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Abstract. Enhancing microdata access is one of the strategic priorities for the Australian
Bureau of Statistics (ABS) in its transformation program. However, balancing the trade-
off between enhancing data access and protecting confidentiality is a delicate act. The ABS
could use synthetic data to make its business microdata more accessible for researchers to
inform decision making while maintaining confidentiality. This study explores the synthetic
data approach for the release and analysis of business data. Australian businesses in some
industries are characterised by oligopoly or duopoly. This means the existing microdata
protection techniques such as information reduction or perturbation may not be as effective
as for household microdata. The research focuses on addressing the following questions:
Can a synthetic data approach enhance microdata access for the longitudinal business
data? What is the utility and protection trade-off using the synthetic data approach? The
study compares confidentialised input and output approaches for protecting confidentiality
and analysing Australian microdata from business survey or administrative data sources.
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Introduction

Statistical agencies are constantly facing decisions on how to best balance the trade-off
between protecting data confidentiality and providing greater access to the valuable data
they collect to inform decision making. Regulation 15 of the Statistics Determination 2018
ensures safe access to ABS data in the form of unidentified individual statistical records
(microdata), for research and analysis purposes. Regulation 15 stipulates that information
can be disclosed if done so ‘the information is disclosed in a manner that is not likely to
enable the identification of the individual’ [The Australian Government, 2018]. Protec-
tions are important for producing high quality statistics. However, protections have to be
balanced with appropriate levels of data access and dissemination. As economist George
Stigler pointed out in 1980, data is both a private and public good [Abowd, 2017]. On the
one hand, statistical agencies must protect confidentiality, but at the same time they also
need to ensure that data is accessible so that it can be used to inform decisions that have
significant impact on the public interest [Abowd and Schmutte, 2019].

The ABS has increasingly emphasised providing better access to microdata for research.
The ABS uses the Five Safes Framework to ensure microdata can be used appropriately
by taking into consideration safe people, projects, settings, data and output [ABS, 2016,
Desai et al., 2016]. The ABS provides three types of microdata products - TableBuilder,
Confidentialised Unit Record Files or CURFs and detailed microdata [ABS, 2017]. For
business microdata access, researchers can download basic CURFs for analysis in their
own environment. However, these basic CURFs contain little detail and are reported at
a more aggregate level [Tam et al., 2009]. The ABS also produces more detailed CURFs
for research using suppression, aggregation, and top and bottom coding methodologies,
to enable analysis of microdata [O’Keefe and Shlomo, 2012]. These techniques can make
microdata from business surveys or administrative data sources (or business microdata)
less useful because some Australian industries are characterised by oligopoly or duopoly.
This means analysing business microdata could lead to the identification of units when
the data contains large business units, unlike household or person microdata which have a
large number of similar respondents. The ABS needs to take stronger protection measures
to minimise the likelihood of disclosure [O’Keefe and Shlomo, 2012]. As a result, useful
information is suppressed or aggregated to avoid re-identification of large businesses.

The ABS could consider releasing synthetic datasets for researchers to enhance access to
business microdata [Chien et al., 2018]. Synthetic datasets preserve some of the relationships
between variables so that researchers can make valid inferences about the target population
without accessing the underlying microdata [Loong, 2012]. The US Census Bureau uses
synthetic data to make its business microdata more accessible to researchers and provides
a validation service [Kinney et al., 2011, Miranda and Vilhuber, 2016].

This paper compares a confidentialised input approach i.e. synthetic data and a con-
fidentialised output approach i.e. perturbation (see Appendix A for a description). The
second section of this paper describes two synthetic data methods explored in this analysis.
The perturbation method is discussed in section three. The forth section provides utility
and risk results for these approaches. The final section contains conclusions. Appendix A
describes different disclosure methodologies. Appendix B discusses the statistical models to
create the experimental dataset and how we impute missing data. All subsequent analysis
is based on the completed dataset.
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Disclosure control - synthetic data

This paper explores two synthetic data generation methods for Australian business micro-
data - the sequential regression (SR) of Raghunathan et al. [2001] and non-parametric
imputation based on classification and regression trees (CART) proposed by Reiter [2005b].
The literature on synthetic data generation methods is growing, see Kim et al. [2018] and
Hu et al. [2018] on non-parametric Bayesian approaches. Statistics New Zealand has also
explored some Bayesian approaches to create synthetic data [Graham, 2008].

