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Abstract. Differentially private synthetic data generation offers a recent solution to
release analytically useful data while preserving the privacy of individuals in the data.
In order to utilize these algorithms for public policy decisions, policymakers need an
accurate understanding of these algorithms’ comparative performance. Correspondingly,
data practitioners require standard metrics for evaluating the analytic qualities of the
synthetic data. In this paper, we present an in-depth evaluation of several differentially
private synthetic data algorithms using actual differentially private synthetic data sets
created by contestants in the 2018-2019 National Institute of Standards and Technology
Public Safety Communications Research (NIST PSCR) Division’s “Differential Privacy
Synthetic Data Challenge.” We offer analyses of these algorithms based on both the
accuracy of the data they created and their usability by potential data providers. We
frame the methods used in the NIST PSCR data challenge within the broader differentially
private synthetic data literature. We implement additional utility metrics, including two of
our own, on the differentially private synthetic data and compare mechanism utility on
three categories. Our comparative assessment of the differentially private data synthesis
methods and the quality metrics shows the relative usefulness, the general strengths and
weaknesses, and offers preferred choices of algorithms and metrics. Finally we describe the
implications of our evaluation for policymakers seeking to implement differentially private
synthetic data algorithms on future data products.

1. Introduction

1.1. Background on Differentially Private Synthetic Data. The collection and dis-
semination of data can greatly benefit society by enabling a range of impactful research
projects, such as the Personal Genome Project Canada database which determines Genomic
variants in participants for several health problems [Reuter et al., 2018], the United Kingdom
Medical Education Database “to improve standards, facilitate workforce planning and sup-
port the regulation of medical education and training” [Dowell et al., 2018], and the Robert
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Wood Johnson Foundation 500 Cities Project that provided a large United States data set
that “contain[ed] estimates for 27 indicators of adult chronic disease, unhealthy behaviors,
and preventative care available” as a “groundbreaking resource for establishing baseline
conditions, advocating for investments in health, and targeting program resources where they
are needed most” [Scally et al., 2017]. However, sharing data based on human subjects with
potentially sensitive information often raises valid concerns over the privacy risks inherit in
sharing data, and recent misuses of data access for seemingly research purposes, such as
the Facebook - Cambridge Analytica Scandal, have heightened data privacy concerns over
how private companies and government organizations gather and disseminate information
[Martin et al., 2017, Tsay-Vogel et al., 2018, González et al., 2019].

Statistical disclosure control (SDC), or limitation (SDL), exists as a field of study
that aims to develop methods for releasing high-quality data products while preserving the
privacy and confidentiality of sensitive data. These techniques have existed within statistics,
the social sciences, and government agencies since the mid-twentieth century, and they have
sought to balance risk against the benefit to society, also known as the utility of the data
(we will use quality and utility interchangeably in this paper). SDC methods traditionally
require strong assumptions concerning the knowledge and identification strategies of the
attacker, and risk is estimated by simulating these attackers based on those assumptions
[Reiter, 2005, Hundepool et al., 2012, Manrique-Vallier and Reiter, 2012].

While this field has existed for some time, over the past two decades the data landscape
has dramatically changed. With the growth of the internet and tech companies, data
collection and data sharing have vastly increased. Data adversaries (also referred to as
intruders or attackers) can more easily reconstruct data sets and identify individuals from
supposedly anonymized data using advances in modern information infrastructure and
computational power. Examples of re-identified anonymized data include the Netflix Prize
data set [Narayanan and Shmatikov, 2008], the Washington State health records [Sweeney,
2013], credit card metadata [De Montjoye et al., 2015], cell phone spatial data [Hardesty,
2013, De Montjoye et al., 2013, Kondor et al., 2018], and the United States public use
microdata files [Rocher et al., 2019]. Due to the increased availability of external data
files and methods for reconstructing information from data, data privacy practitioners have
dwindling confidence that they can accurately assess the risk of releasing data based on
simulating all plausible adversaries.

Beginning with Dwork et al. [2006b], researchers have begun developing a new concept,
known as differential privacy (DP) or sometimes more generally as formal privacy, to combat
this heightened risk of privacy loss. Privacy researchers consider DP the first provable
definition for quantifying privacy loss when releasing information from a confidential data
set. In contrast to prior SDC methods, DP does not require a simulated attacker or the same
strong assumptions concerning how much information an intruder may have or what kind of
disclosure is likely to occur. This does not imply that DP protects from all attacks, but for
a defined type of privacy loss it offers provable amounts of protection. At a high level, DP
links the potential for privacy loss to how much the answer of a query (such as a statistic) is
changed given the absence or presence of the most extreme possible person in the population
of the data. DP requires that the level of protection is set proportional to this maximum
potential change, thereby providing formal privacy protections scaled to the worst-case
scenario. For further details, Dwork and Roth [2014] provides a rigorous mathematical
review of DP while Nissim et al. [2017] and Snoke and Bowen [2019] describe DP for a
non-technical, general audience. Since its conception, DP has created an entire new field of
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research with applications in Bayesian learning [Wang et al., 2015], data mining [Mohammed
et al., 2011], data streaming [Dwork et al., 2010], dimension reduction [Chaudhuri et al.,
2012], eye tracking [Liu et al., 2019], genetic associate tests [Yu et al., 2014], inferential
statistical analyses [Karwa et al., 2016, Wasserman and Zhou, 2010], power grid obfuscation
[Fioretto et al., 2019], and recommender systems [Friedman et al., 2016] to list a few.

Synthetic data generation is another innovation in SDC that has become a leading
practical approach for releasing publicly available data that can be used for exploratory
purposes and numerous different analyses [Rubin, 1993, Little, 1993, Raghunathan et al.,
2003, Reiter, 2005, Drechsler, 2011, Raab et al., 2016]. While this approach has been shown
to offer improvements in preserving the utility of the data compared against other SDC
methods, as originally proposed it lacks a formal privacy quantification.

Within the DP literature, researchers have more recently considered the combination of
DP and data synthesis as a solution to releasing analytically useful data while preserving the
privacy of individuals in the data. Applications include binary data [Charest, 2011, McClure
and Reiter, 2012], categorical data [Abowd and Vilhuber, 2008, Hay et al., 2010], continuous
data [Wasserman and Zhou, 2010, Bowen and Liu, 2020, Snoke and Slavković, 2018], network
data [Karwa et al., 2016, 2017], and Poisson distributed data [Quick, 2019]. In order to utilize
these algorithms for public policy decisions, policymakers need an accurate understanding of
these algorithms’ comparative performance. However, there are very few studies comparing
multiple differentially private data synthesis methods and, to the best of our knowledge, no
studies applying the comparisons on real-world data. Correspondingly, data practitioners
wishing to produce differentially private synthetic data are unlikely to know what algorithms
fit their application or find information concerning the relative strengths and weaknesses of
different approaches.

1.2. Contributions of This Paper. In this paper, we provide an in-depth assessment of
various differentially private data synthesis methods applied to multiple real, non-trivial data
sets and evaluated on a variety of utility metrics. The underlying algorithms and data for
this study come from the 2018 National Institute of Standards and Technology Public Safety
Communication Research (NIST PSCR) Division’s “Differential Privacy Synthetic Data
Challenge” [Vendetti, 2018]. Due to the competitive nature of the challenge, final scores had
to be aggregated such that more academic evaluations of the algorithms’ performances were
not possible.

In our assessment, we evaluate the differentially private data synthesis mechanisms
based on their performance in the challenge and on a wider range of utility metrics. We
provide descriptions of each algorithm and consider their ease of implementation, such as the
availability of open-source code, computational feasibility, and the amount of public data
pre-processing required. We also note algorithms’ current standing as published methods in
the data privacy and confidentiality literature.

We expand on the scoring metrics devised for the challenge and evaluate the synthetic
data sets on a variety of other standard metrics in the data privacy utility literature. For
readers unfamiliar with different ways to evaluate accuracy, this paper offers a concise and
well-organized set of metrics that form a broad utility assessment. We organize the utility
metrics used to assess the synthetic data in one of three groups: (1) marginal distribution
metrics, (2) joint distribution metrics, and (3) correlation metrics. Using the actual synthetic
data sets generated by contestants in the challenge, which were made available to us by
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NIST PSCR, we implemented multiple metrics in each of these categories. We also assigned
each of the three NIST PSCR Data Challenge scoring measures to one of these categories.

The categories provide our evaluation with multiple lenses on the relative usefulness
of each algorithm, ranging from specific measures of model accuracy to general measures
of distributional similarity. We provide recommendations for best candidate methods, the
first such recommendations based on a large-scale real data application, for future use based
on their strengths and weaknesses. We provide policymakers and practitioners seeking
to implement differentially private synthetic data algorithms both an assessment of the
algorithms used in the challenge and a framework for evaluating future differentially private
synthetic data techniques.

We organize the remainder of the paper as follows. Section 2 reviews the definitions
and concepts of differential privacy and common differentially private mechanisms. Section
3 summarizes the differentially private data synthesis methods ranked in the NIST PSCR
Data Challenge, and Section 4 describes the quality metrics we implemented on the NIST
PSCR Data Challenge data sets. Section 5 evaluates and compares all the quality metric
results. Concluding remarks and suggestions for future work are given in Section 6.

2. Differential Privacy

Differential privacy (DP), under a specific definition, offers a provable and quantifiable
amount of privacy protection, colloquially referred to as the privacy-loss budget. Satisfying
DP is a statement about the algorithm (or mechanism), not a statement about the data.
Rather than stating that the output data meets privacy requirements, DP requires that the
algorithm which produces the output provably meets the definitions. Accordingly, algorithms
which satisfy the definitions are referred to as differentially private algorithms.

