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Abstract. Local differential privacy is a widely studied restriction on distributed algo-
rithms that collect aggregates about sensitive user data, and is now deployed in several
large systems. We initiate a systematic study of a fundamental limitation of locally differ-
entially private protocols: they are highly vulnerable to adversarial manipulation. While any
algorithm can be manipulated by adversaries who lie about their inputs, we show that any
noninteractive locally differentially private protocol can be manipulated to a much greater
extent—when the privacy level is high, or the domain size is large, a small fraction of users
in the protocol can completely obscure the distribution of the honest users’ input. We also
construct protocols that are optimally robust to manipulation for a variety of common
tasks in local differential privacy. Finally, we give simple experiments validating our theo-
retical results, and demonstrating that protocols that are optimal without manipulation
can have dramatically different levels of robustness to manipulation. Our results suggest
caution when deploying local differential privacy and reinforce the importance of efficient
cryptographic techniques for the distributed emulation of centrally differentially private
mechanisms.

1. Introduction

Many companies rely on aggregates and models computed on sensitive user data. The past
few years have seen a wave of deployments of systems for collecting sensitive user data via
local differential privacy (Evfimievski et al., 2003), notably Google’s RAPPOR (Erlingsson
et al., 2014) and Apple’s deployment in iOS (Apple Differential Privacy Team, 2017). These
protocols satisfy differential privacy (Dwork et al., 2006b), a widely studied restriction that
limits the information leaked due to any one user’s presence in the data. Furthermore, the
privacy guarantee is enforced locally, by a user’s device, without reliance on the correctness
of other parts of the system. See Figure 1 for a diagram.
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Local differential privacy is attractive for deployments for several reasons. The trust
assumptions are relatively weak and easily explainable to novice users. In contrast to
centralized differential privacy, the data collector never collects raw data, reducing the
legal, ethical, and technical burden of safeguarding the data. Moreover, local protocols are
typically simple and highly efficient in terms of communication and computation.

Figure 1: The structure of a (noninteractive) local protocol.

Despite these benefits, local protocols have significant limitations when compared to
private algorithms in the central model, in which data are collected and processed by a trusted
curator. The most discussed limitation is larger error for the same level of privacy (e.g.
Dwork et al., 2006b; Kasiviswanathan et al., 2008; Beimel et al., 2011). In this paper, we
initiate a systematic study of a different limitation that we show to be equally fundamental:

Locally differentially private protocols are highly vulnerable to manipulation.

While any algorithm can be manipulated by users who lie about their data, we demon-
strate that local algorithms can be manipulated to a far greater extent. As the level of privacy
or the size of the input domain increase, an adversary who corrupts a vanishing fraction of
the users can effectively prevent the protocol from collecting any useful information about
the data of the honest users. This result can be interpreted as showing that local differential
privacy opens up new, more powerful avenues for poisoning attacks—poisoning the private
messages can be far more destructive than poisoning the data itself.

Various attackers might be able to exploit this vulnerability to manipulation for nefarious
purposes. In particular, if a company is using locally differentially private protocols to collect
user data that it then uses to improve its product, then its rivals would have an incentive to
exploit these vulnerabilities to gain a competitive edge. If the goal is distribution estimation,
our work implies that the rival only needs to corrupt a small fraction of users to highly skew
the estimate in statistical distance. Furthermore, we find a setting where estimates can be
vulnerable to a small number of corruptions.

Prior work had already noted that a specific protocol—randomized response (Warner,
1965)—is vulnerable to manipulation (Ambainis et al., 2004; Moran and Naor, 2006).
A concurrent and independent work (Cao et al., 2019) gives an empirical study of the
effectiveness of natural manipulation attacks against common protocols. In contrast, we
show that manipulation is unavoidable for any noninteractive local protocol that solves any
one of a few basic problems to sufficiently high accuracy, and systematically identify the
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optimal degree of manipulation for each problem. These problems capture computing means
and histograms, identifying heavy-hitters, and estimating the distribution of users’ data. In
particular, our work is the first to identify the domain size as a key factor in determining
how vulnerable local protocols must be to manipulation. We also give simple experiments
validating our theoretical findings. In addition, these experiments show that two protocols
that have exactly identical error absent manipulation can nonetheless have dramatically
different performance in the presence of manipulation.

Our results suggest caution when deploying locally differentially private protocols: the
architecture is inherently vulnerable to manipulation. One way to remedy this is to introduce
some mechanism that enforces the correctness of users’ randomization, such as physical
constraints or an interactivity requirement (Moran and Naor, 2006; Ambainis et al., 2004).
Our work also reinforces the importance of efficient cryptographic techniques that emulate
central-model algorithms in a distributed setting, such as multiparty computation (Dwork
et al., 2006a) or shuffling (Bittau et al., 2017; Cheu et al., 2019). Such protocols already
have significant accuracy benefits, and our results highlight their much greater resilience to
manipulation.

1.1. Why are Local Protocols Vulnerable to Manipulation? Intuitively, because
local differential privacy requires that each user’s message is almost independent of their
data, large changes in the users’ data induce only small changes in the distribution of
the messages. As a result, the aggregator must be highly sensitive to small changes in
the distribution of messages. That is, an adversary who can cause small changes in the
distribution of messages can make the messages appear as if they came from users with very
different data, forcing the aggregator to change its output dramatically.

We can see how this occurs using the classic randomized response protocol. Here, each
user’s has data xi ∈ {±1} and the objective is to estimate the mean 1

n

∑n
i=1 xi. For roughly

2ε-local differential privacy, each user outputs

yi =

{
xi with probability 1+ε

2

−xi with probability 1−ε
2

so that E[yi] = εxi. The aggregator computes an unbiased estimate of the mean by returning
1
n

∑n
i=1

yi
ε .

In order to extract the relatively weak signal and make the estimate unbiased, the
aggregator scales up each message yi by a factor of 1

ε , which increases the influence of each
message. This means that an adversary who can flip m of the messages yi from −1 to +1
will increase the aggregator’s output by 2m

εn . A simple consequence of our work is that any
noninteractive LDP protocol for computing the average of bits is similarly vulnerable to
manipulation.

1.2. Frequency Estimation: A Representative Example. We can more fully illustrate
our work results through the example of frequency estimation. Consider a protocol whose
goal is to collect the frequency of words typed by users on their keyboard. We assume that
there are n users, and each user contributes only a single word to the dataset, so each user’s
word is an element of [d] = {1, . . . , d} where d is the size of the dictionary. The goal of the
protocol is to estimate the vector consisting of the frequency of each word as accurately as
possible. In this example, we measure accuracy in the `1 norm (or, equivalently, in statistical
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distance or total variation distance): if v ∈ Rd is the frequency vector whose entries vj are
the fraction of users whose data takes the value j, and v̂ is the estimated frequency vector,

then the error is ‖v − v̂‖1 =
∑d

j=1 |vj − v̂j |.
Baseline Attacks. In order for the attack to be a concern, the adversary has to be able
to introduce more error than what would otherwise exist in the protocol, and the attack
should be specific to local differential privacy. In particular, we say the attack is nontrivial
if it introduces more error than the following trivial baselines:

No Manipulation. The adversary could choose not to manipulate the messages at all, in
which case the protocol will still incur some error due to the fact that it must ensure local
differential privacy. For example, it is known that an optimal ε-differentially private local
protocol for frequency estimation introduces error ≈

√
d2/ε2n (Duchi et al., 2013b).

Figure 2: An input-manipulation at-
tack.

Input Manipulation. The adversary could
have the corrupted users change only their
inputs. That is, the corrupted users could
honestly carry out the protocol as if their data
were some arbitrary x′i instead of xi (see Fig-
ure 2). Since the corrupted users control an
m/n fraction of the data, they can skew the
overall distribution by m/n. This attack ap-
plies to any protocol, private or not.

These baselines make sense in the context
of any task, and we will use the bounds for
these baselines to calibrate the effectiveness of
attacks for other problems (not just frequency
estimation) in the next section.

Our Work: Manipulation Attacks. We consider a general attack model where the adversary
is able to corrupt a set of m out of the n users’ devices, and can instruct these users to
send arbitrary messages, possibly in a coordinated fashion; we visualize this model in Figure
3. The corruptions are unknown to the aggregator running the protocol to prevent the
aggregator from ignoring the messages of the corrupted users. In this, and all of our examples,
the adversary’s goal is to make the error as large as possible—exactly opposite to the goal
of the protocol.

In Section 4, we describe and analyze an attack that skews the overall distribution by

≈ m
√
d

εn , for any noninteractive ε-differentially private local protocol. This attack introduces

much larger error—by about a
√
d
ε factor—than input manipulation, and thus shows specifi-

cally that locally private protocols are highly vulnerable to manipulation. We also show our
attack is near-optimal by giving a protocol that achieves optimal error in the absence of

manipulation and cannot be manipulated by more than ≈ m
√
d

εn .
For comparison, an adversary of a centrally private algorithm is limited to input

manipulation. This is because each user communicates their data noiselessly: in the mean
estimation example, the aggregator has no need to increase the influence of each user.
Additionally, techniques that simulate centrally private algorithms in a distributed setting
such as multiparty computation and shuffling can inherit this resilience.
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Figure 3: A general manipulation at-
tack.

Measuring the Effectiveness of Attacks. In
this work we establish tight upper and lower
bounds on the error introduced by manipula-
tion in terms of the parameters n,m, ε, and
d. To reduce the number of parameters, and
facilitate easier comparisons to the baseline
attacks, we have identified two key thresholds
that we can use to understand the effectiveness
of manipulation attacks for a given task.

The first is what we call the breakdown
point, which is the minimum fraction of users
at which the protocol can no longer guarantee
non-trivial accuracy. For all problems we con-
sider, the accuracy is non-trivial if it is smaller
than some fixed constant (where the choice of constant will not affect the asymptotic bounds).
Our attack demonstrates that, for frequency estimation, the breakdown point is roughly ε√

d
.

That is, that this number of corrupted users can skew the distribution by Ω(1) in `1 norm,
while any two frequency vectors have `1 distance at most 2. Thus, when ε is small or d is
large, an attacker controlling a vanishing fraction of the users can prevent the protocol from
achieving any nontrivial accuracy guarantee.

The second threshold is what we call the significance point, which is the minimum
fraction of users that can increase the error significantly beyond the error necessary to
solve the problem absent manipulation. That is, the corrupted users can introduce error
on the same order as the error of an optimal protocol with no manipulation. For the
frequency estimation problem, the optimal error absent manipulation is

√
d2/ε2n, and thus

the significance point is
√
d/n.

1.3. Summary of Results: Lower Bounds. In this work, we construct two manipulation
attacks on locally differentially private protocols, and use these attacks to derive lower
bounds on the degree of manipulation allowed by local protocols for a variety of tasks
(including the frequency estimation example above). We also study the resilience of specific
protocols to manipulation. For each problem, we give a protocol that is asymptotically
optimal with respect to both ordinary accuracy (i.e., without manipulation) and resilience
to manipulation. We also show that popular protocols for most tasks are much less resistant
to manipulation than optimal ones.

Below, we first discuss the attacks informally, and then discuss the set of problems to
which they apply. We defer details of the attack model to Section 2.2. Our results are
summarized in Table 1.

An Attack for Binary Data. Our first attack concerns the simplest problem in local differential
privacy—computing a mean of bits. Each user has data xi ∈ {0, 1}, and we assume that
each xi is drawn independently from the Bernoulli distribution Ber(p), meaning xi = 1
with probability p and xi = 0 with probability 1− p. Our goal is to estimate the mean p
as accurately as possible. More generally, we could allow the users to have arbitrary data
x1, . . . , xn ∈ {0, 1} and try to estimate 1

n

∑n
i=1 xi. For the purposes of attacks, considering

the distributional version only makes our results stronger.
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Without manipulation, this problem is solved by the classical randomized response
protocol (Warner, 1965), which achieves optimal error Θ( 1

ε
√
n

). As we discussed in the

introduction, one can show that the error of randomized response increases to Θ( 1
ε
√
n

+ m
εn)

when an adversary corrupts m of the users. We show that no protocol can improve this
bound.

Theorem 1.1 (Informal). For every ε-differentially private local protocol Π for n users with
input domain {0, 1}, there is an attack M corrupting m users such that Π cannot distinguish
between the following cases:

(1) The data is drawn from Ber(p0) for p0 = 1
2 and Π has been manipulated by M .

(2) The data is drawn from Ber(p1) for p1 = 1
2 + Θ(1ε ( 1√

n
+ m

n )) and Π has not been

manipulated.

This theorem—combined with existing lower bounds for locally differentially private
estimation—shows that, when the data is drawn from Ber(p) for unknown p, no protocol
Π can estimate p and guarantee accuracy better than Θ( 1

ε
√
n

+ m
εn). As an immediate

consequence, when the data x1, . . . , xn ∈ {0, 1} may be arbitrary, no protocol Π can estimate
the mean 1

n

∑
i xi with significantly better accuracy. Concretely, the eε+1

eε−1 ·
m
2n error due to

manipulation is within a factor of 4 of the upper bound that can be proved for randomized
response. We have not attempted to optimize this constant factor, and we would conjecture
that randomized response has exactly optimal robustness to manipulation.

Attacks for Large Domains. Since estimating the mean of bits is a special case of most
problems studied in the local model, this attack already shows that manipulation can
cause additional error of Ω(mεn) for many problems. In some cases, this bound is already
near-optimal, and some protocol achieves a similar upper bound. However, for many cases
of interest (such as the frequency estimation example), protocols become more vulnerable to
manipulation when the size of the input domain increases. Our second result is an attack on
any protocol accepting inputs from the domain [d] = {1, . . . , d} for large d, showing that

manipulation can skew the distribution by Ω̃(m
√
d

εn ) without being detected.

Theorem 1.2 (Informal). For every ε-differentially private local protocol Π for n users with
input domain [d], there is an attack M corrupting m users such that Π cannot distinguish
between the following cases:

(1) The data is drawn from the uniform distribution U over [d] and M manipulates Π.

(2) The data is drawn from some distribution P with ‖U−P‖1 = Θ(1ε

√
d

logn( 1√
n

+ m
n )) and

Π has not been manipulated.

For a class of natural protocols, the bound on ‖U−P‖1 can be sharpened to Θ(
√
d
ε ( 1√

n
+ m

n )).

