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Abstract. We give a simple, computationally efficient, and node-differentially-private
algorithm for estimating the parameter of an Erdős-Rényi graph—that is, estimating p in
a G(n, p). Our algorithm nearly matches the information-theoretically optimal accuracy of
the exponential-time algorithm due to Borgs et al. (FOCS 2018). More generally, we give
an optimal, computationally efficient, private algorithm for estimating the edge-density of
any graph whose degree distribution is concentrated in a small interval.

1. Introduction

Network data modeling individuals and relationships between individuals are increasingly
central in data science. However, while there is a highly successful literature on differentially
private statistical estimation for traditional i.i.d. data, the literature on estimating network
models is far less well developed.

Early work on private network data focused on edge-differential-privacy, in which the
algorithm is required to “hide” the presence or absence of a single edge in the graph (see,
e.g. Nissim, Raskhodnikova and Smith, 2007; Hay et al., 2009; Karwa et al., 2014; Gupta,
Roth and Ullman, 2012; Blocki et al., 2012; Xiao, Chen and Tan, 2014; Karwa and Slavković,
2016, and many others). A more desirable notion of privacy is node-differential privacy
(node-DP), which requires the algorithm to hide the presence or absence of an arbitrary
set of edges incident on a single node. Although node-DP is difficult to achieve without
compromising accuracy, the beautiful works of Blocki et al. (2013) and Kasiviswanathan
et al. (2013) showed how to design accurate node-DP estimators for many interesting graph
statistics via Lipschitz extensions. However, many of the known constructions of Lipschitz
extensions require exponential running time, and constructions of computationally efficient
Lipschitz extensions (Raskhodnikova and Smith, 2016; Cummings and Durfee, 2018; Canonne
et al., 2019) lag behind. As a result, even for estimating very simple graph models, there
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are large gaps in accuracy between the best known computationally efficient algorithms and
the information theoretically optimal algorithms.

In this work we focus on what is arguably the simplest model of network data, the
Erdős-Rényi graph. In this model, denoted G(n, p), we are given a number of nodes n and a
parameter p ∈ [0, 1], and we sample an n-node graph G by independently including each
edge (i, j) for 1 ≤ i < j ≤ n with probability p. The goal is to design a node-DP algorithm
that takes as input a graph G ∼ G(n, p) and outputs an estimate p̂ of the edge density
parameter p.

Surprisingly, until an elegant recent work of Borgs et al. (2018), the optimal accuracy for
estimating the parameter p in a G(n, p) via node-DP algorithms was unknown. Although that
work essentially resolved the optimal accuracy of node-DP algorithms,1 their construction
is again based on generic Lipschitz extensions, and thus results in an exponential-time
algorithm, and, in our opinion, gives little insight for how to construct an efficient estimator
with similar accuracy.

The main contribution of this work is to give a simple, polynomial-time estimator for
Erdős-Rényi graphs whose error very nearly matches that of Borgs et al.’s estimator, and
indeed matches it in a wide range of parameters. We achieve this by giving a more general
result, showing how to optimally estimate the edge-density of any graph whose degree
distribution is concentrated in a small interval.

1.1. Background: Node-Private Algorithms for Erdős-Rényi Graphs. Without
privacy, the optimal estimator is simply to output the edge-density pG = |E|/

(
n
2

)
of the

realized graph G ∼ G(n, p), which guarantees

E
G

[
(p− pG)2

]
=
p(1− p)(

n
2

) .

The simplest way to achieve ε-node-DP is to add zero-mean noise to the edge-density with
standard-deviation calibrated to its global-sensitivity, which is the amount that changing the
neighborhood of a single node in a graph can change its edge-density. The global sensitivity
of pG is Θ(1/n), and thus the resulting private algorithm Anäıve satisfies

E
G

[
(p−Anäıve(G))2

]
= Θ

(
1

ε2n2

)
Note that this error is at least on the same order as the non-private error, and can asymp-
totically dominate the non-private error.