In this section, we reproduce the pertinent definitions and theorems of DP with the
following notation: X ∈ R is the original data set with dimension n× q and X∗ is the
private version of X with dimension n∗ × q. We also define a statistical query as a function
u : Rn×q → Rk, where the function maps the possible data sets of X to k real numbers.

2.1. Definitions and Theorems.

Definition 2.1. Differential Privacy [Dwork et al., 2006b]: A sanitization algorithm,M,
gives ε-DP if for all subsets S ⊆ Range(M) and for all X,X ′ such that d(X,X ′) = 1,

Pr(M(X) ∈ S)

Pr(M(X ′) ∈ S)
≤ exp(ε) (2.1)

where ε > 0 is the privacy-loss budget and d(X,X ′) = 1 represents the possible ways that
X ′ differs from X by one record. We define this difference as a presence or absence of a
record, but note that some definitions of DP have this difference as a change, where X and
X ′ have the same dimensions.

One common concern about algorithms that satisfy ε-DP is they tend to inject a
large amount of noise into statistical query results. Several relaxations of ε-DP have been
developed such as approximate DP [Dwork et al., 2006a], probabilistic DP [Machanavajjhala
et al., 2008], and concentrated DP [Dwork and Rothblum, 2016]. These are called relaxations
because, while still formal, they offer slightly weaker privacy guarantees. In return, they
typically lessen the amount of noise required. We will cover approximate DP, also known as



NIST PSCR DIFFERENTIAL PRIVACY SYNTHETIC DATA CHALLENGE 5

(ε, δ)-DP, since the NIST PSCR Data Challenge allowed the submissions to satisfy (ε, δ)-DP
rather than strict ε-DP.

Definition 2.2. (ε, δ)-Differential Privacy [Dwork et al., 2006a]: A sanitization algorithm
M gives (ε, δ)-DP if for all X,X ′ that are d(X,X ′) = 1,

Pr(M(X) ∈ S) ≤ exp(ε) Pr(M(X ′) ∈ S) + δ (2.2)

where δ ∈ [0, 1]. ε-DP is a special case of (ε, δ)-DP when δ = 0.

The parameter δ adds a small probability that the bound given in Definition 2.1 does
not hold, which can be useful when dealing with extreme yet very unlikely cases.

Many DP algorithms have multiple outputs, such as multiple synthetic data sets or
repeated responses from a query system. Each time a statistic or output is released, data
information “leaks”, and therefore needs protecting. DP protects the information by splitting
the amount of ε used for each output, and the composition theorems formalize this idea.

Theorem 2.3. Composition Theorems [McSherry, 2009]: Suppose a mechanism, M,
provides (εj, δj)-DP for j = 1, . . . , k.

a) Sequential Composition:
The sequence of Mj(X) applied on the same X provides (

∑
j εj ,

∑
j δj)-DP.

b) Parallel Composition:
Let Dj be disjoint subsets of the input domain D. The sequence of Mj(X ∩Dj) provides
max(εj),max(δj)-DP.

To put it more simply, suppose there are k many statistical queries on X. The
composition theorems state that the data practitioner may allocate a portion of the overall
desired level of ε to each statistic by sequential composition. A typical appropriation is
dividing ε equally by k. For example, competitors used sequential composition in the
challenge when making multiple draws of the statistic of interest to generate multiple
differentially private synthetic data sets, allocating an equal amount of privacy-budget to
each synthetic data set.

Conversely, parallel composition does not requiring splitting the budget because the
noise is applied to disjoint subsets of the input domain. Some competitors used parallel
composition, for instance, in a perturbed histogram mechanism, where the bins are disjoint
subsets of the data, and noise can be added to each bin independently without needing to
split ε.

The post-processing theorem is another important theorem, which states that any
function applied to a differentially private output is also differentially private.

Theorem 2.4. Post-Processing Theorem [Dwork et al., 2006b, Nissim et al., 2007]:
If M be a mechanism that satisfies ε-DP, and g be any function, then g (M(X)) also

satisfies ε-DP.

Almost all differentially private synthetic data algorithms leverage this theorem, since
most focus on perturbing the distribution (either directly or through its parameters) and
sampling synthetic data from the noisy distribution. Using the post-processing theorem, any
data drawn as a function of the noisy parameters (or a noisy histogram) that were produced
by an algorithm satisfying DP will also be DP. Other examples of post-processing steps
include enforcing structural aspects of the data, such as not releasing negative values for
people’s ages. Every contestants’ algorithm, described in more detail in Section 3, utilizes
some form of post-processing.
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2.2. Differentially Private Mechanisms. In this section, we present some building-block
mechanisms that are used in the ε-DP and (ε, δ)-DP algorithms developed by the competitors
for the NIST PSCR Data Challenge. For a given value of ε, an algorithm that satisfies DP or
approximate DP will adjust the amount of noise added to the data based on the maximum
possible change, given two databases that differ by one row, of the statistic or data that the
data practitioner wants released. This value is commonly referred to as the global sensitivity
(GS), given in Definition 2.5.

Definition 2.5. l1-Global Sensitivity [Dwork et al., 2006b]: For all X,X ′ such that
d(X,X ′) = 1, the global sensitivity of a function u is

∆1u = sup
d(X,X′)=1

‖u(X)− u(X ′)‖1 (2.3)

We can calculate sensitivity under different norms, for example ∆2u represents the l2
norm global sensitivity, l2-GS, of the function u. Another way of thinking about the GS is
that it measures how robust the statistical query is to outliers.

The most basic mechanism satisfying ε-DP is the Laplace Mechanism, given in Definition
2.6, first introduced by Dwork et al. [2006b].

Definition 2.6. Laplace Mechanism [Dwork et al., 2006b]: The Laplace Mechanism
satisfies ε-DP by adding noise to u that are drawn from a Laplace distribution with the
location parameter at 0 and scale parameter of ∆uε

−1 such that

u∗(X) = u(X) + Laplace
(
0,∆1uε

−1) (2.4)

Another popular mechanism is the Gaussian Mechanism that satisfies (ε, δ)-DP, given
in Definition 2.7, which uses the l2-GS of the statistical query.

Definition 2.7. Gaussian Mechanism [Dwork and Roth, 2014]: The Gaussian Mechanism
satisfies (ε, δ)-DP by adding Gaussian noise with zero mean and variance, σ2, such that

u∗(X) = u(X) +N
(
0, σ2I

)
(2.5)

where σ = ∆2uε
−1√2 log(1.25/δ).

Both the Laplace and Gaussian Mechanisms are simple and quick to implement, but
only apply to numerical values (without additional post-processing, Theorem 2.4). A more
general ε-DP mechanism is the Exponential Mechanism, given in Definition 2.8, which
allows for the sampling of values from a noisy distribution rather than adding noise directly.
Although the Exponential Mechanism can apply to any type of statistic, many theoretical
algorithms using the Exponential Mechanism are computationally infeasible for practical
applications without limiting the possible outputs for a particular statistic, θ, on X. None of
the top ranking participants used this mechanism, but other DP synthetic data algorithms
such as those proposed by Wasserman and Zhou [2010] and Snoke and Slavković [2018] use
the Exponential Mechanism.

Definition 2.8. Exponential Mechanism [McSherry and Talwar, 2007]: The Exponential
mechanism releases values with a probability proportional to

exp

(
εu(X, θ)

2∆1u

)
(2.6)

and satisfies ε-DP, where u(X, θ) is the score or quality function that determines the values
for each possible output, θ, on X.
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3. Differentially Private Data Synthesis Algorithms

In this section, we review the top ranking differentially private data synthesis algorithms
from the NIST PSCR Data Challenge. Hay et al. [2016] and Bowen and Liu [2020] also offer
in-depth evaluations and assessments of other differentially private data synthesis methods
not covered in this paper, so we direct any interested readers to these papers for more
information on algorithms not found here.

This competition, sponsored by the NIST PSCR Division, called for researchers to
develop practical and viable differentially private data synthesis methods that were then
scored using bespoke metrics. The NIST PSCR challenge consisted of three “Marathon
Matches,” which spanned from November 2018 to May 2019. Each match provided the
contestants with a real-world data set to train and develop their DP methods that were
identical in structure and variables to the real-world test data used for final scoring. At
the start of each match, organizers of the challenge gave contestants details regarding
scoring methods and 30 days to develop and submit their differentially private synthetic
data algorithms. The competition required detailed proofs and code for the submissions,
and the highest scoring submissions received cash prizes. Over the 30 day period, a panel of
subject matter experts reviewed and verified that the submitted methods satisfied DP. If
approved, NIST PSCR challenge organizers applied the differentially private synthetic data
methods to the test data for final scoring.

Both Matches #1 and #2 used the San Francisco Fire Department’s (SFFDs) Call
for Service data, with a different year for each match. These data sets contained a total
of 32 categorical and continuous variables with roughly 236,000 to 314,000 observations
respectively. Some of the variables are Call Type Group, Number of Alarms, City, Zip
Code of Incident, Neighborhood, Emergency Call Received Date and Time, Emergency Call
Response Date and Time, Supervisor District, and Station Area. For Match #3, challenge
participants trained their methods on the Colorado Public Use Microdata Sample (PUMS)
data, and their methods were evaluated on the Arizona and Vermont PUMS data for final
scoring. All three PUMS data sets had 98 categorical and continuous variables with the
number of observations ranging from about 210,000 to 662,000. Gender, Race, Age, City,
City Population, School, Veteran Status, Rent, and Income Wage were a few of the 98
variables. We discuss how the NIST PSCR Differential Privacy Synthetic Data Challenge
executed their scoring in Section 4.