A consequence of this attack for the example of frequency estimation above is that any

local protocol can have the distribution skewed by Ω̃(m
√
d

εn ). As we show in Section 5, this
bound is actually matched by a simple protocol. In order to simplify the proof and obtain
a statement that applies to arbitrary protocols, we do not optimize the constant factors
hidden by the Θ(·) notation. However, we do give proof-of-concept experiments in Section 7
showing the concrete effect of our attack on a widely studied frequency estimation protocol.
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1.4. Summary of Results: Optimal Protocols. We consider a variety of tasks of interest
in local differential privacy. For each, we show that one of the attacks above gives an optimal
bound on the vulnerability of protocols for that task. The results are summarized in Table 1.

Most tasks we consider can be formulated as instances of the following `p/`q-mean

estimation problem for vectors in Rd. 1 Each user’s data xi is a vector in Rd such that
the `p-norm of each data point is bounded, ‖xi‖p ≤ 1. The protocol’s goal is to output
an estimate of the mean µ̂ with low error in the `q-norm, ‖µ̂ − 1

n

∑n
i=1 xi‖q. Recall that

‖v‖p = (
∑

i v
p
i )

1/p and ‖v‖∞ = maxi |vi|. This setup captures a number of widely studied
problems:

• The frequency estimation example above is a special case of `1/`1 estimation, where each
user represents their word xi ∈ [d] by the standard basis vector exi ∈ Rd with a 1 in the
xi-th coordinate and 0 elsewhere.
• Computing a histogram of data in [d] is a special case of `1/`∞-mean estimation. The

heavy-hitters (HH) problem, which asks one only to identify the heaviest bins of a histogram
and their frequencies, suffices to solve `1/`∞-mean estimation, so manipulation attacks on
the latter thus imply attacks on the former. Computing heavy-hitters has been a focus of
the past few years (Hsu et al., 2012; Bassily and Smith, 2015; Bassily et al., 2017; Bun
et al., 2018), and it is central to systems deployed by Google (Erlingsson et al., 2014) and
Apple (Apple Differential Privacy Team, 2017).
• Computing the answers to d statistical queries (Kearns, 1993; Blum et al., 2005; Ka-

siviswanathan et al., 2008) is a special case of `∞/`∞-mean estimation. Users have data
in some arbitrary domain X , there are d query functions f1, . . . , fd : X → [−1, 1], and we
would like an accurate estimate of

∑n
i=1 fj(xi) for every j. In the corresponding mean

estimation instance, xi = (f1(xi), . . . , fd(xi)).
• When minimizing a sum of convex functions f(θ) =

∑n
i=1 fxi(θ) defined by the users’

data (e.g. to train a machine learning model), one often computes the average gradient∑n
i=1∇fxi(θt) at a sequence of points θt. Typically one assumes that the gradients are

bounded in `2, and convergence requires an accurate estimate in `2, making this an
instance of `2/`2-mean estimation. (More generally, optimization requires this sort of
estimation (Bassily et al., 2014)).
• We study one further problem, `1/`1-uniformity testing, for which Acharya et al. (2019)

gave optimal LDP protocols. Assuming the data is drawn from some distribution over
[d], we want to determine if this distribution is either uniform or is far from uniform in `1
distance.

Since every `p/`q mean estimation problem generalizes binary mean estimation (the
special case where d = 1), our first attack gives a lower bound on all of these problems.
Our second attack is precisely an attack on the `1/`1-testing problem, and thus implies a

lower bound of Ω̃(m
√
d

εn ) for that problem. Finally, since the `1/`1-mean estimation problem
strictly generalizes `1/`1-testing problem—once we estimate the mean, we can determine if it
is close to uniform or far from uniform—we obtain the same lower bound for that problem.

Resilient Protocols. While all of our optimal protocols were known prior to our work, we
demonstrate that the choice of protocol is crucial. Some well known protocols with optimal
accuracy absent manipulation allow for much greater manipulation than necessary. For

1Given any vector v ∈ Rd and any p ≥ 1, the `p-norm is defined as ‖x‖p = (
∑d

j=1 |xj |p)1/p. For p =∞,

the `∞ norm is defined as maxj=1,...,d |xj |.
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Problem No Manipulation Manipulation Breakdown Pt. Significance Pt.

Õ(mn ·
√
d
ε )

O

(
ε
√

logn
d

)
O

(√
d logn
n

)
`1/`1 Estimation Θ

(√
d2

ε2n

)
Thm 5.7

(Freq. Estimation) (Duchi et al., 2013b) Ω(mn ·
√
d

ε
√
logn

)

Thm 4.10 *

O(mn ·
√
d
ε )

O

(
ε
√

logn
d

)
O

(√
logn
n

)
`1/`1 Testing Θ

(√
d
ε2n

)
Thm 5.9

(Uniformity Testing) (Acharya et al., 2019) Ω(mn ·
√
d

ε
√
logn

)

Thm 4.9 *

O(mn ·
1
ε )

O(ε) O

(√
log d
n

)
`1/`∞ Estimation Θ

(√
log d
ε2n

)
Thm 5.4

(Histograms / HH) (Bassily and Smith, 2015) Ω(mn ·
1
ε )

Thm 3.4

O(mn ·
1
ε )

O(ε) O

(√
d log d
n

)
`∞/`∞ Estimation Θ

(√
d log d
ε2n

)
Thm 5.2 ]

(d statistical queries) [Folklore] Ω(mn ·
1
ε )

Thm 3.4

Õ(mn ·
1
ε )

O(ε) O

(√
d
n

)
`2/`2 Estimation Θ

(√
d
ε2n

)
Thm 5.8

(Gradients) (Duchi et al., 2013a) Ω(mn ·
1
ε )

Thm 3.4

Table 1: Summary of Results, assuming ε = O(1). For each problem, we present existing results for the
optimal error under local privacy without manipulation. We also list our upper and lower bounds on
the error from manipulation attacks. ] indicates an upper bound limited to public-string-oblivious
attacks and * indicates that a

√
logn factor can be removed for a natural class of protocols. In

each case, no protocol can guarantee nontrivial accuracy in the presence of [Breakdown Point]
corrupted users. When there are [Significance Point] corrupted users, the error they introduce
eclipses the error absent manipulation.

example, the simplest adaptation of randomized response to frequency estimation, in which
each player sends one bit per potential item, allows m corrupted users to introduce error
about md/εn in a direction of their choice, which is about

√
d larger than optimal.

1.5. Overview of Techniques. Attack for Binary Data. Our argument boils down to
proving the following claim: for every ε-differentially private local protocol, there is some
attacker who corrupts each user independently with probability m

n in such a way that data
drawn from the uniform distribution over {±1} appears to have mean ≈ m

εn . To show this,
we derive the following from (Kairouz et al., 2015): for any ε-differentially private local
randomizer R and distribution Rad(µ) over {±1} with mean µ, the distribution R(Rad(µ))
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is exactly a mixture R(µ) of two distributions R+ and R− where

R(µ) ≈ 1+εµ
2 ·R+ + 1−εµ

2 ·R−.
Since the data and messages are independent and identically distributed (iid), the messages

consist of n iid samples from R(µ). If µ = 0, but an attacker corrupts each user independently
with probability m

n , and has the corrupted users send a message sampled from R+, then

the messages remain independent and consist of n messages sampled from R(µ) for µ = m
εn ,

exactly the same if there were no corruptions but µ = m
εn . Since the aggregator cannot

distinguish these two identical distributions, it must have error at least ≈ m
2εn on one of

them. Some technicalities arise in the proof because (1) the attacker has a fixed budget of
m corruptions that might be exceeded when corrupting each user independently, and (2) the
local randomizer might only satisfy (ε, δ)-differential privacy, and thus might have a slightly
more complex structure.

Attack for High-Dimensional Data. For high-dimensional data, we can show the existence
of a distribution R+ that has an even more extreme effect on the overall distribution of
messages than in the binary case. For any distribution S on the domain {1, . . . , d}, let R(S)

be the distribution on messages R(S). Let U be the uniform distribution on the domain.
We show (roughly) that for every ε-differentially private local randomizer R, there is some

distribution S supported on d/2 domain elements, such that R(U) and R(S) are only ε/
√
d

apart, and there exists an extreme distribution R+ ≈ R(U) + 1
ε (R(S) −R(U)). Thus, if we

corrupt only about an ε/
√
d fraction of users, we can make messages from R(U) look like

messages from R(S). Since S and U have distance at least 1/2, corrupting about an ε/
√
d

fraction of users is enough to make the error at least 1/2. With some rescaling we can prove
the bound that we claim for an arbitrary number of corruptions. For technical reasons,
our formal proof works by a reduction to the binary attack, in which we argue that any
ε-differentially private protocol for frequency estimation can be used to get a protocol for
binary estimation that is ≈ (ε/

√
d)-differentially private.

Optimally Robust Protocols. All of the optimally robust protocols we present have already
appeared in the literature, but had not been analyzed with respect to manipulation attacks.
However, not all protocols with optimal accuracy without manipulation have optimal
robustness to manipulation. In particular, the protocols that we show are optimally robust
use the public-coin model to reduce the amount of communication per user down to a single
bit (see e.g. Kasiviswanathan et al., 2008; Bassily and Smith, 2015), and thereby dramatically
decreases the space of possible manipulation.

1.6. Related Work. Manipulation Attacks. Prior work had already observed that the
specific randomized response protocol was vulnerable to manipulation (Ambainis et al., 2004;
Moran and Naor, 2006). In contrast to ours, these works constructed efficient cryptographic
protocols for sampling from the correct distribution, which resist our attacks. Our work shows
that some degree of cryptography is necessary to avoid manipulation. A concurrent and
independent work (Cao et al., 2019) performed an empirical study of simple manipulation
attacks on common protocols for tasks like frequency estimation and heavy-hitters. In
contrast to ours, their work does not prove any inherent limitations on the robustness of
local protocols to manipulation, nor does it establish the crucial role that the domain size
plays.
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Our work is loosely related to data poisoning attacks in adversarial machine learning.
In data poisoning, the adversary is inserts additional data to somehow degrade the quality
of the output. Our attacks can be viewed as data poisoning attacks where the “data” being
poisoned is actually the messages to the protocol. Thus, our results can be viewed as showing
that adding local randomization to achieve privacy makes the protocol much more vulnerable
to data poisoning.

Our work is also related to the literature on robust statistics. In the standard model of
robust statistics, we are given data drawn from distribution P with some structure (e.g. P
is a Gaussian distribution), but some small fraction of the data has been corrupted with
arbitrary data, and the goal is to identify the distribution P as well as possible. Our setting
is similar except that we don’t get access to the data directly, but only once its been filtered
through some set of private local randomizers. One might hope to obtain local protocols
that are robust to manipulation using techniques from robust statistical estimators on the
distribution of messages induced by the local randomizers. Our attacks can be viewed as
showing that such robust estimators don’t exist.

Cryptographic Approaches. Our work reinforces the importance of efficient cryptographic
techniques that emulate central-model algorithms in a distributed setting. Multiparty
computation (MPC) allows a network of parties to jointly execute a randomized algorithm
on encrypted or secret-shared data while exposing only the final result of the computation.
The value of simulating a differentially private computation was first highlighted in (Dwork
et al., 2006a; Beimel et al., 2011). Briefly, the MPC approach gets the accuracy of the central
model, and limits attackers to input manipulation, which is unavoidable without some outside
certification of inputs. The downside of this approach is computational efficiency. Despite
recent advances in practical MPC, applications like collecting information about mobile
data usage place extreme demands on protocols that make current solutions difficult to use.
To our knowledge, known MPC protocols either scale poorly to large networks, assume an
honest-but-curious server (e.g. Bonawitz et al., 2017), or leak extra, hard-to-reason-about
intermediate results from a computation. Although the MPC literature is too vast to survey
here, we refer the reader to a recent survey of the issues that arise in federated learning for
a (Kairouz et al., 2019) more thorough discussion of these issues.

One recent approach asks whether we can reduce important differentialy private algo-
rithms to some simple primitive which is easier to implement in MPC. For example, the
shuffled model (Bittau et al., 2017; Cheu et al., 2019; Erlingsson et al., 2019) assumes the
availability of a trusted shuffling primitive, which anonymizes the origin of the messages by
applying a secret permutation before delivering them to the aggregator. That model allows
accuracy close to that of the central model for several tasks but leaves open just how well
the shuffler can be implemented by a real protocol. On the other hand, shuffled protocols
for histograms are more resilient than counterparts in the local model. Cheu et al. (2019),
for example, give a protocol where the influence of each message is scaled by a factor close
to 1 instead of 1

ε as in the local model.
Finally, cryptographic protocols can be used in a much narrower and potentially scalable

way to ensure that local-model protocols are carried out without manipulation (see Ambainis
et al., 2004, for a protocol tailored to binary randomized response). These require some
interaction between clients and the server and retain the accuracy limitations of the local
model, but can constrain the client to simple input manipulation. Specific physical devices,
such as carefully generated scratch cards, can also provide such a guarantee (Moran and
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Naor, 2006). Current techniques for efficient MPC should suffice for wider use of such
protocols.

1.7. Organization. In Section 2 we introduce the model and key concepts. In Section 3, we
demonstrate attacks on protocols for binary data, and in Section 4, we demonstrate attacks
on protocols for large data domains. In Section 5 we identify protocols with near-optimal
resistance to manipulation for a variety of canonical problems in local differential privacy. In
Section 6 we highlight the fact that not all protocols with optimal error absent manipulation
are optimally robust to manipulation.

2. Threat Model and Preliminaries

2.1. Local Differential Privacy. In this model there are n users, and each user i ∈ [n]
holds some sensitive data xi ∈ X belonging to some data universe X . There is also a public
random string S. Finally there is a single aggregator who would like to compute some
function of the users’ data x1, . . . , xn. In this work, for simplicity, we restrict attention to
non-interactive local differential privacy, meaning the users and the aggregator engage in
the following type of protocol:

(1) A public random string S is chosen from some distribution S over support S.
(2) Each user computes a message yi ← Ri(xi, b) using a local randomizer Ri : X × S → Y.
(3) The aggregator A : Yn × S → Z computes some output z ← A(y1, . . . , yn, S).

Thus the protocol Π consists of the tuple Π = ((R1, . . . , Rn), A,S). We will sometimes write
~R to denote the local randomizers (R1, . . . , Rn). If R1 = · · · = Rn = R then we say the
protocol is symmetric and denote it Π = (R,A,S).

Given user data ~x ∈ X n we will write Π(~x) to denote the distribution of the protocol’s

output when the users’ data is ~x, and ~R(~x) denotes the distribution of the protocol’s

messages. Given a distribution P over X , we will write Π(P) and ~R(P) to denote the
resulting distributions when ~x consists of n independent samples from P.