We create fully synthetic data for three variables - ln𝑦, ln𝐾 and ln𝑀 from an imputed
experimental dataset (see Appendix B for details). The firm output ln𝑦 is the logarithm of
total sales adjusted for the repurchase of stocks divided by the total number of employees.
Firm capital ln𝐾 is the sum of equipment depreciation, business rental expenses and capital
investment deductions divided by the total number of employees. Material costs ln𝑀 are
the inputs used in the production process divided by the total number of employees. These
variables have higher disclosure risks because the business information is more sensitive. We
combine the synthetic variables with the original variables ln𝐹𝑖𝑟𝑚_𝐴𝑔𝑒 and time indicator
variables to estimate (B.1) in Appendix B for the analyses.

The SR method uses appropriate regression models for different variable types. For
example, continuous variables are generated using a normal model and binary variables
using a logit model. This study only creates synthetic data for continuous variables. We
create three synthetic variables with y denoting each of the three variables ln𝑦, ln𝐾 and
ln𝑀 . We use X, X(𝐾) and X(𝑀) to denote the matrix for creating synthetic data in ln𝑦,
ln𝐾 and ln𝑀 , respectively. So if the synthetic data variable is ln𝑦 then X includes all the
independent variables in (B.1) in Appendix B. In comparison, if the synthetic data variable
is ln𝐾 then X(𝐾) includes all the independent variables and ln𝑦 but excludes ln𝐾. Similarly,
if the synthetic data variable is ln𝑀 then X(𝑀) includes all the independent variables and
ln𝑦 but excludes ln𝑀 .

The SR method generates a continuous vector y𝑠𝑒𝑞 from the parameters directly es-
timated from the fitted regression as follows. First draw a new value 𝜃 = (𝜎2, 𝛽) from
𝑃 𝑟(𝜃 |y). Specifically, the variance is drawn from 𝜎2 |X ∼ (y−X�̂�)′(y−X�̂�)𝜒−2

𝑛−𝑘, where 𝑛
is the total number of observations and 𝑘 is the dimension of 𝛽. The coefficients are drawn
from 𝛽 | 𝜎2, X ∼ 𝒩(�̂�, (X′X)−1𝜎2). Second, the synthetic values for y𝑠𝑒𝑞 are drawn from
the regression model y𝑠𝑒𝑞 | 𝛽, 𝜎2, X ∼ 𝒩(X𝛽, 𝜎2𝐼), where 𝐼 is the identity matrix. The
imputations are generated for each variable sequentially [Drechsler, 2011].

The CART algorithm estimates the conditional distribution of a univariate outcome
given multivariate predictors by partitioning the predictors into groups with similar out-
comes. The partitions are created by recursive binary splits of the predictors in a tree
structure with leaves. The values in each leaf represent the conditional distribution of out-
comes that satisfy the partitioning criterion. Effectively, CART preserves the underlying
relationships between variables by creating models with many interaction effects [Reiter,
2005b, Burgette and Reiter, 2010].

To create y𝑐𝑎𝑟𝑡, we first fit a tree relating y to X. We do this separately for all three
variables ln𝑦, ln𝐾 and ln𝑀 . The algorithm minimises the deviation of y within each leaf
and stops splitting when the deviation is below 0.001. We do this for three variables and
label these trees 𝑡𝑟𝑒𝑒(𝑦),(𝐾),(𝑀). We use y𝑙𝑒𝑎𝑓 to represent the predicted values of terminal
leaves 𝑙𝑒𝑎𝑓 (𝑦),(𝐾),(𝑀) in the trees. In each leaf of the tree, we use the Bayesian bootstrap
to draw new values from y𝑙𝑒𝑎𝑓 to create synthetic data [Reiter, 2005b]. The Bayesian
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bootstrap differs from the standard bootstrap by varying the selection probabilities in the
re-sampling process [Rubin, 1981]. The main advantage of using the Bayesian bootstrap is
adding uncertainty in each leaf because the number of values in each leaf tends to be small
[Reiter, 2005b].

We generate 20 synthetic datasets using each method and each contains three synthetic
variables. We use these datasets to fit model (B.1) in Appendix B and choose the synthetic
dataset with the highest log-likelihood for the analysis.

Disclosure control - perturbation

The confidentialised input approach produces synthetic microdata that allows researchers
to analyse the microdata. In comparison, the confidentialised output approach, e.g. pertur-
bation, does not allow researchers to access the underlying microdata (see Appendix A for
a description). Researchers can only explore data and perform modelling analyses within a
secured remote environment. In this environment, on-the-fly routines are applied to confi-
dentialise results for analysis. These routines protect confidentiality while maximising the
utility of the microdata.