We categorize the differentially private data synthesis methods from the challenge into
the same two categories used in Bowen and Liu [2020], non-parametric and parametric
approaches. We define non-parametric approaches as differentially private data synthesis
methods that generate data from an empirical distribution, and we define parametric
approaches as algorithms that generate the synthetic data from a parameterized distribution
or generative model.

3.1. Non-Parametric Data Synthesis. Most non-parametric differentially private syn-
thetic data techniques sanitize the cell counts or proportions from a cross-tabulation of
the data. The non-parametric approaches will sample data from an empirical distribution
using the discretized bins to provide a synthetic microdata file or when the original data
has continuous variables. The bounds for the discretization of continuous variables must be
selected in a differentially private manner or by leveraging public information to satisfy DP.
The majority of the teams who developed non-parametric data synthesis methods focused
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on reducing the number of cells to sanitize. They accomplished this by clustering variables
(i.e., creating multiple disjoint cross-tabulations on subsets of variables), maintaining only
highly correlated marginals, or using the privacy budget asymmetrically across cells.

3.1.1. Team DPSyn. Team DPSyn consistently performed well throughout the entire NIST
PSCR Data Challenge, placing second in all three matches. The team’s mechanism, DPSyn,
works by clustering similar variables (based on attributes, the specific utility objective, etc.)
and perturbing the cell counts of the joint histograms for each cluster. Team DPSyn used
the training data set in order to determine clusters of variables. Because this was done
using public data rather than the sensitive values, they did not need to spend any additional
privacy budget. Overall, the approach lessens the noise necessary, because it reduces the
total number of cells, but at the price of sacrificing the correlations between variables in
different clusters. After clustering, DPSyn constructs the 1-, 2-, and 3-way marginals for
all variables in each cluster, and sanitizes the counts via the Gaussian Mechanism. For
post-processing, DPSyn constrains the noisy marginals using techniques from Qardaji et al.
[2014] to be consistent with one another. These techniques check for mutual consistency
among the totals of the multi-way marginals (altering the counts to be consistent) and
reduce the noisy counts to zero when they are below a threshold. Finally, DPSyn generates
the synthetic data by sampling from the noisy marginals of the joined clusters.

The algorithm is straightforward, and a data practitioner could implement DPSyn fairly
easily given the simplicity and because Li et al. [2019] provided the source code (Python) and
full documentation on GitHub. The main difficulty would be selecting the variable groups
for the pre-processing step, which could be daunting for an inexperienced data practitioner,
someone without familiarity of the data set, or someone who does not have access to public
data. This method is fairly novel, only being published recently, so it has yet to gain wide
acceptance in the field. That being said, more researchers and data practitioners will likely
implement DPSyn in the near future due to its simplicity and good performance.

3.1.2. Team Gardn999. Team Gardn999 developed the simplest mechanism, DPFieldGroups,
out of the NIST PSCR Data Challenge entrants while still performing well. They placed
fifth and fourth in Matches #2 and #3, respectively, and did not participate in Match
#1. DPFieldGroups sanitizes the original data cell counts via the Laplace Mechanism.
DPFieldGroups first clusters the cells by identifying the highly correlated variables from
the public training data set. The method then conducts post-processing by reducing noisy
counts to zero if they fell below a threshold calculated from ε and the log10 number of
bins in the particular marginal histogram. DPFieldGroups generates the synthetic data by
randomly sampling the sanitized observations from each of the marginal histograms with a
weighted probability proportional to the noisy counts.

Similarly to DPSyn, the pre-processing step for DPFieldGroups relies on the data
practitioner to cluster highly correlated variables based on public data. Once the variables
are grouped, the data practitioner can execute the Java code hosted on GitHub [Gardner,
2019]. The post-processing step is less involved than DPSyn, only adjusting some counts
down to avoid a large number of non-zero bins. The strength of this approach lies in its
simplicity. On the other hand, Team Gardn999 has not published DPFieldGroups as a novel
method, and it relies only on relatively simple DP steps. However, this method forms a good
case study for the performance of a simple application of a differentially private algorithm.
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3.1.3. Team pfr. Team pfr placed first in Matches #1 and #2, but did not compete in
Match #3. We believe their lack of participation might be due to their initially designing
their algorithm based on how Match #1 scored the similarity of the original and synthetic
data sets, and they did not want to recalibrate their algorithm for the new data and scoring
metric in Match #3. They targeted maximizing accuracy on the 3-way marginal counts, and
the variables that involve the Emergency Call Data and Time information. Before sanitizing
the 3-way marginals, their pre-processing step depends on the data practitioner establishing
a list of:
(1) variables that could be computed deterministically from other variables and therefore did

not need to be encoded, e.g., City was computed deterministically from Neighborhood.
(2) variables that are correlated or variables that are subset of others. e.g., Supervisor

District is correlated with Station Area.
(3) data set size thresholds for certain queries, such that queries over the threshold are

discarded and the corresponding output is replaced by a uniform distribution.
Similarly to DPSyn, Team pfr used the training data set as their public data to determine
the histogram queries and the deterministic relationships. The algorithm roughly clusters the
variables into three disjoint groups (Spatial, Temporal, and Call-Information groups). The
pfr method then identifies within each group which variables are computed deterministically
from other variables and which variables are highly correlated. Clustering the variables
in this manner reduces the total possible combinations of cells that need sanitizing. For
the sanitizing step, the pfr mechanism sanitizes the cell counts in each group of variables
separately via the Laplace mechanism. Team pfr allocates the privacy budget proportionally
to the number of variables in each group. e.g., Call-Information had 10 variables out of
32 possible, so a total of ≈ 0.31ε privacy budget. After sanitizing the counts within each
group, Team pfr’s approach “denoises” or lowers the total amount of noise added to the
counts by modeling all the non-negative counts from a mixture probability distribution.
This distribution samples either a zero or values from a uniform distribution to reduce the
excessive non-zero counts created in the sanitization step. Team pfr uses the public training
data set to estimate the probability of sampling a zero count based on the proportion of
empty cells within each grouping.

A data practitioner would have to hand-code the pfr algorithm given the lack of open
source code (the team did not share their code on GitHub) or existing publication of the
approach. Without public code or an algorithm, their method is not reproducible. Also,
the pfr method depends heavily on the publicly available information for query selection to
improve accuracy, so this method would likely perform poorly on data sets with little to no
associated public knowledge. Team pfr may not publish or receive credit in the literature
for their ideas, but they demonstrated how simpler DP methods that intelligently leverage
public or domain knowledge can perform well in practice.

3.2. Parametric Data Synthesis. Parametric differentially private synthetic data meth-
ods rely on estimating or learning an appropriate parameterized distribution based on the
original data and sampling values from that distribution with noisy parameters. Parametric
methods are generally much more computationally demanding than the non-parametric
methods. One of the concerns when applying a parametric approach is the distribution
or model selection itself might violate privacy. Either the data practitioner must use a
separate public data set to test what model is appropriate or leverage public knowledge on
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what model should be used to avoid a privacy violation. If this is not possible, the data
practitioner may apply a differentially private model selection method [Lei et al., 2018].

3.2.1. Team PrivBayes. Team PrivBayes used a well developed differentially private approach,
PrivBayes, from their well-cited paper [Zhang et al., 2017]. They placed fifth in Match #1
and third in Matches #2 and #3. PrivBayes uses a Bayesian network with binary nodes and
low-order interactions among the nodes to release high-dimensional data that satisfies DP.
PrivBayes first scores each pair of possible attributes that indicates the level of correlation
between attributes. The method sanitizes these scores via the Gaussian Mechanism, and
then uses them to create the Bayesian network. When the attributes contain continuous
values, PrivBayes must discretize the values to create the Bayesian network. Using this
differentially private Bayesian network, the algorithm approximates the distribution of the
original data with a set of P many low-dimensional marginals. Next, PrivBayes sanitizes the
P marginals via the Gaussian Mechanism and uses the noisy marginals with the Bayesian
network to reconstruct an approximate distribution of the original data set. PrivBayes then
generates the synthetic data by sampling tuples from this approximated distribution, and
post-processes to enforce consistency on the noisy marginals in three parts: marginal set of
attributes, attribute hierarchy, and overall consistency. In other words, this method first
checks that the marginal counts are consistent for a chosen set of attributes, then enforces
that the marginals remain consistent as the attribute coarsens. For example, the set of
attributes could be ethnicity within census tracts for a state, where the noisy marginal
counts for each ethnic group should sum to the noisy total count of individuals for the
particular census tract. For attribute hierarchy consistency, the sum of certain census tracts
should equal the total counts for county and the state. For overall consistency, all marginals
for all subsets of attributes should be consistent.

PrivBayes performs fairly well and does not require any public data for a pre-processing
step such as the non-parametric approaches described in Section 3.1. Additionally, there
exists PrivBayes Python code on GitHub [Ping, 2018, Ping and Stoyanovich, 2017], allowing
data practitioners to easily apply PrivBayes to their data. However, the complexity of
PrivBayes due to constructing the differentially private Bayesian network and enforcing
consistency among the noisy marginals increases the computational burden compared to the
other methods. A data practitioner might be limited in implementing PrivBayes depending
on computational resources and the size of the target data set. The complexity of the
approach, notably the unsupervised identification of the network, also means that data
practitioners will have more difficulties diagnosing potential issues in the event of inaccurate
syntheses. While the non-parametric methods are easy to understand and tune, PrivBayes
essentially represents a black-box method. That being said, researchers and practitioners
may find the well founded theory and acceptance of PrivBayes in the literature a boon to
its potential use.