Borgs et al. (2018) gave an improved ε-node-DP algorithm such that, when both p and
ε are & log(n)/n,

E
[
(p−Abcsz(G))2

]
=

p(1− p)(
n
2

)︸ ︷︷ ︸
non-private error

+ Õ
( p

ε2n3

)
︸ ︷︷ ︸

overhead due to privacy

What is remarkable about their algorithm is that, unless ε is quite small (roughly ε . n−1/2),
the first term dominates the error, in which case privacy comes essentially for free. That
is, the error of the private algorithm is only larger than that of the optimal non-private

1We note that the lower bound shown in Borgs et al. (2018) is actually for the uniform random graph
model G(n,m) with a fixed number of edges m, rather than for G(n, p).
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algorithm by a 1 + o(1) factor. However, as we discussed above, this algorithm is not
computationally efficient.

The only computationally efficient node-DP algorithms for computing the edge-density
apply to graphs with small maximum degree (Blocki et al., 2013; Kasiviswanathan et al.,
2013; Raskhodnikova and Smith, 2016), and thus do not give optimal estimators for Erdős-
Rényi graphs unless p is very small.

1.2. Our Results. Our main result is a computationally efficient estimator for Erdős-
Rényi graphs.

Theorem 1.1 (Erdős-Rényi Graphs, Informal). There is an O(n2)-time ε-node-DP algorithm
A such that for every n and every p & 1/n if G ∼ G(n, p) then

E
G,A

[
(p−A(G))2

]
=

p(1− p)(
n
2

)︸ ︷︷ ︸
non-private error

+ Õ

(
p

ε2n3
+

1

ε4n4

)
︸ ︷︷ ︸
overhead due to privacy

The error of Theorem 1.1 matches that of the exponential-time estimator of Borgs et al.
(2018) up to the additive Õ(1/ε4n4) term, which is often not the dominant term in the
overall error. In particular, the error of our estimator is still within a 1 + o(1) factor of the
optimal non-private error unless ε or p is quite small—for example, when p is a constant
and ε & n−1/2.

Our estimator actually approximates the edge density for a significantly more general
class of graphs than merely Erdős-Rényi graphs. Specifically, Theorem 1.1 follows from a
more general result for the family of concentrated-degree graphs. For k ∈ N, define Gn,k to
be the set of n-node graphs such that the degree of every node is between d̄− k and d̄+ k,
where d̄ = 2|E|/n is the average degree of the graph.

Theorem 1.2 (Concentrated-Degree Graphs, Informal). For every k ∈ N, there is an
O(n2)-time ε-node-DP algorithm A such that for every n and every G ∈ Gn,k,

E
A

[
(pG −A(G))2

]
= O

(
k2

ε2n4
+

1

ε4n4

)
where pG = |E|/

(
n
2

)
is the empirical edge density of G.

Theorem 1.1 follows from Theorem 1.2 by using the fact that for an Erdős-Rényi graph,
with overwhelming probability the degree of every node lies in an interval of width Õ(

√
pn)

around the average degree.
The main technical ingredient in Theorem 1.2 is to construct a low sensitivity estimator

f(G) for the number of edges. The first property we need is that when G satisfies the
concentrated degrees property, f(G) equals the number of edges in G. The second property
of the estimator we construct is that its smooth sensitivity (Nissim, Raskhodnikova and
Smith, 2007) is low on these graphs G. At a high level, the smooth sensitivity of f at a
graph G is the most that changing the neighborhood of a small number of nodes in G can
change the value of f(G). Once we have this property, it is sufficient to add noise to f(G)
calibrated to its smooth sensitivity. We construct f by carefully reweighting edges that are
incident on nodes that do not satisfy the concentrated-degree condition.

Finally, we are able to show that Theorem 1.2 is optimal for concentrated-degree graphs.
In additional to being a natural class of graphs in its own right, this lower bound demonstrates
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that in order to improve Theorem 1.1 we will need techniques that are more specialized to
Erdős-Rényi graphs.

Theorem 1.3 (Lower Bound, Informal). For every n and k, and every ε-node-DP algorithm
A, there is some G ∈ Gn,k such that

E
A

[
(pG −A(G))2

]
= Ω

(
k2

ε2n4
+

1

ε4n4

)
The same bound applies to (ε, δ)-node-DP algorithms with sufficiently small δ . ε.