The perturbation algorithm starts by considering the estimation for model (B.1) as
solving 𝑆𝑐(𝛼; X; y) = 0, where 𝑆𝑐(𝛼; X; y) = X⊺(y − X⊺𝛼). The algorithm then adds the
noise e to the score function. We use 𝛼𝑝𝑒𝑟𝑡 to denote the coefficients after the score function
has been perturbed. The perturbed estimating equation can be expressed as

𝑆𝑐(𝛼𝑝𝑒𝑟𝑡; X; y) = e. (0.1)
The amount of perturbation is based on a record’s contribution to the coefficients in

the estimating equation. The perturbation is added using e = X⊺(y − X⊺𝛼)u, where
noise u is generated independently from the symmetric bimodal triangular distribution
with modal points at −1 and 1. The choice of the distribution is to minimise bias in the
model estimation1. In our setting, analysts will only have access to the confidentialised
outputs. The estimated coefficients after perturbation are �̂�𝑝𝑒𝑟𝑡 = �̂� + (X⊺X)−1e where
�̂� is the estimated coefficient using the original microdata. The solution of (0.1) �̂�𝑝𝑒𝑟𝑡

is an unbiased estimate of 𝛼 because the noise is small and its expected value has mean
zero 𝐸(e) = 0. The perturbation has a similar effect to removing records that have large
contribution to the estimated coefficients [Chipperfield and O’Keefe, 2014, Chipperfield,
2014].

Empirical results

This paper considers the utility and protection trade-off in the synthetic data and perturba-
tion approaches in our particular setting. Duncan and Stokes [2004] and Cox et al. [2011]
argue that statistical agencies should consider the risk-utility trade off when they evaluate
different approaches to enhance data accessibility while protecting confidentiality.

There are many different approaches to estimating disclosure risks for individual records
using the probability of matching between microdata. These individual record risk scores
are then aggregated for the entire data file, see [Bethlehem et al., 1990, Shlomo, 2010,
Drechsler, 2011]. We adapt the approach of Kim et al. [2018] to measure the risk-utility

1The choice of the perturbation distribution is based on the ABS research. The ABS does not allow us
to disclose the exact perturbation distribution.
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trade-off. We use the proportion of correctly linked records criterion to measure disclosure
risk. However, instead of computing distance measures, we perform probabilistic linkage
between unconfidentialised and confidentialised microdata. We use ln𝑦 and the total number
of employees in each firm 𝑗 as linkage variables. It is not possible to get an exact linkage
due to disclosure protection. We calculate the percentage of correctly linked records with
the threshold of linkage to 80 percent accuracy. We also compare a scenario where the
linkage variables are ln𝑦, ln𝐾, ln𝑀 and the total number of employees in each firm 𝑗 for
comparison. We follow Kim et al. [2018] and use a propensity score approach to measure
utility in the Risk-Utility map (see Appendix D for a description). The lower the propensity
scores the higher the utility because the synthetic data is closer to the unconfidentialised
data. Similar to measuring disclosure risks, we also consider two scenarios — one includes
just ln𝑦 and the other scenario includes all three variables.

Figure 5 in Appendix E shows the Risk-Utility map for the different disclosure control
methods. This Risk-Utility map illustrates the chosen methods at fixed parameter setting
and is, therefore, illustrative. To select among methods, multiple parameter settings for each
method must be examined. The Risk-Utility map shows that all these methods provide sim-
ilar trade-offs but generally SR provides better protection because of the lower proportion
of correct linked records. The slightly better utility provided by the perturbation approach
may be due to the choice of noise distribution. We are interested in comparing synthetic
data with the standard ABS perturbation approach in the analysis. It is also interesting to
note that perturbation has the highest utility but the lowest protection in the ln𝑦 scenario
but lowest utility and slightly higher protection in the scenario with three variables. This
is because the noise added is independent of the data and more variables imply more noise.
However, the differences in the level of protection are smaller in the scenario with three
variables compared to the scenario with one variable.

This study also compares the estimated coefficients using confidentialised input and
outputs approaches with the estimated coefficients using the original microdata. We con-
sider the utility is high if the confidentialised coefficients are similar to those estimated from
the original data. Figures 6 and 7 in Appendix F compare the estimated coefficients using
different approaches for all industries. These figures show the results for the main variables
and intercepts. There are overlaps in the confidence intervals of the coefficients estimated
using perturbation, CART and no protection. SR has the least overlap in our setting.
The confidence intervals are overlapping between no protection, CART and perturbation
approaches. CART performs better than SR at preserving the underlying relationships
between variables because it captures many interaction effects.