3.2.2. Team RMcKenna. Team RMcKenna performed third in Match #1, fourth in Match
#2, and first in Match #3. Their approach can be described as a blend of a parametric and
a non-parametric approach, since the algorithm focuses on determining a subset of histogram
cells to perturb and then sampling data from these noisy marginals using a graphical model.
As a first step, Team RMcKenna’s mechanism uses a similar pre-processing step to the
non-parametric methods by first identifying the highly correlated variables on a public
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data set. The algorithm then sanitizes the 1-, 2-, and 3-way marginals via the Gaussian
Mechanism. In this step, the team also utilizes the Moments Accountant, a privacy-loss
tracking technique that tightens the privacy bound for the Gaussian Mechanism better than
Theorem 2.3, resulting in less noise on the marginals [Abadi et al., 2016]. Based on the
sanitized marginals, Team RMcKenna uses graphical models to determine a model for the
data distribution, capturing the relationships among the variables and enabling synthetic
data generation [McKenna et al., 2019].

Team RMcKenna’s method is fairly easy to understand, resembling the implementation
steps for DPSyn and DPFieldGroups, while utilizing some more advance techniques for
splitting the privacy budget across cells and sampling from the noisy marginals. The
combination of the parametric and non-parametric ideas offers a unique approach among
the competitors. The algorithm is also straightforward to implement, requiring only some
pre-processing work. The data practitioner must first select the highly correlated variables
for the low dimensional marginals before executing the Python code from McKenna [2019]
on GitHub. This method is fairly novel and, given its performance and the fact that it
builds on previous work, it will likely gain acceptance in the literature.

3.2.3. Team UCLANESL. Team UCLANESL placed fourth in Match #1, fifth in Match #3,
and they did not compete in Match #2. They based their mechanism on the Wasserstein gen-
erative adversarial network (WGAN) training algorithm along with the Gaussian Mechanism
and the Moment Accountant technique to ensure DP [Arjovsky et al., 2017]. First, WGAN
trains two competing models: the generator, a model that learns to generate synthetic
data from the target data, and the discriminator, a model that attempts to differentiate
between observations from the training data and the generator created synthetic data. The
generator creates fake observations that mimic ones from the target data by taking in a
noisy vector sampled from a prior distribution such as a normal or uniform distribution.
These fake observations attempt to confuse the discriminator, reducing the model’s ability
to distinguish the target and synthetic data sets. For the models to be differentially private,
Team UCLANESL’s method sanitizes the discriminator gradient updates using the Gaussian
mechanism. Essentially, the method first “clips” the discriminator gradient updates to
ensure a bounded l2 sensitivity before adding noise from the Gaussian Mechanism. Team
UCLANESL’s approach then uses these sanitized gradient updates on the discriminator
model weights, which means the generator model also satisfies DP since it relies on the
feedback from the discriminator. The Moment Account technique comes in to track the
privacy-loss budget and will abort the WGAN training if the privacy budget has been
reached.

For further details, Alzantot and Srivastava [2019] provides a full technical report with
proofs in addition to their Python code. As a published paper with publicly available
code, data practitioners could easily implement this method. However, Team UCLANESL’s
method is the most computationally intense out of all the competitors. In particular, their
method consumes a lot of memory. This in large part due to the computational nature of
GANs. A second team also submitted a GAN algorithm for the challenge, but the NIST
PSCR competition staff could not even get the code to run. Team UCLANESL’s Python

code includes the TensorFlow library, a GPU-accelerated deep learning framework, that they
report significantly reduces the computational time when the code runs on a GPU-powered
machine. For this reason, we suspect the average data provider, who would likely not have
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access to a GPU, will have extreme difficulties implementing the DP WGAN method given
the computational resources required.

3.3. Summary of the NIST PSCR Challenge Synthesis Algorithms. In this section,
we offer our high-level evaluation of the contestants’ algorithms based on their theoretical
strengths and weaknesses along with their commonalities and dissimilarities. We also consider
the relative applicability for a practitioner wishing to release data based on the required
pre-processing and computational demands of each algorithm. Table 1 provides summaries
for each algorithm.

The three non-parametric algorithms function similarly, relying on estimating histograms
on a reduced numbers of cells and perturbing the counts. These methods then draw the
synthetic values from these noisy marginals. The differences come from how they construct
the histograms, how they allocate the privacy budget, and what post-processing they use.
In fact, teams DPSyn and Gardn999 have almost the exact same core approach, except with
DPSyn offering additional pre- and post-processing techniques. In contrast, the parametric
approaches vary significantly from one another. Team PrivBayes relies on Bayesian networks,
Team UCLANESL uses a GAN technique, and Team RMcKenna layers a graphical model
on top of a perturbed histogram. These methods highlight the fact that non-parametric
algorithms require significant hands-on work apart from the actual privacy mechanism, while
parametric algorithms focus on optimizing the privacy mechanism itself.

The non-parametric methods are much less computationally demanding, but they
require more pre-processing work such as analyzing public data to identify correlations and
important marginals. For a data provider wishing to implement one of these methods, they
will need to spend time working with public data and likely perform some hand-coding. Only
one method, PrivBayes, truly qualifies as an “off-the-shelf” method, where it requires no
prep work or additional coding to run it. Although Team UCLANESL has open-source code
and does not require additional coding, the approach demands such significant computational
resources, namely a GPU, that we expect few practitioners could run it in practice without
changes to their computational environment. The other four teams’ algorithms (DPSyn,
Gardn999, pfr, and RMcKenna) need detailed pre-processing before running the code. These
four methods assume access to accurate public data, so practitioners without such available
information would not benefit from implementing one of these algorithms.

Based on the descriptions of the methods, we expect data practitioners would most
easily adopt DPSyn (or to a lesser extent Team Gardn999’s DPFieldGroups) and PrivBayes.
The former requires little computational or technical understanding, but involves some effort
with analyzing the public information beforehand. PrivBayes on the other hand is truly
off-the-shelf and could be applied without pre-processing based on public data, assuming the
practitioner has the required computational abilities. In contrast, teams pfr, RMcKenna,
and UCLANESL offer more complex approaches that may provide good results for more
expert users.

4. Metrics to Evaluate the Synthetic Data Quality

In this section, we describe the scoring methods used for the NIST PSCR Differential Privacy
Synthetic Data Challenge. We also detail the quality metrics we used for further evaluation
of the DP synthetic data sets, which includes general joint distributional level measures,
marginal distributional differences, and differences in specific fitted regression models.
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Table 1: Summary of the non-parametric and parametric differentially private synthetic
data approaches discussed in Sections 3.1 and 3.2.

Non-Parametric Synthesis Approaches

Team Computation
Off-the-Shelf vs.
Hand-Coding

Pre- and Post-Processing

Team DPSyn
(Sec. 3.1.1)

light to moderate
computational
complexity

some hand-coding due
to identifying
marginals for
pre-processing, Python
code available on
GitHub

pre-processing: identify
marginals from public data;
post-processing: adjust
noisy marginals to be
consistent and change counts
to zero below a threshold

Team Gardn999
(Sec. 3.1.2)

simplest and
fastest method

some hand-coding due
to identifying
marginals for
pre-processing, Java
code available on
GitHub

pre-processing: identify
marginals from public data;
post-processing: adjust
the overall counts based on a
threshold to avoid a large
number of non-zero bins

Team pfr
(Sec. 3.1.3)

simple and quick
after
pre-processing

hand-coding required,
no public code
available

pre-processing: identify
marginals from public data;
post-processing: reduce
the number of non-empty
cells from sanitization by
modeling the noisy cell
counts

Parametric Synthesis Approaches

Team Computation
Off-the-Shelf vs.
Hand-Coding

Pre- and Post-Processing

Team PrivBayes
(Sec. 3.2.1)

more
computationally
complex compared
to the other
methods

off-the-shelf via
Python code on
GitHub

pre-processing: automated
Bayesian network to
determine which variables are
highly correlated or not;
post-processing: enforcing
consistency among the
marginals

Team RMcKenna
(Sec. 3.2.2)

light to moderate
computational
complexity

some hand-coding due
to identifying
marginals for
pre-processing, Python
code on GitHub

pre-processing: identify
marginals from public data

Team UCLANESL
(Sec. 3.2.3)

the most
computationally
complex method;
requires more
RAM memory

off-the-shelf via
Python code on
GitHub

none
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4.1. NIST PSCR Differential Privacy Synthetic Data Challenge Scoring. We sum-
marize the scoring analyses used for the three “Marathon Matches” from the NIST PSCR
Differential Privacy Synthetic Data Challenge in Table 2. For each match, the final scores
were progressively evaluated based on bespoke metrics termed “clustering”, “classification”,
and “regression”. This means Match #1 had only the clustering analysis, Match #2 had
the clustering and classification analyses, and Match # 3 used all three analyses. NIST
PSCR announced the metric criteria at the start of each match, so the competitors could
modify their approach based on the scoring metrics. The “clustering” analysis compared
the 3-way marginal density distributions between the original and synthetic data sets, where
the utility score was the absolute difference in the density distributions. NIST PSCR
repeated this calculation 100 times on randomly selected variables, and then averaged for
the final clustering score. The “classification” analysis first randomly picked 33% of the
variables. If a particular variable was categorical, the method randomly picked a subset of
the possible variable values, whereas, if the variable was continuous, it randomly picked a
range of values. The analysis then used these selected values to calculate how many of the
observations in the synthetic and original data matched the specific variable subset. Finally,
the synthetic data counts were subtracted from the original data matched counts before
taking the natural log. NIST PSCR computed the natural log difference over 300 repeats,
and the final classification score was the root mean-squared on the repetitions divided by
ln(10−3). The term “classification” is slightly misleading, given that this was essentially
testing similarity between the original and synthetic data in the randomly selected subsets
of the joint distributions. Lastly, the “regression” analysis used a two-part score system.
The first score calculated the mean-square deviation of the Gini indices in the original and
synthetic data sets for every city on the gender wage gap, and then averaged those values
over the total number of cities in the original data. The second score compared how the
cities in the original and the synthetic data sets were ranked on gender pay gap, calculating
the rank differences by the mean-square deviation. NIST PSCR averaged these two scores for
the overall regression analysis score. Again, the term regression is slightly misleading given
that this was not a comparison of regression coefficients, as is commonly seen in literature.
For all three NIST PSCR scoring metrics, a larger value in the challenge indicated that the
synthetic data preserved the original data well. Note that in section 5.2 when we present
our full utility evaluation, we rescale the NIST scores, such that a smaller value indicates
high utility.

