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Abstract. Differential privacy provides a robust quantifiable methodology to measure
and control the privacy leakage of data analysis algorithms. A fundamental insight is
that by forcing algorithms to be randomized, their privacy leakage can be characterized
by measuring the dissimilarity between output distributions produced by applying the
algorithm to pairs datasets differing in one individual. After the introduction of differential
privacy, several variants of the original definition have been proposed by changing the
measure of dissimilarity between distributions, including concentrated, zero-concentrated
and Rényi differential privacy.

The first contribution of this paper is to introduce the notion of privacy profile of a
mechanism. This profile captures all valid (ε, δ) differential privacy parameters satisfied
by a given mechanism, and contrasts with the usual approach of providing guarantees in
terms of a single point in this curve. We show that knowledge of this curve is equivalent
to knowledge of the privacy guarantees with respect to the alternative definitions listed
above. This sheds further light into the connections among multiple privacy definitions,
and suggests that these should be considered alternative but otherwise equivalent points of
view.

The second contribution of this paper is to apply the privacy profiles machinery to
study the so-called “privacy amplification by subsampling” principle, which ensures that
a differentially private mechanism run on a random subsample of a population provides
higher privacy guarantees than when run on the entire population. Several instances of this
principle have been studied for different random subsampling methods, each with an ad
hoc analysis. In this paper we set out to study this phenomenon in detail with the aim to
provide a general method capable of recovering prior analyses in a streamlined fashion. Our
method makes extensive use of coupling argument, and introduces a new tool to analyse
differential privacy for mixture distributions.
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1. Introduction

The success of differential privacy (Dwork et al., 2006) in providing a rigorous methodology
to design privacy-preserving data analysis algorithms has sparkled an interest in variants
of the original definition adapted to particular circumstances. A salient example of this
phenomenon is the multiple definitions that arose simultaneously around the concentration
property of privacy loss random variables, which play a crucial role in the classical analyses
of the Gaussian mechanism (Dwork et al., 2006) and the advanced composition theorem
(Dwork et al., 2010). These definitions include concentrated differential privacy (Dwork
and Rothblum, 2016), zero-concentrated differential privacy (Bun and Steinke, 2016), Rényi
differential privacy (Mironov, 2017), truncated-concentrated differential privacy (Bun et al.,
2018), as well as the implicit usage made of the concentration property in the moments
accountant technique (Abadi et al., 2016). This profusion of definitions, together with a
practical need to explain the resulting privacy guarantees to regulators and decision-makers,
resulted in a number of results allowing one to translate the privacy parameters used in one
definition into the parameters of another definition. For example, all the definitions based
on the concentration of privacy loss random variables imply a certain level of approximate
differential privacy, and pure differential privacy implies a certain level of privacy with respect
to the concentration-based definitions.

The first goal of this paper is to take a deeper look at these conversion results from
a mathematical standpoint. Our starting point is to associate with each mechanism M a
privacy profile δM(ε) such that the mechanism satisfies (ε, δM(ε))-DP for each ε ≥ 0. To
do this, we leverage the connection between differential privacy and a family of divergences
in the sense of Csiszár, which was first observed in the context of formal verification for
differential privacy (Barthe et al., 2012; Barthe and Olmedo, 2013; Barthe et al., 2016). By
studying the properties of these profiles we conclude that knowledge of the privacy profile
of a mechanism is mathematically equivalent to knowledge of its privacy guarantees with
respect to the concentration-based definitions listed above. In other words, we show that
moving from the pointwise approach – which focuses on (ε, δ)-DP guarantees for a single
setting of the privacy parameters — to the functional approach – which views one parameter
as a function of another — provides a deeper understanding of the privacy properties of a
given mechanism, and, in particular, that these different privacy definitions are just different
points of view of the same phenomenon. This is the content of Section 3, which is preceded
by a number of preliminaries discussed in Section 2.

The second part of the paper is devoted to the study of privacy amplification by
subsampling. Subsampling is a fundamental tool in the design and analysis of differentially
private mechanisms. Broadly speaking, the intuition behind the “privacy amplification by
subsampling” principle is that the privacy guarantees of a differentially private mechanism
can be amplified by applying it to a small random subsample of records from a given dataset.
In machine learning, many classes of algorithms involve sampling operations, e.g., stochastic
optimization methods and Bayesian inference algorithms, and it is not surprising that results
quantifying the privacy amplification obtained via subsampling play a key role in designing
differentially private versions of these learning algorithms (Bassily et al., 2014; Wang et al.,
2015; Abadi et al., 2016; Jälkö et al., 2017; Park et al., 2016b,a). Additionally, from a
practical standpoint, subsampling provides a straightforward method to obtain privacy
amplification when the final mechanism is only available as a black-box. For example, in
Apple’s iOS and Google’s Chrome deployments of differential privacy for data collection the



PRIVACY PROFILES AND AMPLIFICATION BY SUBSAMPLING 3

privacy parameters are hard-coded into the implementation and cannot be modified by the
user. In these types of settings, if the default privacy parameters are not satisfactory, one
could achieve a stronger privacy guarantee by devising a strategy that only submits to the
mechanism a random sample of the data.