As expected, labour, capital and materials components contribute positively to outputs.
Researchers will draw similar conclusions if analysing confidentialised and unconfidentialised
microdata. Figure 8 shows the model residuals using hex-bin plots. The plotting region is
broken into a mesh of tessellating hexagons, each of which is coloured indicating how many
observations lie in that hexagon. Figure 9 shows the normal quantile-quantile plots for all
industries. There are no notable differences when we compare different approaches with the
model results using unconfidentialised data, see Appendix G.

Conclusions

This research compares synthetic data and perturbation approaches for disseminating Aus-
tralian business microdata. The preliminary results show that synthetic data can be a
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possible dissemination tool to make more business microdata accessible while ensuring con-
fidentiality.

The analysis shows that the confidentialised input approach provides more protection
than the confidentialised output approach in this particular setting - one percent sample file
of business microdata. The protection may be needed because in this setting the confiden-
tialised output approach never permits the researcher to access the underlying confidential
data, while the confidentialised input approach does allow this access. The amount of utility
loss from synthetic data and perturbation approaches is comparable because the estimated
coefficients are similar and the risk and utility map also shows similar trade offs. Synthetic
data could be a possible approach for the ABS to consider to enhance access to business
microdata. This preliminary research has several areas for possible extension including:
• exploring multilevel models for creating synthetic data to better capture the hierarchical

structure of the dataset [Drechsler, 2015].
• looking into nonparametric Bayesian methods
• considering other non-parametric approaches for synthetic data such as random forest or

differential privacy [Drechsler and Reiter, 2011].
• exploring synthetic data approaches which also maintain differential privacy standards

[Abowd and Vilhuber, 2008, Wasserman and Zhou, 2010, Wang, 2019]. There is emerging
research interest in using methods that maintain differential privacy to better protect sta-
tistical publication [Abowd, 2018]. It would be interesting to consider Bayesian sampling
approach that can also provide differential privacy for practical problems [Wang et al.,
2015].
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Appendix A. Disclosure control methodologies

O’Keefe and Shlomo [2012] categorise statistical disclosure control methodologies into two
main approaches - confidentialised input and confidentialised output. Examples of confiden-
tialised input methods include aggregation, geographical suppression, rounding, swapping
and adding noise (see Figure 1). However, it is often difficult to quantify the amount of
information loss or level of protection achieved using confidentialised input approaches. Ru-
bin [1993] proposed a method to generate synthetic data by repeatedly sampling from a
statistical model estimated from actual microdata. The synthetic datasets can be used for
inference while protecting confidentiality.

Figure 1. Confidentialise input approach

Confidentialised output approaches allow data access in a remote analysis system. The
system takes a query and returns the results to the analyst. The analyst does not have
direct access to the microdata. The remote system imposes restrictions on the queries and
applies routines to deliver confidentialised results (see Figure 2).

Figure 2. Confidentialise output approach

Appendix B. Statistical model and missing data analysis

We are interested in preserving the statistical relationships between the variables in the firm
production function. The statistical model is specified as:

ln𝑦𝑗𝑘𝑡 = 𝛼1ln𝐿𝑗𝑘𝑡 + 𝛼2ln𝐾𝑗𝑘𝑡 + 𝛼3ln𝑀𝑗𝑘𝑡 + 𝛼3ln𝐹𝑖𝑟𝑚_𝐴𝑔𝑒𝑗𝑘𝑡 + 𝜏𝑘𝑡 + 𝜖𝑗𝑘𝑡, (B.1)

where ln𝑦𝑗𝑘𝑡 is the logarithm of total sales adjusted for the repurchase of stocks divided by
the total number of employees for firm 𝑗 in industry 𝑘 at time 𝑡. The logarithm of estimated
firm average labour components ln𝐿𝑗𝑘𝑡 for firm 𝑗 in industry 𝑘 at time 𝑡 is derived using
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the method proposed by Abowd et al. [2002]. Details can be found in Chien et al. [2019].
The logarithm of capital cost ln𝐾𝑗𝑘𝑡 is the logarithm of the sum of equipment depreciation,
business rental expenses and capital investment deductions divided by the total number
of employees for firm 𝑗 in industry 𝑘 at time 𝑡. The logarithm of material costs ln𝑀𝑗𝑘𝑡 is
the logarithm of the inputs used in the production process divided by the total number of
employees for firm 𝑗 in industry 𝑘 and time 𝑡. The logarithm of firm age is ln𝐹𝑖𝑟𝑚_𝐴𝑔𝑒𝑗𝑘𝑡
for firm 𝑗 in industry 𝑘 at time 𝑡. We also include time fixed effects 𝜏𝑘𝑡 for industry 𝑘 at
time 𝑡 [Breunig and Wong, 2008, Nguyen and Hansell, 2014, Mare et al., 2016]. This gives
15 unknown regression parameters in (B.1). This study used a one percent stratified sample
of business microdata from an expanded prototype dataset (𝑁 > 45000 firms). Chien and
Mayer [2015], Chien et al. [2019] provide more details of the prototype dataset. We simplify
notation in (B.1) by removing the subscripts. We also use different fonts i.e., 𝓧, to
represent observed and imputed 𝑁 × 15 matrices containing all the independent variables
in (B.1). Similarly, we use y to represent the observed vector containing dependent variable
in (B.1).