Table 2: NIST PSCR Differential Privacy Synthetic Data Challenge Marathon Match Infor-
mation.

Match Training Data Scoring Data Analyses

1
2017 SFFD’s Call for

Service Data
2016 SFFD’s Call for

Service Data
“Clustering”

2
2016 SFFD’s Call for

Service Data
2006, 2017 SFFD’s Call for

Service Data
“Clustering” and
“Classification”

3 Colorado PUMS
Arizona and Vermont

PUMS

“Clustering”,
“Classification”, and

“Regression”
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4.2. General Discriminant-based Quality Metric Algorithms. We now describe the
general utility approaches to measure overall distribution similarity between synthetic and the
original data that we employed in our extended evaluation. These metrics should give a broad
sense of how “close” the synthetic data are to the original data. The approaches presented
here utilize the concept of propensity scores (predicted probabilities of group membership) to
discriminate between the original and synthetic data, and the corresponding utility metrics
are calculated in different ways using the estimated propensity scores. Researchers first
developed these methods on traditional synthetic data, but they apply to differentially
private synthetic data as well. At a high level, these utility measures train a classifier to
discriminate between two data sets, and the more poorly a classifier performs, the more
similar the data sets are assumed to be on a distributional level.

Woo et al. [2009] first proposed using propensity scores and summarized them into
a utility metric by calculating the mean-square difference between the propensity score
estimates and the true proportion the synthetic data within the total combined data set.
Snoke et al. [2018] later coined the value as the propensity score mean-squared error (pMSE )
and improved the pMSE by deriving its theoretical expected value and standard deviation
under certain null conditions. The authors used these values to create standardized versions
of the statistic called the pMSE -ratio and standardized pMSE. Sakshaug and Raghunathan
[2010] applied a Chi-squared test on the discretized estimated propensity scores. Bowen et al.
[2018] developed SPECKS (Synthetic data generation; Propensity score matching; Empirical
Comparison via the Kolmogorov-Smirnov distance), which applies the Kolmogorov-Smirnov
(KS) distance to the predicted probabilities as the utility metric. A small KS distance
indicates that the original and synthetic empirical CDFs are indistinguishable.

To produce the results in Section 5, we calculate the pMSE -ratio and SPECKS. Both
approaches require training and fitting classifiers to the combined original and synthetic
data with a binary indicator labeling the data set in each row. We obtain the predicted
probabilities of this binary label, and we compute the pMSE using

pMSE =
1

N

N∑
i=1

(p̂i − c)2 (4.1)

where N = n+ n∗ is the total number of observations from both the original and synthetic
data and c = n∗/N is the proportion of observations from the synthetic data out of the
total. The value of c is often 0.5 because synthetic data is typically generated with the same
number of rows as the original data, but this constraint was not made for the NIST PSCR
challenge. When we use a parametric model for the classifier, Snoke et al. [2018] derived
theorems for the expected value under the null hypothesis that the original and synthetic
data were sampled from the same generative distribution. We calculate the expected null
mean using

E(pMSE) = (k − 1)
(1− c)2c

N
(4.2)

such that k is the number of parameters from the classifier. If we use a non-parametric
classifier, we can approximate the null expected value using resampling techniques such as
permutating the rows and reestimating the pMSE. After calculating the null mean pMSE,
we obtain the pMSE -ratio by dividing the observed mean pMSE calculated on the original
and synthetic data by the null mean. A pMSE -ratio value close to 1 indicates that the
synthetic data is drawn from a distribution that approximates the generative distribution of
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the original data. For a more in-depth discussion of this method such as its strengths and
weaknesses, please see Snoke et al. [2018].

We make two changes to the original pMSE -ratio as proposed by Snoke et al. [2018].
First, we choose the best classification and regression trees (CART) models for estimating the
propensity scores using cross-validation. Because the pMSE is sensitive to the classification
model, using different levels of complexity in the CART models result in different utility
values. To aid our model choice, we set the CART complexity parameter (CP), which
controls how large the trees grow, by performing cross-validation and choosing the CP
that minimized the error. This ensures our utility does not “overfit” to the data, i.e., we
use a good distributional discriminator between the original distribution and the synthetic
data. Running cross-validation for each combination of the original data and each of the
competitors’ data, we found roughly the same best CP value, so we constrained the CP to
be the same for all competitors without any additional adjustments. Following the prior
work, we must use the same CP for each synthetic data set, because the pMSE values are
not comparable when using different classifiers. For example, a pMSE computed from a logit
model with only first-order terms measures a different type of distributional similarity than a
pMSE computed using first-order and interaction terms. In the same way, pMSE calculated
from CART models with different CPs measure relationships in the data on different levels
of complexity.

Second, and more importantly, we changed how we estimate the null pMSE in the
CART models. An issue with the pairwise or permutation approach originally proposed is
that while these approaches measure the null for two data sets that came from approximately
the same distribution, they did not necessarily (and very likely did not) come from the
generative distribution of the original data. In theory, this should not matter because the
expected value of the pMSE under the null depends on the classifier model not the data,
but CART models’ complexity changes based on the data and the expected value under
the null will depend on the complexity of the CART model. This means in practice when
we calculate the null value for CART models, the value will be larger if we use synthetic
data that comes from a more varied generative distribution. In other words, if the synthetic
data sets are further apart, then the null value is larger than if the synthetic data sets are
closer together. The permutation or pairwise process produces different estimated nulls for
different synthetic data models, even with the same CART complexity parameter, which
contradicts the theory that the null stays fixed regardless of the synthetic data.

The differences in estimated null values may be minimal with non-differentially private
synthetic data, but we find they are much more varied for differentially private synthetic
data. As ε decreases, the noise in the synthetic data models increases significantly such that
the estimated null becomes quite large (because each synthetic data set is very far from each
other). This increase cannot be matched by an increase in the observed pMSE, because that
value is bounded above. In these situations, when using the pMSE -ratio, we observe that
the algorithm suggests “better” utility using lower ε than using higher ε, because the null
increases with lower ε, thus lowering the ratio.

In this paper, we solve this problem by instead estimating the null by only using the
original data. Instead of calculating the pairwise comparisons or permuting the original
data with the synthetic, we bootstrap two times the number of rows from the original data,
and we assign 0 labels to half and 1 labels to the other half. We then calculate the pMSE,
repeat this process 100 times, and take the average value as our null pMSE. This approach
ensures the null value arises from the original data, which we know came from the observed
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generative distribution, and the estimated null does not differ for different synthetic sets,
which it should not.

For SPECKS, we determine the empirical CDFs of the propensity scores for the original
and synthetic data sets separately, and then apply the Kolmogorov-Smirnov (KS) distance
on the two empirical CDFs. The KS distance is the maximum distance of two empirical
CDFs, where the synthetic and the original data have the largest separation. A smaller
KS distance (close to 0) indicates that the synthetic data preserved the original data well
whereas a larger KS distance (close to 1) means the synthetic data differs a lot from the
original data. For more on this method, please see Bowen et al. [2018].

We can use both of these methods with either simple parametric models, such as logistic
regression, or more complex non-parametric models, such as CART. For any given model, we
can compare different synthetic data sets using these metrics. One issue comes from the fact
that we may obtain different rankings if we use different classifiers. This is because models
with varying complexity are actually measuring different types of distributional similarity.
A logistic regression with only main effects, for example, only measures the accuracy of the
first-order marginal distributions (simultaneously). A more complex CART model on the
other hand is measuring high-order interactions in the data. As was recommended in the
previous work, we use different classifiers and compare relative rankings from each set of
models. This approach gives multiple views of the utility of the data.

4.3. Marginal Distributional Metrics and Regression Analyses. Lastly, we describe
quality metrics which measure accuracy on more specific elements of the data, such as
the univariate differences between the synthetic and the original data or differences in the
estimates from regression analyses. DP work frequently uses univariate distance measures
to assess the amount of noise added due to a privacy mechanism. Typically in the literature,
the measures include the average l1 distance, the root-mean-squared error, or various other
ways to measure distance. We choose to use a different approach for a few reasons. First,
rather than using a direct distance measure, we utilize a distributional distance metric.
These measures make sense for synthetic data, since they measure distributional distance
and do not require vectors of the same size. This enables us to compare the original data
with various synthetic data sets that have different numbers of observations, which were
not constrained for the challenge. The distributional metrics we use are the Chi-square
test for categorical variables and the KS test for continuous variables. Lastly, because each
variable in the data has a different scale, we average the univariate distances across the
whole data set by first converting to p-values. We are not using p-values in the traditional
null hypothesis significance testing (NHST) framework, but rather we are just using them
as a scale-free distance measure. We could achieve something similar by rescaling all the
variables in our data and using the Chi-square and KS test statistics. Our univariate utility
metric is then the average of the p-values for each variable. Categorical and continuous
variables are treated separately, since one might argue that the processes of synthesizing a
continuous or categorical distribution are different.

