−e−Aλ · 1(0 ≤ x ≤ A) for positive A and λ, an exponential

distribution truncated at A. Denote by T = ζ1 + · · ·+ ζn the sum (T is a sufficient statistic
for λ). To test H0 : λ = 1 against the alternative H1 : λ > 1, we consider the p-value
p(D) = Pλ=1(T ≥ t), where t is the realization of T (note that the value t differs at most by
A between adjacent databases). With the same notations as in Example 2.6, this p-value is

(η, ν)-multiplicatively sensitive with ν = m−1−c and η �
√

logn
n for any small constant c > 0.

Similarly, the analysis applies to the case of a Gaussian distribution. In short, consider
i. i. d. random variables ξ1, . . . , ξn drawn from the normal distribution N (µ, 1) truncated

at −A and A, which has density e−(x−µ)
2/2/

∫ A
−A e−(u−µ)

2/2du. Writing T = ξ1 + · · ·+ ξn,

we use the p-value p(D) = Pµ=0(|T | ≥ |t|) to test H0 : µ = 0 against H1 : µ 6= 0 (t is the
realization of T ). Using the same proof strategy as for the exponential distribution, one can
show that this p-value strategy is (η, ν)-multiplicatively sensitive with some ν = m−1−c and

η �
√

logn
n .

We remark that (η, ν)-sensitivity is a worst-case guarantee on the sensitivity of a p-value
function. Only the interpretation of the p-value requires the i.i.d. assumption. Regarding
the above-mentioned two examples, the asymptotic expressions of the privacy parameter η
can be easily made precise.

As seen in both examples, the parameter η vanishes roughly at the rate O(n−1/2),
implying that less noise is required for privacy protection as the sample size becomes larger.
This appealing feature is impossible without the restriction p ≥ ν for some appropriate
choice of ν. Specifically, in the absence of this constraint, or equivalently by setting ν = 0,
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we shall have η = n+ 1 in the first example and η =∞ in the second, requiring a vast or
even an infinite amount of multiplicative noise for preserving privacy. This would completely
dilute any signal of interest. To be complete, we note that not all p-value computations
necessarily lead to vanishing η and ν as n → ∞. An example from [61, 65] considers a
privacy-preserving release of χ2-statistics computed from allelic contingency tables. For the
sake of simplicity, here we consider 2× 2 contingency tables with n/2 cases and n/2 controls:

allele type
major minor

case a n
2 − a

control a n
2 − a

allele type
major minor

case a+ 1 n
2 − a− 1

control a n
2 − a

Table 1. Two neighboring allelic contingency tables.

In the case of a fixed a > 5, one can show that the two p-values computed from the two
tables neither differ by a negligible factor nor both tend to zero as n → ∞. This fact is
elaborated in detail in the appendix.

2.3. Developing PrivateBHq. The PrivateBHq procedure (Algorithm 4) is the sequential
composition of Algorithm 3, which we refer to as the peeling mechanism, denoted as
peeling. In a little more detail, given (non-private) p-value functions p1, . . . , pm and a
prescribed number of invocations m′ ≤ m, PrivateBHq first applies Private Min m′ times
to the logarithms of the p-values, “peeling off” and removing from further consideration
the approximately smallest element with each new invocation of Private Min. These m′

pre-selected hypotheses are thought of as promising hypotheses. In particular, the number
m′ as an upper bound on the total number of discoveries shall be much less than m. This
recognizes that, in many application scenarios, much fewer are truly significant in an ocean
of mediocre hypotheses.

During the peeling procedure, in order to keep track of indices within the original set,
peeling removes a function from further consideration by redefining it to be +∞, ensuring
that it will not be returned by future invocations of the Private Min. The Laplace noise scale
λ shall be chosen to adjust for the privacy protection target, factoring in the multiplicative
sensitivities of p1, . . . , pm and the number of invocations m′.

Algorithm 3 Peeling Mechanism peeling

Input: database D, functions f1, . . . , fm, number of invocations m′, and Laplace noise scale
λ

Output: indices i1, . . . , im′ and approximations to fi1(D), . . . , fim′ (D)
1: for j = 1 to m′ do
2: let (ij , f̃ij (D)) be returned by Private Min applied to (D, f1, . . . , fm) with Laplace

noise scale λ
3: set fij ≡ +∞
4: end for
5: return the m′-tuple {(i1, f̃i1(D)), . . . , (im′ , f̃im′ (D))}
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With m′ hypotheses yielded by peeling in place, PrivateBHq supplies quantities in
logarithmic scale instead of, in the conventional setting, the m′ raw p-values and critical
values to the (step-up) BHq procedure. This difference however does not affect the way BHq

proceeds. To be concrete, BHq first orders the noisy values θ̃i1 , . . . , θ̃im′ as θ̃(i1) ≤ · · · ≤ θ̃(im′ ),
and then rejects any corresponding hypotheses if θ̃ij is below max{γj : θ̃(ij) ≤ γj}, with the

convention that max ∅ = −∞. As we will see in Section 4, the cutoffs γ1, . . . , γm′ are chosen
specifically to ensure FDR control of PrivateBHq; roughly speaking, γj is slightly below the
logarithm of the corresponding BHq critical value qj/m, where the gap between the two
accounts for the multiplicative sensitivity of the p-values and the uncertainty brought by
the Laplace mechanism.

Algorithm 4 The PrivateBHq Procedure

Input: database D, parameters ε, δ, η, ν, (η, ν)-multiplicatively sensitive p-value functions
p1, . . . , pm, number of invocations m′, Laplace noise scale λ = λ(ε, δ, η,m′) , and cutoffs
γ1 < · · · < γm′

Output: a set of up to m′ rejected hypotheses
1: set θj = log max{ν, pj(D)} for 1 ≤ j ≤ m
2: obtain (i1, θ̃i1), . . . , (im′ , θ̃im′ ) by applying peeling to θ1, . . . , θm with noise scale λ

3: apply (step-up) BHq to θ̃i1 , . . . , θ̃im′ with cutoffs γ1, . . . , γm′
4: return the indices of rejected hypotheses

2.4. Preserving privacy. The proof that PrivateBHq is differentially private relies on the
fact that the algorithm only accesses the data through the values returned by peeling.
Thus, intuitively, the final results reported by BHq shall release no more privacy than the
intermediate results yielded by peeling. This intuition is indeed true, that is, differential
privacy is closed under post-processing, as shown by the following lemma.

Lemma 2.8 [23, 63]. Let M be an (ε, δ)-differentially private mechanism and g be any
(measurable) function. Then g(M) also preserves (ε, δ)-differential privacy.

This lemma implicitly assumes the range of the mechanism M falls into the domain of
g. In our context, taking g to be step-up BHq, Lemma 2.8 shows that it suffices to establish
the differential privacy property of peeling. By construction, each θj has sensitivity no
more than η. Lemma 2.4 then immediately ensures that the Private Min, which is invoked
sequentially m′ times in PrivateBHq, guarantees on its own (2η/λ, 0)-differential privacy.
Making use of the fact that, at worst “(ε, δ)’s add up” (see the discussion right below
Lemma 2.4), one can conclude that the peeling mechanism is (2m′η/λ, 0)-differentially
private. Equivalently, to achieve (ε, 0)-differential privacy for peeling, and therefore also
for PrivateBHq, we can set the Laplace noise scale to be λ = 2m′η/ε. In this way, the noise
level grows linearly with m′.

Surprisingly, we can trade a little bit of δ for a significant improvement on ε, as shown
by the lemma below.

Lemma 2.9 Advanced Composition [27]. For all ε, δ ≥ 0 and δ′ > 0, running l mechanisms

sequentially that are each (ε, δ)-differentially private preserves (ε
√

2l log(1/δ′) + lε(eε −
1), lδ + δ′)-differential privacy.
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This lemma holds no matter how each mechanism adaptively depends on information
released by prior mechanisms. Taking δ = 0 in Lemma 2.9, we easily obtain the main
theorem of this section, with its proof deferred to the appendix. This theorem shows adding
Laplace noise with scale of order roughly O(

√
m′) is sufficient for protecting privacy of

PrivateBHq.

Theorem 3 . Let η, ν be chosen so that all the p-value functions input to PrivateBHq are
(η, ν)-sensitive. Given ε ≤ 0.5, δ ≤ 0.1 and m′ ≥ 10, PrivateBHq with Laplace noise scale

λ = η
√

10m′ log(1/δ)/ε, or larger, is (ε, δ)-differentially private.

We remark that the constraints on ε, δ, and m′ are used to optimize the constants for
practical use.

3. Proving FDR Control Using a Submartingale

The main purpose of this section is to prove Theorem 1. The proof strategy contains two
novel elements: an upper bound on FDRk involving only true null p-values (Equation (3.1)
below) and a backward submartingale that allows us to use a martingale maximal inequality.
In addition, this section attempts to obtain the optimal constant Ck for Theorem 1 in Section
3.2, where we give some intuition behind Theorem 2, and considers a new variant of the
FDR in Section 3.3.

Throughout the section, we focus on an arbitrary BHq-compliant procedure. That is,
any p-value rejected by the procedure is not greater than qR/m, where R denotes the total
number of rejections.