The prototype sample contains missing values, particularly for material inputs. Figure 3
shows the missing data pattern; the three variables with missing values include (ln𝑀 , ln𝐾
and ln𝑦) in descending order.

Figure 3. Missing data pattern
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Note. The green tile indicates missing data. The blue tile indicates non missing data. Consider
ABS and Patents subfigure at the top left, the left panel is a bar chart showing the propostion of

missing data for each variable. The right panel shows the 8 missing data patterns in the data
and the proportion of each pattern.

The missing values in the 1% sample are imputed assuming the data are missing at
random (MAR). The consequence of this assumption is that missing values can be imputed
using models fitted to the observed data [Little and Rubin, 2014]. We adapt a similar
notation to Reiter [2005a]. The experimental dataset consists of [y, 𝓧], where y is 𝑁 × 1
vector which includes the dependent variable, and 𝓧 is 𝑁 ×15 matrix which includes all the
independent variables in (B.1). We have imputed the missing variables ln𝑦, ln𝐾 and ln𝑀 .
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We use two Bayesian imputation approaches - Predictive Mean Matching and Expectation
Maximisation and Bootstrap to impute the missing data.

The observed dataset consists of two 𝑁 × 16 matrices, 𝓓 = [y, 𝓧], where 𝓧 includes
all the independent variables in (B.1), and the response indicator matrix 𝓡 which we use
to partition 𝓓 into the observed 𝓓𝑜𝑏𝑠 and the missing 𝓓𝑚𝑖𝑠. We use 𝓧, 𝓧(𝐾) and 𝓧(𝑀)

to denote the matrix for imputing missing data in ln𝑦, ln𝐾 and ln𝑀 , respectively. So if
the missing data variable is ln𝑦 then 𝓧 includes all the independent variables in (B.1). In
comparison, if the missing data variable is ln𝐾 then 𝓧(𝐾) includes all the independent
variables and ln𝑦 but excludes ln𝐾. If the missing data variable is ln𝑀 then 𝓧(𝑀) includes
all the independent variables and ln𝑦 but excludes ln𝑀 . We impute the missing values in
ln𝑦, ln𝐾 and ln𝑀 separately, using two Bayesian imputation approaches - Predictive Mean
Matching (PMM) and Expectation Maximisation and Bootstrap (EMB).

PMM selects from a set of possible donors from the complete cases whose predictive
means are closest to that of the missing case [Little, 1988]. The value of the selected y𝑜𝑏𝑠
are then imputed for y𝑚𝑖𝑠. This method is similar to a hot-deck imputation because it
randomly choose one y𝑖𝑚𝑝 from nearest neighbour complete cases. The box 1 describes the
concept of the algorithm [Vink et al., 2014].

Algorithm 1: PMM algorithm
Data: use 𝓓𝑜𝑏𝑠 to estimate �̂� and ̂𝜖

draw variance �̃�2 from ̂𝜖⊺ ̂𝜖/𝐴 where 𝐴 is 𝜒2 with 𝑁 − 𝑘 with 𝑘 is the
number of parameters.
draw �̃� from a multivariate normal distribution centered at �̂� with
covariance matrix �̃�2(𝓧⊺

𝑜𝑏𝑠𝓧𝑜𝑏𝑠)−1.
calculate ŷ𝑜𝑏𝑠 = 𝓧𝑜𝑏𝑠�̂� and ŷ𝑚𝑖𝑠 = 𝓧𝑚𝑖𝑠�̃�

1 for each y𝑚𝑖𝑠 do
2 find distance Δ𝑖 = |ŷ𝑜𝑏𝑠,𝑖 − ŷ𝑚𝑖𝑠,𝑘| where 𝑖 ≠ 𝑘.

randomly sample one donor from Δ𝑖 with 𝑖 = 1, ⋯ , 5 smallest elements
and take the corresponding ŷ𝑜𝑏𝑠 to imput y𝑚𝑖𝑠.