Previous work in the synthetic data literature also often compares the results from
regression models fit on both the original and synthetic data, measuring how much the
analyses are effected by the privacy mechanism. We perform two regression models based
on Simon and Tamura [2009], who used the 1940 Census data, and we compute two specific
utility metrics for each of the coefficients in the models. The first is the confidence interval
overlap measure, proposed by Karr et al. [2006], among others, which is defined as
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IO = 0.5

(
min(uo, us)−max(lo, ls)

uo − lo
+
min(uo, us)−max(lo, ls)

us − ls

)
(4.3)

where uo, lo and us, ls are the upper and lower bounds for the original and synthetic
confidence intervals respectively. This measures how much the confidence intervals estimated
the original and synthetic data overlap for a single estimate on average, where the maximum
value is 1. Along with this, we calculate the standardized difference in coefficient values,
i.e., |β̂o − β̂s|/se(β̂o), used by Woo and Slavkovic [2015] and Snoke et al. [2018]. This
measures how far the synthetic data coefficients lie from the original quantities instead of
considering the width of the confidence interval. A drawback to the IO measure is the
inability to distinguish whether the it is the synthetic data or the original data that has a
wider confidence interval that encompasses the other interval. The standardized difference,
on the other hand, depends only on the point estimate and original coefficient variability.
Together, the two metrics allow us to more accurately assess the inferential differences
between the original and synthetic data regression models.

4.4. Utility Metric Categories. Table 3 defines the three categories of the utility metrics
we use to evaluate the synthetic data. The metrics include both the original NIST PSCR
metrics and additional metrics. We adjusted the metrics as much as possible to be on the
same scale, i.e., [0, 1], though some are unbounded and thus could not be rescaled.

Table 3: Utility Metric Categories.
Marginal Distribution

Metrics
Joint Distribution Metrics Correlation Metrics

Chi-Sq Distance (Categorical
Variables)

pMSE -ratio
Regression Coefficient

Confidence Interval Overlap

KS Distance (Continuous
Variables)

SPECKS
Regression Coefficient

Standardized Difference

NIST PSCR “Classification”
Task

NIST PSCR “Clustering” Task NIST PSCR “Regression” Task

In many ways, the general and specific measures discussed in the previous sections
formalize concepts underlying the scoring metrics devised for the NIST PSCR Data Chal-
lenge, which also sought to assess distributional similarity or specific analytical similarity.
Correspondingly, each of our categories has one of the NIST PSCR measures, even though
they are not perfect mappings. For example, the NIST PSCR “classification” task measures
3-way marginals rather than 1-way marginals. For data practitioners who wish to evaluate
the utility of the DP synthetic data algorithms, the formally developed metrics we use offer
two primary advantages over the bespoke metrics used in the challenge. First, they will be
easier to implement, since for many of the metrics software already exists to compute them.
Second, they have statistical interpretations that are clear and easy to understand.
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5. Experimental Results

We summarize the results from all of the utility evaluations in this section, including the
NIST PSCR Differential Privacy Synthetic Data Challenge, the pMSE -ratio, the SPECKS
metrics, the univariate distribution comparisons, and the regression models. NIST PSCR
gave us access to the original synthetic data generated by the competitors listed in Table 4.
The metrics we present provide a broader picture than those used in the challenge alone,
and, from these results, we make further assessments of the different DP synthetic data
algorithms.

5.1. NIST PSCR Differential Privacy Synthetic Data Challenge. For Matches #1
and #2, NIST PSCR set the privacy-loss budget at ε = {0.01, 0.1, 1} and δ = 0.001 (some
contestants chose not to use δ), whereas for Match #3, ε was set at higher levels of {0.3, 1, 8}
and δ was kept the same. NIST PSCR increased the ε values due to the increased number of
variables in the PUMS data used for Match #3. Additionally, NIST PSCR asked contestants
to generate multiple differentially private data sets for each match. Matches #1 and #2
required three synthetic replicates while Match #3 required five synthetic replicates. All
contestants divided ε equally across each data set, which, per Theorem 2.3, Composition,
resulted in using ε/m for each single data set. Accordingly, the ε used per data set in Matches
#1 and #2 was {0.003, 0.03, 0.3} and for Match #3 the per data set ε was {0.06, 0.2, 1.6}.

Table 4: NIST PSCR Differential Privacy Synthetic Data Challenge Results from the three
Marathon Matches.

Rank Match #1 Match #2 Match #3

1 Team pfr
(Sec. 3.1.3)

Team pfr
(Sec. 3.1.3)

Team RMcKenna
(Sec. 3.2.2)

2 Team DPSyn
(Sec. 3.1.1)

Team DPSyn
(Sec. 3.1.1)

Team DPSyn
(Sec. 3.1.1)

3 Team RMcKenna
(Sec. 3.2.2)

Team PrivBayes
(Sec. 3.2.1)

Team PrivBayes
(Sec. 3.2.1)

4 Team UCLANESL
(Sec. 3.2.3)

Team RMcKenna
(Sec. 3.2.2)

Team Gardn999
(Sec. 3.1.2)

5 Team PrivBayes
(Sec. 3.2.1)

Team Gardn999
(Sec. 3.1.2)

Team UCLANESL
(Sec. 3.2.3)

Table 4 lists the team ranks while Figure 1 shows the numerical results of the NIST
scoring metrics for the challenge matches. There are a total of six teams that ranked in the
Top 5 throughout the three matches. Note that teams Gardn999, UCLANESL, and pfr did
not compete in Matches #1, #2, and #3, respectively, so their absence from the Top 5 for
each match was not due to scoring lower than fifth. In Figure 1, we plotted the original
NIST PSCR specific utility score values, where larger values indicate better utility. (Note
that in the following utility evaluation, we rescale the NIST scores, such that a smaller value
indicates high utility.)

We focus our comparison on Matches #2 and #3, since Match #1 used one of the
two metrics and the same underlying data as Match #2. Examining the results, Match
#2 shows fairly flat scores whereas Match #3 scores slightly increased with larger ε values
(except for Team UCLANESL on the Vermont data). The lack of any trend in Match #2 for
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Figure 1: The average NIST PSCR Differential Privacy Synthetic Data Challenge score
results on a log scale for Matches #2 (2006 and 2017) and #3 (Arizona and
Vermont).

increasing ε is mostly likely due to the small ε values used for scoring. It may also be due to
the fact that the data used in Match #2 had more structural zeros. For future differentially
private data challenges, using a wider range of ε would help verify empirically if the methods
demonstrate a trend towards higher accuracy as ε grows. Algorithms that do not eventually
asymptote towards maximal accuracy as privacy-loss goes to infinity suggest inherent flaws
in the mechanism and should be utilized cautiously. A data practitioner seeking to determine
suitable algorithms needs to test potential methods at a wide enough range of privacy-loss
budget values to capture the risk-utility trade-off curve.

5.2. Evaluation of Algorithms Using Quality Metrics. We now break down each
algorithm’s performance based on our three categories. Table 5 gives the results from Match
#2 for the marginal distribution metrics. We adjusted the original values for the NIST
PSCR “classification” metric to range from 0 to 1 with optimal scores equal to 0. The
p-value metrics also range from 0 to 1, but 1 is the optimal value. We see that pfr and
DPSyn perform well on the NIST PSCR task, while PrivBayes performs significantly better
on the univariate comparisons until ε = 1. Given the nature of the data, which includes
many categorical variables with hundreds of levels and fine-grained Date variables, we
are not surprised to see poor performance of most algorithms on the univariate measures.
Perhaps more surprisingly, PrivBayes performs well on those measures, but does not claim
the top spot when comparing 3-way marginals. This suggests finer levels of algorithmic
tweaking occurred for the others, pfr and DPSyn in particular, such that they matched
3-way marginals without matching 1-way marginals. For example, DPSyn post-processed
the data to ensure 3-way marginal consistency, and pfr exclusively targeted accuracy on
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Table 5: Match #2 marginal distribution utility results for the top 5 scoring competitors.
Results are averaged across multiple synthetic data sets for each test data set (2006
and 2017). Best results for each measure are in bold.

ε Entry
NIST PSCR

‘Classification’
χ2
pval Mean KSpval Mean

0.01 DPSyn 0.35 <0.01 0.00

0.01 Gardn999 0.35 0.03 0.00

0.01 pfr 0.28 <0.01 0.00

0.01 PrivBayes 0.32 0.69 0.33

0.01 RMcKenna 0.36 <0.01 0.00

0.10 DPSyn 0.27 <0.01 0.00

0.10 Gardn999 0.33 0.07 0.00

0.10 pfr 0.28 0.02 <0.01

0.10 PrivBayes 0.31 0.69 0.33

0.10 RMcKenna 0.36 <0.01 0.00

1.00 DPSyn 0.25 <0.01 0.00

1.00 Gardn999 0.33 0.28 0.03

1.00 pfr 0.28 0.22 0.33

1.00 PrivBayes 0.29 0.23 0.08

1.00 RMcKenna 0.36 <0.01 0.00

3-way marginals. Because PrivBayes uses unsupervised pre-processing, it appears to have
primarily learned the univariate distributions.