Informally, we say that the protocol satisfies local differential privacy (Evfimievski et al.,
2003; Dwork et al., 2006b; Kasiviswanathan et al., 2008) if the local randomizers depend
only very weakly on their inputs. Formally,

Definition 2.1 (Local DP (Evfimievski et al., 2003; Dwork et al., 2006b; Kasiviswanathan
et al., 2008)). A protocol Π = ((R1, . . . , Rn), A,S) satisfies (ε, δ)-local differential privacy if
for every i ∈ [n], every x, x′ ∈ X , every S ∈ S and every Y ⊆ Y,

P
Ri

[Ri(x, S) ∈ Y ] ≤ eε · P
Ri

[
Ri(x

′, S) ∈ Y
]

+ δ

where we stress that the randomness is only over the coins of Ri. If δ = 0, we simply write
ε-local differential privacy.
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2.2. Threat Model: Manipulation Attacks. We capture manipulation attacks via a

game involving a protocol Π = (~R,A,S), a vector ~x of n data values, and an adversary M .
We parameterize the game by the number of users n and the number of corrupted users
m ≤ n, written as Manipm,n; when clear from context, the subscript is omitted. The crux
of the game is that the adversary corrupts a set C of at most m users: a member of that
set manipulates by playing some arbitrary message chosen by the adversary. Meanwhile,
any other user i plays honestly by sending the message yi = Ri(xi, S). Figure 3 presents the
structure of an attack in the case where C = {1, 2}.

The game is described in Figure 4, including a possible restriction on the attacker.
We use Manipm,n(Π, ~x,M) to denote the distribution on outputs of the protocol on data

~x and messages manipulated by M , and Manipm,n(~R, ~x,M) to denote the distribution of
messages in the protocol. Given a distribution P over X , we will use Manipm,n(Π,P,M) and

Manipm,n(~R,P,M) to denote the resulting distributions when ~x consists of n independent
samples from P.

Parameters: 0 ≤ m ≤ n.
Elements: A protocol Π = (~R,A,S) for n users, a vector of data ~x, an attacker M .

(1) Each user i is given data xi.
(2) The public string S ∼ S is sampled.
(3) The attacker M chooses a set of corrupted users C ⊆ [n] of size ≤ m.

If the corruptions are independent of the public string S then they are public-
string-oblivious, and otherwise they are public-string-adaptive.

(4) The attacker M chooses a set of messages {yi}i∈C for the corrupted users.
(5) The non-corrupted users i 6∈ C choose messages yi ∼ Ri(xi, S) honestly.
(6) The aggregator returns z ← A(y1, . . . , yn, S).

Figure 4: Manipulation Game Manipm,n

2.3. Notational Conventions. Throughout, boldface roman letters indicate distributions
(e.g. P). Vectors are denoted ~v = (v1, v2, . . . ). We write [n] to denote the set {1, . . . , n}.

We use Rad(µ) to denote the distribution over {±1} with mean µ, so P[Rad(µ) = +1] =
1+µ
2 . Note that Rad(0) is uniform on {±1}.

3. Attacks Against Protocols for Binary Data

In this section, we show how to attack any protocol that estimates the mean of a Rademacher
distribution Rad(µ). 2 In particular, we show that any such protocol has error Ω(mεn) in the
presence of m corrupt users.

We begin with the result from (Kairouz et al., 2015) that decomposes any differentially
private randomizer into a mixture of distributions:

2The choice of data universe X = {±1} simplifies the analysis but is not inherent to the results; any
binary data universe has corresponding attacks.
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Lemma 3.1 (Adapted from Kairouz et al. (2015)). If R : {±1} → Y satisfies (ε, δ)-

differential privacy, then there exist distributions R(+1), R(−1), R⊥, R> such that R(+1) and
R(−1) are mixtures between them:

R(+1) =
eε

eε + 1
· (1− δ) ·R(+1) +

1

eε + 1
· (1− δ) ·R(−1) + δ ·R⊥

R(−1) =
1

eε + 1
· (1− δ) ·R(+1) +

eε

eε + 1
· (1− δ) ·R(−1) + δ ·R>

The analysis of our attack will assume data is drawn from a distribution, so the following
corollary will be useful:

Corollary 3.2. If R : {±1} → Y satisfies (ε, δ)-differential privacy, then there exist

distributions R(+1), R(−1) such that, for all µ ∈ [−1,+1], R(Rad(µ)) is within statistical

distance δ of the mixture (12 + eε−1
eε+1 ·

µ
2 ) ·R(+1) + (12 −

eε−1
eε+1 ·

µ
2 ) ·R(−1).

Our attack, Algorithm 1 below, takes advantage of this structure of R by skewing the
mixture ratio. Hence, no aggregator can tell if messages were generated from data with large
mean or by manipulating the protocol.

Algorithm 1: A manipulation attack M
~R
m,n against any protocol using n differen-

tially private randomizers ~R

For each i ∈ [n]:

(1) Add i to C with probability m/2n.
(2) If |C| = m break the loop

For each corrupted user i ∈ C, report yi ∼ R(+1)
i .

Lemma 3.3. For any n > m > 18 and any n randomizers ~R that satisfy (ε, δ)-differential pri-

vacy, the distribution Manipm,n(~R,Rad(0),M
~R
m,n) cannot be distinguished from ~R(Rad( e

ε+1
eε−1 ·

m
2n)) with arbitrarily low probability of failure. Specifically, the statistical distance is at most
1/10 + 2nδ.

Proof. In the first part of the proof, we will argue that M
~R
m,n behaves similarly to the

alternative attack M̃
~R
m,n in which we eliminate step (2) of the for loop and choose whether

or not to corrupt each user independently. Note that this attack will not always satisfy our
budget of m corruptions, so it is not a valid attack in our model, but it is nonetheless useful

for the analysis. The second part shows that Manipm,n(~R,Rad(0), M̃
~R
m,n) is approximately

the same as having each user i independently sample from the mixture

Pi := (12 + m
4n)R

(+1)
i + (12 −

m
4n)R

(−1)
i .

The final part invokes Corollary 3.2 to approximate ~P by ~R(Rad( e
ε+1
eε−1 ·

m
2n)).

First, we claim that the statistical distance between

Manipm,n(~R,Rad(0),M
~R
m,n)

and
Manipm,n(~R,Rad(0), M̃

~R
m,n)
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is at most 1/10. These distributions only differ in the event that we hit |C| = m and stop the
loop early. This happens with probability exactly P[Bin(n,m/2n) > m], and by standard
bounds, this probability is at most 1/10 whenever m ≥ 18.

Next, we argue that the statistical distance between Manipm,n(~R,Rad(0), M̃
~R
m,n) and

~P is at most nδ. This is achieved by proving that the i-th user’s message is sampled from a
distribution within δ of Pi. Note that

Pi = m
2n ·R

(+1)
i + (1− m

2n)(12 ·R
(+1)
i + 1

2 ·R
(−1)
i ) (3.1)

Corruption status in M̃
~R
m,n is determined by a Bernoulli process with probability m

2n . If

corrupted, user i will sample from R
(+1)
i ; this corresponds to first term of (3.1). If not,

Corollary 3.2 implies that their message distribution Ri(Rad(0)) is within δ of 1
2 ·R

(+1)
i +

1
2 ·R

(−1)
i ; this corresponds to the second term of (3.1). Thus, the i-th distribution is within

δ of (3.1). Since each of the n messages are independent, the overall difference between the
distributions is at most nδ.

Finally, Corollary 3.2 implies ~R(Rad( e
ε+1
eε−1 ·

m
2n)) is within statistical distance nδ of ~P.

A consequence of Lemma 3.3 is that no private protocol can estimate both Rad(0) and
Rad( e

ε+1
eε−1 ·

m
2n) with high accuracy under manipulation.

Theorem 3.4. For any n > m > 18 and any δ < 1/20n, if Π = (~R,A) is an (ε, δ)-
differentially private local protocol for n users and with probability ≥ 95/100 it estimates
Rad( e

ε+1
eε−1 ·

m
2n) to within eε+1

eε−1 ·
m
4n , then with probability ≥ 3/4 it does not estimate Rad(0)

to within eε+1
eε−1 ·

m
4n under attack M

~R
m,n.

4. Attacks Against Protocols for Large Data Universes

In this section, we show that more powerful manipulation attacks are possible when the data
universe is [d] for d > 2. For binary data, our attack showed that for any protocol there are
two distributions U and P (i.e. Rad(0) and Rad(µ(m,n, ε)) with large statistical distance
that are indistinguishable under manipulation. Specifically, ‖U−P‖1 = Ω( 1

ε
√
n

+ m
εn) where

‖U−P‖1 denotes the `1 distance between the distributions
∑d

j=1 |U(j)−P(j)|. Here, we

show that there is an attack and a distribution P such that ‖U−P‖1 = Ω
(√

d
logn( 1

ε
√
n

+ m
εn)
)

yet U,P are indistinguishable under this attack. This construction implies lower bounds for
uniformity testing (given samples from P, determine if P = U or if ‖P−U‖1 is large) and
`1 estimation (given samples from P, report P′ such that ‖P−P′‖1 is small).

We remark that our analysis will focus on protocols that satisfy pure differential privacy.
This is essentially without loss of generality: any powerful attack against pure local privacy
implies a powerful attack against approximate local privacy. Our notion of “powerful” is
defined below.

Definition 4.1 (Powerful Attacks). Fix any α : R→ (0, 1) and γ ∈ (0, 1). A manipulation
attack M is (α, γ)-powerful against (ε, δ)-locally private protocols if, for any such protocol

Π = (~R,A), there is a distribution P over [d] where dSD(Π(P),Manipm,n(Π,U,M)) < γ,
even though ‖P−U‖1 ≥ α(ε).
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Claim 4.2. Suppose manipulation attack M is (α, γ)-powerful against (ε, 0)-locally private
protocols. Then there is an Mδ that is (αδ, γδ)-powerful against (ε, δ)-locally private protocols,
where αδ(ε) := α(2ε) and γδ := γ + 2nδ.

We prove the above in Appendix A.1. Because it is standard for δ = o(1/n), we may
launch the attack for pure differential privacy and only experience a constant-factor change
in the γ parameter.

4.1. A Family of Data Distributions. In this section, we show a particular way to
convert a Rademacher distribution into a distribution over [d]. For a given partition of [d]
into H,H where |H| = d/2, we map the value +1 to a uniform element of H and −1 to a
uniform element of H. Thus, when x ∼ Rad(µ), we obtain a corresponding random variable
x̂ over [d] whose distribution is PH,µ (see (4.1) below). Notice that estimating P[x̂ ∈ H]
implies estimating µ.

PH,µ :=

{
Uniform over H with probability 1

2 + µ
2

Uniform over H otherwise
(4.1)

The algorithm QH,R (Algorithm 2) performs the encoding of binary data x ∈ {±1} into
x̂ ∈ [d] then executes the randomizer R. Claim 4.3 is immediate from the construction.

Algorithm 2: QH,R a local randomizer for binary data

Parameters: A subset H ⊂ [d] with size d/2; a local randomizer R : [d]→ Y
Input: x ∈ {±1}
Output: y ∈ Y
If x = 1 then sample x̂ uniformly from H
Otherwise, sample x̂ uniformly from H.
Return y ∼ R(x̂)

Claim 4.3. For any local randomizer R : [d]→ Y, H ⊂ [d] with size d/2, and µ ∈ [−1,+1],
the execution of QH,R (Algorithm 2) on a value drawn from Rad(µ) is equivalent to the
execution of R on a value drawn from PH,µ:

QH,R(Rad(µ)) = R(PH,µ)

Given n randomizers ~R = (R1, . . . , Rn), let ~QH denote the vector (QH,R1 , . . . , QH,Rn).
We can immediately generalize Claim 4.3 to multiple randomizers:

Claim 4.4. For any n randomizers ~R = (R1, . . . , Rn) for data universe [d], any H ⊂ [d]

with size d/2, and µ ∈ [−1,+1], the execution of ~QH on a sample from Rad(µ) is equivalent
with the execution of R on a sample from PH,µ:

~QH(Rad(µ)) = ~R(PH,µ)



16 A. CHEU, A. SMITH, AND J. ULLMAN

4.2. The Attack. In this subsection, we describe how to attack any differentially private

protocol for d-ary data; to remove ambiguity with M
~R
m,n (Algorithm 1), the attack will be

denoted M
~R
d,m,n. As specified in Algorithm 3, the first step is to sample a uniformly random

H. We show that if all QH,R1 , . . . , QH,Rn satisfy (ε, δ) differential privacy, then this attack
inherits guarantees from the previous section. Then we show that the randomizers have
strong privacy parameters with constant probability.

We begin the analysis of M
~R
d,m,n by considering its behavior conditioned on a fixed choice

of H. This restricted form will be denoted M
~R,H
d,m,n. Then we analyze how the random choice

of H gives the desired lower bound.

Algorithm 3: An attack M
~R
d,m,n against any protocol using n differentially private

randomizers ~R for d-ary data

Sample H uniformly from all subsets of [d] with size d/2
For i ∈ [n], add i to C with probability m/2n.
If |C| > m, remove uniformly random members until |C| = m.

For each corrupted user i ∈ C, report yi ∼ Q(+1)
H,Ri

4.2.1. Analysis for fixed set H. First, we show that manipulating ~R with M
~R,H
d,m,n induces

the same distribution as if we had manipulated ~QH with M
~QH
m,n:

Claim 4.5. Fix any n randomizers ~R = (R1, . . . , Rn) for data universe [d], any m ≤ n, and
any H ⊂ [d] with size d/2. If each QH,Ri is (ε, δ)-differentially private, then for any value µ ∈
[−1,+1], the distribution Manip(~R,PH,µ,M

~R,H
d,m,n) is identical to Manip

(
~QH ,Rad(µ),M

~QH
m,n

)
Proof. To simplify the presentation, we assume that the users are sorted so that C =
{1, . . . , |C|}.

Manip
(
~R,PH,µ,M

~R,H
d,m,n

)
= (Q

(+1)
H,Ri

)i≤|C| × (Ri(PH,µ))i>|C| (By construction)

= (Q
(+1)
H,Ri

)i≤|C| × (QH,Ri(Rad(µ)))i>|C| (Claim 4.3)

= Manip
(
~QH ,Rad(µ),M

~QH
m,n

)
The final equality follows from the fact that |C| in M

~R,H
d,m,n is distributed identically with its

counterpart in M
~QH
m,n.