3 end
Figure 4 shows how PMM imputes the missing values y𝑖𝑚𝑝 by randomly selecting one

out of five plausible donors y𝑜𝑏𝑠 with smallest distance Δ. The y𝑖𝑚𝑝 has the smallest Δ
in this example. PMM has the advantage of imputing real values observed from the data
[Schenker and Taylor, 1996, White et al., 2011, Allison, 2015]. PMM also gives more robust
estimates in the presence of misspecification in the imputation model [Koller-Meinfelder,
2009].
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N o t e. ◦i n di c at e s o b s e r v e d v al u e s 𝑦 𝑜 𝑏 𝑠 , •i n di c at e s i m p ut e d v al u e 𝑦 𝑖 𝑚 𝑝 a n d
i n di c at e s fitt e d val u e s 𝑦𝑜 𝑏 𝑠 a n d 𝑦𝑚 𝑖 𝑠 .

S o u r c e: a d a pt e d f r o m [ K oll e r- M ei nf el d e r , 2 0 0 9 , p. 3 2]

Ki n g et al. [2 0 0 1 ] p r o p o s e E M B w hi c h c o m bi n e s E x p e ct ati o n M a xi mi s ati o n ( E M) al-
g o rit h m wit h b o ot st r a p s a m pli n g. U nli k e P M M, E M B u s e s p r e di ct e d v al u e s of a li n e a r
r e g r e s si o n fitt e d t o t h e o b s e r v e d d at a t o i m p ut e mi s si n g v al u e s. E M B a s s u m e s v a ri a bl e s
i n 𝓓 a r e m ulti v a ri at e n o r m al a n d d at a a r e mi s si n g at r a n d o m [ Ki n g et al. , 2 0 0 1 ]. T h e
i m p ut ati o n f o r m ul a i s

𝒟
( 𝑗)
𝑚 𝑖 𝑠, 𝑖 = 𝓓

( − 𝑗)
𝑜 𝑏 𝑠, 𝑖

̃𝛽 + ̃𝜖 𝑖 , ( B. 2)

w h e r e ĩ n di c at e s a r a n d o m d r a w f r o m t h e a p p r o p ri at e p o st e ri o r. T h e s y m b ol 𝒟
( 𝑗)
𝑚 𝑖 𝑠, 𝑖

d e n ot e s a i m p ut e d v al u e f o r r o w 𝑖 a n d c ol u m n 𝑗 a n d 𝓓
( 𝑗)
𝑜 𝑏 𝑠, 𝑖 d e n ot e s t h e v e ct o r of v al u e s

o b s e r v e d of all c ol u m n s i n r o w 𝑖 e x c e pt c ol u m n 𝑗 . T h e c o e ffi ci e nt s ̂𝛽 c a n b e c al c ul at e d f r o m
t h e c o m pl et e d at a p a r a m et e r s 𝜗 = ( 𝜇, Σ) , w h e r e 𝜇 i s t h e m e a n v e ct o r a n d Σ i s t h e v a ri a n c e-

c o v a ri a n c e m at ri x. T h e r a n d o m n e s s of 𝒟
( 𝑗)
𝑚 𝑖 𝑠, 𝑖 i s c r e at e d b y b ot h e sti m ati o n u n c e rt ai nt y d u e

t o u n k n o w n 𝜗 a n d u n c e rt ai nt y i n ̃𝜖 𝑖 b e c a u s e Σ i s n ot a m at ri x of z e r o [H o n a k e r a n d Ki n g ,
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2010]. The box 2 simplifies the notation by removing the superscripts and subscripts for
𝓓𝑚𝑖𝑠 and 𝓓𝑜𝑏𝑠 to describe the concept of the algorithm [Tan et al., 2009].

Algorithm 2: EMB algorithm
Data: generate 𝑚 bootstrap sample of size 𝑛 with replacement from the posterior

𝑃 𝑟(𝜗) ∫ 𝑃 𝑟(𝓓 | 𝜗)𝑑𝓓𝑚𝑖𝑠 described in Equation 𝐶.4𝑏.

keep draws of �̃� with probabilities proportional to the importance ratio -
the ratio of the posterior to the asymptotic normal approximation evalued
at �̃�. King et al. [2001] defines the importance ratio (IR) without prior as

𝐼𝑅 = ℓ(�̃� | 𝓓𝑜𝑏𝑠)
𝒩(�̃� | �̃�, 𝑉 (�̃�))

.

Result: in each sample 𝑚, fill in 𝓓𝑚𝑖𝑠 by running an EM algorithm described
below.