Despite the practical importance of subsampling, existing tools to bound privacy amplifi-
cation work only for specific forms of subsampling and typically come with cumbersome proofs
providing no information about the tightness of the resulting bounds. The goal of Section 4
is to remedy this situation by providing a general framework for deriving tight privacy
amplification results that can be applied to any of the subsampling strategies considered in
the literature. Our framework builds on the privacy profiles machinery developed in the first
part of the paper, and includes a novel analytical tool – advanced joint convexity – which is
used to analyze the privacy guarantees of mixture distributions and might be of independent
interest.

One of our motivations to initiate a systematic study of privacy amplification by subsam-
pling is that this is an important primitive for the design of differentially private algorithms
that has received less attention than other building blocks like composition theorems (Dwork
et al., 2010; Kairouz et al., 2017; Murtagh and Vadhan, 2016). Given the relevance of sam-
pling operations in machine learning, it is important to understand what are the limitations
of privacy amplification and develop a fine-grained understanding of its theoretical proper-
ties. Our results provide a first step in this direction by showing how privacy amplification
resulting from different sampling techniques can be analyzed by means of single set of tools,
and by showing how these tools can be used for proving lower bounds. Our analyses also
highlight the importance of choosing a sampling technique that is well-adapted to the notion
of neighboring datasets under consideration.

A second motivation is that subsampling provides a natural example of mechanisms
where the output distribution is a mixture. Because mixtures have an additive structure and
differential privacy is defined in terms of a multiplicative guarantee, analyzing the privacy
guarantees of mechanisms whose output distribution is a mixture is in general a challenging
task. Although our analyses are specialized to mixtures arising from subsampling, we believe
the tools we develop in terms of couplings and divergences will also be useful to analyze
other types of mechanisms involving mixture distributions. Furthermore, amplification by
subsampling is just one of the many privacy amplification phenomena identified so far.
Others include amplification by iteration (Feldman et al., 2018) and by shuffling (Erlingsson
et al., 2019; Cheu et al., 2018; Balle et al., 2019). Studying these amplification phenomena
is important because they enable finer privacy analysis of useful data analysis pipelines,
and show that operations like subsampling and shuffling, which by themselves provide no
meaningful differential privacy guarantees, can in fact amplify the privacy guarantees of
existing mechanism. Finally, we want to remark that privacy amplification results also play
a role in analyzing the generalization and sample complexity properties of private learning
algorithms (Kasiviswanathan et al., 2011; Beimel et al., 2013; Bun et al., 2015; Wang et al.,
2016); an in-depth understanding of the interplay between sampling and differential privacy
might also have applications in this direction.
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2. Preliminaries

2.1. Distributions, Densities and Divergences. Let P(Z,Σ) denote the set of probability
measures on a measurable space Z equipped with a σ-algebra Σ. We will just write P(Z) when
the σ-algebra is clear from the context. For example, Σ might be the collection of all possible
subsets of Z when the space is discrete, or the collection of all Lebesgue-measurable subsets of
Z when the space is a (subset of) Euclidean space. Recall that given measures µ, ν ∈ P(Z,Σ)
we say that µ is absolutely continuous with respect to ν (and we write µ� ν) if ν(E) = 0
implies µ(E) = 0 for any measurable set E ∈ Σ. The Radon-Nikodym theorem (see, e.g.
Pollard, 2002) says that if µ� ν then there exists a measurable function f : Z → [0,∞) such
that dµ = fdν in the sense that for any measurable E we have µ(E) =

∫
E dµ =

∫
E fdν. Such

function is known as the Radon-Nikodym derivative of µ with respect to ν and is usually
denoted as f = dµ/dν. Another usual name for f is the density of µ with respect to ν.

A standard way to measure the similarity between two probability distributions is to
use divergences. A divergence in the sense of Csiszár is obtained from a convex function
φ : [0,∞] → R ∪ {∞} such that φ(1) = 0. Given such a function φ and two probability
measures µ� ν, the φ-divergence between µ and ν is defined as

Dφ(µ‖ν) =

∫
φ

(
dµ

dν

)
dν . (2.1)

When µ is not absolutely continuous with respect to ν, the divergence Dφ takes a slightly
different definition. Let λ be a probability measure such that µ � λ and ν � λ (e.g.,
λ = (µ + ν)/2, and define the respective densities p = dµ/dλ and q = dnu/dλ. Then the
divergence between µ and ν is given by

Dφ(µ‖ν) =

∫
φ

(
p

q

)
dν . (2.2)

Noting that the function p/q : X → [0,∞] is independent of the choice of λ, one sees that
Dφ(µ‖ν) is well-defined.

The assumptions on φ imply that all φ-divergences satisfy a number of interesting
properties (see, e.g., (Liese and Vajda, 2006)). Here we recall the following:
(1) (Nonnegativity) Dφ(µ‖ν) ≥ 0, Dφ(µ‖µ) = 0, and if additionally φ is strictly convex at 1

then Dφ(µ‖ν) = 0 implies µ = ν.
(2) (Joint convexity) Dφ((1− γ)µ+ γµ′‖(1− γ)ν + γν ′) ≤ (1− γ)Dφ(µ‖ν) + γDφ(µ′‖ν ′) for

any γ ∈ (0, 1).
(3) (Processing inequality) If K is a Markov kernel, then Dφ(µK‖νK) ≤ Dφ(µ‖ν).