2. Preliminaries

Let Gn be the set of n-node graphs. We say that two graphs G,G′ ∈ Gn are node-adjacent,
denoted G ∼ G′, if G′ can be obtained by G modifying the neighborhood of a single node i.
That is, there exists a single node i such that for every edge e in the symmetric difference of
G and G′, e is incident on i. As is standard in the literature on differential privacy, we treat
n as a fixed quantity and define adjacency only for graphs with the same number of nodes.
We could easily extend our definition of adjacency to include adding or deleting a single
node itself.

Definition 2.1 (Differential Privacy (Dwork et al., 2006)). A randomized algorithm
A : Gn → R is (ε, δ)-node-differentially private if for every G ∼ G′ ∈ Gn and every R ⊆ R,

P [A(G) ∈ R] ≤ eε · P
[
A(G′) ∈ R

]
+ δ

If δ = 0 we will simply say that A is ε-node-differentially private. As we only consider node
differential privacy in this work, we will frequently simply say that A satisfies differential
privacy.

The next lemma is the basic composition property of differential privacy.

Lemma 2.2 (Composition (Dwork et al., 2006)). If A1,A2 : Gn → R are each (ε, δ)-node-
differentially private algorithms, then the mechanism A(G) = (A1(G),A2(G)) satisfies
(2ε, 2δ)-node-differential privacy. The same holds if A2 may depend on the output of A1.

We say that two graphs G,G′ are at node distance c if there exists a sequence of graphs

G = G0 ∼ G1 . . . Gc−1 ∼ . . . Gc = G′

The standard group privacy property of differential privacy yields the following guarantees
for graphs at node distance c > 1.

Lemma 2.3 (Group Privacy (Dwork et al., 2006)). If A : Gn → R is (ε, δ)-node-differentially-
private and G,G′ are at node-distance c then for every R ⊆ R,

P [A(G) ∈ R] ≤ ecεP
[
A(G′) ∈ R

]
+ cecεδ

Sensitivity and Basic DP Mechanisms. The main differentially private primitive we
will use is smooth sensitivity (Nissim, Raskhodnikova and Smith, 2007). Let f : Gn → R be a
real-valued function. For a graph G ∈ Gn, we can define the local sensitivity of f at G to be

LS f (G) = max
G′:G′∼G

|f(G)− f(G′)|
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and the global sensitivity of f to be

GS f = max
G

LS f (G) = max
G,G′:G′∼G

|f(G)− f(G′)|

A basic result in differential privacy says that we can achieve privacy for any real-valued
function f by adding noise calibrated to the global sensitivity of f .

Theorem 2.4 (DP via Global Sensitivity (Dwork et al., 2006)). Let f : Gn → R be any
function. Then the algorithm

A(G) = f(G) +
GS f
ε
· Z,

where Z is sampled from a standard Laplace distribution, satisfies (ε, 0)-differential privacy.2

Moreover, this mechanism satisfies E
A

[
(A(G)− f(G))2

]
= O(GS f/ε), and for all t > 0 we

have that
P
A

[|A(G)− f(G)| ≥ t ·GS f/ε] ≤ exp(−t).

In many cases the global sensitivity of f is too high, and we want to use a more
refined mechanism that adds instance-dependent noise that is more comparable to the
local sensitivity. This can be achieved via the smooth sensitivity framework of Nissim,
Raskhodnikova and Smith (2007).

Definition 2.5 (Smooth Upper Bound (Nissim, Raskhodnikova and Smith, 2007)). Let
f : Gn → R be a real-valued function and β > 0 be a parameter. A function S : Gn → R is a
β-smooth upper bound on LS f if

(1) for all G ∈ Gn, S(G) ≥ LSf (G), and

(2) for all neighboring G ∼ G′ ∈ Gn, S(G) ≤ eβ · S(G′).

The key result in smooth sensitivity is that we can achieve differential privacy by adding
noise to f(G) proportional to any smooth upper bound S(G).