3.1. Controlling FDRk. In this subsection, we prove Theorem 1. However, the proof
presented here does not seek to optimize the constant Ck in Theorem 1. We consider

FDPk :=
V 1V≥k
R

,

which gives FDRk ≡ EFDPk by taking expectation. The following upper bound on the
FDPk for k ≥ 2 of the BHq-compliant procedure serves as the basis for our analysis:

FDPk ≤ max
k≤j≤m0

qj

mp0(j)
. (3.1)

Above, p0(1) ≤ p0(2) ≤ · · · ≤ p0(m0)
are the order statistics of the m0 true null p-values. To

prove (3.1), denote by V the number of false rejections. If V ≤ k − 1, (3.1) holds since
FDPk = 0. Otherwise, the largest rejected true null p-value is at least p0(V ) and, therefore,

one must have p0(V ) ≤ qR/m due to the compliance condition. As a consequence, we get

FDPk =
V

R
≤ V

mp0(V )/q
≤ max

k≤j≤m0

qj

mp0(j)
. (3.2)

The IWN condition imposed in Theorem 1 ensures the joint independence of the true null p-
values, each of which is, by definition, stochastically larger than or equal to U(0, 1). Thus, the
ordered true null p-values can be replaced by the order statistics U(1) ≤ U(2) ≤ · · · ≤ U(m0)
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of m0 i. i. d. uniform random variables on (0, 1), while (3.2) remains true in the expectation
sense (recall that π0 = m0/m):

FDRk ≤ E
[

max
k≤j≤m0

qj

mU(j)

]
= qπ0 E

[
max

k≤j≤m0

j

m0U(j)

]
.

Therefore, Theorem 1 follows from the lemma below.

Lemma 3.1 . Let U(1) ≤ · · · ≤ U(n) denote the order statistics of n i. i. d. uniform variables
on (0, 1). There exists an absolute constant ck such that

sup
n≥k

E
[

max
k≤j≤n

j

nU(j)

]
≤ ck

for k ≥ 2.

The proof of this lemma starts by recognizing a well-known representation in law for
uniform order statistics:

(U(1), . . . , U(n))
d
=

(
T1
Tn+1

, . . . ,
Tn
Tn+1

)
, (3.3)

where Tj = ξ1 + · · ·+ ξj and ξ1, . . . , ξn+1 are i. i. d. exponential random variables with mean
1. Writing

Wj =
jTn+1

Tj
,

Lemma 3.1 is equivalent to showing

E
[

max
k≤j≤n

Wj

n

]
≤ ck. (3.4)

Intuitively, the maximum is likely to be attained at some small index j as Wj/n is close
to 1 for a large value of j, due to the law of large numbers. This intuition can be indeed
made rigorous by the fact that W1, . . . ,Wn+1 is a backward submartingale, as shown by the
following lemma.

Lemma 3.2 . With respect to the filtration Fj := σ(Tj , Tj+1, . . . , Tn+1) for j = 1, . . . , n+ 1,
the stochastic process W1, . . . ,Wn+1 is a backward submartingale. That is, E(Wj |Fj+1) ≥
Wj+1 for j = 1, . . . , n.

The proof of Lemma 3.2 is deferred to the appendix. Next, we apply this lemma to
prove (3.4) (hence Lemma 3.1 follows immediately) using the following martingale maximal
inequality (for a proof, see pages 71–73 of [48]).

Lemma 3.3 `1 Martingale Maximal Inequality. Let X1, . . . , Xn be a (forward) submartingale.
Then,

E
(

max
1≤j≤n

Xj

)
≤ e

e − 1
[1 + E (Xn logXn;Xn ≥ 1)] .

Proof of Lemma 3.1. Since Lemma 3.2 asserts that Wj/n is a backward submartingale,
Lemma 3.3 concludes

E
(

max
k≤j≤n

Wj

n

)
≤ e

e − 1

[
1 + E

(
Wk

n
log

Wk

n
;
Wk

n
≥ 1

)]
=

e

e − 1

[
1 + E

(
k

nU(k)
log

k

nU(k)
;

k

nU(k)
≥ 1

)]
.
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To complete the proof, it suffices to show that for a fixed k the expectation above involving
k/(nU(k)) is uniformly bounded for all n ≥ k. To this end, observe that U(k) is distributed
as Beta(k, n+ 1− k), and this allows us to evaluate the expectation as

E
(

k

nU(k)
log

k

nU(k)
;

k

nU(k)
≥ 1

)
=

∫ k
n

0

xk−1(1− x)n−k

B(k, n+ 1− k)

k

nx
log

k

nx
dx

≤
∫ k

n

0

xk−1

B(k, n+ 1− k)

k

nx
log

k

nx
dx

=
1

nkB(k, n+ 1− k)

∫ k

0
kyk−2 log

k

y
dy

=
1

nkB(k, n+ 1− k)
· kk

(k − 1)2
.

To obtain an upper bound that is independent of n, it suffices to show that nkB(k, n+ 1− k)
has a lower bound depending only on k. Indeed, this is the case:

nkB(k, n+ 1− k) = nk
Γ(k)Γ(n+ 1− k)

Γ(n+ 1)

=
nk(k − 1)!

n(n− 1) · · · (n− k + 1)
≥ (k − 1)!.

3.2. Optimizing the bounds. The constant Ck in Theorem 1 matters from a practical
perspective. This section is aimed at finding the optimal constants for all k ≥ 2. Compared
with what has been performed in Section 3.1, this improvement is based on a delicate
property about the expectation in (3.4), as detailed by the following lemma.

Lemma 3.4 . Define C
(n)
k = E

[
maxk≤j≤n

j
nU(j)

]
for n ≥ k ≥ 2, where U(j)’s are the order

statistics of n i. i. d. uniform variables on (0, 1). Then, C
(n)
k ≤ C(n+1)

k .

The monotonicity in Lemma 3.4 reveals that the optimal Ck in (3.4) takes the form
(recall that Tj = ξ1 + · · ·+ ξj is defined in (3.3))

Ck := lim
n→∞

C
(n)
k = lim

n→∞
E
[

max
k≤j≤n

jTn+1

nTj

]
. (3.5)

Note that Ck does not seem to admit a closed-form expression. Nevertheless, this optimal
constant can be easily computed via simulations.

While relegating the full proof of Theorem 2 to Appendix A, here we provide a proof
sketch based on the construction of a BHq-compliant procedure and a set of p-values satisfying
the IWN condition to show the optimality of Ck. Explicitly, let the true null p-values be m0

i. i. d. uniform variables U1, . . . , Um0 between 0 and 1, and let all the m−m0 false null p-
values be 0. Denote by j? the index k ≤ j ≤ m0 that maximizes j/U(j). The BHq-compliant
procedure rejects the j? smallest true null p-values and any max{dmU(j?)/qe − j?, 0} of the
false null p-values (dxe denotes the least integer that is greater than or equal to x), which by
construction are all 0. This procedure is compliant (self-consistent) but not nonincreasing
(a procedure is called nonincreasing if it never rejects more if some p-value gets larger),
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so the FDR-controlling results in [9] do not apply to our case. Taking q sufficiently small
and assuming that m − m0 is sufficiently large, we get FDPk ≈ qj?/(mU(j?)) with high
probability. Consequently, we get

FDRk ≈ E
[

qj?

mU(j?)

]
= E

[
max

k≤j≤m0

j

m0U(j)

]
π0q = C

(m0)
k π0q,

which tends to Ckq by taking m0 →∞ and m0/m→ 1.
For the moment, suppose the limit can be taken under the expectation in (3.5). As

such, the optimal constant for FDRk is

Ck = E
[

lim
n→∞

max
k≤j≤n

jTn+1

nTj

]
= E

[
max
k≤j<∞

j

Tj

]
, (3.6)

where the last equality results from applying the strong law of large numbers to Tn/n.
Recognizing that the integrable random variable maxk≤j<∞ j/Tj decreases to 1 almost
surely as k increases to infinity, Lebesgue’s dominated convergence theorem readily asserts
that Ck = 1 + ok(1), where ok(1) denotes a sequence of numbers tending to 0 as k → ∞.
This is formally stated in the proposition below, where we consider a sequence of multiple
testing problems indexed by l such that both ml, kl →∞ as l→∞.

Proposition 3.5 . Under the assumptions of Theorem 1, as k → ∞, we have FDRk ≤
(1 + ok(1))q.

To make the derivation of the optimal Ck above rigorous, we must validate (3.6). In
fact, the Vitali convergence theorem together with the following lemma ensures that the
limit limn→∞ and expectation E can be interchanged.

Lemma 3.6 . For a fixed k ≥ 2, the sequence of random variables

max
k≤j≤n

jTn+1

nTj

are uniformly integrable for n ≥ k.

While the proof of Lemma 3.6 is deferred to the appendix, the proof of Lemma 3.4 is
given below.

Proof of Lemma 3.4. Denote by U(1) ≤ · · · ≤ U(n) ≤ U(n+1) the order statistics of n + 1
i. i. d. uniform random variables on (0, 1). Then, U(1)/U(n+1) ≤ · · · ≤ U(n)/U(n+1) are
distributed the same as the order statistics of n i. i. d. uniform random variables on (0, 1)
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and, moreover, are independent of U(n+1). Making use of this fact, we get

C
(n+1)
k = E

[
max

k≤j≤n+1

j

(n+ 1)U(j)

]
≥ E

[
max
k≤j≤n

j

(n+ 1)U(j)

]
= E

[
n

(n+ 1)U(n+1)
· max
k≤j≤n

j

nU(j)/U(n+1)

]
= E

[
n

(n+ 1)U(n+1)

]
E
[

max
k≤j≤n

j

nU(j)/U(n+1)

]
= E

[
n

(n+ 1)U(n+1)

]
C

(n)
k .

Since the density of U(n+1) is (n+ 1)xn for 0 < x < 1, we readily see that

E
[

n

(n+ 1)U(n+1)

]
= 1.

This completes the last step in certifying C
(n+1)
k ≥ C(n)

k .