A particular family of φ-divergences that plays a central role in differential privacy are
hockey-stick divergences (Sason and Verdú, 2016)1. For β ≥ 1, the hockey-stick divergence of
order β is the divergence defined by φβ(u) = [u− β]+, where [a]+ = max{0, a}. Throughout
the paper we use the shorthand notation Dβ to denote the divergence Dφβ .

Another family of divergences that plays an important role in the theory of differential
privacy are Rényi divergences. Given distributions µ� ν and α > 1, the Rényi divergence

1Also known in the literature as elementary divergences (Österreicher, 2002) or alpha-divergences (Barthe
and Olmedo, 2013)
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between µ and ν is defined as2

Rα(µ‖ν) =
1

α− 1
log

(∫ (
dµ

dν

)α
dν

)
.

Rényi divergences are not divergences in the sense of Csiszár, and in particular they fail to
satisfy the joint convexity property, although they satisfy a weaker joint quasi-convexity
property (Liese and Vajda, 2006). Nonetheless, Rényi divergences can be directly related to
φ-divergences by taking φ̃α(u) = uα − 1 and noting that

Rα(µ‖ν) =
1

α− 1
log
(
Dφ̃α

(µ‖ν) + 1
)
.

2.2. Differential Privacy. A mechanism M : X → P(Z) with input space X and output
space Z is a randomized algorithm that on input x outputs a sample from the distribution
M(x) over Z. We assume the input space X is equipped with a binary symmetric relation
'X defining a notion of neighboring (or adjacent) inputs. When the input space X is clear
from the context we shall just write '.

Suppose that ε ≥ 0 and δ ∈ [0, 1]. A mechanismM is said to be (ε, δ)-DP with respect
to ' if for every pair of inputs x ' x′ and every (measurable) subset E ⊆ Z we have

Pr[M(x) ∈ E] ≤ eεPr[M(x′) ∈ E] + δ . (2.3)

For our purposes, it will sometimes be more convenient to express differential privacy in
terms of the hockey-stick divergence Deε . The exact characterization is given by the following
result.

Theorem 1 (Barthe and Olmedo, 2013). A mechanismM is (ε, δ)-DP with respect to ' if
and only if Deε(M(x)‖M(x′)) ≤ δ for every x and x′ such that x ' x′.

It is an instructive exercise to see why this characterization holds, so we provide a proof
sketch of this result for completeness.

Proof. Fix x ' x′ and start by simply re-writing the condition that (2.3) holds for every
(measurable) subset E ⊆ Z as

sup
E

(
Pr[M(x) ∈ E]− eεPr[M(x′) ∈ E]

)
≤ δ .

Writing µ and ν for the distributions ofM(x) andM(x′) respectively, we have

Pr[M(x) ∈ E]− eεPr[M(x′) ∈ E] = µ(E)− eεν(E)

=

∫
E
dµ− eε

∫
E
dν

=

∫
E

(
dµ

dλ
− eε dν

dλ

)
dλ ,

where λ is any probability measure such that µ� λ and ν � λ. Denote by p = dµ/dλ and
q = dν/dλ the densities of µ and ν with respect to λ. It is easy to check that the set E ⊆ Z
that maximizes the integral expression above is given by

E∗ = E∗(x, x′) = {z ∈ Z | p(z) > eεq(z)} .
2If µ� ν is not satisfied we take Rα(µ‖ν) =∞.
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Note that because p and q are measurable functions it follows that E∗ is a measurable set.
Now observe that from the definition of E∗ and the identity [a]+ = aI[a > 0] it follows that∫

E∗
(p(z)− eεq(z)) dλ(z) =

∫
Z

[p(z)− eεq(z)]+ dλ(z)

=

∫
Z

[
p(z)

q(z)
− eε

]
+

q(z)dλ(z)

= Deε(µ‖ν) ,

where we used the definition of hockey-stick divergence in terms of (2.2). Thus, the derivation
above yields the following identity, from which the characterization follows:

sup
E

(
Pr[M(x) ∈ E]− eεPr[M(x′) ∈ E]

)
= Deε(M(x)‖M(x′)) .

The main advantage of the divergence point of view is that it allows one to move from
the usual characterization of (ε, δ)-DP in terms of events to a characterization involving the
integral of a quantity defined on individual outputs. Reasoning about individual outputs is
usually easier than reasoning about all possible events, so this approach sometimes leads to
simpler or tighter privacy proofs. Furthermore, this characterization immediately makes the
properties of φ-divergences available in the analysis of differentially private algorithms; we
shall return to this point in Section 3.3.