Theorem 2.6 (DP via Smooth Sensitivity (Nissim, Raskhodnikova and Smith, 2007; Bun
and Steinke, 2019)). Let f : Gn → R be any function and S be a β-smooth upper bound on
the local sensitivity of f for any β ≤ ε. Then the algorithm

A(G) = f(G) +
S(G)

ε
· Z,

where Z is sampled from a Student’s t-distribution with 3 degrees of freedom, satisfies
(O(ε), 0)-differential privacy.3 Moreover, for any G ∈ Gn, this algorithm satisfies

E
A

[
(A(G)− f(G))2

]
= O(S(G)2/ε2).

3. An Estimator for Concentrated-Degree Graphs

In this section we describe and analyze a node-differentially-private estimator for the edge
density of a concentrated-degree graph.

2The standard Laplace distribution Z has E [Z] = 0,E
[
Z2
]

= 2, and density µ(z) ∝ e−|z|.
3The Student’s t-distribution with 3 degrees of freedom can be efficiently sampled by choosing

X,Y1, Y2, Y3 ∼ N (0, 1) independently from a standard normal and returning Z = X/
√
Y 2
1 + Y 2

2 + Y 2
3 .

This distribution has E [Z] = 0 and E
[
Z2
]

= 3, and its density is µ(z) ∝ 1/(1 + z2)2.
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3.1. The Estimator. In order to describe the estimator we introduce some key notation.
The input to the estimator is a graph G = (V,E) and a parameter k∗. Intuitively, k∗ should
be an upper bound on the concentration parameter of the graph, although we obtain more
general results when k∗ is not an upper bound, in case the user does not have an a priori
upper bound on this quantity.

Our estimator will weight vertices according to the typicality of their degrees, where
vertices close to the average degree will have weight 1 and vertices far from the average
degree will have weight 0. For a graph G = (V,E), let pG = |E|/

(
n
2

)
be the empirical edge

density of G, and let d̄G = (n− 1)pG be the empirical average degree of G. Let kG be the
smallest positive integer value such that at most kG vertices of G have degrees differing from
d̄G by more than k′ := k∗ + 3kG. Define IG = [d̄G − k′, d̄G + k′]. For each vertex v ∈ V , let
tv = min{|t| : [degG(v)± t] ∩ IG 6= ∅} be the distance between degG(v) and the interval IG,
and define the weight wtG(v) of v as follows. For a parameter β > 0 to be specified later, let

wtG(v) =


1 if tv = 0

1− βtv if tv ∈ (0, 1/β]

0 otherwise.

That is, wtG(v) = max(0, 1 − βtv). For each pair of vertices e = {u, v}, define the weight
wtG(e) and value valG(e) as follows. Let

wtG(e) = min(wtG(u),wtG(v))

and let
valG(e) = wtG(e) · xe + (1− wtG(e)) · pG

where xe denotes the indicator variable on whether e ∈ E. As above, define the function f
to be the total value of all pairs of vertices in the graph,

f(G) =
∑
u,v∈V

valG({u, v}),

where the sum is over unordered pairs of distinct vertices.
Once we construct this function f , we add noise to f proportional to a β-smooth upper

bound on the sensitivity of f , which we derive in this section. Pseudocode for our estimator
is given in Algorithm 1.

3.2. Analysis using Smooth Sensitivity. We begin by bounding the local sensitivity
LSf (G) of the function f defined above.

Lemma 3.1 . LSf (G) = O((kG + k∗)(1 + βkG) + 1
β ).

Proof. Consider any pair of graphs G,G′ differing in only a single vertex v∗, and note that
the empirical edge densities pG and pG′ can differ by at most 2

n <
2

n−1 , so d̄G and d̄G′ can
differ by at most 2. Moreover, for any vertex v 6= v∗, the degree of v can differ by at most 1
between G and G′. Consequently, by the Triangle Inequality, for any v 6= v∗, |d̄G − degG(v)|
can differ from |d̄G′ − degG′(v)| by at most 3 and wtG(v) can differ from wtG′(v) by at most
3β. It follows from the former statement that kG and kG′ differ by at most 1.

Let FarG denote the set of at most kG vertices whose degree differs from d̄G by more
than k′ = k∗ + 3kG. For any vertices u, v /∈ FarG ∪ FarG′ ∪ {v∗}, we have that wtG({u, v}) =
wtG′({u, v}) = 1, and so valG({u, v}) = valG′({u, v}), since the edge {u, v} is present in G if
and only if it is present in G′.
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Algorithm 1: Estimating the edge density of a concentrated-degree graph.