Claims 4.4 and 4.5 imply that we can use the analysis of M
~R
m,n to show that our new

attack M
~R,H
d,m,n is powerful, provided that (ε, δ)-privacy holds for all QH,Ri .

Lemma 4.6. Fix any n randomizers ~R, any m ≤ n, and any H ⊂ [d] with size d/2. If
each QH,Ri is (ε, δ)-differentially private, then there exists a value µ ∈ [−1,+1] such that the
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statistical distance between ~R(PH,µ) and Manip
(
~R,U,M

~R,H
m,n

)
is at most 1/10 + 2nδ even

though

‖U−PH,µ‖1 =
eε + 1

eε − 1
· m

2n
(4.2)

Proof. By Claim 4.4, ~QH(Rad(0)) = ~R(PH,0). Note that PH,0 = U. By Claim 4.5,

Manip(~R,PH,µ,M
~R,H
d,m,n) is identical to Manip

(
~QH ,Rad(µ),M

~QH
m,n

)
. So it will suffice to

bound the statistical distance between ~QH(Rad(0)) and Manip
(
~QH ,Rad(µ),M

~QH
m,n

)
for

some choice of µ. But Lemma 3.3 implies that for µ = eε+1
eε−1 ·

m
2n , the distance is 1/10 + 2nδ.

It remains to prove (4.2). When sampling x ∼ PH,µ, the probability that x = h is 1+µ
d

for each h ∈ H and 1−µ
d for each h /∈ H. Hence,

‖U−PH,µ‖1 =
d

2
·
∣∣∣∣1d − 1 + µ

d

∣∣∣∣+
d

2
·
∣∣∣∣1d − 1− µ

d

∣∣∣∣
= µ =

eε + 1

eε − 1
· m

2n

This concludes the proof.

4.2.2. Analysis for random H. Here, we analyze what a randomly selected H entails for the
privacy parameters (ε′, δ) of all QH,Ri . The analysis will essentially imply that we launch a
powerful attack with constant probability

Lemma 4.7. Fix any ε ∈ (0, 1) and any ~R where each Ri : [d] → Y is ε-differentially
private. There are constants c0, c1 such that, if d > c0 · (eε − 1)2 log n and H is drawn
uniformly from all subsets of [d] with size d/2, then the following holds with probability > 2/3
over the randomness of H: every QH,Ri specified by Algorithm 2 is (ε′, 1/360n)-differentially
private, where

ε′ = ε ·
√
c1 log n

d

This statement follows from arguments made in Appendix A.2. From Lemmas 4.6 and

4.7, we see that M
~R,H
d,m,n is (≈ m

√
d/εn, 1/9)-powerful with probability ≥ 2/3 over H.

Lemma 4.8. There are constants c0, c1 and a value µ ∈ [−1,+1] such that, for any
n > m > 18, d > c0 · (eε − 1)2 log n, and ε ∈ (0, 1), the following holds: against any ε-locally

private protocol Π = (~R,A), the attack M
~R
d,m,n chooses H with probability > 2/3 such that the

statistical distance between ~R(PH,µ) and Manip
(
~R,U,M

~R,H
d,m,n

)
is at most 1/9 even though

‖U−PH,µ‖1 ≥
c1 ·m

√
d

εn
√

log n

In the special case where there are O(1) distinct randomizers that each output O(1)-bit
messages, we can obtain an alternate version of Lemma 4.7 without the log n factor. We
perform this analysis in Appendix A.3. We will focus on the present version of Lemma 4.7
to maintain full generality.
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4.3. Applications to Testing and Estimation. From Lemma 4.8, we obtain lower bounds
on how well the manipulation attack fares against protocols for uniformity testing and
estimation.

Theorem 4.9. There are constants c0, c1 such that, for any n > m > 18, d > c0 · (eε −
1)2 log n, ε ∈ (0, 1), the following holds for any ε-locally private uniformity testing protocol

Π = (~R,A): if P[Π(P) = “not uniform”] ≥ 95/100 for all

‖U−P‖1 ≥
c1 ·m

√
d

εn
√

log n
(4.3)

then
P
[
Manip

(
Π,U,M

~R
d,m,n

)
= “not uniform”

]
> 1/2

Theorem 4.10. There are constants c0, c1 such that, for any n > m > 18, d > c0 ·
(eε − 1)2 log n, ε ∈ (0, 1), the following holds for any (ε, δ)-locally private for estimating
distributions over [d]: if P[‖Π(P)−P‖1 < α] > 95/100 for all distributions P and α ≤
c1·m

√
d

εn
√
logn

, then

P
[∥∥∥Manip

(
Π,U,M

~R
d,m,n

)
−U

∥∥∥
1
≥ α

]
> 1/2.

5. Protocols with Nearly Optimal Robustness to Manipulation

In this section, we consider a number of well-studied problems in local privacy and identify
specific protocols from the literature with optimal robustness to manipulation (i.e. matching
the lower bounds implied by our attacks). As discussed in the introduction, most of these
problems can be cast as accurate mean estimation of bounded vectors. But we also study
robust protocols for uniformity testing and heavy hitters (in Section 5.3 and Appendix C,
respectively).

5.1. Warmup: Mean Estimation for Binary Data. As a warmup, we analyze the
randomized response protocol in the presence of manipulation. The protocol is defined by
the local randomizer RRR

ε and aggregator ARR
n,ε as follows:

RRR
ε (x) :=

{
eε+1
eε−1 · x with probability eε

eε+1

− eε+1
eε−1 · x with probability 1

eε+1

ARR
n,ε(~y) := 1

n

∑n
i=1 yi

We bound the error of this protocol by O(1ε ( 1√
n

+ m
n ), which matches the lower bound

of Theorem 3.4 up to constants.

Theorem 5.1. For any positive integers m ≤ n, any ε > 0, any ~x ∈ {0, 1}n, any manipula-
tion adversary M , and any β > 0, with probability ≥ 1− β, we have∣∣Manipm,n(RRε,n, ~x,M)− 1

n

∑n
i=1 xi

∣∣ < eε+1
eε−1 ·

(√
2
n ln 2

β + 2m
n

)
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Proof. Consider an execution of Manip(RRε,n, ~x,M). Let C be the set of corrupted users,
let y1, . . . , yn be the messages sent in the protocol and let ~y be the messages that would

have been sent in an honest execution (so y
i

= yi for every i 6∈ C). Let z = 1
n

∑n
i=1 yi be

the output of the aggregator.
We can break up the error into two components, one corresponding to the error of the

honest execution and one corresponding to the error introduced by manipulation.∣∣∣ 1n∑i∈[n] yi −
1
n

∑
i∈[n] xi

∣∣∣
=
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] yi + 1

n

∑
i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣
≤
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] yi

∣∣∣+
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣
=
∣∣∣ 1n∑i∈C yi − yi

∣∣∣︸ ︷︷ ︸
manipulation

+
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣︸ ︷︷ ︸
honest execution

Since each message in the protocol is either eε+1
eε−1 or − eε+1

eε−1 , we have |yi−yi| ≤ 2 · eε+1
eε−1 . Thus,

the manipulation term is bounded by eε+1
eε−1 ·

2m
n with probability 1.

For the error of the honest execution, note that E[y
i
] = xi and 1

n

∑
i∈[n] yi is an average

of n independent random variables bounded to a range of width 2 · eε+1
eε−1 . Thus, by Hoeffding’s

inequality, the second term is bounded by eε+1
eε−1

√
2 ln(2/β)

n with probability at least 1− β.

Our analysis of richer protocols has the same structure. We construct the protocol so
that each message yi gives an unbiased estimate of xi, and the aggregation computes the
mean of the messages. We then isolate the effect of the manipulation from that of an honest
execution. Finally, we bound the influence of m messages on the output of the protocol. For
richer protocols the analysis of the final step will become more involved.

5.2. Mean Estimation. We consider vector-valued data in Rd. For any p ≥ 1, ‖x‖p :=

(
∑d

j=1 |xj |p)1/p denotes the standard `p norm and Bd
p denotes the `p unit ball in Rd. As is

standard ‖x‖∞ = maxj∈[d] |xj | is the `∞ norm and Bd
∞ is the `∞ unit ball. In this section, we

study instances of the general `p/`q mean estimation problem: given data x1, . . . , xn ∈ Bd
p ,

output some µ̂ such that
∥∥µ̂− 1

n

∑
i xi
∥∥
q

is as small as possible.

5.2.1. `∞/`∞ estimation (Counting Queries). In this problem, each user has data xi ∈ Bd
∞

and the goal is to obtain a vector µ̂ such that
∥∥µ̂− 1

n

∑
xi
∥∥
∞ is as small as possible. We

consider the following protocol EST∞ = (REST∞, n,AEST∞), which is known to have optimal
error absent manipulation.

(1) Using public randomness, we partition users into d groups each of size n/d. Intuitively,
we are assigning each group to one coordinate.

(2) For each group j, each user i in group j reports the message yi ← RRR(xi,j)
(3) For each group j, the aggregator computes the average of the messages from group j to

obtain µ̂j ≈ 1
n

∑
i xi,j . The aggregator reports µ̂ = (µ̂1, . . . , µ̂d)



20 A. CHEU, A. SMITH, AND J. ULLMAN

If the adversary’s corruptions are oblivious to the public partition, then we show that
there are ≈ m/d corrupt users in each group of size n/d. By our analysis of randomized

response, the adversary can introduce at most ≈ m/d
εn/d = m

εn error in any single coordinate.

Theorem 5.2. For any ε ∈ (0, 1), any positive integers m ≤ n, any x1, . . . , xn ∈ Bd
∞, and

any public-string-oblivious adversary M , with probability ≥ 99/100, we have∥∥Manipm,n(EST∞ε, ~x,M)− 1
n

∑n
i=1 xi

∥∥
∞ = O

(√
d log d
ε2n

+ m
εn

)
Observe that the dependence on m matches that of the lower bound in Theorem 3.4 for

Bernoulli estimation. We give the complete details of the protocol in Appendix B.1.

5.2.2. `1/`∞ Estimation (Histograms). In this problem, each user i has data xi ∈ Bd
1 and

the objective is a µ̂ such that
∥∥µ̂− 1

n

∑n
i=1 xi

∥∥
∞ is as small as possible. To simplify the

discussion, we focus on the special case where user i has data xi ∈ [d]; here, the output is
a histogram. Define freq(j, ~x) := 1

n

∑n
i=1 1{xi=j} and freq(~x) := (freq(1, ~x), . . . , freq(1, ~x)).

The objective is a vector µ̂ such that ‖µ̂− freq(~x)‖∞ is as small as possible.
We consider the following protocol HSTε,

3 which is known to have optimal error absent
manipulation:

(1) For each user i, independently sample a uniform public vector ~si ∈ {±1}d.
(2) Each user i reports the message yi ← RRR

ε (si,xi).
(3) The aggregator receives messages y1, . . . , yn and outputs µ̂← 1

n

∑n
i=1 yi · ~si.

Theorem 5.3. For any ε ∈ (0, 1), any positive integers m ≤ n, any x1, . . . , xn ∈ [d], and
any adversary M , with probability at least 99/100, we have∥∥Manipm,n(HSTε, ~x,M)− freq(~x)

∥∥
∞ = O

(√
log d

ε2n
+
m

εn

)
Proof Sketch. Identically to the proof of Theorem 5.1, we partition the error contributed by
the honest and corrupt users. Let ~y be the messages sent in the protocol and let ~y be the
messages that would have been sent in an honest execution. Below,

∑
i . . . will be short for∑n

i=1 . . . . We can write∥∥ 1
n

∑
i ~si − freq(~x)

∥∥
∞

= max
j∈[d]

[
1
n

∑
i∈C(yi − yi)si,j

]
︸ ︷︷ ︸

manipulation

+ max
j∈[d]

∣∣∣ 1n∑i yisi,j − 1{xi=j}
∣∣∣︸ ︷︷ ︸

honest execution

To bound the error from the manipulation, note that messages have magnitude eε+1
eε−1 =

Θ(1/ε). Hence, the bias at any coordinate j is at most O(m/εn) with probability 1.
We now bound the error of the honest execution. If xi = j, the expectation of y

i
si,j

is 1. Otherwise, the expectation is 0 because of pairwise independence. Hence, the honest
execution has 0 expected error. Because messages have magnitude Θ(1/ε), Hoeffding’s

inequality and a union bound imply that no frequency estimate is more than O(
√

log d/ε2n)
from freq(j, ~x) with probability ≥ 99/100.

3In Bassily et al. (2017) the protocol is called ExplicitHist.
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A slightly more general protocol can be used to obtain the same result for `1/`∞
estimation.

Theorem 5.4. For any ε ∈ (0, 1), there is an ε-locally private protocol EST1ε such that
for any positive integer n, any x1, . . . , xn ∈ Bd

1 , and any adversary M , with probability
≥ 99/100, we have∥∥Manipm,n(EST1ε, ~x,M)− 1

n

∑n
i=1 xi

∥∥
∞ = O

(√
log d

ε2n
+
m

εn

)
We give the complete details of EST1ε in Appendix B.2. Observe that its manipulation

error matches that of Bernoulli estimation (Theorem 3.4).

5.2.3. `1/`1 Estimation (Frequency Estimation). In this problem, each user i has data
xi ∈ Bd

1 and the objective is a µ̂ such that
∥∥µ̂− 1

n

∑n
i=1 xi

∥∥
1

is as small as possible. Because
this problem and the `1/`∞ problem have the same data type, we consider the same protocols
but change the analysis to upper bound `1 error.

Theorem 5.5. For any ε ∈ (0, 1), any positive integer n, any x1, . . . , xn ∈ [d], and any
adversary M , with probability at least 99/100, we have∥∥Manipm,n(HSTε, ~x,M)− 1

n

∑n
i=1 xi

∥∥
1

= O

(√
d2 logn
ε2n

+ m
√
d logn
εn

)
Proof Sketch. Identically to the proof of Theorem 5.1, we partition the error contributed
by the honest and corrupt users. Let ~y be the messages sent in the protocol and let ~y be

the messages that would have been sent in an honest execution. Let S ∈ {±1}d×n be the

matrix whose columns are ~s1, . . . , ~sn, and SC ∈ {±1}d×|C| be the submatrix consisting only
of columns corresponding to users i ∈ C. Then we can write∥∥ 1

n

∑n
i=1 yi~si − freq(~x)

∥∥
1

=
∥∥∥ 1
nSC(~yC − ~yC)

∥∥∥
1︸ ︷︷ ︸

manipulation

+
∑
j∈[d]

∣∣∣ 1n∑n
i=1 yisi,j − 1{xi=j}

∣∣∣
︸ ︷︷ ︸

honest execution

To bound the error from the honest execution, observe that the expectation and variance
are O(

√
1/ε2n) and O(1/εn), respectively, for any term in the outer sum. Hence, error has

magnitude O(
√
d2/ε2n) with probability ≥ 199/200.