1.0

1.5

2.0

2.5

5 10 15 20 25
k

C
k

Figure 1. Monte Carlo simulated values of Ck using (3.6). The solid line
indicates the maximum of j/Tj over k ≤ j ≤ 105, averaged over 104 runs.
The (tiny) shaded band illustrates the 99%-coverage confidence interval for
each k using normal approximation.

Now, we turn to numerically evaluate Ck using the expression (3.6). Although the
distribution of each j/Tj admits an analytical expression, it is however not clear how to
calculate the distribution of the maximum of j/Tj over j. In view of this difficulty, we
resort to Monte Carlo simulations, and Figure 1 presents the results that are averaged over
104 independent replicates. For instance, C2 ≈ 2.41, C3 ≈ 1.85, C4 ≈ 1.65, C5 ≈ 1.54, and
C25 ≈ 1.18. In passing, we remark that the estimated values of Ck as a function of k are
fairly accurate as indicated by the uniformly short widths of the confidence intervals for all
k.
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3.3. Controlling FDRk. To further leverage the martingale-based proof idea, we consider
a variant of the FDR defined as

FDRk := E
[
V

R
;R ≥ k

]
,

which includes the usual FDR as an example by taking k = 1. This relaxed FDR differs
insignificantly from the usual FDR if a large number of discoveries are expected, which
is often the case in modern multiple testing applications such as genome-wide association
studies. For the moment, we do not intend to advocate the use of this new FDR definition
in practice as it is clear that future investigation is needed.

In the following, we aim to prove Theorem 4, a counterpart of Theorem 1 for the FDRk.
A similarity between the two theorems lies in that their proofs both make use of martingale
arguments. That being said, the bound on the FDRk in Theorem 1 cannot carry over to the
FDRk because FDRk ≤ FDRk.

Theorem 4 . If the test statistics obey the IWN condition, then any BHq-compliant procedure
satisfies

FDRk ≤
(

1 +
2√
qk

)
q.

for any k ≥ 1.

A number of remarks are as follows. This theorem allows us to take k = 1, thus giving
a bound on the usual FDR: FDR ≤ q + 2

√
q. For example, we can set q = 0.0024 if the

FDR is aimed to be controlled at 10%. Such a bound is not available in Theorem 1. For
completeness, the bound for k = 1 might not be sharp since Doob’s `2 martingale maximal
inequality used in the proof of Theorem 4 is generally not sharp. Indeed, this bound can be
improved using a careful treatment of (3.1) (see [59]). For k ≥ 2, the bound here is larger
than that in Theorem 1, namely 2/

√
qk ≥ Ck − 1, due to the optimality of Ck and the fact

FDRk ≥ FDRk. The following proof actually establishes a stronger bound, π0q + 2
√
π0q/k,

on the FDRk. Recall that π0 is the true null proportion m0/m.

Proof of Theorem 4. Due to the compliance condition, the number of false discoveries satisfies

V ≤ #

{
i is true null : pi ≤

qR

m

}
.

Thus, we get an upper bound on FDP := V
R (with the convention 0/0 = 0) that takes the

following form:

FDP ≤ max
R≤j≤m

#{i is true null : pi ≤ qj/m}
j

.

Consequently, we get

FDPk :=
V 1R≥k
R

≤ max
k≤j≤m

#{i is true null : pi ≤ qj/m}
j

. (3.7)

Similar to what has been argued in Section 3.1, the inequality (3.7) still holds if all true null
p-values are replaced by m0 i. i. d. uniform variables U1, . . . , Um0 on (0, 1). This observation
shows that it suffices to prove

E

[
max
k≤j≤m

#
{

1 ≤ i ≤ m0 : Ui ≤ qj/m
}

j

]
≤
(

1 + 2/
√
qk
)
q. (3.8)
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To show (3.8), denote by Vj = #{1 ≤ i ≤ m0 : Ui ≤ qj/m} and Yj = Vj/j. Conditional
on Yj+1, for every i ∈ {1 ≤ i ≤ m0 : Ui ≤ q(j + 1)/m} the random variable Ui is uniformly
distributed on [0, q(j + 1)/m]. Hence, the conditional expectation of Vj given Yj+1 is

E(Vj |Yj+1) =
Vj+1

qj
m

q(j+1)
m

=
jVj+1

j + 1
,

which is equivalent to
E(Yj |Yj+1) = Yj+1 .

In words, Yj is a backward martingale and, as a consequence, (Yj − qm0/m)+ is a backward
submartingale. This fact allows us to apply Doob’s `2 martingale maximal inequality to
(Yj − qm0/m)+, yielding

E
[

max
k≤j≤m

(
Yj −

qm0

m

)2
+

]
≤
(

2

2− 1

)2

E
(
Yk −

qm0

m

)2
+

≤ 4E
(
Yk −

qm0

m

)2
=

4qm0(1− qk/m)

km

<
4π0q

k
.

Using Jensen’s inequality, the left-hand side of (3.8) satisfies

E
[

max
k≤j≤m

Yj

]
≤ qm0

m
+ E

[
max
k≤j≤m

(
Yj −

qm0

m

)
+

]
≤ π0q +

√
E
[

max
k≤j≤m

(
Yj −

qm0

m

)2
+

]
≤ π0q + 2

√
π0q

k
.

4. FDR Control and Power of PrivateBHq

As an application of Theorem 1, this section considers FDR control and power of PrivateBHq.
Throughout this process, we take the assumptions of Theorem 3 as given. That is, we assume
that each pi is (η, ν)-sensitive and the parameters satisfy ε ≤ 0.5, δ ≤ 0.1, and m′ ≥ 10.
From Theorem 3, PrivateBHq preserves (ε, δ)-differential privacy, and for brevity this fact
will not be reiterated in this section.

The proposition below demonstrates that the PrivateBHq is indeed compliant by making
the cutoffs {γj} in Algorithm 4 slightly more stringent than the logarithms of the BHq
critical values.

Proposition 4.1 . For any 0 < q < 1, use the cutoffs

γj = log
qj

m
−
η
√

10m′ log(1/δ) log(6m′/q)

ε
(4.1)
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for j = 1, . . . ,m′ in PrivateBHq. Under the assumptions of Theorem 3, this procedure is
compliant with the BHq critical values qj/m with probability at least 1− 0.1q.

As a remark, the first term log qj
m in (4.1) corresponds to the non-private cutoff and

the second term −η
√

10m′ log(1/δ) log(6m′/q)
ε is used to handle the added noise. Notably, the

constant 0.1 above can be replaced by any positive constant provided that the second term
is appropriately scaled. The proof of Proposition 4.1 is given later after Theorem 5.

The compliance condition shown in Proposition 4.1 together with Theorem 1 implies
FDR control of PrivateBHq. More precisely, letting C denote the event that the rejected
p-values are compliant, we have

FDRk = E (FDPk; C) + E
(
FDPk; C

)
≤ Ckq + P(C) ≤ (Ck + 0.1)q

for every k ≥ 2. As such, to control the FDR at level, say 10% (a common level used in
practice), we can set q = 0.1/(Ck + 0.1) in PrivateBHq. This proves the following theorem.

Theorem 5 . Under the same assumptions as in Proposition 4.1 and if the test statistics
satisfy the IWN condition, the PrivateBHq procedure gives

FDRk ≤ (Ck + 0.1)q

for all k ≥ 2.

To prove Proposition 4.1, we first present a simple lemma that gives a concentration
bound on Laplace random variables, and its proof can be found in the appendix.

Lemma 4.2 . Let Z1, . . . , Zn be i. i. d. Lap(λ) random variables. For any 0 < α < 1, the
following two statements are true:

(1) With probability at least 1− α, all Zj are larger than −λ log n
2α .

(2) With probability at least 1− α, all |Zj | are smaller than λ log n
α .

Proof of Proposition 4.1. Let θ̃ij = log max{ν, pij}+Zij be yielded by peeling in Algorithm

4, where Zij follows Lap(λ) for j = 1, . . . ,m′. The parameter λ = η
√

10m′ log(1/δ)/ε is as
in Theorem 3. Taking α = 0.1q, Lemma 4.2 shows that

Zij > −λ log
m′

2× 0.1q
> −

η
√

10m′ log(1/δ) log(6m′/q)

ε
. (4.2)

uniformly for j = 1, . . . ,m′ with probability at least 1− 0.1q.
Next, we show that on the event (4.2), PrivateBHq is compliant. Denote by RPt the

number of rejections made by this procedure. If θ̃ij is rejected, it must satisfy

log max{ν, pij}+ Zij ≤ γRPt
= log

qRPt

m
−
η
√

10m′ log(1/δ) log(6m′/q)

ε
.

Plugging (4.2) into this display gives

log max{ν, pij} ≤ log
qRPt

m
.

Thus, pij ≤ qRPt/m for all rejected pij on the event (4.2), which happens with probability
at least 1− 0.1q. This completes the proof.
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Next, Theorem 6 shows that the PrivateBHq procedure with a slightly inflated nominal
level is at least as powerful as the BHq step-down procedure. The proofs of this theorem
and its corollary are deferred to the appendix. To state the theorem, let RSD denote the
number of rejections made by the (non-private) step-down procedure.

Theorem 6 . Fix q and assume ν ≤ q/m. Under the assumptions of Theorem 5, run the
PrivateBHq procedure at level

q′ = qe
24η
√
m′ log(1/δ) logm

ε

and the BHq step-down procedure at level q. Then, the numbers of rejections satisfy

RPt ≥ min{RSD,m
′} (4.3)

with probability tending to one as m→∞.