Input: A graph G ∈ Gn and parameters ε > 0 and k∗ ≥ 0.
Output: A parameter 0 ≤ p̂ ≤ 1.

1 Let pG = 1

(n2)

∑
e xe and d̄G = (n− 1)pG.

2 Let β = min(ε, 1/
√
k∗).

3 Let kG > 0 be the smallest positive integer such that at most kG vertices have

degree outside [d̄G − k∗ − 3kG, d̄G + k∗ + 3kG].

4 For v ∈ V , let tv = min{|t| : degG(v)± t ∈ [d̄G − k∗ − 3kG, d̄G + k∗ + 3kG]} and let
wtG(v) = max(0, 1− βtv).

5 For each u, v ∈ V , let wtG({u, v}) = min(wtG(u),wtG(v)) and let
valG(e) = wtG(e) · xe + (1− wtG(e))pG.

6 Let f(G) =
∑
u6=v

valG({u, v}), where the sum is over unordered pairs of vertices.

7 Let s = max`≥0Ce
−β` · (kG + `+ k∗ + β(kG + `)(kG + `+ k∗) + 1/β), where C is the

constant implied by Lemma 3.1.

8 Return 1

(n2)
· (f(G) + (s/ε) · Z), where Z is sampled from a Student’s t-distribution

with three degrees of freedom.

Now consider edges {u, v} such that u, v 6= v∗ but u ∈ FarG ∪ FarG′ (and v may
or may not be as well). If degG(u) /∈ [d̄G − k′′, d̄G + k′′] for k′′ = k′ + 1/β + 3, then
wtG(u) = wtG′(u) = 0 and so |valG({u, v})− valG′({u, v})| = |pG − pG′ | ≤ 2/n. Otherwise,
degG(u) ∈ [d̄G − k′′, d̄G + k′′]. We can break up the sum

fu(G) :=
∑
v 6=u

valG({u, v}) =
∑
v 6=u

wtG({u, v}) · x{u,v} +
∑
v 6=u

(1− wtG({u, v}))pG.

Since at most kG other vertices can have weight less than the weight of u, we can bound the
first term by ∣∣∣∣∣∣degG(u)wtG(u)−

∑
v 6=u

wtG({u, v}) · x{u,v}

∣∣∣∣∣∣ ≤ kGwtG(u)

and the second term by∣∣∣∣∣∣d̄G − d̄GwtG(u)−
∑
v 6=u

(1− wtG({u, v}))pG

∣∣∣∣∣∣ ≤ pGkGwtG(u).

so the total sum is bounded by∣∣d̄G + (degG(u)− d̄G)wtG(u)− fu(G)
∣∣ ≤ 2kGwtG(u).
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Since |wtG(u)− wtG′(u)| ≤ 3β, it follows that

|fu(G)− fu(G′)| ≤ 7 + 3β(k′′ + 3) + 9β + 6βkG = O(1 + β(kG + k∗)).

Since there are at most kG+k′G ≤ 2kG+1 vertices in u ∈ FarG∪FarG′\{v∗}, the total difference
in the terms of f(G) and f(G′) corresponding to such vertices is at most O(kG+βkG(kG+k∗)).
However, we are double-counting any edges between two vertices in u ∈ FarG ∪ FarG′ ; the
number of such edges is O(k2

G), and for any such edge e, |valG(e) − valG′(e)| ± O(β).
Consequently the error induced by this double-counting is at most O(βk2

G), so the total
difference between the terms of f(G) and f(G′) corresponding to such vertices is still
O(kG + βkG(kG + k∗)).

Finally, consider the edges {u, v∗} involving vertex v∗. If wtG(v∗) = 0 then

fv∗(G) =
∑
u6=v∗

valG({u, v∗}) = (n− 1)pG = d̄G.

If wtG(v∗) = 1 then degG(v∗) ∈ [d̄G − k′, d̄G + k′], so |fv∗(G)− degG(v∗)| ≤ kG and

|fv∗(G)− d̄G| ≤ k′ + kG.