22 A. CHEU, A. SMITH, AND J. ULLMAN

To bound the error from the manipulation, we will use bounds on the singular values of
the random matrix SC . As a shorthand, let cε = eε+1

eε−1 . Then we have∥∥∥ 1
nSC(~yC − ~yC)

∥∥∥
1
≤ 1

n max
C⊆[n]

∥∥∥SC(~yC − ~yC)
∥∥∥
1

≤ 2

n
max
C⊆[n]
|C|=m

max
~yC∈{−cε,cε}m

‖SC~yC‖1

=
2

n
max
C⊆[n]
|C|=m

max
~yC∈Rm

‖~y‖2≤cε
√
m

‖SC~yC‖1

≤ cε
√
md

n
max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

‖SC~yC‖2

=
cε
√
md

n
max
C⊆[n]
|C|=m

‖SC‖2

where ‖SC‖2 denotes the largest singular value (operator norm) of SC . Since each matrix
SC ∈ {±1}d×m is uniformly random, we can use bounds on the singular values of random
matrices.

Lemma 5.6 (see e.g. the textbook by Tao (2012)). For any k ∈ R+ larger than an absolute
constant and a matrix SC ∈ Rd×m whose entries are sampled independently and identically,
the following holds with probability ≥ 1− exp(−k(d+m)) over the randomness of SC .

‖SC‖2 = O(
√
kd+

√
km)

The adversary has
(
n
m

)
≤ exp(m lnn) choices of corruptions C. By a union bound over

that set, we have with probability at least 1− exp(m lnn− k(m+ d))∥∥∥ 1
nSC(~yC − ~yC)

∥∥∥
1
≤ cε

√
md

n
·O(
√
kd+

√
km)

= O

(√
d2k

ε2n
+
m
√
dk

εn

)
For k = O(log n), the bound holds with probability at least 199/200.

A slightly more general protocol can be used to obtain the same result for `1/`1
estimation.

Theorem 5.7. For any ε ∈ (0, 1), there is an ε-locally private protocol EST1 such that
for any positive integer n, any x1, . . . , xn ∈ (Bd

1)n, and any adversary M , with probability
≥ 99/100, we have∥∥Manipm,n(EST1ε, ~x,M)− 1

n

∑n
i=1 xi

∥∥
1

= O

(√
d2 logn
ε2n

+ m
√
d logn
εn

)
Observe that the manipulation error matches the lower bound in Theorem 4.10, up to a

logarithmic factor.
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5.2.4. `2/`2 Estimation. In this problem, each user i has data xi ∈ Bd
2 and the objective is

a µ̂ such that
∥∥µ̂− 1

n

∑n
i=1 xi

∥∥
2

is as small as possible.
Consider the following protocol EST2 adapted from (Duchi et al., 2016, Section 4.2.3):

(1) For each user i, we sample ~si ∈ Rd uniformly at random from the surface of Bd
2 .

(2) Each user i computes wi ← sgn(~si · xi) and then reports yi ← RRR
ε (wi) to the aggregator

(3) The aggregator receives the messages y1, . . . , yn and outputs ~z ← c
√
d

n

∑n
i=1 yi~si for some

constant c > 0.

Theorem 5.8. For any ε ∈ (0, 1), any positive integer n, any x1, . . . , xn ∈ Bd
2 , and any

adversary M , with probability ≥ 99/100, we have

∥∥Manipm,n(EST2ε, ~x,M)− 1
n

∑n
i=1 xi

∥∥
2

= O

(√
d logn
ε2n

+ m
√
logn
εn

)
Proof Sketch. Identically to the proof of Theorem 5.1, we partition the error contributed by
the honest and corrupt users. Let S ∈ {±1}d×n be the matrix whose columns are ~s1, . . . , ~sn,

and SC ∈ {±1}d×|C| be the submatrix consisting only columns corresponding to users i ∈ C.
Below,

∑
i stands for

∑n
i=1 Then we can write∥∥∥ c√dn ∑

i yi~si −
1
n

∑
i xi

∥∥∥
2

=
∥∥∥ c√dn SC(~yC − ~yC)

∥∥∥
2︸ ︷︷ ︸

manipulation

+
∥∥∥ c√dn ∑

i yi~si −
1
n

∑n
i=1 xi

∥∥∥
2︸ ︷︷ ︸

honest execution

Corollary 4 in Duchi et al. (2016) implies that the error introduced by the honest

execution of the protocol is O(
√
d/ε2n) with probability ≥ 299/300.

To bound the error from the manipulation, we will again use bounds on the singular
values of the random matrix SC . As a shorthand, let cε = eε+1

eε−1 . Then we have∥∥∥ c√dn SC(~yC − ~yC)
∥∥∥
2

≤ c
√
d

n max
C⊆[n]

∥∥∥SC(~yC − ~yC)
∥∥∥
2

≤ 2c
√
d

n max
C⊆[n]
|C|=m

max
~yC∈{−cε,cε}m

‖SC~yC‖2

= 2c
√
d

n max
C⊆[n]
|C|=m

max
~yC∈Rm

‖~y‖2≤cε
√
m

‖SC~yC‖2

≤ 2ccε
√
md

n max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

‖SC~yC‖2 (5.1)

For any i ∈ C, consider the random variable ~si
′ ∼ N(0, Id×d). The column vector ~si is

identically distributed with ~si
′

‖~si ′‖2
. By standard concentration arguments, there is a constant

c′ such that mini‖~si ′‖22 ≥ d − c′
√
d lnm with probability ≥ 299/300. In the case where

d < 4(c′)2 lnm, we bound the error by 2ccεm
√
d/n = O(m

√
log n/εn). Otherwise, when
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d > 4(c′)2 lnm, we have mini‖~si ′‖22 > d/2. Hence,

(5.1) ≤ 2ccε
√
md

n
max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

max
i∈C

1

‖~si ′‖2

∥∥S′C~yC∥∥2
≤ ccε

√
8m

n
max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

∥∥S′C~yC∥∥2
=
ccε
√

8m

n
max
C⊆[n]
|C|=m

∥∥S′C∥∥2
We apply Lemma 5.6 then choose k = O(lnn) to bound ‖S′C‖2 by O(

√
d lnn +

√
m lnn)

with probability ≥ 299/300. A union bound completes the proof.

Observe that the manipulation error matches that of Bernoulli estimation (Theorem
3.4) up to a logarithmic factor.

5.3. Uniformity Testing. In this problem, each user has data xi ∈ [d] sampled from
a distribution P. If P = U, then a protocol for this problem should output “uniform”
with probability ≥ 99/100. If ‖P−U‖1 > α, then it should output “not uniform” with
probability ≥ 99/100. Smaller values of α are desirable.

We consider the RAPTOR protocol, introduced by Acharya et al. (2019). It divides users
into G groups each of size n/G (where G is a parameter). In each group g,

(1) Sample public set S ∈ {S ⊂ [d] | |S| = d/2} uniformly at random.
(2) Each user assigns x′i ← +1 if xi ∈ S and otherwise x′i ← −1
(3) Each user i reports yi ← RRR

ε (x′i) to the aggregator

(4) The aggregator computes the average of the messages: µ̂g ← G
n

∑
yi.

If there is some µ̂g '
√

1
ε2n

+ m
εn , the aggregator reports “not uniform.” Otherwise, it reports

“uniform.”

Theorem 5.9. There is a choice of parameter G such that, for any ε ∈ (0, 1), any positive
integers m ≤ n, and any adversary M , the following holds with probability ≥ 99/100

Manipm,n(RAPTORε,U,M) = “uniform”

and, when ‖P−U‖1 ≥ α for some α = O

(√
d
ε2n

+ m
√
d

εn

)
, the following also holds with

probability ≥ 99/100

Manipm,n(RAPTORε,P,M) = “not uniform”

Proof Sketch. Consider any g ∈ [G]. When ‖P−U‖1 ≥
√

10d · α, a lemma by Acharya
et al. (2019) implies that, with at least some constant probability over the randomness

of S,

∣∣∣∣ P
x∼P

[x ∈ S]− 1
2

∣∣∣∣ ' α. For α '
√
G/ε2n + mG/εn, RRε will provide an estimate of

P
x∼P

[x ∈ S] that is larger than 1
2 +α/2. But when P = U, the protocol will give an estimate

of P
x∼P

[x ∈ S] that is less than 1
2 + α/2. This means there is a threshold test that has a

constant probability of succeeding. The G repetitions serve to increase the success probability
to 99/100. This completes the proof.
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Observe that the bound α = O(m
√
d

εn +
√

d
ε2n

) matches the lower bound of Theorem 4.9

up to logarithmic factors. We give the complete details in Appendix B.3.

6. Accurate Protocols that are Not Robust

In this section, we demonstrate that there exist protocols with optimal error absent manipu-
lation (m = 0) that perform quite poorly in the presence of manipulation (m > 0). Thus, a
careful choice of protocols is necessary to achieve optimal robustness.

Intuitively, the protocols in Section 5 achieve optimal robustness because they use public
randomness to significantly constrain the choices of the corrupted users. Allowing users to
generate the randomness themselves has no effect on the protocol absent manipulation but
we argue that the protocol becomes much less robust.

We can sketch an example of this phenomenon for frequency estimation, although
essentially the same phenomenon arises in all of the problems we study. Consider the
following variant of the frequency estimation protocol:

(1) Each user chooses a uniformly random vector ~si ∈ {±1}d.
(2) Each user samples γi ← RRR

ε (~si,xi) and reports the message ~yi ← γi~si ∈ {± eε+1
eε−1}

d.

(3) The aggregator outputs µ̂← 1
n

∑n
i=1 ~yi.

One can verify that when all users follow the protocol honestly, the distribution of the
output µ̂ is identical to that of the protocol HSTε. Therefore, when users are honest, with
high probability we have ‖µ̂− freq(~x)‖1 = O(

√
d2/ε2n).

However, because the adversary can have the corrupted users report arbitrary vectors in
{± eε+1

eε−1}
d, an adversary who corrupts the first m users can introduce error on the order of

max
~y1,...,~ym∈{±1}d

∥∥∥∥∥ 1

n

m∑
i=1

(
eε+1
eε−1

)
~yi

∥∥∥∥∥
1

=
(
eε+1
eε−1

)
· mdn

= Ω
(
md
εn

)
In contrast, when we use the protocol HSTε, we were able to show that the adversary could

only introduce error O(m
√
d

εn ).

7. Experiments

In this section we give a basic set of experiments with our attack against the natural
frequency estimation protocol HST, which we showed to be optimally robust to manipulation
(Theorem 5.5). These experiments validate our theoretical analysis by showing that—at
least for the protocol HST—the vulnerability to manipulation depends significantly on the
dimension of the input domain. The experiments also indicate that the concrete error
introduced by the attack against the natural protocol HST is significantly larger than what
our worst-case analysis guarantees against arbitrary protocols.

In our experiments, we generate data from the uniform distribution over the domain
{1, . . . , d} and measure the `1 error of the protocol HST. In our experiments, we fix n = 2×105

and ε = 1.0, and vary the dimension d and the fraction of corrupted users m/n. In Figure 5,
we plot the median `1 error as well as the upper and lower quartiles of the error. Table 2 gives
the approximate breakdown point for varying choices of d. For purposes of concreteness, we
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Figure 5: `1-error of the HST and NR-HST protocols for n = 2× 105 users, ε = 1.0, and
various choices of dimension d and the fraction of corrupted users m/n. Each
point represents the median error across 896 trials. The bars depict the 25%
and 75% quantiles. The horizontal line is the breakdown point (error 0.5).

define the breakdown point as the fraction of corrupted users at which the error becomes at
least 0.5, although we note that even much smaller error is likely unacceptable in applications.

We also do the same set of experiments with an alternative protocol NR-HST (for non-
robust HST). This protocol differs from HST only in that each user samples a uniform vector
~si ∈ {±1}d themselves, and then sends yi · ~si. For comparison, in HST, the user receives the
vector ~si as public randomness, and only sends the single bit yi. Note that if all users play
honestly, then the distribution of the aggregator’s output is identical to HST. However, since
the corrupted users can now change how they choose ~si in addition to how they choose yi,
the protocol is much less robust to manipulation, and our experiments in Table 2 show that
the protocol is much less robust to our attack.

Our final round of experiments reveal that, under a different measure of error, NR-HST
is vulnerable to just a small number of corrupt users. The `1 norm scales with the quantity
maxS⊂[d] |

∑
j∈S zj − freq(j, ~x)|, the maximum total error of any subset. But a data analyst

may have little interest in the maximum and instead have a target subset, like frequencies
of specific words. In Figure 6, we depict the total error of NR-HST on S = {1, . . . , d/2} for
n = 5 · 104 users. When d = 32, this error is under 0.05 when there are no corrupted users
but it increases by around a factor of 3 when there are only 250 corrupted users.

8. Conclusion

This paper systematically studies manipulation attacks on locally differentially private
protocols, in which malicious clients inject improperly generated messages into the protocol
in order to influence its output. We show that vulnerability to such attacks is inherent
to the model—-every noninteractive local protocol admits such attacks, and the attacks’
effectiveness increases as the privacy guarantee gets stronger and, for some tasks, as the
dimension of the data grows.

Our work leaves open a number of technical questions. Can interactive local protocols
resist manipulation more effectively than non-interactive protocols? Can we close the
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Dimension (d)
Breakdown Point
(Error = 0.5)
HST NR-HST

4 ≈ 18% ≈ 7%
8 ≈ 12% ≈ 3%
16 ≈ 8% < 2%
32 ≈ 5% � 1%

Table 2: Upper bounds on the breakdown point (error 0.5) of the HST protocol for n = 2×105,
ε = 1.0, and various choices of dimension d.

Figure 6: Error of the NR-HST protocol for n = 5 · 104 users, ε = 1.0,
and various choices of d andm/n. Here, error is computed by
taking the sum of frequency estimation errors of {1, . . . d/2}.

few remaining gaps between upper and lower bounds in Table 1? More fundamentally, it
highlights the importance of systems that collect and analyze sensitive information at scale
with minimal trust requirements and strong privacy guarantees. Multiparty computation (as
in Ambainis et al. (2004) and Dwork et al. (2006a)) and work on the shuffled model (Bittau
et al., 2017; Cheu et al., 2019; Erlingsson et al., 2019)) are possible solutions, and other
effective alternatives surely remain to be found.
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Appendix A. Proofs for Section 4

A.1. Proof of Claim 4.2. We restate Claim 4.2 below:

Claim A.1 (Restatement of Claim 4.2). Suppose manipulation attack M is (α, γ)-powerful
against (ε, 0)-locally private protocols. Then there is an Mδ that is (αδ, γδ)-powerful against
(ε, δ)-locally private protocols, where αδ(ε) := α(2ε) and γδ := γ + 2nδ.