We conclude this section by recalling the group privacy property of differential privacy.
Given an integer k ≥ 1 we write 'k for the k-fold transitive extension of the neighboring
relation ' defined as

x 'k x′ ⇔ ∃x1, . . . , xk−1 : x ' x1, x1 ' x2, . . . , xk−1 ' x′ .
The relation 'k captures the notion that sometimes we might want to protect the privacy of
a dataset with respect to k changes instead of just one; for example, when a single individual
contributes a maximum of k records to a database, protecting that individual’s data will
require hiding up to k potential changes in the database. The group privacy property states
that if M is an (ε, δ)-DP mechanism with respect to ', then M is also (kε, δ′)-DP with
respect to 'k, where δ′ = ekε−1

eε−1 δ (Vadhan, 2017, Lemma 2.2). For further reference, we
recall that the relation 'k can also be defined in terms of the path-metric d(x, x′) induced
by ' on X:

d(x, x′) = min{k : ∃x1, . . . , xk−1, x ' x1, x1 ' x2, . . . , xk−1 ' x′} .
This metric satisfies x 'k x′ if and only if d(x, x′) ≤ k.

2.3. Rényi Differential Privacy and Related Variants. Since the introduction of dif-
ferential privacy, a number of variants of the definition have been proposed. A fruitful way
to obtain interesting variants is to change the way in which the dissimilarity between the
distributions ofM(x) andM(x′) is measured. In particular, several such definitions have
been inspired by the connections between the privacy loss random variable, the advanced
composition theorem, and the analysis of the Gaussian mechanism. We now recall the
definition of the privacy loss random variable, show how it is related to the definition of Rényi
differential privacy, and sketch the connections between this definition and other notions of
concentrated differential privacy.



PRIVACY PROFILES AND AMPLIFICATION BY SUBSAMPLING 7

The privacy loss random variable of a mechanismM on a pair of inputs x ' x′ is defined
as Lx,x

′

M = log
(
dµ
dν (Z)

)
, where µ =M(x), ν =M(x′), and Z ∼ µ. In the case where µ is not

absolutely continuous with respect to ν we can still define the privacy loss random variable
by following the same idea in the definition (2.2) of φ-divergences. In particular, taking a
probability measure λ such that µ� λ and ν � λ, we take p = dµ/dλ and q = dν/dλ, and
define Lx,x

′

M = log(p(Z)/q(Z)), with Z as above. We note, however, that these technicalities
have typically no effect on the type of results we are interested in in this paper, and we shall
ignore them from now onward unless explicitly stated.

The privacy loss random variable provides a well-known sufficient condition for differential
privacy, stating that if M satisfies Pr[Lx,x

′

M ≥ ε] ≤ δ for any x ' x′, then M is (ε, δ)-DP
(e.g., see (Dwork and Roth, 2014)). Since tail inequalities of this type are often established
by applying Chernoff’s method to Markov’s inequality in order to control the concentration
of a random variable in terms of its moment generating function (e.g., (Boucheron et al.,
2013)), this has lead to the realization that interesting privacy definitions can be phrased in
terms of the moment generating function of the privacy loss random variable.

One such definition is Rényi differential privacy (Mironov, 2017). Suppose that α ∈ (1,∞)
and ε ≥ 0. A mechanismM is said to be (α, ε)-RDP with respect to ' if for every pair of
inputs x ' x′ we have

Rα(M(x)‖M(x′)) ≤ ε . (2.4)

To understand the connection between the privacy loss random variable and RDP one needs
to note that the moment generating function ϕ(s), s > 0, of L = Lx,x

′

M can be written as

ϕ(s) = E
[
esL
]

(2.5)

= E

[(
dµ

dν
(Z)

)s]
(2.6)

=

∫ (
dµ

dν

)s
dµ

=

∫ (
dµ

dν

)s+1

dν (2.7)

= esRs+1(M(x)‖M(x′)) . (2.8)

Hence, upper bounding the Rényi divergence betweenM(x) andM(x′) for any pair of inputs
x ' x′ is equivalent to upper bounding a particular value of the moment generating function
of the privacy loss random variables on every pair of neighboring inputs.

In addition to the pointwise bound on the Rényi divergence assumed by RDP, one can
assume a parametric bound holding for all (or a subset of) values of α. This leads to the
following variants of differential privacy:
• (Concentrated Differential Privacy (Dwork and Rothblum, 2016)) A mechanism M is

(µ, τ)-CDP if Rα(M(x)‖M(x′)) ≤ µ+ (α− 1) τ
2

2 for all α ∈ (1,∞) and x ' x′.
• (Zero-Concentrated Differential Privacy (Bun and Steinke, 2016)) A mechanism M is

(ξ, ρ)-zCDP if Rα(M(x)‖M(x′)) ≤ ξ + αρ for all α ∈ (1,∞) and x ' x′.
• (Truncated-Concentrated Differential Privacy (Bun et al., 2018)) A mechanism M is

(ρ, ω)-tCDP if Rα(M(x)‖M(x′)) ≤ αρ for all α ∈ (1, ω) and x ' x′.
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2.4. Couplings and Total Variation Distance. Couplings are a standard tool in proba-
bility theory, and are useful for several tasks, including deriving upper bounds for the total
variation distance between distributions. A coupling between two distributions µ, ν ∈ P(Y )
is a distribution π ∈ P(Y × Y ) whose marginals along the projections (y, y′) 7→ y and
(y, y′) 7→ y′ are µ and ν respectively. Couplings always exist, and furthermore, there exists a
maximal coupling, which exactly characterizes the total variation distance between µ and ν.