Otherwise, degG(v∗) ∈ [d̄G − k′ − 1/β, d̄G + k′ + 1/β]. Then we have that∣∣fv∗(G)−
[
d̄G + (degG(v∗)− d̄G)wtG(v∗)

]∣∣ ≤ 2kGwtG(v∗),

so ∣∣fv∗(G)− d̄G
∣∣ ≤ ∣∣degG(v∗)− d̄G

∣∣+ 2kG.

Therefore, in either case we have that fv∗(G) ∈ [d̄G−O(kG+k∗+1/β), d̄G+O(kG+k∗+1/β)],
and so |fv∗(G)− fv∗(G′)| ≤ O(kG + k∗ + 1/β).

Putting everything together, we have that LSf (G) = O((kG + k∗)(1 + βkG) + 1/β).

We now compute a smooth upper bound on LSf (G). From the proof of Lemma 3.1, we

have that there exists some constant C > 0 such that LSf (G) ≤ C((kG + k∗)(1 + βkG) + 1
β ).

Let
g(kG, k

∗, β) = C((kG + k∗)(1 + βkG) + 1
β )

be this upper bound on LSf (G), and let

S(G) = max
`≥0

e−`βg(kG + `, k∗, β).

Lemma 3.2 . S(G) is a β-smooth upper bound on the local sensitivity of f . Moreover,

S(G) = O((kG + k∗)(1 + βkG) + 1
β ).

Proof. For neighboring graphs G,G′, we have that

S(G′) = max
`≥0

e−`βg(kG′ + `, k∗, β)

≤ max
`≥0

e−`βg(kG + `+ 1, k∗, β)

= eβ max
`≥1

e−`βg(kG + `, k∗, β)

≤ eβ max
`≥0

e−`βg(kG + `, k∗, β)

= eβS(G).
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Moreover, for fixed kG, k
∗, β, consider the function h(`) = e−`βg(kG + `, k∗β), and consider

the derivative h′(`). We have that

h′(`) = Cβe−`β(kG + `)(1− β(kG + `+ k∗)).

Consequently the only possible local maximum for ` > 0 would occur for ` = 1/β − kG − k∗;
note that the function h decreases as `→∞. Consequently the maximum value of h occurs
for some ` ≤ 1/β, and so

S(G) = max
`≥0

h(`)

= max
`≥0

Ce−`β(kG + `+ k∗ + (kG + `)(kG + `+ k∗)β + 1/β)

≤ C · (kG + 1/β + k∗ + (kG + 1/β)(kG + 1/β + k∗)β + 1/β)

= C · (3kG + 2k∗ + βkG(kG + k∗) + 3/β)

= O((kG + k∗)(1 + βkG) + 1/β)

as desired.

Theorem 3.3 . Algorithm 1 is (O(ε), 0)-differentially private. Moreover, for any k-
concentrated n-vertex graph G = (V,E) ∈ Gn,k with k ≥ 1, we have that

E
A

( |E|(
n
2

) −Aε,k(G)

)2
 = O

(
k2

ε2n4
+

1

ε4n4

)
,

where Aε,k(G) denotes Algorithm 1 on input (G, ε, k).

Proof. Algorithm 1 computes function f and releases it with noise proportional to a β-smooth
upper bound on the local sensitivity for β ≤ ε. Consequently (O(ε), 0)-differential privacy
follows immediately from Theorem 2.6.

We now analyze its accuracy on k-concentrated graphs G. If G is k-concentrated and
k∗ ≥ k, then wtG(v) = 1 for all vertices v ∈ V and valG({u, v}) = x{u,v} for all u, v ∈ V , and
so f(G) = |E|. Consequently Algorithm 1 computes the edge density of a k-concentrated
graph with noise distributed according to the Student’s t-distribution scaled by a factor of
S(G)/(ε

(
n
2

)
).

Since G is k-concentrated, we also have that kG = 1, and so S(G) = O(k + β(k + 1) +
1/β) ≤ O(k + 1/ε) by Lemma 3.2. The variance of the Student’s t-distribution with three
degrees of freedom is O(1), so the expected squared error of the algorithm is

O

(
(k + 1/ε)2

ε2n4

)
= O

(
k2

ε2n4
+

1

ε4n4

)
as desired.