Next, we consider utility metrics measured on a larger number of variables jointly. The
results are shown in Table 6. When applying the discriminant-based utility metric algorithms
from Section 4.2, we implemented both CART and logistic regression with all main effects
of the variables for estimating the predicted probabilities. We used the R package rpart

for CART with a CP chosen by cross-validation. Since there were multiple synthetic data
sets, we calculated the pMSE -ratio and KS distance for each data set (using the same CP
values across all data sets) and then averaged the results. For the pMSE -ratio with the
CART models, we generated 100 permutations to estimate the null mean pMSE. Finally, we
use a natural logarithmic transformation for the pMSE -ratio values, since the values can
rapidly increase on the tail. This means the optimal value for all metrics in Table 6 is 0. We
bounded the NIST PSCR metric and the KS metrics between 0 and 1, and the pMSE -ratio
values are unbounded.

We see somewhat similar results in Table 6 as we saw in Table 5. Entries by Team pfr
consistently performed strongest on the NIST PSCR “clustering” metric and the CART-
based metrics. Conversely, the GLM modeled propensity score approaches assigned the
highest value to Team PrivBayes. As expected, the GLM utility metrics are primarily driven
by univariate distributional differences, which assign similar value as the p-value metrics.
We also note the difference between Team DPSyn results using the NIST PSCR metric
versus the pMSE -ratio and SPECKS using the CART model. DPSyn clearly performs
second best overall using the NIST PSCR metric, but its performance is average based
on the pMSE -ratio and SPECKS. Recall that the “clustering” metric relied on randomly
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Table 6: Match #2 joint distribution utility results for the top 5 scoring competitors. Results
are averaged across multiple synthetic data sets for each test data set (2006 and
2017). Best results for each measure are in bold.

ε Entry
NIST PSCR
‘Clustering’

pMSEratio

(log)
KSD

pMSEratio

(log)
KSD

CART GLM

0.01 DPSyn 0.43 6.50 0.99 10.35 0.94

0.01 Gardn999 0.53 6.41 0.99 10.37 0.75

0.01 pfr 0.25 6.31 0.97 11.53 1.00

0.01 PrivBayes 0.42 6.51 0.99 7.56 0.53

0.01 RMcKenna 0.40 6.51 1.00 10.31 0.92

0.10 DPSyn 0.29 6.48 0.98 10.26 0.89

0.10 Gardn999 0.44 6.42 0.99 9.95 0.57

0.10 pfr 0.22 6.30 1.00 11.69 1.00

0.10 PrivBayes 0.40 6.48 0.99 7.57 0.52

0.10 RMcKenna 0.35 6.50 1.00 10.31 0.93

1.00 DPSyn 0.21 6.43 0.97 10.22 0.87

1.00 Gardn999 0.42 6.43 0.99 9.15 0.62

1.00 pfr 0.21 6.28 1.00 11.75 1.00

1.00 PrivBayes 0.39 6.48 0.99 8.46 0.54

1.00 RMcKenna 0.35 6.50 1.00 10.32 0.93

chosen subsets of one-third of the variables in the data and random subsets of those variables
ranges. These results indicate that Team DPSyn better preserved lower order interactions
than most other algorithms, but it did not noticeably better preserve aspects of the full
joint distribution. In general, we see more differentiation on the lower order utility metrics,
while the full joint metrics, based on the CART models, gave fairly similar scores for all
algorithms. This reflects the complex nature of the original data, which included categorical
variables with higher number of values, locations, and timestamps, and it suggests none of
the competitors differentiated themselves on capturing the whole joint distribution.

Similar to the NIST PSCR scores from Figure 1, the joint utility metrics estimated
from both classifiers for Match #2 provide relatively flat values, likely due to the very small
and narrow range of ε values. In other words, we do not see large increases in utility, or even
increases at all for some algorithms, as ε increases. In Section 5.3, we also further discuss
the flatness of the change in utility as the privacy budget increase.

Moving to Match #3, Table 7 displays the results for the marginal distribution metrics
for the top 5 contestants. The best performing algorithm from Matches #1 and #2, Team
pfr, did not compete in Match #3, so, unfortunately, we cannot compare its performance
using this data. According to the first set of measures, Team RMcKenna outperformed
the others by a significant margin, demonstrating that either their algorithm improved
between matches or performed better on Match #3 data than Match #2 data. In contrast
to Match #2, we see consistency between the NIST PSCR 3-way marginal metric and the
two univariate measures, which suggests that 1-way and 3-way marginals are more closely
related on this data set or that competitors targeted both equally. The algorithms may have
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Table 7: Match #3 marginal distribution utility results for the top 5 scoring competitors.
Results are averaged across multiple synthetic data sets for each test data set
(Arizona and Vermont). Best results for each measure are in bold.

ε Entry
NIST PSCR

‘Classification’
χ2
pval Mean KSpval Mean

0.30 DPSyn 0.31 0.02 0.00

0.30 Gardn999 0.32 0.02 0.02

0.30 PrivBayes 0.35 0.01 0.01

0.30 RMcKenna 0.17 0.09 0.06

0.30 UCLANESL 0.72 0.00 0.00

1.00 DPSyn 0.23 0.05 0.12

1.00 Gardn999 0.28 0.04 0.15

1.00 PrivBayes 0.33 0.02 0.03

1.00 RMcKenna 0.15 0.18 0.29

1.00 UCLANESL 0.53 0.00 0.00

8.00 DPSyn 0.20 0.27 0.55

8.00 Gardn999 0.26 0.16 0.55

8.00 PrivBayes 0.31 0.03 0.11

8.00 RMcKenna 0.14 0.29 0.73

8.00 UCLANESL 0.41 0.00 0.00

targeted the 3-way metric less, since NIST PSCR introduced a third scoring metric for this
match.

Table 8 provides the results for each algorithm using the joint distributional metrics. In
this match, we see general agreement across the joint utility metrics and between the joint
and marginal metrics. Team RMcKenna performed the best on almost every metric and for
every level of ε. Overall, the contestants (the four teams who participated in both Match #2
and #3) scored much higher on all the marginal and joint metrics for Match #3, suggesting
improvements of algorithms, an easier data set to synthesize, or some combination of the
two.

Finally, we summarize the correlation utility results in Table 9. These results include
the NIST PSCR metric based on ranking cities by gender wage gap and the mean confi-
dence interval overlap and standardized coefficient differences for all coefficients from two
regression models (one logistic, one Poisson). Utility values could not be calculated for
Team UCLANESL for certain combinations of ε and regression models, because it produced
synthetic data sets with no variation in our pre-selected outcome variables. The correlation
utility results differ from the marginal and joint measures, and there is no consistent best
performing algorithm across the metrics. Team RMcKenna performed the best on the NIST
PSCR score, apart from ε = 8 whereas teams Gardn999 and PrivBayes generally ranked the
best on the regression metrics. The varied performance on the correlation metrics reflects the
highly specific nature of these metrics, and the fact that the regressions were not part of the
workload. Because the NIST PSCR “regression” metric was public, we can clearly see that
DPSyn and RMcKenna allocated more privacy budget towards preserving the correlations
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Table 8: Match #3 joint distribution utility results for the top 5 scoring competitors. Results
are averaged across multiple synthetic data sets for each test data set (Arizona and
Vermont). Best results for each measure are in bold.

ε Entry
NIST PSCR
‘Clustering’

pMSEratio

(log)
KSD

pMSEratio

(log)
KSD

CART GLM

0.30 DPSyn 0.15 6.48 0.97 9.37 0.80

0.30 Gardn999 0.21 6.67 1.00 10.17 0.91

0.30 PrivBayes 0.23 6.01 0.99 6.30 0.33

0.30 RMcKenna 0.12 5.50 0.80 6.15 0.20

0.30 UCLANESL 0.57 6.81 1.00 11.17 1.00

1.00 DPSyn 0.11 6.39 0.90 8.33 0.71

1.00 Gardn999 0.18 6.66 0.99 9.25 0.68

1.00 PrivBayes 0.21 6.04 1.00 5.75 0.28

1.00 RMcKenna 0.09 4.46 0.56 4.57 0.23

1.00 UCLANESL 0.42 6.81 1.00 10.98 0.98

8.00 DPSyn 0.09 6.30 0.81 7.54 0.71

8.00 Gardn999 0.17 6.64 0.98 5.83 0.28

8.00 PrivBayes 0.18 6.00 0.99 5.63 0.25

8.00 RMcKenna 0.07 4.97 0.59 2.23 0.26

8.00 UCLANESL 0.35 6.80 0.99 10.80 0.91

of gender and wage within cities, yet neither of these performed the best on the regression
models.

One may contend that it is unfair to evaluate algorithms based on highly specific utility
metrics that were not part of the workload, but this leads to an observation that more
general pre-processing methods contribute to better results on unexpected specific tasks. In
some cases, data providers may not know all of the planned uses for synthetic data. These
results suggest that if we do not know what models a data user plans to estimate, we are
better off using a general pre-processing step that tries to preserve all high correlations. We
clearly see differences in how the teams used pre-processing to target certain workloads.
Teams RMcKenna and DPSyn prioritized certain 1-, 2-, or 3-way marginals while PrivBayes
did not because it relies on unsupervised pre-processing. Conversely, Gardn999 applied only
general pre-processing to identify correlations across the whole data.

UCLANESL seem to have prioritized the NIST PSCR “regression” scoring, because
it performed much better on that metric than the other two NIST PSCR measures. Un-
fortunately, their approach did not translate to other specific models, and in some cases
did not even produce data capable of estimating the models. Apart from UCLANESL, it is
important to note that the other four entries performed fairly well on preserving correlations
in the data. On average, the coefficients in the regression models had above 60% CI overlap
with the original data, and, in some cases, 70% or even 80%. These results indicate that
differentially private synthetic data, particularly at higher levels of ε, can perform reasonably
well at preserving tasks that a statistician would typically conduct on this type of data.
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Table 9: Match #3 Correlation utility results for the top 5 scoring competitors. Results are
averaged across multiple synthetic data sets for each test data set (Arizona and
Vermont). Best results for each measure in bold.