Recall that the total variation distance TV(µ, ν) between two probability distributions
admits a number of characterizations, including being a divergence in the sense of Csiszár
obtained from φ(u) = [u−1]+ and φ(u) = 1

2 |u−1|, as well as the supremum characterizations

TV(µ, ν) = sup
E

(µ(E)− ν(E)) = sup
E
|µ(E)− ν(E)| .

It is also well-known that the total variation distance between two distributions µ, ν ∈ P(Y )
satisfies TV(µ, ν) ≤ Prπ[y 6= y′] for any coupling π, where equality is attained by taking the
maximal coupling, which we show how to construct next.

Since throughout the paper we will only need couplings for distributions with finite
support, we give the construction of the maximal coupling only for distributions assigning
mass to atomic sets. The extension to the general case where atoms have measure zero is
straightforward but requires introducing densities. Suppose ν, ν ′ ∈ P(Y ) are distributions
with finite support. Let ν0(y) = min{ν(y), ν ′(y)} and let η = TV(ν, ν ′) = 1−∑y∈Y ν0(y),
where TV denotes the total variation distance. The maximal coupling between ν and ν ′

is defined as the mixture π = (1 − η)π0 + ηπ1, where π0(y, y′) = ν0(y)1[y = y′]/(1 − η),
and ν1(y, y′) = (ν(y) − ν0(y))(ν ′(y′) − ν0(y′))/η. Projecting the maximal coupling along
the marginals yields the overlapping mixture decompositions ν = (1 − η)ν0 + ην1 and
ν ′ = (1− η)ν0 + ην ′1.

3. Privacy Profiles

In this section we introduce the first contribution of this paper: the identification of privacy
profiles as an object that fully captures the privacy properties of a given mechanism. The
profile of a mechanism is defined as the curve of all (ε, δ)-DP guarantees satisfied by the
mechanism. After formally defining this object and establishing some of its basic properties,
we calculate the privacy profile of some well-known mechanisms. Then we derive a connection
between privacy profiles and other definitions of differential privacy, and provide an application
to bounding the RDP guarantees of any pure DP mechanism.

3.1. Definition of Privacy Profiles. LetM : X → P(Z) be a mechanism over an input
set X equipped with a neighboring relation '. The privacy profile of M is the function
δM : [0,∞)→ [0, 1] given by

δM(ε) = sup
x'x′

Deε(M(x)‖M(x′)) . (3.1)

By the connection between differential privacy and hockey-stick divergences we see that the
privacy profile δM is a function associating to each privacy parameter ε the best possible δ
that can be achieved under this ε. In particular, we have thatM is (ε, δM(ε))-DP for any
ε ≥ 0. When the mechanism is clear from the context, we shall just write δ(ε).

The notion of privacy profile emphasizes a functional view on the privacy guarantees of a
mechanism, and it helps highlight the fact that any mechanism satisfies a full curve of privacy
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guarantees. This in contrast with the traditional pointwise approach to quantify the privacy
of a mechanism, which usually provides a single point in this curve. We can also see this
curve as separating the privacy parameters which are valid for a given mechanism from those
which are not. In particular, recall that an (ε, δ)-DP mechanismM is also (ε′, δ′)-DP for
any ε′ ≥ ε and any δ′ ≥ δ. Thus, the privacy profile δM(ε) defines a curve in [0,∞)× [0, 1]
that separates the space of privacy parameters into two regions: the ones above the curve,
for whichM satisfies differential privacy, and the ones below it, for which it does not. This
curve exists for every mechanismM, even for mechanisms that satisfy pure DP for some
value of ε.

The idea that it is possible to trade-off between the ε and δ guarantees in differentially
private mechanisms is not new. For example, this phenomenon can be observed in the
analysis of advanced composition and the Gaussian mechanism. These two results have in
common that they are both usually proved using an argument based on the privacy loss
random variable, which is tightly connected to Rényi differential privacy. We will see in
Section 3.4 that this is not a coincidence, and that in fact the points of view of privacy loss
random variables and Rényi DP are in some sense equivalent to privacy profiles.

By replacing the standard neighboring relation ' in the definition of privacy profile with
its k-fold extension 'k we can also define group privacy profiles for a mechanismM. For
k ≥ 1, the k-group privacy profile δM,k(ε) is defined as

δM,k(ε) = sup
x'kx′

Deε(M(x)‖M(x′)) . (3.2)

Note that for k = 1 we recover the standard privacy profile, i.e.,δM,1(ε) = δM(ε). In addition,
the standard analysis of group privacy in the context of differential privacy yields a bound
for group privacy profiles in terms of the standard privacy profile:

δM,k(ε) ≤
eε − 1

eε/k − 1
δM(ε/k) . (3.3)

We will see in the examples below that this black-box bound can be improved to get tighter
group privacy profiles when considering specific mechanisms. Group privacy profiles will
also play an important role on the results on privacy amplification by subsampling with
replacement that we study in Section 4.4.