Proof. We define Mδ to be the attack that, when playing against locally private protocol

Π = (~R,A), constructs ~R ′ as ensured by Lemma A.2 below and then executes attack M

as if it were playing against Π′ = (~R ′, A). Because M is (α, γ)-powerful against ε-locally
private protocols and Π′ is 2ε-locally private, there is some P where ‖P−U‖1 ≥ α(2ε) but
dSD(Π′(P),Manipm,n(Π′,U,M) ≤ γ.

We will rely on the following technical lemma:

Lemma A.2. Every local randomizer R : [d]→ Y that is (ε, δ)-differentially private implies
another randomizer R′ : [d]→ Y that is 2ε-differentially private such that dSD(R(x), R′(x)) ≤
δ for any x ∈ [d].
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This lemma helps us upper bound dSD(Π(P),Manipm,n(Π,U,Mδ)):

dSD(Π(P),Manipm,n(Π,U,Mδ))

≤ dSD(Π′(P),Manipm,n(Π′,U,M)) + dSD(Π(P),Π′(P)) (Triangle ineq.)

+ dSD(Manipm,n(Π′,U,M),Manipm,n(Π,U,Mδ))

≤ dSD(Π′(P),Manipm,n(Π′,U,M)) + nδ (From Lemma A.2)

+ dSD(Manipm,n(Π′,U,M),Manipm,n(Π,U,Mδ))

≤ dSD(Π′(P),Manipm,n(Π′,U,M)) + 2nδ (From Lemma A.2)

≤ γ + 2nδ

This completes the proof.

It remains to prove Lemma A.2.

Proof of Lemma A.2. For every x ∈ [d], Lemma 3.1 implies that there are four distributions

R
(+1)
x , R

(−1)
x , R⊥x , R

>
x such that we can express R(x) and R(1) as the following mixtures:

R(x) =
eε

eε + 1
· (1− δ) ·R(+1)

x +
1

eε + 1
· (1− δ) ·R(−1)

x + δ ·R⊥x

R(1) =
1

eε + 1
· (1− δ) ·R(+1)

x +
eε

eε + 1
· (1− δ) ·R(−1)

x + δ ·R>x

Now define the new distribution R′(x) := eε

eε+1 ·(1−δ)·R
(+1)
x + 1

eε+1 ·(1−δ)·R
(−1)
x +δ ·R>x .

It is clear that the statistical distance between R(x) and R′(x) is at most δ.

Define the mixture distributions Rx,+1 := eε

eε+1 · R
(+1)
x + 1

eε+1 · R
(−1)
x and Rx,−1 :=

1
eε+1 ·R

(+1)
x + eε

eε+1 ·R
(−1)
x . They satisfy the following:

∀y ∈ Y e−ε · P[Rx,−1 = y] ≤ P[Rx,+1 = y] ≤ eε · P[Rx,−1 = y].

Observe that we can sample from R′(x) by post-processing Rx,+1. Likewise, we can sample
from R(1) by using the same post-processing on Rx,−1. Hence,

∀y ∈ Y e−ε · P[R(1) = y] ≤ P
[
R′(x) = y

]
≤ eε · P[R(1) = y].

By repeating the same argument for every x′ ∈ [d],

∀x ∼ x′ ∈ [d] ∀y ∈ Y e−2ε · P
[
R′(x′) = y

]
≤ P

[
R′(x) = y

]
≤ e2ε · P

[
R′(x′) = y

]
which immediately implies R′ satisfies 2ε-privacy.

A.2. Proof of Lemma 4.7. We will argue that our attack (Algorithm 3) selects a powerful
attack against ε-locally private protocols with probability ≥ 2/3. We first recall notation.
For any integer d > 2 and algorithm R : [d]→ Y, let R(U) denote the distribution over Y
induced by sampling x̂ from the uniform distribution over [d] and then sampling a message
from R(x̂). For any set H ⊂ [d], let R(UH) denote the distribution over Y induced by
sampling x̂ from the uniform distribution over H and then executing R(x̂). In this notation,
QH,R is the algorithm which samples from R(UH) when given +1, but samples from R(UH)
when given −1.

Our objective is to prove the following, from which Lemma 4.7 is immediate:
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Lemma A.3. Fix any δ ∈ (0, 1) and any ε-locally private protocol Π = (~R,A) where
d > 4(eε − 1)2 ln(24eεn/δ). Suppose H is sampled uniformly from subsets of [d] with size
d/2. The following holds with probability > 2/3 over the randomness of H: all randomizers
{QH,Ri}i∈[n] specified by Algorithm 2 satisfy (ε′, δ)-privacy, where

ε′ = (eε − 1)

√
16

d
ln

24eεn

δ

The key to the analysis is to argue that, for a uniformly random H, the distributions of
R(UH) and R(U) are close together. To this end, we introduce the following definition:

Definition A.4 (Leaky Messages). For any H ⊂ [d] with size d/2 and any local randomizer
R : [d]→ Y, a message y ∈ Y is v-leaky with respect to H,R when

P[R(UH) = y]

P[R(U) = y]
/∈ [e−v, ev]

Next we show that when y is some fixed message and H is uniformly random, y is not
likely to be leaky with respect to H,R.

Claim A.5. Fix any ε > 0, β ∈ (0, 1), d > 4(eε − 1)2 ln 2
β , and any ε-private randomizer

R : [d]→ Y. For any message set y ∈ Y, if H is chosen uniformly from subsets of [d] with

size d/2, then with probability at least 1− β, y is not (eε − 1)
√

4
d ln 2

β -leaky with respect to

H,R.

Proof. Observe that

P[R(U) = y] =
d∑
j=1

P[R(j) = y] · P
x∼U

[x = j]

=
d∑
j=1

P[R(j) = y] · 1

d
(defn. of U)

Also observe that, for any choice of H,

P[R(UH) = y] =

d/2∑
i=1

P[R(hi) = y] · 2

d
(A.1)

Due to differential privacy, each term in (A.1) has maximum value eε minj P[R(j) = y].
We use the following version of Hoeffding’s inequality to bound the summation when H is
uniformly random.

Lemma A.6 ((Hoeffding, 1963)). Given a set ~p = {p1, . . . , pN} ∈ RN such that pi ∈ (c, c′),
if the subset ~x = {x1, . . . , xn} is constructed by uniformly sampling without replacement from
~p, then

P

[
1

n

n∑
i=1

xi ≤
1

N

N∑
i=1

pi + (c′ − c) ·
√

1

2n
log

1

β

]
≥ 1− β
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Hence, the following is true with probability 1− β/2 over the random choice of H:

(A.1) ≤ 1

d

d∑
j=1

P[R(j) = y] +

(
(eε − 1) min

j
P[R(j) = y]

)
·
√

1

d
ln

2

β

= P[R(U) = y] +

(
(eε − 1) min

j
P[R(j) = y]

)
·
√

1

d
ln

2

β

≤
(

1 + (eε − 1) ·
√

1

d
ln

2

β

)
· P[R(U) = y]

≤ exp

(
(eε − 1) ·

√
1

d
ln

2

β

)
· P[R(U) = y]

By a symmetric version of Lemma A.6, the following holds with probability 1− β/2:

(A.1) ≥ 1

d

d∑
j=1

P[R(j) = y] +

(
(eε − 1) min

j
P[R(j) = y]

)
·
√

1

d
ln

2

β

= P[R(U) = y]−
(

(eε − 1) min
j

P[R(j) = y]

)√
1

d
ln

2

β

≥
(

1− (eε − 1) ·
√

1

d
ln

2

β

)
· P[R(U) = y]

≥ exp

(
−(eε − 1) ·

√
4

d
ln

2

β

)
· P[R(U) = y]

The final inequality follows from the condition that d > 4(eε − 1)2 ln 2
β . Our claim follows

from a union bound.

If the set H is drawn uniformly and d is sufficiently large, then for most users, we argue
that the probability that Ri(U) reports a leaky message is small.

Claim A.7. Fix any ε > 0, β ∈ (0, 1), d > 4(eε − 1)2 ln 2
β , and any vector of ε-private

randomizers ~R = (R1 . . . Rn). Suppose H is sampled uniformly from subsets of [d] with size
d/2. The following holds with probability ≥ 5/6 over the randomness of H: for all i ∈ [n],

the probability that Ri(U) is (eε − 1)
√

4
d ln 2

β -leaky with respect to H,Ri is at most 6βn.

Proof. Let Leak(v,H,R) be the set of all messages y where y is v-leaky with respect to H,R.
By Markov’s inequality, the following holds for any i ∈ [n] with probability ≥ 1− 1/6n over
the randomness of H:

P
[
Ri(U) ∈ Leak

(
(eε − 1)

√
4

d
ln

2

β
,H,Ri

)]
≤ 6n · E

H
[P[Ri(U) ∈ Leak(. . . , H,Ri)]]

where we use . . . to suppress the v term. Once we bound the expectation by β, our claim

follows by a union bound over the n randomizers. Below, we use
( [d]
d/2

)
as shorthand for the
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subsets of [d] with size d/2.

E
H

[P[Ri(U) ∈ Leak(. . . , H,Ri)]]

=
∑

H∈( [d]
d/2)

(
d

d/2

)−1
· P[Ri(U) ∈ Leak(. . . , H,Ri)]

=
∑

H∈( [d]
d/2)

(
d

d/2

)−1
·

∑
y∈Leak(...,H,Ri)

P[Ri(U) = y]

=
∑
y∈Y

P[Ri(U) = y] ·
∑

H∈( [d]
d/2)

(
d

d/2

)−1
· 1{y∈Leak(...,H,Ri)}

≤
∑
y∈Y

β · P[Ri(U) = y] (Claim A.5)

= β

This concludes the proof.

Claim A.7 is a bound on the probability that some Ri(U) is leaky. Because ~R satisfies
differential privacy, it implies a bound on the probability that some Ri(UH) is leaky.

Corollary A.8. Fix any ε > 0, β ∈ (0, 1), d > 4(eε − 1)2 ln 2
β , and any vector of ε-private

randomizers ~R = (R1 . . . Rn). Suppose H is sampled uniformly from subsets of [d] with size
d/2. The following holds with probability ≥ 5/6 over the randomness of H: for all i ∈ [n],

the probability that Ri(UH) is (eε− 1)
√

4
d ln 2

β -leaky with respect to H,Ri is at most eε · 6βn.

Again recall that QH,Ri reports either a sample from Ri(UH) or from Ri(UH). Having
bounded the probability that either sample is leaky, we can now argue that each QH,Ri

satisfies a stronger level of differential privacy than Ri (Lemma A.3).

Proof of Lemma A.3. Define v := ε′/2 = (eε−1)
√

4
d ln 24eεn

δ . By Corollary A.8, the following

holds with probability > 5/6 for every Y ⊆ Y:

P[Ri(UH) ∈ Y ]

= P[Ri(UH) ∈ Y − Leak(v,H,Ri)]

+ P[Ri(UH) ∈ Y ∩ Leak(v,H,Ri)]

≤ P[Ri(UH) ∈ Y − Leak(v,H,Ri)] + δ/2

≤ ev · P[Ri(U) ∈ Y ] + δ/2



MANIPULATION ATTACKS IN LOCAL DIFFERENTIAL PRIVACY 35

We now justify the final inequality:

P[Ri(UH) ∈ Y − Leak(v,H,Ri)]

=
∑

y∈Y−Leak(v,H,Ri)

P[Ri(UH) = y]

≤ ev
∑

y∈Y−Leak(v,H,Ri)

P[Ri(U) = y] +
∑

y∈Y−Leak(v,H,Ri)

w (defn. A.4)

≤ evP[Ri(U) ∈ Y − Leak(v,H,Ri)] + |Y| · w
By symmetric steps and Claim A.7,

P[Ri(U) ∈ Y ] ≤ ev · P[Ri(UH) ∈ Y ] + δ/2

We take identical steps to show that the following holds with probability > 5/6 as well:

P
[
Ri(UH) ∈ Y

]
≤ ev · P[Ri(U) ∈ Y ] + δ

P[Ri(U) ∈ Y ] ≤ ev · P
[
Ri(UH) ∈ Y

]
+ δ

From a union bound, the following holds with probability > 2/3:

P
[
Ri(UH) ∈ Y

]
≤ e2v · P[Ri(UH) ∈ Y ] + δ

P[Ri(UH) ∈ Y ] ≤ e2v · P
[
Ri(UH) ∈ Y

]
+ δ

Because QH,Ri samples from Ri(UH) on input +1 and from Ri(UH) on input −1, it satisfies
(2v, δ)-privacy. Substitution of v = ε′/2 concludes the proof.

A.3. Alternate version of Lemma 4.7. As claimed in Section 4, we can remove the
lnn factor in the special case where there are O(1) unique randomizers and O(1) possible
messages. We will require the following corollary:

Corollary A.9. Fix any vector of ε-private randomizers ~R = (R1, . . . , Rn) where the number
of unique randomizers is κR, the message universe has size |Y|, and d > 4(eε−1)2 ln(12κR|Y|).
Sample H uniformly at random over subsets of [d] with size d/2. The following is true with

probability ≥ 5/6 over the randomness of H: ∀y ∈ Y ∀i ∈ [n] y is not (eε−1)
√

4
d ln 12κR|Y|-

leaky w.r.t. H,Ri

The statement is immediate from Claim A.5 and a union bound. We now state and
prove the alternate lemma:

Lemma A.10. Fix any ε-locally private protocol Π = (~R,A) where the number of unique
randomizers is κR, the message universe has size |Y|, and d > 4(eε − 1)2 ln(12|Y| · κR).
Suppose H is sampled uniformly from subsets of [d] with size d/2. The following holds
with probability > 2/3 over the randomness of H: all randomizers {QH,Ri}i∈[n] specified

by Algorithm 2 satisfy ε′-privacy, where ε′ = (eε − 1)
√

16
d ln(12κR|Y|). When ε = O(1),

κR = O(1), and |Y| = O(1), this parameter is O(ε/
√
d).
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Proof. Recall the definition of QH,Ri : on input +1, it samples from Ri(UH) and, on input
−1, it samples from Ri(UH). We will bound how leaky any message set Y ⊆ Y can be via
Corollary A.9: with probability ≥ 5/6, the following holds for all i ∈ [n]:

P[Ri(UH) ∈ Y ]

=
∑
y=y

P[Ri(UH) = y]

≤
∑
y=y

exp

(
(eε − 1) ·

√
4

d
ln 12κR|Y|

)
· P[Ri(U) = y]

≤ exp

(
(eε − 1) ·

√
4

d
ln 12κR|Y|

)
· P[Ri(U) ∈ Y ]

and again with probability ≥ 5/6

P[Ri(U) ∈ Y ]

≤ exp

(
(eε − 1) ·

√
4

d
ln 12κR|Y|

)
· P
[
Ri(UH) ∈ Y

]
From a union bound, we can conclude that

P[Ri(UH) ∈ Y ]

≤ exp

(
(eε − 1) ·

√
16

d
ln 12κR|Y|

)
· P
[
Ri(UH) ∈ Y

]

with probability ≥ 2/3. By symmetric steps, we can obtain the inequality where the positions
of P

[
Ri(UH) ∈ Y

]
and P[Ri(UH) ∈ Y ] are swapped.