4. Application to Erdős-Rényi Graphs

In this section we show how to apply Algorithm 1 to estimate the parameter of an Erdős-
Rényi graph. Pseudocode is given in Algorithm 2.

It is straightforward to prove that this mechanism satisfies differential privacy.

Theorem 4.1. Algorithm 2 satisfies (O(ε), 0)-node-differential privacy.
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Algorithm 2: Estimating the parameter of an Erdős-Rényi graph.

Input: A graph G ∈ Gn and parameters ε, α > 0.
Output: A parameter 0 ≤ p̂ ≤ 1.

1 Let p̃′ ← 1

(n2)

∑
e xe + (2/εn) · Z where Z is a standard Laplace random variable.

2 Let p̃← p̃′ + 4 log(1/α)/εn and k̃ ←
√
p̃n log(n/α).

3 Return p̂← Aε,k̃(G) where Aε,k̃ is Algorithm 1 with parameters ε and k̃.

Proof. The first line computes the empirical edge density of the graph G, which is a function
with global sensitivity (n − 1)/

(
n
2

)
= 2/n. Therefore by Theorem 2.4 this step satisfies

(ε, 0)-differential privacy. The third line runs an algorithm that satisfies (O(ε), 0)-differential

privacy for every fixed parameter k̃. By Lemma 2.2, the composition satisfies (O(ε), 0)-
differential privacy.

Next, we argue that this algorithm satisfies the desired accuracy guarantee.

Theorem 4.2. For every n ∈ N and 1
2 ≥ p ≥ 0, and an appropriate parameter α > 0,

Algorithm 2 satisfies

E
G∼G(n,p),A

[
(p−A(G))2

]
=
p(1− p)(

n
2

) + Õ

(
max{p, 1

n}
ε2n3

+
1

ε4n4

)
Proof. We will prove the result in the case where p ≥ logn

n . The case where p is smaller will

follow immediately by using logn
n as an upper bound on p. The first term in the bound is

simply the variance of the empirical edge-density p̄. For the remainder of the proof we will
focus on bounding E

[
(p̄− p̂)2

]
.

A basic fact about G(n, p) for p ≥ logn
n is that with probability at least 1 − 2α: (1)

|p̄−p| ≤
√

log(1/α)
n(n−1) , and (2) the degree of every node i lies in the interval [d̄±O(

√
pn log(n/α))]

where d̄ is the average degree of G. This follows from Hoeffding’s and Bernstein’s inequalities,
and we condition on these events for the remainder of the argument.

Using Theorem 2.4, we also have that with probability at least 1− α, the estimate p̃′

satisfies |p̄ − p̃′| ≤ 4 log(1/α)/εn. We will also condition on this event for the remainder.
Therefore, we have p ≤ p̃ and p ≥ p̃− 8 log(1/α)/εn.

Assuming this condition holds, the graph will have k̃-concentrated degrees for k̃ as
specified on line 2 of the algorithm. Since this assumption holds, taking α = 1/poly(n), we
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have by Theorem 3.3 that

E
[
(p̄−Ak̃,ε(G))2

]
= O

(
k̃2

ε2n4
+

1

ε4n4

)

= Õ

(
p̃n

ε2n4
+

1

ε4n4

)
= Õ

(
pn+ 1

ε

ε2n4
+

1

ε4n4

)

= Õ

(
pn

ε2n4
+

1

ε4n4

)
.

To complete the proof, we can plug in a suitably small α = 1/poly(n) so that the O(α)
probability of failure will not affect the overall mean-squared error in a significant way.

5. Lower Bounds for Concentrated-Degree Graphs

In this section we prove a lower bound for estimating the number of edges in concentrated-
degree graphs. Theorem 1.3, which lower bounds the mean squared error, follows by applying
Jensen’s Inequality.

Theorem 5.1. For every n, k ∈ N, every ε ∈ [ 2
n ,

1
4 ] and δ ≤ ε

32 , and every (ε, δ)-node-DP

algorithm A, there exists G ∈ Gn,k such that E
A

[|pG −A(G)|] = Ω
(
k
εn2 + 1

ε2n2

)
.