3.2. Examples of Privacy Profiles. We proceed to illustrate the concept of privacy profile
by computing it for three well-known mechanism: randomized response, Laplace output
perturbation and Gaussian output perturbation. The resulting profiles are plotted in Figure 1
for some choice of each mechanism’s parameters.

We start with the following result, which gives an expression for the privacy profile of a
binary randomized response mechanism.

Theorem 2 . Let X = {0, 1} be equipped with the trivial relation 0 ' 1. Given p ∈ [1/2, 1],
let M : X → P(X) be the randomized response mechanism that on input x returns x with
probability p and 1− x with probability 1− p. The privacy profile of M is given by

δM(ε) = [p− eε(1− p)]+ .
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Figure 1. Privacy profiles with mechanisms calibrated to provide the same δ
at ε = 0. Profile expressions are given in Theorem 2 (Randomized Response),
Theorem 3 (Laplace), and Theorem 4 (Gauss).

Proof. By symmetry, we just need to compute Deε(M(0)‖M(1)). Expanding the definition
of hockey-stick divergence we get

Deε(M(0)‖M(1)) = [Pr[M(0) = 0]− eεPr[M(1) = 0]]+ + [Pr[M(0) = 1]− eεPr[M(1) = 1]]+
= [p− eε(1− p)]+ + [(1− p)− eεp]+
= [p− eε(1− p)]+ ,

where the last step used that (1− p)− eεp ≤ 0 since p ≥ 1/2.

Note that the profile of the randomized response mechanism is linear in eε in the regime
0 ≤ ε ≤ log 1−p

p , and it saturates to zero for ε ≥ log 1−p
p , which is expected since we know

that the mechanism satisfies local (ε, 0)-DP for such privacy parameters.
Next we perform the calculations to obtain the privacy profile of the 1-dimensional

Laplace output perturbation mechanism.

Theorem 3 . Let f : X → R be a function with global sensitivity ∆ = supx'x′ |f(x)− f(x′)|.
Suppose M(x) = f(x) + Lap(b) is a Laplace output perturbation mechanism with noise
parameter b. The privacy profile of M is given by

δM(ε) =
[
1− e ε2−∆

2b

]
+

.

Proof. Suppose x ' x′ and assume without loss of generality that y = f(x) = 0 and
y′ = f(x) = ∆ > 0. Plugging the density of the Laplace distribution in the definition of
α-divergence we get

Deε(Lap(b)‖∆ + Lap(b)) =
1

2b

∫
R

[
e−
|z|
b − eεe−

|z−∆|
b

]
+
dz .

Now we observe that the quantity inside the integral above is positive if and only if |z−∆| −
|z| ≥ εb. Since ||z + ∆| − |z|| ≤ ∆, we see that the divergence is zero for ε > ∆/b. On the
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other hand, for ε ∈ [0,∆/b] we have {z : |z −∆| − |z| ≥ εb} = (−∞, (∆− εb)/2]. Thus, we
have

1

2b

∫
R

[
e−
|z|
b − eεe−

|z−∆|
b

]
+
dz =

1

2b

∫ (∆−εb)/2

−∞
e−
|z|
b dz − eε

2b

∫ (∆−εb)/2

−∞
e−
|z−∆|
b dz .

Now we can compute both integrals as probabilities under the Laplace distribution:

1

2b

∫ (∆−εb)/2

−∞
e−
|z|
b dz = Pr

[
Lap(b) ≤ ∆− εb

2

]
= 1− 1

2
exp

(
εb−∆

2b

)
,

eε

2b

∫ (∆−εb)/2

−∞
e−
|z−∆|
b dz = eεPr

[
Lap(b) ≤ −∆− εb

2

]
=
eε

2
exp

(−εb−∆

2b

)
.

Putting these two quantities together we finally get, for ε ≤ ∆/b:

Deε(Lap(b)‖∆ + Lap(b)) = 1− exp

(
ε

2
− ∆

2b

)
.

The well-known fact that the Laplace mechanism with b ≥ ∆/ε is (ε, 0)-DP follows
from this result by noting that δM(ε) = 0 for any ε ≥ θ. However, Theorem 3 also provides
more information: it shows that for ε < ∆/b the Laplace mechanism with noise parameter b
satisfies (ε, δ)-DP with δ = δM(ε). In this regime the profile is linear in

√
eε.

For mechanisms that only satisfy approximate DP, the privacy profile provides information
about the behaviour of δM(ε) as we increase ε→∞. The classical analysis for the Gaussian
output perturbation mechanism provides some information in this respect. Recall that for a
function f : X → Rd with L2 global sensitivity ∆ = supx'x′ ‖f(x)− f(x)‖2 the mechanism
M(x) = f(x) +N (0, σ2I) satisfies (ε, δ)-DP if σ2 ≥ 2∆2 log(1.25/δ)/ε2 and ε ∈ (0, 1) (cf.
(Dwork and Roth, 2014, Theorem A.1)). This can be rewritten as δM(ε) ≤ 1.25e−ε

2σ2/2∆2 for
ε ∈ (0, 1). Recently, (Balle and Wang, 2018) gave a tight analysis of the Gaussian mechanism
that is valid for all values of ε. Their analysis can be interpreted as providing an expression
for the privacy profile of the Gaussian mechanism in terms of the CDF of a standard normal
distribution Φ(t) = Pr[N (0, 1) ≤ t] = (1/sqrt(2π))

∫ t
−∞ e

−r2/2dr.