ε Entry
NIST PSCR
‘Regression’

CI Overlap Std. β̂ Diff. CI Overlap β̂ Diff.

Model 1 Model 2

0.30 DPSyn 0.07 0.61 4.18 0.64 2.44

0.30 Gardn999 0.25 0.61 3.75 0.50 2.26

0.30 PrivBayes 0.26 0.59 4.05 0.68 2.26

0.30 RMcKenna 0.10 0.55 2.71 0.58 2.46

0.30 UCLANESL 0.22 - - - -

1.00 DPSyn 0.05 0.39 4.78 0.63 2.70

1.00 Gardn999 0.22 0.52 2.89 0.63 3.35

1.00 PrivBayes 0.27 0.63 5.57 0.56 3.19

1.00 RMcKenna 0.04 0.30 13.05 0.53 2.77

1.00 UCLANESL 0.28 0.52 9.70 - -

8.00 DPSyn 0.02 0.77 2.51 0.66 3.70

8.00 Gardn999 0.24 0.83 2.04 0.71 1.91

8.00 PrivBayes 0.26 0.61 4.85 0.70 2.71

8.00 RMcKenna 0.04 0.67 2.81 0.58 4.03

8.00 UCLANESL 0.25 0.52 15.56 - -

5.3. Change in Quality as Epsilon Increases. Ideally, differentially private algorithms
should improve the quality of their output as ε increases, since a higher privacy loss implies
less noise has been added to the data. However, synthetic data with substantial pre- or
post-processing may obscure the ε-quality trade-off. While we would prefer an algorithm
that performs better at any value of ε over an algorithm that performs worse, in general, we
prefer algorithms that exhibit the natural utility-privacy loss trade-off curve over those that
do not change accuracy with ε.

In order to visualize the change in accuracy as ε increases, we adapt the radarchart
utility plots used by Arnold and Neunhoeffer [2020]. This graphic allows us to visualize all
the utility metrics simultaneously and perform a relative comparison to see which algorithms
performed well on what types of metrics. Figures 2 and 3 show the utility plot for two
competitors’, teams RMcKenna and Gardn999, and their results on Matches #2 and #3.
Each plot displays the utility for a given algorithm on each metric, and the various shaded
blue segments of the plot represent the marginal, joint, and correlation utility categories
from earlier. The different orange shaded areas correspond to each level of ε, with darker
values indicating lower ε. A larger area coverage indicates increasing utility values for the
corresponding metrics. These charts offer a nice and easy way to quickly visualize and
synthesize a lot of information both in terms of the different metrics and the different levels
of ε.

Figure 2 displays that little change occurred in the scores for the three different values
of ε in Match #2. Team RMcKenna performed almost identically for all levels of ε while
Team Gardn999 exhibited slight improvement as ε increased. This aligns with what we noted
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Figure 2: Utility plot for Team RMcKenna’s and Team Gardn999’s results in Match #2.

Figure 3: Utility plot for Team RMcKenna’s and Team Gardn999’s results in Match #3.

before, that the results at different noise levels were mostly indiscernible, likely due to the
low ε values in this match. We see that while teams RMcKenna and Gardn999 performed
similarly on the NIST PCSR metrics, Team Gardn999 performed better on some of the
other metrics.

By contrast, Figure 3 shows that, for most of the metrics in Match #3, the utility
increases with higher levels of ε. The only exception is Team RMcKenna’s results for the
standardized coefficient differences for regression model 2 (as well as very slight exceptions
for the KS D metrics). But, with a utility metric that measures accuracy on a highly
specific value such as a regression coefficient, it is understandable that a given instance
might have more variability in its performance. While the noise on average is smaller for
higher ε, the noise still comes from random distributions that vary from instance to instance.
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In particular, the regression utility metrics appear sensitive to a few bad replicates. For
example, Team RMcKenna’s utility at ε = 1 appears to be affected by some poor synthetic
replicates. Most of Team Gardn999’s results display steady improvement as ε increases. We
also see from these charts that Team RMcKenna achieved stronger utility on the marginal
and joint metrics, but Team Gardn999 performed better overall on the correlation metrics.

Without showing the rest of the figures, we find in general that the non-parametric
algorithms (teams DPSyn, pfr, and Gardn999) were more likely to show steady improvement
as ε increased whereas the parametric synthesis algorithms (teams RMcKenna, PrivBayes,
and UCLANESL) often showed either no change or sometimes decrease in utility. Overall,
Team Gardn999 demonstrated the most direct relationship between ε and utility. Two
reasons likely explain these findings. First, the parametric algorithms add noise in a less
direct fashion, drawing values from a high-dimensional distribution that must first be
approximated. The non-parametric algorithms, on the other hand, add noise directly to
the marginals. This suggests that while parametric models can produce good results, such
as Team RMcKenna, they cannot be as easily changed using different values of ε. Second,
methods which involve extensive post-processing introduce additional noise into the data,
such that the risk-utility trade-off does not depend directly on ε. Team Gardn999 used the
least post-processing among all competitors, and we see that their algorithm produced the
most direct relationship between privacy loss and utility.

6. Conclusions and Future Recommendations

In this paper, we reviewed and evaluated the top methods from PSCR’s NIST Differential
Privacy Synthetic Data Challenge on a wide range of utility metrics. Our evaluation is
the first comparative work, to the best of our knowledge, that assesses a variety of DP
synthetic data generation mechanisms applied to complex real-world data sets and gives
recommendations concerning their accuracy and ease of implementation. For simplicity, we
summarize the practical findings of this paper in the following:

(1) The best performing differentially private synthetic data algorithms used pre-processing
and budget allocation based on public data and subject matter utility criteria. This
significantly reduced the output domain of the synthetic data, allowing the use of basic
mechanisms applied to a simplified histogram.

(2) Data practitioners can apply pre-processing and budget allocation generally, such as
capturing all highly correlated variables in the data, or narrowly, such as preserving
specific relationships as we saw with the Match #3 “regression” tasks. These choices
present a general-specific utility trade-off.

(3) Non-parametric and parametric algorithms offer an implementation trade-off between
requiring extensive pre-processing from using public data versus requiring significant
computational capabilities. Data practitioners may choose one or the other based on
their available resources.

(4) Parametric methods often do not improve as ε increases because post-processing creates
error that affects the privacy-utility trade-off and does not diminish as ε increases.
Data providers, who desire a straightforward risk-utility trade-off curve, should consider
non-parametric methods with minimal post-processing.

(5) GANs achieved much lower utility than the simpler methods. These methods also require
significant computational burdens, which typical data practitioners might not possess.
Apart from the computational issues, we believe UCLANESL did not perform well due
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to the extensive clipping and the termination of the algorithm when the privacy budget
was expended. The GAN process likely did not optimize by the time it was aborted.

(6) Match #3 showed that at higher levels of ε, some algorithms produced fairly high quality
and usable synthetic data. This indicates that differentially private synthetic data shows
promise as a SDC approach.

We recommend a wider range of the privacy-loss budget to be explored for future DP data
competitions. As seen in Match #2, we saw a lack of an asymptotic trend as ε increased,
which made it difficult to learn from this match. The challenge also privileged competitors
who honed their algorithms towards specific metrics, such as 3-way marginals. A future
challenge with more general scoring metrics might lead to competitors submitting more
generalized and useful algorithms. Additionally, the NIST PSCR data sets used in the
competition were very complex compared to what is typically seen in literature, and these
results suggest such complex data require more privacy-loss budget for greater accuracy.
Elements such as structural missing values in the Match #2 data, e.g., some emergency
calls do not involve an officer dispatch, or the large number of variables in Match #3 greatly
increased the difficulty of providing accurate differentially private synthetic data.

The various utility metric algorithms offered mixed evaluations on which differentially
private data synthesis method performed best. These rankings point to the difference in
what the utility metrics measure. Given the results, we suggest that data practitioners
wishing to select DP algorithms for releasing data should use a suite of metrics for a more
informative evaluation of the quality of the algorithms. Besides the quality metrics we
described in Section 4, there are other ways to extensively evaluate differentially private
methods such as DPBench [Hay et al., 2016], which could additionally be deployed. This
paper is the first to offer practical insights on the relative usefulness of different DP synthetic
data algorithms using real data. Future work and applications should seek to continue
comparing mechanisms using real data in order to inform data providers wishing to generate
differentially private synthetic data.
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O. S. King, D. Smith, S. Thornton, et al. The UK medical education database (ukmed)
what is it? why and how might you use it? BMC Medical Education, 18(1):6, 2018.

J. Drechsler. Synthetic datasets for statistical disclosure control: theory and implementation,
volume 201. Springer Science & Business Media, 2011.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv preprint
arXiv:1603.01887, 2016.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves:
Privacy via distriuted noise generation. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 486–503. Springer, 2006a.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography, pages 265–284. Springer, 2006b.

C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private streaming
algorithms. In ICS, pages 66–80, 2010.

F. Fioretto, T. W. Mak, and P. Van Hentenryck. Differential privacy for power grid
obfuscation. IEEE Transactions on Smart Grid, 2019.

A. Friedman, S. Berkovsky, and M. A. Kaafar. A differential privacy framework for matrix
factorization recommender systems. User Modeling and User-Adapted Interaction, 26(5):
425–458, 2016.

J. Gardner. Differential Privacy Synthetic Data Challenge Algorithm. https://github.

com/gardn999/PrivacyEngCollabSpace/tree/master/tools/de-identification/

Differential-Privacy-Synthetic-Data-Challenge-Algorithms/DPFieldGroups,
2019.
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