When RSD ≥ m′ and the event (4.3) happens, PrivateBHq must reject all p-values
passing through peeling. In the case where non-null p-values are significant enough to pass
through peeling, this fact suggests that PrivateBHq achieves high power. This high-power
property, however, is appealing if q′ is only slightly larger than q or, put more simply, the
number 24η

√
m′ log(1/δ) logm/ε is small. With regard to Examples 2.6 and 2.7, this is

equivalent to having a sufficiently large sample size n. The following corollary formalizes
this point.

Corollary 4.3 . In Examples 2.6 and 2.7, fix ε, δ and assume m′ ≤ min{n1−c,m} for
constant c > 0. Under the assumptions of Theorem 6, the claims of both Theorems 5 and
6 hold as m,n → ∞ if PrivateBHq is performed at level (1 + c′)q for a sufficiently small
constant c′ > 0.

4.1. Empirical evaluation. In this subsection, we evaluate the price paid for privacy in
terms of FDR control and power in the PrivateBHq procedure. The aim is to provide
a better picture of how much detection power would be compromised due to privacy
guarantees for FDR control. For completeness, this comparison includes a private version
of Bonferroni’s method, which is referred to as PrivateBonf in this paper. PrivateBonf is
perhaps the simplest baseline for private multiple hypothesis testing. This procedure is
detailed as follows. As in Algorithm 4, let p1, . . . , pm be (η, ν)-sensitive p-values and set

θj = log max{pj , ν} for all j. The PrivateBonf procedure adds independent Lap(λ̃) noise to

all θj , where λ̃ = η
√

10m log(1/δ)/(2ε), and rejects those with noisy counts below

log
q

m
−
η
√

10m log(1/δ) log(5m/q)

2ε
.

The following result is concerned with privacy and family-wise error rate (FWER)
control of PrivateBonf. Note that the FWER denotes the probability that at least one false
positive is made. The proof is deferred to the appendix. As an aside, the privacy guarantee
in this result might be improved by using the sparse vector technique [36] and this is left for
future investigation.

Proposition 4.4 . Under the assumptions of Theorem 3, the following two statements are
true:

(1) PrivateBonf is (ε, δ)-differentially private;
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(2) PrivateBonf satisfies FWER ≤ 1.1q.
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Figure 2. The FDR of BHq, PrivateBHq, and PrivateBonf, plotted against
varying ε, η, µ,m1, respectively, and averaged over 100 independent replicates.
Note that PrivateBHq in general discovers fewer than BHq and has a smaller
FDR than BHq as well.

Figures 2 and 3 present, respectively, the FDR and the power of PrivateBHq, the
(non-private) BHq step-up procedure, and PrivateBonf by simulations. Unless specified, we
set m = 105,m′ = 100, q = 0.1, η = 10−4, ν = 0.5q/m, ε = 0.5, and δ = 0.001. To construct
the p-values, we let pi = Φ(ξi − µ) for i = 1, . . . ,m1 and pm1+1, . . . , pm be i.i.d. uniform
variables on (0, 1), where Φ is the CDF of N (0, 1), ξ1, . . . , ξm1 are i.i.d. copies of N (0, 1), and
the default values of µ and m1 (the number of true effects) are set to 4 and 100, respectively.
In summary, the FDR of PrivateBHq is empirically controlled at q in almost all scenarios,
though Theorem 5 is only concerned with FDRk for k ≥ 2. Moreover, PrivateBonf is
uniformly the least powerful among the three procedures. This is not surprising given that
PrivateBonf is inherently developed for FWER control. Looking closely, the performance of
PrivateBHq is comparable to that of BHq when ε is not too small and η is not too large.
Notably, the power of PrivateBHq deteriorates when the number of true effects exceeds 150,
which is due to the truncation of the PrivateBHq procedure at m′ = 100.

For completeness, we refer interested readers to a set of numerical comparisons of an
FDRk-controlling procedure [52, 54], PrivateBHq, and PrivateBonf in the appendix.

5. Discussion

This paper has developed a privacy-preserving multiple testing procedure termed PrivateBHq
for FDR control. On the privacy side, we propose a new notion of sensitivity tailored to
p-values and recognize the sequential nature of the BHq (step-down) procedure so as to keep
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Figure 3. The power of BHq, PrivateBHq, and PrivateBonf, plotted against
varying ε, η, µ,m1, respectively, and averaged over 100 independent replicates.

PrivateBHq efficient under the differential privacy constraint. Differential privacy of this
whole pipeline follows from the composition nature of differential privacy. On the statistical
side, as a major contribution of the paper, it is proved that a large class of multiple testing
procedures, including the step-up, step-down, and PrivateBHq procedures, control the FDRk

only provided the joint independence of the true null test statistics. A novel aspect of this
result lies in the absence of any assumption on the dependence between the true nulls and
false nulls. Notably, some recent progress has been made along this direction using the the
FDR-linking technique [59].

Looking forward, our work raises a number of open questions. First, it would be
interesting to take into account prior knowledge, such as the importance of hypotheses
and beliefs about which are true nulls, into the design of a differentially private procedure.
Second, it would be of interest to develop private procedures for control of other popular
error rates such as the q-value [58]. Moreover, it is natural to wonder if the bound in
Theorem 1 can improve by imposing some structure on the dependence between the true
null and false null test statistics. Third, recognizing the vital importance of peeling in our
PrivateBHq, an interesting direction is to investigate alternatives to peeling, such as the
oneshot approach to the problem of private top-k selection [49]. Last, it would be interesting
to consider other notions of privacy such as concentrated differential privacy and Gaussian
differential privacy [28, 13, 18].

Finally, we wish to make a connection to a remarkable property of differential privacy: it
protects against false discoveries due to adaptive data analysis, where an analysis is informed
by prior interactions with the same database [22, 21, 3]. Adaptivity is ubiquitous in practice
as the analyst is often not clear a priori what are the right questions to ask about a database.
In the multiple testing context, this issue arises when hypotheses are adaptively selected
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based on prior discoveries. A question of great interest is to develop a multiple testing
procedure that continues to preserve privacy in the presence of adaptivity.

Disclosure / Competing Interests

C. Dwork is Editor-in-Chief of this Journal. As per the Journal’s policies, she did not
participate in the editorial process, and all aspects of the editorial workflow were blinded
(not accessible) to her.

References

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learning
with differential privacy. In ACM SIGSAC Conference on Computer and Communications Security,
pages 308–318, 2016, pages 308–318. doi:10.1145/2976749.2978318.

[2] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and
consistency too: a holistic solution to contingency table release. In Proceedings of the twenty-sixth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pages 273–282. ACM, 2007,
pages 273–282. doi:10.1145/1265530.1265569.

[3] R. Bassily, K. Nissim, A. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic stability for
adaptive data analysis. In Proceedings of the 48th annual ACM Symposium on Theory of Computing,
pages 1046–1059, 2016, pages 1046–1059. doi:10.1137/16M1103646.

[4] A. Beimel, S. P. Kasiviswanathan, and K. Nissim. Bounds on the sample complexity for private learning
and private data release. In Theory of Cryptography Conference, pages 437–454. Springer, 2010, pages
437–454. doi:10.1007/978-3-642-11799-2_26.

[5] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate – A practical and powerful approach to
multiple testing. Journal of the Royal Statistics Society: Series B (Statistical Methodology), 57(1):289–300,
1995. doi:10.1111/j.2517-6161.1995.tb02031.x.

[6] Y. Benjamini, A. M. Krieger, and D. Yekutieli. Adaptive linear step-up procedures that control the false
discovery rate. Biometrika, 93(3):491–507, 2006. doi:10.1093/biomet/93.3.491.

[7] Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency.
The Annals of Statistics, 29(4):1165–1188, 2001. doi:10.1214/aos/1013699998.

[8] G. Blanchard and E. Roquain. Two simple sufficient conditions for FDR control. Electronic Journal of
Statistics, 2:963–992, 2008. doi:10.1214/08-EJS180.

[9] G. Blanchard and E. Roquain. Adaptive false discovery rate control under independence and dependence.
Journal of Machine Learning Research, 10(12):2837–2871, 2009. URL: https://www.jmlr.org/papers/
volume10/blanchard09a/blanchard09a.pdf.

[10] A. Blum, K. Ligett, and A. Roth. A learning theory approach to noninteractive database privacy. Journal
of the ACM (JACM), 60(2):12, 2013. doi:10.1145/2450142.2450148.

[11] M. Bogdan, E. van den Berg, C. Sabatti, W. J. Su, and E. J. Candès. SLOPE – adaptive variable selection
via convex optimization. The Annals of Applied Statistics, 9(3):1103, 2015. doi:10.1214/15-AOAS842.

[12] Z. Bu, J. Dong, Q. Long, and W. J. Su. Deep learning with Gaussian differential privacy. Harvard Data
Science Review, 2020(23), 2020. doi:10.1162/99608f92.cfc5dd25.

[13] M. Bun and T. Steinke. Concentrated differential privacy: Simplifications, extensions, and lower
bounds. In Theory of Cryptography Conference, pages 635–658. Springer, 2016, pages 635–658. doi:
10.1007/978-3-662-53641-4_24.

[14] M. Bun, J. Ullman, and S. P. Vadhan. Fingerprinting codes and the price of approximate differential
privacy. SIAM J. Comput., 47(5):1888–1938, 2018. doi:10.1137/15M1033587.

[15] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk minimization.
Journal of Machine Learning Research, 12(Mar):1069–1109, 2011. URL: https://jmlr.org/papers/
volume12/chaudhuri11a/chaudhuri11a.pdf.

[16] S. Clarke and P. Hall. Robustness of multiple testing procedures against dependence. The Annals of
Statistics, 37(1):332–358, 2009. doi:10.1214/07-AOS557.