Theorem 4 (Balle and Wang, 2018). Let f : X → Rd be a function with L2 global sensitivity
∆. The privacy profile of the Gaussian mechanism M(x) = f(x) +N (0, σ2I) is given by

δM(eε) = Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
−∆

2σ
− εσ

∆

)
.

Although the form of the exact privacy profile of the Gaussian mechanism is not very
appealing from the point of view of asymptotic bounds, accurate implementations of the
CDF of standard normal distributions are widely available. Such implementations can be
used not only to evaluate the profile, but also to find the smallest value of σ providing a
desired (ε, δ)-DP guarantee (see (Balle and Wang, 2018) for more details). Here we illustrate
the importance of using the exact profile of the Gaussian mechanism versus the one obtained



12 B. BALLE, G. BARTHE, AND M. GABOARDI

from the bound in (Dwork and Roth, 2014, Theorem A.1) by plotting the exact (analytic)
profile and its classical approximation for two values of ∆/σ in Figure 2. We observe that
the difference between the exact and approximate profiles is larger for smaller values of ε
and larger values of ∆/σ.

0.0 0.2 0.4 0.6 0.8 1.0
ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2
δ

Analytic Gauss (∆/σ = 1)

Classic Gauss (∆/σ = 1)

Analytic Gauss (∆/σ = 0.1)

Classic Gauss (∆/σ = 0.1)

Figure 2. Comparison between exact and approximate privacy profiles for
the Gaussian mechanism.

To conclude this section we will show that, at least in the case of output perturbation
mechanisms, having access to the exact profile allows one to obtain better bounds on group
privacy profiles than the bound provided in (3.3). We call group privacy profiles obtained
with the former method white-box, while the ones obtained by the latter method we shall call
black-box. To obtain white-box bounds on the group privacy profiles of output perturbation
mechanism all we need is to observe that by the triangle inequality, the global sensitivity
of a function f with respect to the k-fold relation 'k is upper bounded by k∆, where
∆ is the standard global sensitivity. Thus, substituting ∆ by k∆ in the profiles given in
Theorem 3 and 4 we obtain upper bounds on the group privacy profiles of the Laplace and
Gaussian mechanisms. The plots in Figure 3 compare the white-box and black-box bounds
for these two mechanisms for different values of k, where we observe that white-box bounds
are uniformly better than black-box ones, and that the discrepancies between both bounds
increase with k.

3.3. Properties of Privacy Profiles. Privacy profiles enjoy a number of properties. On
the one hand, standard properties of differential privacy can be translated into properties of
privacy profiles. The bound (3.3) on group privacy profiles is an example; the same exercise
can be performed for other composition properties. Other properties of privacy profiles follow
directly from its definition as a supremum over the φ-divergences Deε . For example, the
processing inequality for φ-divergences provides a direct way to establish the post-processing
property of differential privacy. The joint convexity property of φ-divergences also implies
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Laplace (group, wb) (∆/b = 1, k = 2)

Laplace (group, bb) (∆/b = 1, k = 2)

Laplace (group, wb) (∆/b = 1, k = 4)

Laplace (group, bb) (∆/b = 1, k = 4)

(a) Laplace mechanism.
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Gauss (group, wb) (∆/σ = 1, k = 2)

Gauss (group, bb) (∆/σ = 1, k = 2)

Gauss (group, wb) (∆/σ = 1, k = 4)

Gauss (group, bb) (∆/σ = 1, k = 4)

(b) Gaussian mechanism.

Figure 3. Comparison between white-box and black-box group privacy profiles.

the bound

δM(ε) ≤ (1− γ)δM1(ε) + γδM2(ε)

for a mixture mechanismM that on input x returnsM1(x) with probability γ andM2(x)
with probability 1− γ, whereM1 andM2 are two arbitrary mechanisms. We shall see in
Section 4 that a generalization of this property specific to hockey-stick divergences plays a
crucial role in obtaining tight bounds for privacy amplification under subsampling. Finally,
another set of properties of privacy profiles relate to the shape of the profile as we change
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the privacy parameter ε. These properties arise from the fact that we are jointly considering
a family of φ-divergences, and are therefore specific to privacy profiles. In the remaining of
this section we establish an important property of this type.

The property we want to show is a convexity-like restriction on the shape of the privacy
profile δM(ε) of any mechanismM. Before stating and proving this property we recall that
we already know another restriction that privacy profiles must satisfy: they are monotonically
decreasing in ε. This is a quite intuitive fact: since (ε, δ)-DP mechanism is also (ε′, δ′)-DP
for any ε′ ≥ ε and δ′ ≥ δ, it must be the case that for any mechanismM and ε′ ≥ ε we have
δM(ε) ≥ δM(ε′). This property is easily visualized in all the profiles plotted in Section 3.2.
A straightforward analytical proof of this fact can be obtained by plugging the inequality
[u− eε′ ]+ ≤ [u− eε]+ for ε′ ≥ ε in the definition of hockey-stick divergence.