Appendix B. Construction and Analysis of Protocols from Section 5

In Section 5, we sketched some protocols and bounded the effect of manipulation attacks on
them. In this Appendix, we provide more details for these protocols.

B.1. Construction and Analysis of EST∞. The protocol EST∞n,d,ε is designed to esti-
mate d counting queries; as suggested by the name, it attempts to minimize error in `∞ norm.
It consists of the n randomizers (REST∞

n,d,ε,i)i∈[n] and the aggregator AEST∞
n,d,ε ; see Algorithms

4 and 5 for the pseudocode. A public partition of [n] into d groups, denoted π, is drawn
uniformly at random.

An important subroutine is described by (B.1). It samples from ±1 in such a way that
the mean is equal to the jth coordinate of user data xi.

Encode∞(xi, j) :=

{
+1 with probability 1

2 +
xi,j
2

−1 with probability 1
2 −

xi,j
2

(B.1)

The following statement is a version of Theorem 5.2 that allows for arbitrary failure
probability.
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Algorithm 4: REST∞
n,d,ε,i(xi, π)

Parameters: n, d ∈ Z+, ε > 0, i ∈ [n]
Input: xi ∈ Bd

∞; π, a public partition of [n] into d groups
Output: yi ∈ {− eε+1

eε−1 ,
eε+1
eε−1}

g(i)← the group i belongs to in π
x′i ← Encode∞(xi, g(i))
yi ← RRR(x′i)
Return yi

Algorithm 5: AEST∞
n,d,ε (y1, . . . , yn, π)

Parameters: n, d ∈ Z+, ε > 0
Input: ~y ∈ {− eε+1

eε−1 ,
eε+1
eε−1}

n; π, a public partition of [n] into d groups

Output: ~z ∈ Rd

For g : 1→ d
π(g)← the gth group of [n]
zg ← d

n

∑
i∈π(g) yi

Return ~z

Theorem B.1. For any β ∈ (0, 1), there is a constant c such that, for any ε > 0, any
positive integers m ≤ n, any x1, . . . , xn ∈ Bd

∞, and any attacker M oblivious to public
randomness:

P

[∥∥∥∥∥Manip(EST∞n,d,ε, ~x,M)− 1

n

n∑
i=1

xi

∥∥∥∥∥
∞

< c · e
ε + 1

eε − 1
·

(√
d

n
log

d

β
+
m

n

)]
≥ 1− β

To prove the theorem, we bound the error introduced by each source of randomness.
We first consider the difference between the underlying mean and the mean in a partition
given by π. Hoeffding’s inequality and a union bound yields the following claim:

Claim B.2. Fix any x1, . . . , xn ∈ Bd
∞. There is a constant c such that, when π is a uniformly

random partition of [n] into d groups π(1), . . . , π(d),

P

∀g ∈ [d]

∣∣∣∣∣∣ 1n
n∑
i=1

xi,g −
d

n

∑
i∈π(g)

xi,g

∣∣∣∣∣∣ < c ·

√
d

n
ln
d

β

 ≥ 1− β

The protocol executes Encode∞ on all xi,g(i). Here, we use the Hoeffding inequality
again to bound the error introduced by this encoding:

Claim B.3. Fix any x1, . . . , xn ∈ Bd
∞ and any partition π of [n] into d groups π(1), . . . , π(d).

Suppose, for every g ∈ [d], we execute x′i ← Encode∞(xi, g) for each user i ∈ π(g).

P

∀g ∈ [d]

∣∣∣∣∣∣dn
∑
i∈π(g)

xi,g −
d

n

∑
i∈π(g)

x′i

∣∣∣∣∣∣ < c ·

√
d

n
ln
d

β

 ≥ 1− β

If an attacker chooses the set of corrupt users C independently of π, we use a Chernoff
bound to bound the number of corruptions in any group:
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Claim B.4. Fix any n, d ∈ Z+ and any set of corrupted users C ⊂ [n] where |C| = m.
There is a constant c such that, when π is a uniformly random partition of [n] into d groups
π(1), . . . , π(d),

P

[
∀g ∈ [d] |C ∩ π(g)| < m

d
+ c ·

√
m

d
ln
d

β

]
≥ 1− β

When we apply randomized response to data encoded by Encode∞, we can obtain our
third bound on error immediately from Theorem 5.1:

Claim B.5. For any m′ ≤ n/d, any ~x ′ ∈ {±1}n/d and any attacker M , RRε/2,n/d has the
following guarantee on estimation error after playing the (m′, n/d)-manipulation game:

P

∣∣∣∣∣∣Manipm′,n/d(RRε,n/d, ~x
′,M)− d

n

n/d∑
i=1

x′i

∣∣∣∣∣∣ < eε + 1

eε − 1
·

(√
2d

n
ln

2d

β
+

2dm′

n

) ≥ 1− β/d

Theorem 5.2 follows from union bounds over Claims B.2, B.3, B.4, and B.5 (we substitute
m′ in Claim B.5 with the upper bound in Claim B.4).

B.2. Construction and Analysis of EST1. The protocol EST1n,d,ε takes in user data
from the unit ball and performs private mean estimation. The protocol consists of the n
randomizers (REST1

n,d,ε,i)i∈[n] and the aggregator AEST1
n,d,ε (see Algorithms 6 and 8, respectively).

Each user i is associated with a public vector ~si ∈ {±1}2d+1 which is sampled uniformly and
independently at random.

Algorithm 6: REST1
n,d,ε,i(xi, ~si)

Parameters: n, d ∈ Z+, ε > 0, i ∈ [n]
Input: x ∈ Bd

1 and ~si ∈ {±1}2d+1

Output: y ∈ {± eε+1
eε−1}

x′i ← Encoded1(xi) /* See Algorithm 7 */

yi ← RRR
ε (si,x′)

Return yi

We give bounds on both `∞ and `1 error in separate subsections. We focus on the error
absent manipulation: the bounds on HST’s manipulation error we gave in Section 5 also hold
for EST1. This is because EST1 is essentially the composition of HST and a pre-processing
step that converts points in Bd

1 to members of [d] (see Algorithm 7).

B.2.1. Error in `∞. In this subsection, we bound the maximum error of EST1 along any
dimension.

Theorem B.6. There is a constant c such that, for any β ∈ (0, 1), any ε > 0, any positive
integers n, d, and any ~x = (x1, . . . , xn) ∈ [d]n, with probability ≥ 1− β, we have∥∥∥∥∥EST1n,d,ε(~x)− 1

n

n∑
i=1

xi

∥∥∥∥∥
∞

≤ c · e
ε + 1

eε − 1
·

√
1

n
ln
d

β
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Algorithm 7: Encoded1(x)

Parameters: d ∈ Z+

Input: x ∈ Bd
1

Output: x′ ∈ [2d+ 1]

For j ∈ [d]
If xj > 0

p2j−1 ← xj
p2j ← 0

Else
p2j−1 ← 0
p2j ← −xj

p2d+1 ← 1− ‖x‖1
Sample x′ from the distribution over [2d+ 1] such that P[x′ = k] = pk
Return x′

Algorithm 8: AEST1
n,d (y1, ~s1, . . . , yn, ~sn)

Parameters: n, d ∈ Z+

Input: yi ∈ {± eε+1
eε−1} and ~si ∈ {±1}2d+1 for every i ∈ [n]

Output: µ̂ ∈ Rd

For j′ ∈ [2d+ 1]
zj′ ← 1

n

∑n
i=1 yisi,j′

For j ∈ [d]
µ̂j ← z2j−1 − z2j

µ̂← (µ̂1, . . . , µ̂d)
Return µ̂

To prove the theorem, we bound the error introduced by Encoded∞ and by RRR
ε separately.

We use shorthand freq(j, ~x) := 1
n

∑n
i=1 1{xi=j} and freq(~x) := (freq(1, ~x), . . . , freq(d, ~x)).

Claim B.7. There is a constant c such that for any positive integers n, d and any x1, . . . , xn ∈
Bd

1 , if we sample x′i ← Encoded1(xi) for each user i, then

P

[
max
j∈[d]

∣∣∣∣∣(freq(2j − 1, ~x ′)− freq(2j, ~x ′))− 1

n

n∑
i=1

xi,j

∣∣∣∣∣ ≤ c ·
√

1

n
ln
d

β

]
≥ 1− β

Proof. Consider any user data xi ∈ Bd
1 and any coordinate j ∈ [d]. Without loss of generality,

we will assume that xi,j > 0. By construction, P[x′i = 2j − 1] = xi and P[x′i = 2j] = 0. Hence,

E
[
1{x′i=2j−1} − 1{x′i=2j}

]
= xi,j

E

[
n∑
i=1

1{x′i=2j−1} −
n∑
i=1

1{x′i=2j}

]
=

n∑
i=1

xi,j

E
[
freq(2j − 1, ~x ′)− freq(2j, ~x ′)

]
=

1

n

n∑
i=1

xi,j
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The random variable 1{x′i=2j−1} − 1{x′i=2j} − xi,j ranges from −2 to +2. By a Hoeffding

bound, the following holds with probability ≥ 1− β/d.∣∣∣∣∣freq(2j − 1, ~x ′)− freq(2j, ~x ′)− 1

n

n∑
i=1

xi,j

∣∣∣∣∣ <
√

8

n
ln

2d

β

A union bound over all j ∈ [d] completes the proof.

Claim B.8. There is a constant c such that for any positive integers n, d and any x′1, . . . , x
′
n ∈

[2d + 1], if we sample yi ← RRR
ε (si,x′i) for each user i and compute zj′ = 1

n

∑n
i=1 yisi,j′ for

each j′ ∈ [2d+ 1], then

P

[∥∥~z − freq(~x ′)
∥∥
∞ ≤ c ·

eε + 1

eε − 1
·

√
1

n
ln
d

β

]
≥ 1− β

Proof. To prove this claim, we fix a value j′ ∈ [2d + 1] and argue that the estimate of

freq(j′, ~x ′) has error c · eε+1
eε−1 ·

√
1
n ln d

β with probability 1− β/(2d+ 1). A union bound over

all j′ ∈ [2d+ 1] will complete the proof.
Recall that all yi have magnitude eε+1

eε−1 . By a Hoeffding bound, the following holds with

probability ≥ 1− β/(2d+ 1) (where we use ~s(j′) to denote the vector (s1,j′ , . . . , sn,j′):∣∣∣∣zj′ − E
RRR,~s(j′)

[
zj′
]∣∣∣∣ < eε + 1

eε − 1
·

√
2

n
ln

2(2d+ 1)

β

It remains to show that zj′ is unbiased:

E
RRR,~s(j′)

[
zj′
]

=
1

n

n∑
i=1

E
RRR,~s(j′)

[
yisi,j′

]
=

1

n

n∑
i=1

E
~s(j′)

[
si,j′ · si,xi

]
=

1

n

n∑
i=1

1{xi=j′} = freq(j′, ~x ′)

This concludes the proof.

We also formalize the argument that m users cannot manipulate the protocol beyond
O(m/εn):

Theorem B.9. There is a constant c such that, for any β ∈ (0, 1), any ε > 0, any positive
integers m,n, d, any attacker M , and any ~x = (x1, . . . , xn) ∈ [d]n, with probability ≥ 1− β,
we have ∥∥∥∥∥Manipm,n(EST1n,d,ε, ~x,M)− 1

n

n∑
i=1

xi

∥∥∥∥∥
∞

≤ c · e
ε + 1

eε − 1
·

(√
1

n
ln
d

β
+
m

n

)
Proof. As sketched in Section 5, we bound the error from the honest execution separately
from the error from the manipulation. Given that Theorem B.6 already bounds the honest
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execution, it will suffice to prove that

max
j∈[2d+1]

∣∣∣∣∣ 1n∑
i∈C

(yi − yi)si,j′

∣∣∣∣∣ ≤ 2 · e
ε + 1

eε − 1
· m
n

By construction, both the manipulative messages yi and the honest messages y
i

are members

of the set {± eε+1
eε−1}. There are m corrupt users in C. Hence, the bound follows.

B.2.2. Error in `1. In this subsection, we bound the `1 error of the EST1 protocol.

Theorem B.10. There is a constant c such that, for any β ∈ (0, 1), any ε > 0, any positive
integers n, d, and any ~x = (x1, . . . , xn) ∈ [d]n, with probability ≥ 1− β, we have∥∥∥∥∥EST1n,d,ε(~x)− 1

n

n∑
i=1

xi

∥∥∥∥∥
1

≤ c · e
ε + 1

eε − 1
·

√
d2

n
log

1

β

To prove the theorem, we bound the error introduced by Encoded1 and by RRR
ε separately.

We begin with Encoded1.