[17] L. De Haan and A. Ferreira. Extreme value theory: an introduction. Springer Science & Business Media,
2007. doi:10.1007/0-387-34471-3.

https://journalprivacyconfidentiality.org/index.php/jpc/policies
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/1265530.1265569
https://doi.org/10.1137/16M1103646
https://doi.org/10.1007/978-3-642-11799-2_26
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1093/biomet/93.3.491
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/08-EJS180
https://www.jmlr.org/papers/volume10/blanchard09a/blanchard09a.pdf
https://www.jmlr.org/papers/volume10/blanchard09a/blanchard09a.pdf
https://doi.org/10.1145/2450142.2450148
https://doi.org/10.1214/15-AOAS842
https://doi.org/10.1162/99608f92.cfc5dd25
https://doi.org/10.1007/978-3-662-53641-4_24
https://doi.org/10.1007/978-3-662-53641-4_24
https://doi.org/10.1137/15M1033587
https://jmlr.org/papers/volume12/chaudhuri11a/chaudhuri11a.pdf
https://jmlr.org/papers/volume12/chaudhuri11a/chaudhuri11a.pdf
https://doi.org/10.1214/07-AOS557
https://doi.org/10.1007/0-387-34471-3


DIFFERENTIALLY PRIVATE FALSE DISCOVERY RATE CONTROL 25

[18] J. Dong, A. Roth, and W. J. Su. Gaussian differential privacy. arXiv preprint arXiv:1905.02383, 2019.
URL: https://arxiv.org/abs/1905.02383.

[19] S. Dudoit, M. J. Van Der Laan, and M. J. van der Laan. Multiple testing procedures with applications to
genomics. Springer, 2008. doi:10.1007/978-0-387-49317-6.

[20] R. Durrett. Probability: Theory and Examples. Cambridge University Press, 2010. doi:10.1017/

9781108591034.
[21] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. Generalization in adaptive data

analysis and holdout reuse. In Advances in Neural Information Processing Systems, pages 2350–2358,
2015, pages 2350–2358. doi:10.5555/2969442.2969502.

[22] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth. The reusable holdout: Preserving
validity in adaptive data analysis. Science, 349(6248):636–638, 2015. doi:10.1126/science.aaa9375.

[23] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Proceedings of EUROCRYPT, pages 486–503, 2006, pages 486–503.
doi:10.1007/11761679_29.

[24] C. Dwork and J. Lei. Differential privacy and robust statistics. In Proceedings of the 41st annual ACM
Symposium on Theory of Computing, pages 371–380. ACM, 2009, pages 371–380. doi:10.1145/1536414.
1536466.

[25] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography, pages 265–284. Springer, 2006. pages 265–284. doi:10.1007/11681878_14.

[26] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014. doi:10.1561/0400000042.

[27] C. Dwork, G. Rothblum, and S. Vadhan. Boosting and differential privacy. In Foundations of Computer
Science (FOCS), 2010. doi:10.1109/FOCS.2010.12.

[28] C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv preprint arXiv:1603.01887,
2016. URL: https://arxiv.org/abs/1603.01887.

[29] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust traceability from trace amounts. In
IEEE 56th Annual Symposium on Foundations of Computer Science, pages 650–669. IEEE, 2015, pages
650–669. doi:10.1109/FOCS.2015.46.

[30] H. Finner, T. Dickhaus, and M. Roters. On the false discovery rate and an asymptotically optimal
rejection curve. The Annals of Statistics, 37(2):596–618, 2009. doi:10.1214/07-AOS569.

[31] M. Gaboardi, H. Lim, R. Rogers, and S. Vadhan. Differentially private Chi-squared hypothesis testing:
Goodness of fit and independence testing. In International Conference on Machine Learning, pages
2111–2120, 2016, pages 2111–2120. doi:10.5555/3045390.3045613.

[32] Y. Gavrilov, Y. Benjamini, and S. K. Sarkar. An adaptive step-down procedure with proven FDR control
under independence. The Annals of Statistics, 37(2):619–629, 2009. doi:10.1214/07-AOS586.

[33] Y. Ge, S. C. Sealfon, and T. P. Speed. Some step-down procedures controlling the false discovery rate
under dependence. Statistica Sinica, 18(3):881–904, 2008. URL: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2583793/.

[34] R. Hall, A. Rinaldo, and L. Wasserman. Differential privacy for functions and functional data. Journal
of Machine Learning Research, 14(2):703–727, 2013. URL: https://www.jmlr.org/papers/volume14/
hall13a/hall13a.pdf.

[35] M. Hardt, K. Ligett, and F. McSherry. A simple and practical algorithm for differentially private data
release. In Advances in Neural Information Processing Systems, pages 2339–2347, 2012, pages 2339–2347.
doi:10.5555/2999325.2999396.

[36] M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 61–70. IEEE, 2010,
pages 61–70. doi:10.1109/FOCS.2010.85.

[37] P. Heesen and A. Janssen. Inequalities for the false discovery rate (FDR) under dependence. Electronic
Journal of Statistics, 9(1):679–716, 2015. doi:10.1214/15-EJS1016.

[38] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan,
S. F. Nelson, and D. W. Craig. Resolving individuals contributing trace amounts of DNA to highly
complex mixtures using high-density SNP genotyping microarrays. PLoS genetics, 4(8):e1000167, 2008.
doi:10.1371/journal.pgen.1000167.
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Appendix A. Proofs

This section proves all results made without proof in the main text. Below, the proofs are
listed in order of appearance of their corresponding results.

Proof of Lemma 2.4. For an arbitrary index 1 ≤ j ≤ m and a measurable set S ⊂ R, it
suffices to prove that

P(f̃j is the smallest and fj(D) + Z ∈ S)

P(f̃ ′j is the smallest and fj(D′) + Z ∈ S)
≤ eε,

where f̃ ′j is the counterpart of f̃j evaluated on an adjacent database D′. This inequality is
equivalent to

P(f̃j is smallest)P(fj(D) + Z ∈ S|f̃j is smallest)

P(f̃ ′j is smallest)P(fj(D′) + Z ∈ S|f̃ ′j is smallest)
≤ eε. (A.1)

First, releasing the index of the smallest noisy count is (ε/2, 0)-differentially private, which
has been proven by Claim 3.9 in Section 3.3 of [26]. That is,

P(f̃j is smallest)

P(f̃ ′j is smallest)
≤ eε/2.

Second, observe that by assumption |fj(D)− fj(D′)| ≤ ∆. Then Lemma 2.3 shows that

P(fj(D) + Z ∈ S|f̃j is smallest)

P(fj(D′) + Z ∈ S|f̃ ′j is smallest)
≤ eε/2.

Combining the last two displays concludes that (A.1) is bounded by eε. This finishes the
proof.

Proof of Example 2.6. We use t− 1 in place of t. Under the constraint that p(D), p(D′) ≥ ν,
we aim to prove that (

n
t−1
)∑n

i=t

(
n
i

) ≤ η
if η �

√
(log n)/n. Without loss of generality, assume t ≥ n/2, where a well-known result is

n∑
i=t

1

2n

(
n

i

)
≤ e−nKL( t

n
, 1
2
). (A.2)

Above, the Kullback–Leibler divergence is defined as

KL(a, b) = a log
a

b
+ (1− a) log

1− a
1− b

.

It is easy to show that

KL

(
a,

1

2

)
≥ 2

(
a− 1

2

)2

.

Therefore, plugging
n∑
i=t

1

2n

(
n

i

)
≥ ν = m−1−c =

1

poly(n)



DIFFERENTIALLY PRIVATE FALSE DISCOVERY RATE CONTROL 29

into (A.2), we get

t

n
≤ 1

2
+O

(√
log n

n

)
or, put differently,

t ≤ n

2
+O

(√
n log n

)
.

Therefore, we can assume t ≤ 7n/8. Provided that n/2 ≤ t ≤ 7n/8, we can apply Littlewood’s
theorem [44, 46]. Letting u = (2t − n)/

√
n, ρ = 1 − t/n and Ξ(x) = Φ(−x)/φ(x), where

Φ(x) and φ(x) are the cumulative distribution function and density function of N (0, 1)
respectively, this theorem gives

n∑
i=t

1

2n

(
n

i

)
= (1 +O(1/n)) Φ(−u)eA1+A2/

√
ρ(1−ρ)n,

where

A1 =
u2

2
−
(
t− 1

2

)
log

2t

n
−
(
n− t+

1

2

)
log

2(n− t)
n

and

A2 =
1− 2ρ

6

[
1− u2

Ξ(u)
+ u3

]
+

1/Ξ(u)− u
2

.

Because t ≤ n/2 + O(
√
n log n) as n→∞, we have u = O(

√
log n), ρ = 1

2 − o(1). Making
use of the fact that Ξ(u) = (1 + o(1))/u, we see that

n∑
i=t

1

2n

(
n

i

)
= (1 +O(1/n)) Φ(−u)eA1(1 + o(1))

= (1 + o(1))
Φ(−u)√
2θφ(u)

e−(t−
1
2
) log 2t

n
−(n−t+ 1

2
) log

2(n−t)
n

= (1 + o(1))
Φ(−u)√
2θφ(u)

e−t log
2t
n
−(n−t) log 2(n−t)

n

= (1 + o(1))
Φ(−u)√
2θφ(u)

e−nKL( t
n
, 1
2
)

= (1 + o(1)) · (1 + o(1))
1√
2θu

e−nKL( t
n
, 1
2
)

≥ O(1)√
2θ log n

e−nKL( t
n
, 1
2
).