The proof relies on the following standard fact about differentially private algorithms.
Since we are not aware of a formal treatment in the literature, we include a proof for
completeness.

Lemma 5.2. Suppose there are two graphs G0, G1 ∈ Gn,k at node distance at most 1
ε from

one another. Then for every (ε, ε32)-node-DP algorithm A, there exists b ∈ {0, 1} such that

E
A

[|pGb
−A(Gb)|] = Ω (|pG0 − pG1 |) .

Proof. Let A be any ε-node-DP algorithm. Since G0, G1 have node distance at most 1
ε , by

group privacy (Lemma 2.3), for every set S and every b ∈ {0, 1}
P [A(Gb) ∈ S] ≤ e · P [A(G1−b) ∈ S] + e

32 .

Now, let Sb =
{
y : |y − pGb

| < 1
2 |pG0 − pG1 |

}
and note that S0 and S1 are disjoint by

construction. Let ρ = min{P [A(G0) ∈ S0],P [A(G1) ∈ S1]}. Then we have

1− ρ ≥ P [A(G0) 6∈ S0]

≥ P [A(G0) ∈ S1]

≥ e−1P [A(G1) ∈ S1]− 1
32

≥ e−1ρ− 1
32

from which we can deduce ρ ≤ 4
5 . Therefore, for some b ∈ {0, 1}, we have

P
[
|pGb
−A(Gb)| ≥ 1

2 |pG0 − pG1 |
]
≥ 1

5 ,

from which the lemma follows.
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We will construct two simple pairs of graphs to which we can apply Lemma 5.2.

Lemma 5.3 (Lower bound for large k). For every n, k ∈ N and ε ≥ 2/n, there is a pair of
graphs G0, G1 ∈ Gn,k at node distance 1/ε such that |pG0 − pG1 | = Ω( k

εn2 ).

Proof. Let G0 be the empty graph on n nodes. Note that pG0 = 0, d̄G0 = 0, and G0 is in
Gn,k.

We construct G1 as follows. Start with the empty bipartite graph with 1
ε nodes on the

left and n− 1
ε nodes on the right. We connect the first node on the left to each of the first k

nodes on the right, then the second node on the left to each of the next k nodes on the right
and so on, wrapping around to the first node on the right when we run out of nodes. By
construction, pG1 = k/ε

(
n
2

)
, d̄G1 = 2k/εn. Moreover, each of the first 1

ε nodes has degree
exactly k and each of the nodes on the right has degree

k/ε

n− 1/ε
± 1 =

k

εn− 1
± 1

Thus, for n larger than some absolute constant, every degree lies in the interval [d̄G1 ± k] so
we have G1 ∈ Gn,k.

Lemma 5.4 (Lower bound for small k). For every n ≥ 8 and ε ∈ [2/n, 1/4], there is a pair
of graphs G0, G1 ∈ Gn,1 at node distance 1/ε such that |pG0 − pG1 | = Ω( 1

ε2n2 ).

Proof. Let i = dnεe, and let G0 be the graph consisting of i disjoint cliques each of
size bn/ic or dn/ie. Let G1 be the graph consisting of i + 1 disjoint cliques each of size
bn/(i + 1)c or dn/(i + 1)e. We can obtain G0 from G1 by taking one of the cliques and
redistributing its vertices among the i remaining cliques, so G0 and G1 have node distance
` := bn/(i+ 1)c ≤ 1/ε. For 1/4 ≥ ε ≥ 2/n we have that ` ≥ b1/2εc > 1/4ε. Transforming

G1 into G0 involves removing a clique of size `, containing
(
`
2

)
edges, and then inserting these

` vertices into cliques that already have size `, adding at least `2 new edges. Consequently
G0 contains at least `2 − `(`− 1)/2 = `(`+ 1)/2 more edges than G1, so

|pG1 − pG0 | ≥
(
`+1

2

)(
n
2

) ≥ `2

n2
≥ Ω(1/ε2n2),

as desired.

Theorem 5.1 now follows by combining Lemmas 5.2, 5.3, and 5.4.
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