Claim B.11. There is a constant c such that for any positive integers n, d and any
x1, . . . , xn ∈ Bd

1 , if we sample x′i ← Encoded1(xi) for each user i, then the following holds
with probability ≥ 1− β:∑

j∈[d]

∣∣∣∣∣(freq(2j − 1, ~x′)− freq(2j, ~x′))− 1

n

n∑
i=1

xi,j

∣∣∣∣∣ ≤ c ·
√
d2

n
log

1

β
(B.2)

Proof. For any i ∈ [n], j ∈ [d], define the random variable err(i, j) := 1{x′i=2j−1}−1{x′i=2j}−
xi,j . Observe that E[err(i, j)] = 0 and |err(i, j)| ≤ 2. By Hoeffding’s inequality, the quantity
1
n

∑n
i=1 err(i, j) is subgaussian. Specifically, for all t > 0,

P

[∣∣∣∣∣ 1n
n∑
i=1

err(i, j)

∣∣∣∣∣ > t

]
≤ 2 exp(−nt2/8) (B.3)

Note that this implies there are constants c0, c1 such that

E

[∣∣∣∣∣ 1n
n∑
i=1

err(i, j)

∣∣∣∣∣
]
≤ c0 ·

√
1

n
(B.4)

Var

[∣∣∣∣∣ 1n
n∑
i=1

err(i, j)

∣∣∣∣∣
]
≤ c1 ·

1

n
(B.5)

For shorthand, we define err(j) :=
∣∣ 1
n

∑n
i=1 err(i, j)

∣∣ ≤ 2. Observe that the left-hand

side of (B.2) is equivalent to
∑d

j=1 err(j). From (B.4), (B.4), and a Chernoff bound, the
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Algorithm 9: RRAPTOR
ε,g , randomizer for uniformity testing

Parameters: Privacy parameter ε; group number g ∈ [G]
Input: x ∈ [d]; public sets S1, . . . , SG where Sg ⊂ [d] and |Sg| = d/2

Output: y ∈ {± eε+1
eε−1}

x′ ← 1±[x ∈ Sg]
y ∼ RRR

ε (x′)
Return y

sum tightly concentrated around its expectation:

P

 d∑
j=1

err(j) > d · E[err(1)] +

√
dVar[err(1)] log

1

β

 ≤ β
P

 d∑
j=1

err(j) > c0 ·
√
d2

n
+

√
c1 ·

d

n
log

1

β

 ≤ β (From (B.4) and (B.5))

This concludes the proof.

Now we bound the error due to RRR
ε .

Claim B.12. There is a constant c such that for any positive integers n, d and any
x′1, . . . , x

′
n ∈ [2d + 1], if we sample yi ← RRR

ε (si,x′i) for each user i and compute zj′ =
1
n

∑n
i=1 yisi,j′ for each j′ ∈ [2d+ 1], then the following holds with probability ≥ 1− β∑

j′∈[2d+1]

∣∣zj′ − freq(j′, ~x′)
∣∣ ≤ c · eε + 1

eε − 1
·

√
d2

n
log

1

β

Proof. Define the random variable err(i, j′) := yisi,j′ − 1{x′i=j′}. The same steps taken in

the proof of Claim B.11 apply here, except now |err(i, j′)| ≤ 2 · eε+1
eε−1 .

B.3. Construction and Analysis of RAPTOR. RAPTORn,G,ε is a locally private protocol
for uniformity testing derived from (Acharya et al., 2019); recall that the input consists
of independent samples from some distribution over [d] and the goal is to identify if the
distribution is uniform or α-far from uniform (in `1 distance). The protocol consists of
G randomizers: user i is assigned randomizer di/Ge. Public randomness will generate
S1, . . . , SG each of which are uniformly random subsets of [d] of size d/2. If a user runs
the g-th randomizer, they will privately report whether or not their data lies in Sg. The
aggregator performs a threshold test on each group.

We reproduce the randomizer and aggregator pseudocode in Algorithms 9 and 10. For
the sake of this proof, we use 1±[bool ] to denote the indicator function that evaluates to +1
when bool is true and −1 when it false.

We rely on the following technical lemma concerning uniformly random S:
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Algorithm 10: ARAPTOR
n,G,ε , an aggregation algorithm for uniformity testing

Parameters: Positive integers n,G; privacy parameter ε
Input: y1, . . . yn ∈ {± eε+1

eε−1}
n; public sets S1, . . . , SG

Output: The string “Uniform” or the string “Not Uniform”

αG := eε+1
eε−1 ·

(√
6G
n ln 4G

β + 2mG
n

)
For g ∈ [G]

start(g)← 1 + (g − 1) · n/G
end(g)← g · n/G
/* Estimate of probability mass in Sg */

p̃(Sg)← G
n

∑end(g)
i=start(g) yi

If |p̃(Sg)| > 2αG
Return “Not uniform”

Return “Uniform”

Lemma B.13 (From (Acharya et al., 2019)). If S is a uniformly random subset of [d] with

size d/2 and ‖P−U‖1 > α
√

10d, then

P
S

[∣∣1
2
− P
x∼P

[x ∈ S]
∣∣ > α

]
>

1

477

Corollary B.14. If S is a uniformly random subset of [d] with size d/2 and ‖P−U‖1 >
α
√

10d, then

P
S

[∣∣ E
x∼P

[1±[x ∈ S]]
∣∣ > 2α

]
>

1

477

The following statement is a version of Theorem 5.9 that allows for arbitrary failure
probability β.

Theorem B.15. There is a constant c and a choice of parameter G = Θ(log 1/β) such that,
for any ε > 0, any positive integers m ≤ n, and any attacker M , the following holds with
probability ≥ 1− β

Manipm,n(RAPTORn,G,ε,U,M) = “uniform”

and, when ‖P−U‖1 ≥ c·
eε+1
eε−1 ·

(√
dG
n ln G

β + mG
√
d

n

)
, the following also holds with probability

≥ 1− β
Manipm,n(RAPTORn,G,ε,P,M) = “not uniform”

Proof. We specify the following undesirable events:

E1 := ∃g ∈ [G]
∣∣ E
x∼P

[1±[x ∈ S]]− G

n

end(g)∑
i=start(g)

1±[xi ∈ S]
∣∣ > αG

E2 := ∃g ∈ [G]
∣∣G
n

∑
1±[xi ∈ S]− p̃(Sg)

∣∣ > αG

E2 := ∀g ∈ [G]
∣∣ E
x∼P

[1±[x ∈ S]]
∣∣ < 2αG

If P = U and neither E1 nor E2 have occurred, every p̃(Sg) is at most 2αG. Thus, the
output is “Uniform.”
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Algorithm 11: OneHotHashh,k(g, xi)

/* One-hot vector that encodes a hashed value */

x′i ← (0, . . . , 0︸ ︷︷ ︸
2k copies

)

hg(x)← 2h(x)− bit(g, xi)
x′i,hg(x) ← +1

Return x′i

If ‖P−U‖1 ≥ αG ·
√

160d and none of E1, E2, E3 have occurred, some p̃(Sg) has
magnitude at least 2αG. Thus, the output is “Not uniform.”

P[E1] < β/3 follows from a Hoeffding bound. P[E2] < β/3 follows from Theorem 5.1
and a union bound over G plays of RRn/G,ε in the manipulation game. When ‖P−U‖1 ≥√

160d · αG and G← dln(2/β)/ ln(477/476)e, P[E3] < β/3 follows from Corollary B.14. A
union bound over all three completes the proof.

Appendix C. Analysis of a Heavy Hitters Protocol

In the heavy hitters problem, each user has data xi ∈ [d]. The objective is to find a small
subset L of the universe that contains every element j ∈ [d] such that freqj(~x) > α. Because
there are 1/α heavy hitters, the size of L should be O(1/α).

We consider the protocol HH described in (Bassily et al., 2017).4 The protocol HHn,d,k,ε
consists of the n randomizers (RHH

n,d,k,ε,i)i∈[n] and the aggregator AHH
n,d,k,ε; see Algorithms

12 and 13 for the pseudocode. A public data structure π partitions [n] into log2 d groups
uniformly at random. We assume the data structure has an implicit order within each group
π(1), . . . , π(log2 d). The public hash function h : [d]→ [k] is drawn uniformly. To facilitate
the use of EST1, we also sample vectors ~s1, . . . , ~sn uniformly from {±1}2k.

Algorithm 12: RHH
n,d,k,ε,i(xi, π, h,~si)

Parameters: n, d, k ∈ Z+; ε > 0; i ∈ [n]
Input: xi ∈ [d]; public partition π; public hash h : [d]→ [k]; public vector

~s ∈ {±1}2k
Output: yi ∈ {± eε+1

eε−1}
g(i)← group that i belongs to in π
x′i ← OneHotHashh,k(g(i), xi)
/* Contribute to a histogram by reporting the one-hot */

n′ ← n/ log2 d
i′ ← index of i in group g(i)
yi ∼ REST1

n′,2k,ε,i′(x
′
i, ~si)

Return yi

4In (Bassily et al., 2017), the protocol is called Bitstogram.
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Algorithm 13: AHH
n,d,k,ε(y1, ~s1, . . . , yn, ~sn, π, h)

Parameters: n, d, k ∈ Z+; ε > 0
Input: yi ∈ {± eε+1

eε−1} and ~si ∈ {±1}2k for each i ∈ [n]; public partition π; public

hash h : [d]→ [k]
Output: L ⊂ [d] with size k

n′ ← n/ log2 d
For g : 1→ log2 d

/* Obtain the g-th noisy histogram */

(z
(g)
1 , . . . , z

(g)
2k )← AEST1

n′,2k,ε({yi, ~si}i∈π(g))

L← ∅
For v ∈ [k]

/* Recover the bits of an element in [d] that hashes to v */

For g : 1→ log2 d

If z
(g)
2v−1 > z

(g)
2v bit

(g)
v ← 1 ;

Else bit
(g)
v ← 0 ;

L← L ∪ the number represented in binary by bit
(1)
v , . . . , bit

(log2 d)
v

Return L

Theorem C.1. There is a constant c such that, for any ε > 0, any positive integers m ≤ n,
any ~x = (x1, . . . , xn) ∈ [d]n, and any adversary M , if we execute L← Manipm,n(HHn,k,ε, ~x,M)

with parameter k ← 3n2/β, then with probability ≥ 1− β, L contains all j such that

freq(j, ~x) > c · e
ε + 1

eε − 1
·

(√
log d

n
log

n log d

β
+
m log d

n

)
In (Bassily et al., 2017), the authors show that it in fact suffices to take k = O(1/α) =

Õ(
√
n), which means a smaller list and faster running time is achievable. We choose a larger

k to simplify some arguments.
There are three undesirable events that can occur when the game is played. In the

claims below, we state them formally and bound the probability of each event by β/3. We
first consider the event that the frequency of any j ∈ ~x is significantly different from the
frequency of j ∈ ~x(g):

Claim C.2. Fix any ~x ∈ [d]n. There is a constant c such that, when π is a uniformly
random partition of [n] into groups π(1), . . . , π(log2 d) each of size n/ log2 d,

P

[
∀j ∈ ~x ∀g ∈ [log2 d] |freq(j, ~x)− freq(j, ~x(g))| > c ·

√
log2 d

n
ln
n · log2 d

β

]
≤ β/3

This is proven via a Hoeffding bound and a union bound. Next we argue that there are
likely no collisions:

Claim C.3. If k > 3n2/β, then for any ~x ∈ [d]n and a uniformly chosen h : [d]→ [k],

P
[
∃x 6= x′ ∈ ~x h(x) = h(x′)

]
≤ β/3
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Proof. The argument is brief:

P
[
∃x 6= x′ ∈ ~x h(x) = h(x′)

]
≤ n · P[∃x 6= x1 h(x) = h(x1)]

≤ n2 · P[h(x2) = h(x1)]

=
n2

k
< β/3

A core part of the protocol is, for each group g, the execution of EST1n′,2k,ε on one-hot
encodings (x′i)i∈π(g). Theorem B.9 implies the following:

Claim C.4. Fix any m < n′, ~x ′ ∈ (B2k
1 )n

′
, any adversary M against EST1n′,2k,ε, and any

β ∈ (0, 1). There exists a constant c such that

P

[∥∥∥∥∥Manipm,n′(EST1n′,2k,ε, ~x
′,M)− 1

n′

n′∑
i=1

x′i

∥∥∥∥∥
∞

> c · e
ε + 1

eε − 1
·

(√
1

n′
ln
k

β
+
m

n′

)]
≤ β/3

We are now ready to prove Theorem C.1

Proof of Theorem C.1. Let c0, c1 be the constants from Claims C.2 and C.4, respectively.
We will prove that with probability ≥ 1− β, for each g ∈ [log2 d] and for each j such that

freq(j, ~x) > c0 ·

√
log2 d

n
ln
n · log2 d

β
+ 2c1 ·

eε + 1

eε − 1
·

(√
1

n′
ln
k log2 d

β
+
m

n′

)
(C.1)

the protocol will reconstruct the g-th bit of j.
Each user constructs x′i ← OneHotHashh,k(g(i), xi) when running RHH on their data. A

union bound over Claims C.2 and C.3 implies the following two inequalities hold for all
groups g (with probability 1− 2β/3):

1

n′

∑
i∈π(g)

x′i,2·h(j)−bit(g,j) ≥ freq(j, ~x)− c0 ·

√
log2 d

n
ln
n · log2 d

β
(C.2)

1

n′

∑
i∈π(g)

x′i,2·h(j)+bit(g,j)−1 = 0 (C.3)

From Claim C.4, the following two inequalities hold for all g (with probability 1− β/3):

|z(g)2·h(j)−bit(g,j) −
1

n′

∑
i∈π(g)

x′i,2·h(j)−bit(g,j)| ≤ c1 ·
eε + 1

eε − 1
·

(√
1

n′
ln
k log2 d

β
+
m

n′

)
(C.4)

|z(g)2·h(j)+bit(g,j)−1 −
1

n′

∑
i∈π(g)

x′i,2·h(j)+bit(g,j)−1| ≤ c1 ·
eε + 1

eε − 1
·

(√
1

n′
ln
k log2 d

β
+
m

n′

)
(C.5)
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By a union bound, the following holds with probability ≥ 1− β:

z
(g)
2·h(j)−bit(g,j)

≥ 1

n′

∑
i∈π(g)

x′i,2·h(j)−bit(g,j) − c1 ·
eε + 1

eε − 1
·

(√
1

n′
ln
k log2 d

β
+
m

n′

)
(From (C.4))

≥ freq(j, ~x)− c0 ·

√
log2 d

n
ln
n · log2 d

β
− c1 ·

eε + 1

eε − 1
·

(√
1

n′
ln
k log2 d

β
+
m

n′

)
(From (C.2))

≥ c1 ·
eε + 1

eε − 1
·

(√
1

n′
ln
k log2 d

β
+
m

n′

)
(From (C.1))

≥ z(g)2·h(j)+bit(g,j)−1 +
1

n′

∑
i∈π(g)

x′i,2·h(j)+bit(g,j)−1 (From (C.5))

= z
(g)
2·h(j)+bit(g,j)−1 (From (C.3))

By construction, this means we will assign bit
(g)
h(j) ← bit(g, j).
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