(A.3)

Next, we consider
1

2n

(
n

t− 1

)
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By Stirling’s formula and using the fact that t = (0.5 + o(1))n, we get

1

2n

(
n

t− 1

)
=

t

n+ 1− t
1

2n

(
n

t

)
= (1 + o(1))

1

2n

(
n

t

)
= (1 + o(1))

√
2

θn
· nn

2ntt(n− t)n−t

= (1 + o(1))

√
2

θn
· e−nKL( t

n
, 1
2
)

Thus, we get

1
2n

(
n
t−1
)∑n

i=t
1
2n

(
n
i

) ≤ O(1)
(1 + o(1))

√
2
θn · e

−nKL( t
n
, 1
2
)

1√
2θ logn

e−nKL( t
n
, 1
2
)

= O

(√
log n

n

)
.

Thus, with ν = m−1−c, we can choose η �
√

logn
n .

Proof of Example 2.7. Let ζ, ζ1, . . . , ζn be i. i. d. exponential variable with λ = 1 truncated
at A. Consider the cumulant generating function

κ(θ) = logE eθζ .

As in the proof of Example 2.6, it does not lose generality by assuming t > nE ζ. Write
a = t/n > E ζ and let θa be the root of the saddle-point equation

κ′(θa) = a. (A.4)

In particular, Eθa ζ = a. Note that under Eθ the density of ζ is

λe−λx

1− e−Aλ
eθx−κ(θ) · 1(0 ≤ x ≤ A).

Through exponential tilting, we get

P(T ≥ na) = P (ζ1 + · · ·+ ζn ≥ na)

= e−n(aθa−κ(θa)) Eθa e−θa(T−na)1(T ≥ na).

Using saddle point approximation, we get

Eθa e−θa(T−na)1(T ≥ na) =
1 + o(1)√

2θκ′′(θa)nθa

Thus, we have

P(T ≥ na) = (1 + o(1))
e−n(aθa−κ(θa))√

2θκ′′(θa)nθa
. (A.5)
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Next, we evaluate κ′′(θa) and θa. Denote by µ and σ2 the mean and variance of ζ,
respectively. We get θa = o(1) and κ′′(θa) = Varθa(ζ) = σ2 + o(1). In particular, from (A.4)
we get

θa = (1 + o(1))
a− µ
σ2

,

which gives

aθa − κ(θa) = (1 + o(1))
(a− µ)2

2σ2
.

Plugging this display into

e−n(aθa−κ(θa)) ≥ ν = m−1−c =
1

poly(n)
.

gives

t = nµ+O(
√
n log n).

Therefore, we get

Eθa e−θa(T−na)1(T ≥ na) =
1 + o(1)√

2θκ′′(θa)nθa
=

O(1)√
log n

,

which together with (A.5) yields

P (T ≥ na) =
e−n(aθa−κ(θa))√

log n
. (A.6)

To evaluate the ratio
P (na−A ≤ T < na)

P (T ≥ na)
,

it remains to approximate P (na−A ≤ T < na). We use the local central limit theorem to
do this. Explicitly, using the local central limit theorem, we get

P (t−A ≤ T < t) = e−n(aθa−κ(θa)) Eθa e−θa(T−na)1(na−A ≤ T < na)

≤ e−n(aθa−κ(θa)) Eθa eθaA1(na−A ≤ T < na)

= eθaAe−n(aθa−κ(θa)) Pθa(na−A ≤ T < na)

= eθaAe−n(aθa−κ(θa))
(

A√
2θnσa

+ o(1/
√
n)

)
= (1 + o(1))

AeθaAe−n(aθa−κ(θa))√
2θnσa

,

(A.7)

where σa is the standard deviation of ζ tilted at θa. That is, σa =
√

Varθa ζ = σ + o(1).
Finally, combing (A.6) and (A.7) gives

P (na−A ≤ T < na)

P (T ≥ na)
≤ O(1)

√
log n

n
.

As such, we can choose

η = O(1)

√
log n

n
.
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An example of p-value computation from [61, 65]. Now we show that the contingency table
example in Section 2.2 does not give p-values that are (η, ν)-sensitive with some η, ν → 0
even if n → ∞. In particular, we focus on two adjacent tables as shown in Table 1. The
χ2-statistic of the left table is

χ2
L = 0

because a× (n/2− a)− a× (n/2− a) = 0 and, as a consequence, the corresponding p-value
is

pL ≈ P(χ2
1 ≥ χ2

L) = 1.

Next, for the right table the statistic equals

χ2
R =

[(a+ 1)(n/2− a)− a(n/2− a− 1)]2

n

×
[

1
n
2 (2a+ 1)

+
1

n
2 (2a+ 1)

+
1

n
2 (n− 2a− 1)

+
1

n
2 (n− 2a− 1)

]
=
n

4
×
[

1
n
2 (2a+ 1)

+
1

n
2 (2a+ 1)

+
1

n
2 (n− 2a− 1)

+
1

n
2 (n− 2a− 1)

]
=

1

2

[
1

2a+ 1
+

1

2a+ 1
+

1

n− 2a− 1
+

1

n− 2a− 1

]
=

1

2a+ 1
+

1

n− 2a− 1
.

Now, assuming 5 ≤ a� n, we get

χ2
R =

1

2a+ 1
+ o(1),

leading to

pR ≈ P(χ2
1 ≥ χ2

R) ≈ 2Φ

(
− 1√

2a+ 1

)
.

Thus, in this example both pR and pL are bounded below away from 0 and the ratio

2Φ
(
− 1√

2a+1

)
does not tend to 1 as n→∞. As a consequence of this, it is impossible to

have both vanishing η and ν for this p-value computation.

Proof of Theorem 3. The PrivateBHq procedure acts on the intermediate results

(i1, θ̃i1), . . . , (ik, θ̃ik)

provided by the peeling. Hence, Lemma 2.8 implies that it suffices to establish the (ε, δ)-
differential privacy for peeling as a part of PrivateBHq. By Lemma 2.4, each Private Min
in peeling is ( 2ε√

10k log(1/δ)
, 0)-differentially private. Then Lemma 2.9 immediately asserts

that peeling preserves (ε̃, δ)-differential privacy, where

ε̃ =
2ε√

10k log(1/δ)

√
2k log(1/δ) + k

2ε√
10k log(1/δ)

(e
2ε√

10k log(1/δ) − 1)

=
2ε√

5
+

2ε
√
k√

10 log(1/δ)
(e

2ε√
10k log(1/δ) − 1).

(A.8)
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Recognizing that 2ε√
10k log(1/δ)

≤ 0.0659 under the assumptions ε ≤ 0.5, δ ≤ 0.1 and k ≥ 10,

we get

2ε
√
k√

10 log(1/δ)

[
e

2ε√
10k log(1/δ) − 1

]
≤ 2ε

√
k√

10 log(1/δ)
× 1.034× 2ε√

10k log(1/δ)

≤ 0.0899ε.

Substituting this line into (A.8) yields ε̃ ≤ 2ε/
√

5 + 0.0899ε ≤ ε, as desired.

Proof of Lemma 3.2. The proof is similar to that of Example 5.6.1 in [20]. By scaling, assume
that ξi are exponential random variables with parameter 1, i.e, E ξi = 1. Note that Wj is
measurable with respect to Fj . In the proof, we first consider the conditional expectation

E(W−1j |Fj+1), then return to E(Wj |Fj+1) by applying Jensen’s inequality. Specifically, we
have

E
[

ξl
jTm+1

∣∣Fj+1

]
=

1

jTm+1
E(ξl|Fj+1)

because Tm+1 is measurable in Fj+1. Next, observe that by symmetry we get

E(ξl|Fj+1) = E(ξk|Fj+1)

for any l, k ≤ j + 1. Combining the last two displays gives

E
[

Tj
jTm+1

∣∣Fj+1

]
= E

[
Tj

(j + 1)Tm+1

∣∣Fj+1

]
+

j∑
l=1

E
[

ξl
j(j + 1)Tm+1

∣∣Fj+1

]

= E
[

Tj
(j + 1)Tm+1

∣∣Fj+1

]
+

j∑
l=1

E
[

ξj+1

j(j + 1)Tm+1

∣∣Fj+1

]
= E

[
Tj+1

(j + 1)Tm+1

∣∣Fj+1

]
=

Tj+1

(j + 1)Tm+1
.

To complete the proof, note that Jensen’s inequality asserts that

E(Wj |Fj+1) ≥
1

E(W−1j |Fj+1)
=

(j + 1)Tm+1

Tj+1
= Wj+1 ,

as desired.

Proof of Theorem 2. In addition to the proof sketch in Section 3.2, it remains to show that

1

q
E
[

j?

j? + max{dmU(j?)/qe − j?, 0}

]
→ Ck

as q → 0,m→∞,m−m0 →∞ and m0/m→ 1. Since j? = OP(1) and mU(j?) is bounded

below away from 0 as m0 →∞ and m0/m→ 1, one can show that1

max{dmU(j?)/qe − j?, 0} = mU(j?)/q − j? +OP(1).

1One needs to ensure that m−m0 is larger than max{dmU(j?)/qe − j?, 0} with high probability. Thus, q

should tend to 0 slowly as m−m0 →∞.
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Thus, we get

1

q
· j?

j? + max{dmU(j?)/qe − j?, 0}
=

j?

mU(j?)
+ oP(1)

= max
k≤j≤m0

j

mU(j)
+ oP(1).