1 Let �̃�
(𝑖)

be the current guess of �̃�,
Expectation step computes the 𝑄 function defined by

𝑄(�̃�
(𝑖)

| �̃�) = 𝐸[ℓ(�̃�; 𝓓𝑜𝑏𝑠, 𝓓𝑚𝑖𝑠) | 𝓓𝑜𝑏𝑠�̃�
(𝑖)

]

= ∫ ℓ(�̃�; 𝓓𝑚𝑖𝑠, 𝓓𝑜𝑏𝑠) × 𝑓(𝓓𝑚𝑖𝑠 | 𝓓𝑜𝑏𝑠, �̃�
(𝑖)

)𝑑𝓓𝑚𝑖𝑠,

Maximisation step maximises 𝑄 with respect to �̃� to obtain

�̃�
(𝑖+1)

= argmax 𝑄(�̃�
(𝑖)

| �̃�).
repeat

2 both Expectation and Maximisation steps
3 until convergence occurs;

Baraldi and Enders [2010] discussed how multiple imputation methods create many
copies of datasets with different imputed values. These datasets are analysed using the
same estimation step to generate multiple sets of parameters and normal standard errors.
The final result is derived by using model averaging to incorporate the uncertainty associated
with the model selection process into standard errors and confidence intervals [Schomaker
and Heumann, 2014]. It is unclear if model averaging from multiple imputed datasets
provides the best results. This study applies each method 20 times to the 1% sample and
we select the best imputed dataset which maximises the likelihood for (B.1) from the 40
datasets [Fay, 1992, Meng, 1994].
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Appendix C. A Bayesian framework for imputation

We assume data are missing at random. The consequence of this assumption is that missing
data can be imputed from fitting model on the observed data. The complete data parameters
are 𝜗 = (𝜇, Σ), where 𝜇 is the mean vector and Σ is the variance-covariance matrix. The
likelihood of these parameters given the observed data can be expressed as

𝑃 𝑟(𝓓𝑜𝑏𝑠, 𝓡 | 𝜗) = ∫ 𝑃𝑟(𝓓, 𝓡 | 𝜗)𝑑𝓓𝑚𝑖𝑠 (C.1a)

= ∫ 𝑃𝑟(𝓓 | 𝓡, 𝜗)𝑃𝑟(𝓡 | 𝜗)𝑑𝓓𝑚𝑖𝑠. (C.1b)

Using Bayes’ theorem we can rewrite the first term 𝑃 𝑟(𝓓 | 𝓡, 𝜗) in (C.1b) as
𝑃𝑟(𝓓 | 𝜗)𝑃 𝑟(𝓡 | 𝓓, 𝜗)/𝑃 𝑟(𝓡 | 𝜗). Substituting the new term into (C.1b) we have

𝑃𝑟(𝓓𝑜𝑏𝑠, 𝓡 | 𝜗) = ∫ 𝑃𝑟(𝓓 | 𝜗)𝑃𝑟(𝓡 | 𝓓, 𝜗)𝑑𝓓𝑚𝑖𝑠. (C.2)

Assuming the data are missing at random, the patterns of missing data depend only
on the observed data, so (C.2) is simplified to

𝑃 𝑟(𝓓𝑜𝑏𝑠, 𝓡 | 𝜗) = ∫ 𝑃𝑟(𝓓 | 𝜗)𝑃𝑟(𝓡 | 𝓓𝑜𝑏𝑠, 𝜗)𝑑𝓓𝑚𝑖𝑠

= ∫ 𝑃𝑟(𝓓 | 𝜗)𝑑𝓓𝑚𝑖𝑠𝑃𝑟(𝓡 | 𝓓𝑜𝑏𝑠)
= 𝑃 𝑟(𝓓𝑜𝑏𝑠 | 𝜗)𝑃 𝑟(𝓡 | 𝓓𝑜𝑏𝑠). (C.3)

Maximising (C.1a) over 𝜗 is the same as maximising the first term in (C.3) over 𝜗. The
likelihood can therefore be expressed as 𝐿(𝜗 | 𝓓𝑜𝑏𝑠) ∝ 𝑃𝑟(𝓓𝑜𝑏𝑠 | 𝜗). Harel and Zhou [2007]
describe the posterior distribution to draw imputations as

𝑃 𝑟(𝓓𝑚𝑖𝑠 | 𝓓𝑜𝑏𝑠) = ∫ 𝑃 𝑟(𝓓𝑚𝑖𝑠 | 𝓓𝑜𝑏𝑠, 𝜗)𝑃 𝑟(𝜗 | 𝓓𝑜𝑏𝑠)𝑑𝜗, where (C.4a)