By assumption, we have

E
[

max
k≤j≤m0

j

mU(j)

]
= (1 + o(1))E

[
max

k≤j≤m0

j

m0U(j)

]
→ Ck

as m0 →∞.
To complete the proof, the last step is to show that

1

q
· j?

j? + max{dmU(j?)/qe − j?, 0}
is bounded by an integrable random variable. To this end, we note that if mU(j?)/q ≥ j?,
then

1

q
· j?

j? + max{dmU(j?)/qe − j?, 0}
≤ j?

mU(j?)
,

and otherwise q ≥ mU(j?)/j
?, yielding

1

q
· j?

j? + max{dmU(j?)/qe − j?, 0}
≤ 1

q
· j?

j? + 0
≤ j?

mU(j?)
.

Note that j?

mU(j?)
is bounded by an integrable random variable by resorting the representation

using Tj .

Proof of Lemma 3.6. We first prove the case where k ≥ 3. The uniform integrability follows
if we show

sup
n≥k

E
(

max
k≤j≤n

jTn+1

nTj

)2

<∞. (A.9)

As proved by Lemma 3.2, jTn+1

nTj
is a backward submartingale for j = k, k + 1, . . . , n. Thus,

by Doob’s maximal inequality, we get

E
(

max
k≤j≤n

jTn+1

nTj

)2

≤ 4E
(
kTn+1

nTk

)2

So, the proof would be completed if we verify

sup
n≥k

E
(
kTn+1

nTk

)2

<∞.
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To this end, note that

E
k2T 2

n+1

n2T 2
k

=
k2

n2
E

(Tk + Tn+1 − Tk)2

T 2
k

=
k2

n2
E
T 2
k + 2Tk(n+ 1− k) + (n+ 1− k)2 + (n+ 1− k)

T 2
k

≤ k2

n2
E
T 2
k + 2nTk + n2

T 2
k

≤ k2

n2
+

2k2

n
E

1

Tk
+ k2 E

1

T 2
k

≤ 1 + 2kE
1

Tk
+ k2 E

1

T 2
k

,

which is finite if k ≥ 3. Thus, (A.9) holds for k ≥ 3.
Next, we turn to the case of k = 2. Recognize that

max
2≤j≤n

jTn+1

nTj
≤ 2Tn+1

nT2
+ max

3≤j≤n

jTn+1

nTj

=
2

n
+

2(Tn+1 − T2)
nT2

+ max
3≤j≤n

jTn+1

nTj

Since 2
n and max3≤j≤n

jTn+1

nTj
are both uniformly integrable, it is sufficiently to show the

uniform integrability of 2(Tn+1−T2)
nT2

for n ≥ 2. To this end, note that

E
[

2(Tn+1 − T2)
nT2

]1.5
=

21.5

n1.5
E(Tn+1 − T2)1.5 ET−1.52

≤ 21.5

n1.5
[
E(Tn+1 − T2)2

] 3
4 ET−1.52

=
21.5

n1.5
[
(n− 1)2 + n− 1

] 3
4 ET−1.52

< 21.5 ET−1.52 ,

which is finite. The proof is complete.

Proof of Lemma 4.2. We first consider part one. Note that

P
(
Zj ≤ −λ log

n

2α

)
=

1

2
× 2α

n
=
α

n
. (A.10)

Hence, taking a union bound, we get

P
(

all Zj > −λ log
n

2α

)
= 1− P

(
minZj ≤ −λ log

n

2α

)
≥ 1−

n∑
j=1

P
(
Zj ≤ −λ log

n

2α

)
= 1− nα

n
= 1− α.
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The proof of part two is the follows the same reasoning except using

P
(
|Zj | ≥ λ log

n

α

)
=
α

n

in place of (A.10).

Proof of Theorem 6. In the proof below, we replace the assumption on the nominal level
with the relaxed assumption that q ≥ 6m−1.5. Let 0 < α,α′ < 1 be specified later.
Denote by R′SD = min{RSD,m

′} and let pj1 , . . . , pjR′
SD

be the R′SD smallest p-values. By the

construction of the step-down procedure, we get

max{pj1 , . . . , pjR′
SD
} ≤

qR′SD
m

.

First, we point out that the first R′SD selections (without added noise) in the peeling stage
of PrivateBHq, denoted as θi1 , . . . , θiR′

SD
, obey

max{θi1 , . . . , θiR′
SD
} ≤ log

qR′SD
m

+ 2λ log
m2

α
(A.11)

with probability at least 1− α. To show this, we recognize that, with probability at least
1− α, all the mm′ noise terms added by PrivateBHq are bounded in absolute value by

λ log
mm′

α
≤ λ log

m2

α
(A.12)

by using Lemma 4.2. Now, consider the lthe step of invoking the peeling, where 1 ≤ l ≤ R′SD.
Note that at least one of θj1 , . . . , θjR′

SD
remains on the list. Hence, at least one candidate for

Report Noisy Min is no greater than

log max

{
qR′SD
m

, ν

}
+ λ log

m2

α
= log

qR′SD
m

+ λ log
m2

α
.

Then, it must hold that

θil + Z ′il ≤ log
qR′SD
m

+ λ log
m2

α
,

where on the event (A.12) Z ′il ≥ −λ log m2

α . Therefore, we get

θil ≤ log
qR′SD
m

+ 2λ log
m2

α
,

thus confirming (A.11).
With added noise, the counts satisfy

θ̃il ≤ log
qR′SD
m

+ 2λ log
m2

α
+ λ log

m′

2α′

≤ − log
m

qR′SD
+ 2λ log

m2

α
+ λ log

m

2α′

(A.13)

with probability at least 1− α− α′ for all l = 1, . . . , R′SD. Next, take

2λ log
m2

α
+ λ log

m

2α′
≤

16η
√
k log(1/δ) logm

ε
(A.14)
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as given for the moment. Then, from (A.13) we get

θ̃il ≤ − log
m

qR′SD
+

16η
√
k log(1/δ) logm

ε
(A.15)

for all i = 1, . . . , R′SD with probability at least 1− α − α′. Now, we turn to verify (A.14),
which is equivalent to

2 log
m2

α
+ log

m

2α′
≤ 16√

10
logm.

To this end, it suffices to set α = m−0.014 and α′ = m−0.029/2. Since both α, α′ → 0 as
m→∞, we see that (A.15) holds with probability tending to one.

Recognizing (A.15), to reject all of these R′SD hypotheses using PrivateBHq, it is sufficient
to have

− log
m

qR′SD
+

16η
√
k log(1/δ) logm

ε
≤ − log

m

q′R′SD
−
η
√

10k log 1
δ log 6m′

q′

ε
,

which is equivalent to

log
q′

q
≥
η
√

10k log 1
δ log 6m′

q′

ε
+

16η
√
k log(1/δ) logm

ε

=
η
√
k log(1/δ)

ε

[√
10 log

6m′

q′
+ 16 logm

]
.

(A.16)

Since q ≥ 6m−1.5, we get
√

10 log
6m′

q′
≤
√

10 log
6m

q

≤
√

10 log
6m

6m−1.5

< 8 logm.

Hence, (A.16) is implied by

log
q′

q
≥

24η
√
k log(1/δ) logm

ε
,

which is in fact an equality by assumption. Thus, the proof is complete.

Proof of Corollary 4.3. A careful look at the proof of Theorem 5 reveals that the event in
Proposition 4.1 holds with probability at least 1− q/12. As such, the bound on the FDRk

in Theorem 5 can be strengthened to (Ck + 1/12)q.
In light of the above, we set c′ such that

(Ck + 1/12)(1 + c′) = Ck + 0.1.

Then, PrivateBHq at level (1 + c′)q controls the FDRk at level (Ck + 0.1)q as ensured by
Theorem 5.

It remains to prove that the claim of Theorem 6 also holds. To this end, we only need to
show that q′ that is given in the statement of Theorem 6 is less than (1 + c′)q for sufficiently
large m,n. That is,

(1 + c′)q > q′ ≡ qe
24η
√
m′ log(1/δ) logm

ε .
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In both examples, η = n−0.5+o(1) and logm = log poly(n) = no(1). Thus, we have

e
24η
√
m′ log(1/δ) logm

ε → 0

due to m′ ≤ n1−c. Therefore, in words, PrivateBHq at level (1 + c′)q should be at least as
powerful as the truncated BHq step-down procedure with probability tending to one.

Proof of Proposition 4.4. We first prove that PrivateBonf is (ε, δ)-differentially private. To

this end, we start by observing that each θj corrupted by Lap(λ̃) noise is ε′-differentially
private, where

ε′ =
η

λ̃
=

2ε√
10m log(1/δ)

.

Using the Advanced Composition Theorem, therefore, it suffices to show that

ε′
√

2m log(1/δ) +mε′(eε
′ − 1) ≤ ε,

Under the assumptions of Theorem 3, we have

eε
′ − 1 ≤ 1.034ε′

Thus, the proof would be completed once we show

ε′
√

2m log(1/δ) + 1.034mε′2 ≤ ε,
which is equivalent to

2√
5

+ 1.034× 2ε

5 log(1/δ)
≤ 1.

This inequality can be easily verified.
Next, we turn to show the second statement. As with the proof of Theorem 5, we only

need to show that, with probability at least 1 − 0.1q, all noisy counts θj + Lap(λ̃) with
pj > q/m are above

log
q

m
−
η
√

10m log(1/δ) log(5m/q)

2ε
.

This statement is implied if m i. i. d. Lap(λ̃) noise terms are all above −η
√

10m log(1/δ) log(5m/q)

2ε
with probability at least 1− 0.1q. This claim is true by invoking Lemma 4.2.

Appendix B. More Simulation Results

B.1. Comparions of FDRk-controlling procedures with others. In this section, we
follow the setting of Figures 2 and 3, and compare the FDRk and power of a step-up
procedure [52, 54], PrivateBHq, and PrivateBonf. Specifically, we consider the case of k = 3,
and use the critical values

qj =

(
qmax{j, k}

m

k−1∏
i=1

i

m−max{j, k}+ i

) 1
k

for j = 1, . . . ,m, where k = 3 (see Eqn. (5.3) in [54]). For simplicity, we refer to this
procedure as BHqk. Figures 4 and 5 display the results.
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Figure 4. The FDR of BHqk, PrivateBHq, and PrivateBonf, plotted against
varying ε, η, µ,m1, respectively, and averaged over 100 independent replicates.

B.2. BHq under Negative Dependence. This section features three simulated examples
with certain negative dependence between the true null and false null test statistics. The
simulation results empirically show that the BHq step-up procedure controls FDR2 and
FDR5, and this is consistent with Theorem 1. Throughout, N0 with cardinality m0 and N1

with cardinality m1 ≡ m−m0 denote the set of true null hypotheses and the set of false
null hypotheses, respectively.

Example B.1 (Multivariate Normal). Consider observing X ∼ N (µ,Σ). The covariance
Σ is constructed as follows: Σii = 1 for all 1 ≤ i ≤ m, Σij = 0 if i 6= j and both i, j ∈ N0

or i, j ∈ N1, and Σij = −1/
√
m0m1 if one of i, j belongs to N0 and the other belongs to

N1 (if this value is set to be smaller than −1/
√
m0m1, the covariance Σ is not positive

semidefinite). The distribution of X satisfies the IWN condition and, therefore, Theorem
1 guarantees FDR control of the BHq procedure used to test µi = 0 against the one-sided
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Figure 5. The power of BHqk, PrivateBHq, and PrivateBonf, plotted against
varying ε, η, µ,m1, respectively, and averaged over 100 independent replicates.

alternative µi > 0. In contrast, the results of [7] are not applicable because the PRDS
property does not hold due to −1/

√
m0m1 < 0. Furthermore, Theorem 1 is still valid for

testing against the two-sided alternatives µi 6= 0. In general, the PRDS property is not
satisfied for two-sided tests (see discussion in Section 3.1 of [7]).

Figure 6 presents the empirical FDR,FDR2, and FDR5 of the BHq procedure for both
one-sided and two-sided alternatives in this example and, in addition, the bound Ckθ0q in
Theorem 1 for k = 2, 5 in dashed lines. As predicted by Theorem 1, the empirical FDR2

and FDR5 are indeed below their corresponding dashed lines. In fact, the empirical values
are much below the bounds in Theorem 1, which are derived by assuming a least favorable
dependence structure between the nulls and non-nulls. This pattern is also observed in the
following two plots. Moreover, these empirical error rates decrease eventually as the number
of true effects m1 increases, which reflects the presence of the true null proportion θ0 in
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the bound Ckθ0q. Notably, this bound can be smaller than the nominal level q if m1 is
sufficiently large.
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(b) two-sided tests

Figure 6. FDRk of the BHq for k = 1, 2, 5 in Example B.1, with level
q = 0.1. The FDR1 is just the usual FDR. We set m to 1000, vary m1

from 50 to 500, and let µi = 2 for 1 ≤ i ≤ m1 and µi = 0 otherwise. The
covariance matrix Σ has ones on the diagonal; Σij = Σji = −1/

√
m0m1 for

all 1 ≤ i ≤ m1 and m1 + 1 ≤ j ≤ m; all the rest entries are zero. The results
are averaged over 100 replicates. The upper and lower dashed lines denote
the bounds C2θ0q and C5θ0q, respectively.

Example B.2 (Multivariate t-Distribution with Different Denominators). Consider observ-

ing i. i. d. vectors X(1), . . . , X(n) from N (µ,Σ), where both µ and Σ are the same as the
previous example. To test µi = 0 against µi > 0 or µi 6= 0, we use the t-test statistics

ti =

√
nX̄i√

1
n−1

∑n
l=1(X

(l)
i − X̄i)2

,

where X̄i = (X
(1)
i + · · ·+ X

(n)
i )/n for i = 1, . . . ,m. As earlier, Theorem 1 applies to this

example, as opposed to the existing FDR literature, which fails to ensure FDR control of
the BHq procedure in this example.

Numerical results for Example B.2 are displayed in Figure 7. The setup follows Example
B.1, with n being set to 10. While the behavior of the BHq procedure in Figure 6 basically
remains the same in the present plot, we wish to point out that the effect of the true
null proportion θ0 is more pronounced in the present simulation study and the three error
rates coincide exactly once m1 exceeds 100 as the BHq in this setting always rejects a
substantial number of true nulls. The latter shows the difference between the FDR and
FDRk is inconsequential in this example.

Example B.3 (Multivariate Normal with Block-Diagonal Covariance). Consider bivariate

normal variables Xi, X̃i with means µi = 0 and µ̃i 6= 0, respectively, for i = 1, . . . ,m. Let
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Figure 7. FDRk of the BHq for k = 1, 2, 5 in Example B.2, with level
q = 0.1. The experimental setup is the same as Figure 6. The parameter n
is set to 10.

VarXi = Var X̃i = 1 for all i and the m pairs (Xi, X̃i) be jointly independent. Thus, the 2m
normal variables exhibit a diagonal-block covariance matrix that is formed by m 2× 2 blocks

on the diagonal. The correlation corr(Xi, X̃i) within every block varies from −1 to −0.1.
Note that there are m true nulls among the 2m hypotheses and, therefore, θ0 = 0.5. The
IWN condition is satisfied because all true nulls are located in different blocks. Consequently,
the BHq procedure maintains FDRk control in this example by applying Theorem 1, as
opposed to existing results in the literature, which to our knowledge are not capable of
confirming the FDR control for this example. Moreover, the usual FDR control follows from
Theorem 1 as a corollary, whose proof can be found in the appendix. As an appealing feature
of this result, the dependence within each block can be arbitrary and even be different across
blocks.

Corollary B.4 . Fix 0 < q < 1. Assume that {1 ≤ i ≤ m : µ̃i ≥ c1}/m ≥ c2 for positive
constants c1, c2 in Example B.3. For both one-sided and two-sided alternatives, the BHq
procedure controls the usual FDR in an asymptotic sense. That is, as m → ∞, we get
FDR ≤ (1 + om(1))q.

The numerical results are summarized in Figure 8. Note that the three FDR variants co-
incide through the range of within-block correlations. Interestingly, the bound corresponding
to k = 5 (the lower dashed line) is below the nominal level q = 0.1.

Proof of Corollary B.4. The proof idea is to apply Theorem 1 or Corollary 1.3 and recognize
the number of rejections R in Example B.3 tends to infinity. We only consider the case of
one-sided alternatives and the proof of the two-sided alternatives case is very similar.
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Figure 8. FDRk of the BHq for k = 1, 2, 5 in Example B.3, with level
q = 0.1. Here, m is set to 5000, µ̃i is set to 1.5 for all i. Note that the true
null proportion θ0 = 0.5. All points represent the average of 100 independent

runs. The correlation between Xi and X̃i is set to be the same across all i,
varying from −1 to −0.1.

Assume for the moment that R→∞ with probability tending to one as m→∞. Then,
we have

|FDP− FDPk| =
V 1V <k

max{R, 1}

≤ k − 1

max{R, 1}
= oP(1).

Thus, from Theorem 1, we get

FDR = FDRk + om(1)

≤ Ckθ0q + om(1)

≤ Ckq + om(1).

(B.1)

Letting k →∞, one gets Ck → 1. Thus, from (B.1) it follows that

FDR ≤ q + om(1).

Now, we aim to complete the proof by showing R→∞ in probability. In fact, it will be
shown that P(R ≥ b

√
me)→ 1. By the construction of the step-up procedure, R ≥ b

√
mc if

#

{
i : Φ(−Xi) ≤

qb
√
mc

2m

}
+ #

{
i : Φ(−X̃i) ≤

qb
√
mc

2m

}
≥ b
√
mc,

which is implied by

#

{
i : Φ(−X̃i) ≤

qb
√
mc

2m

}
≥ b
√
mc. (B.2)
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Now, we aim to show (B.2) holds with probability tending to one. Denote by A = {i : µ̃i ≥
c1}, which, by assumption, satisfies #A ≥ c2m. Consider Wi := X̃i − µ̃i ∼ N (0, 1) for i ∈ A
and let W(1) ≥ · · · ≥W(#A) be the order statistics. Note that (B.2) simply follows from

Φ
(
−c1 −W(b

√
mc)

)
≤ qb

√
mc

2m
,

which is equivalent to

− c1 −W(b
√
mc) ≤ Φ−1

(
qb
√
mc

2m

)
. (B.3)

To prove (B.3), we make two observations:

Φ−1
(
qb
√
mc

2m

)
= −

√
2 log

2m

qb
√
mc

+ o(1) (B.4)

W(b
√
mc) =

√
2 log

#A

b
√
mc

+ oP(1) (B.5)

as both qb
√
mc/(2m) tends to zero and #A/b

√
mc diverges to infinity. Above, (B.4) is a

standard result and a proof of (B.5) can be found in Chapter 2 of [17]. Hence, it suffices to
show

−c1
2
−
√

2 log
c2m

b
√
mc
≤ −

√
2 log

2m

qb
√
mc

for sufficiently large m, which is true since√
2 log

c2m

b
√
mc
−

√
2 log

2m

qb
√
mc

=
√

logm+ 2 log c2 + o(1)−
√

logm+ 2 log(2/q) + o(1)

=
√

logm+ o(1)−
√

logm− o(1)

= o(1).
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