𝑃𝑟(𝜗 | 𝓓𝑜𝑏𝑠) ∝ 𝑃𝑟(𝜗) ∫ 𝑃 𝑟(𝓓 | 𝜗)𝑑𝓓𝑚𝑖𝑠 (C.4b)

is the observed posterior distribution for 𝜗 and 𝑃 𝑟(𝜗) is an uninformative Jeffreys’s
prior for Σ.
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Appendix D. Risk-Utility map

Shlomo [2014] argued statistical agencies could consider using probabilistic linkage for risk
assessment because it extends the notion of population uniqueness. We use the R fastLink
package - Fast Probabilistic Record Linkage with Missing Data to perform probabilistic
linkage between confidentialised and unconfidentialised records. We use the notation from
Enamorado et al. [2019] and consider two data sets - unconfidentialised data 𝓓𝑜𝑟𝑖 and
confidentialised data 𝓓𝑐𝑜𝑛 with 𝑃 common variables. An agreement vector of length 𝑃
is denoted by 𝛾(𝑖, 𝑗). The 𝑝th element of 𝛾𝑝(𝑖,𝑗) represents the within-pair similarity for
the 𝑝th variable between the 𝑖th observation of the unconfidentialised data set and the 𝑗th
observation of the confidentialised data set. There is a total of 𝐿𝑝 levels for the 𝑝th variable
to measure similarity, so the element of the agreement can be defined as:

𝛾𝑝(𝑖,𝑗) =

⎧{{{
⎨{{{⎩

0 unmatched
1
⋮ similar

𝐿𝑝 − 2
𝐿𝑝 − 1 matched

Fellegi and Sunter [1969] propose the most commonly used probabilistic linkage model.
We use 𝑀𝑖𝑗 to indicate if 𝑖th record in 𝓓𝑜𝑟𝑖 matches with 𝑗th record in 𝓓𝑐𝑜𝑛. We follow
Enamorado et al. [2019] to specify the basic model as:

𝛾𝑝(𝑖,𝑗) | 𝑀𝑖𝑗 =𝑚 𝑖𝑛𝑑𝑒𝑝.∼ Multinomial(𝐿𝑝, 𝜋𝑝𝑚), (D.1)

𝑀𝑖𝑗
𝑖𝑖𝑑∼ Bernoulli(𝜆) (D.2)

where 𝜋𝑝𝑚 is a vector of length 𝐿𝑝 giving the probability of each agreement level for the 𝑝th
variable given that the pair is matched (𝑚 = 1) or unmatched (𝑚 = 0), and 𝜆 representing
the probability of a match across all pairwise comparison. The prototype dataset contains
more than 45000 firms so the potential search space for pairwise comparison is large. We
use the available blocking variables such as industry and year to reduce the computational
problem [Fellegi and Sunter, 1969].

We use the propensity score approach of Kim et al. [2018] to measure utility. We
first concatenate unconfidentialised data 𝓓𝑜𝑟𝑖 and confidentialised data 𝓓𝑐𝑜𝑛 and add an
indicator variable whose values equal one for all observations from 𝓓𝑐𝑜𝑛 and equal zero
for all observations from 𝓓𝑜𝑟𝑖. Let 𝑝𝑖 be the probability the indicator variable equals one.
Then we fit a logistic regression

log[ 𝑝𝑖
1 − 𝑝𝑖

] = X⊺
𝑖 𝜃, (D.3)

where X𝑖 includes ln𝑦, ln𝐾 and ln𝑀 with main effects and all interactions. For 𝑖 = 1, ⋯ , 2𝑁 ,
we compute the predictive probabilities ̂𝑝𝑖 and then compute Kim et al.’s [2018] measure

𝑈𝑝𝑟𝑜𝑝 = 1
2𝑁

2𝑁
∑
𝑖=1

( ̂𝑝𝑖 − 1
2)2.

https://cran.r-project.org/web/packages/fastLink/index.html
https://cran.r-project.org/web/packages/fastLink/index.html
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Appendix G. selected diagnostics

Figure 8. Confidentialised residual plots - ALL industries
(a) original

(b) perturbation

(c) synthetic data - SR

(d) synthetic data - CART

Note. Residuals come from fitting (B.1) to different approaches. The
plotting region on these figures is broken into a mesh of tessellating
hexagons, each of which is coloured indicating how many observations lie in
that hexagon.
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Figure 9. QQ Norm plots - ALL industries
(a) original

(b) perturbation

(c) synthetic data - SR

(d) synthetic data - CART

Note. Residuals come from fitting (B.1) to different approaches. A 45
degree line indicates that residuals are normally distributed.
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