As the examples with the Laplace and randomized response show, this monotonicity is
not strict, as the profile of a pure DP mechanism will plateau at δ = 0. For other mechanisms
like Gaussian output perturbation, the profile monotonically decreases towards zero but does
not attain the limit for any finite ε. Furthermore, one can construct mechanisms where the
privacy privacy plateaus at a value δ > 0; e.g., the mechanism that given a database with n
outputs a record selected uniformly at random has constant profile δ(ε) = 1/n.

The main result of this section shows that the structure of privacy profiles exhibits some
additional rigidity beyond monotonicity. To state and prove this result it will be convenient
to re-parametrize the privacy profile in terms of eε instead of ε. In consequence, we define
the re-parametrized profile δ̃M(β) = δM(log β), where now δ̃M is a function with inputs in
[1,∞).

Theorem 5 . The re-parametrized profile δ̃M : [1,∞) → [0, 1] of any mechanism M is a
convex function. In particular, for any β1, β2 and γ ∈ [0, 1] we have

δ̃M(γβ1 + (1− γ)β2) ≤ γδ̃M(β1) + (1− γ)δ̃M(β2) .

Proof. First we use that the function [•]+ is subadditive and positive-homogeneous to show:[
p(z)

q(z)
− (γβ1 + (1− γ)β2)

]
+

≤ γ
[
p(z)

q(z)
− β1

]
+

+ (1− γ)

[
p(z)

q(z)
− β2

]
+

.

Let β = γβ1 + (1− γ)β2. Plugging this bound into the definition of hockey-stick divergences
and re-parametrized privacy profiles we get

sup
x'x′

Dβ(M(x)‖M(x′)) ≤ γ sup
x'x′

Dβ1(M(x)‖M(x′)) + (1− γ) sup
x'x′

Dβ2(M(x)‖M(x′)) .

In terms of standard differential privacy guarantees, the above theorem provides infor-
mation allowing us to interpolate between two distinct privacy guarantees. In particular, the
theorem can be rephrased as follows: if a mechanism is (ε1, δ1)-DP and (ε2, δ2)-DP, then the
mechanism is also (ε′, δ′)-DP with ε′ = log(γeε1 + (1−γ)eε2) and δ′ = γδ1 + (1−γ)δ2 for any
γ ∈ (0, 1). We observe that this bound is tight since for a randomized response mechanism
that replies truthfully with probability p we get equality for any ε1, ε2 ∈ [0, log 1−p

p ] (cf.
Theorem 2).
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3.4. Unification Theorems. The purpose of this section is to sketch a unified view of
differential privacy by showing that, in some sense, privacy profiles, privacy loss random
variables, and Rényi DP all contain the same information about the privacy provided by a
mechanism.

The first observation in this respect connects privacy profiles and privacy loss random
variables. Incidentally, this connection was obtained by Balle and Wang (2018) in their
proof of Theorem 4, albeit the original formulation was not in terms of privacy profiles.
Re-formulated in our terms, the result reads as follows.

Theorem 6 (Balle and Wang, 2018). The privacy profile of a mechanism M satisfies

δM(ε) = sup
x'x′

(
Pr[Lx,x

′

M > ε]− eεPr[Lx′,xM < −ε]
)
.

The characterization above generalizes the well-known sufficient condition for differential
privacy in terms of the tail of the privacy loss random variable, which in our notation is
expressed by the inequality δM(ε) ≤ supx'x′ Pr[L

x,x′

M > ε] (see Section 2.3). For the sake of
completeness we now present a proof of this theorem.

Proof. Let µ and ν be probability distributions with respective densities p and q with respect
to some base measure λ. The result will follow if we show the identity

Deε(µ‖ν) = Pr[L > ε]− eεPr[L′ < −ε] ,
where L = p(Z)/q(Z) with Z ∼ µ and L′ = q(Z′)/p(Z′) with Z′ ∼ ν. By expanding the
definition of hockey-stick divergence and the identity [u]+ = uI[u > 0], we get

Deε(µ‖ν) =

∫
[p(z)− eεq(z)]+dλ(z)

=

∫
(p(z)− eεq(z))I[p(z) > eεq(z)]dλ(z)

=

∫
I[p(z) > eεq(z)]p(z)dλ(z)− eε

∫
I[p(z) > eεq(z)]q(z)dλ(z)

=

∫
I[p(z) > eεq(z)]dµ(z)− eε

∫
I[p(z) > eεq(z)]dν(z)

= Pr

[
p(Z)

q(Z)
> eε

]
− eεPr

[
q(Z′)

p(Z′)
< e−ε

]
.

We see from the proof of Theorem 6 that, for any value of ε ≥ 0, the divergence
Deε(M(x)‖M(x′)) can be recovered from the distributions of the privacy loss random
variables Lx,x

′

M and Lx
′,x
M . In particular, full knowledge of the distributions of these random

variables is enough to compute the privacy profile of M. The next result shows that the
divergences Deε(M(x)‖M(x′)) also contain full knowledge about the distribution of the
privacy loss random variables, thus showing that both points of view are equivalent.

Theorem 7 . Let µ and ν be probability distributions with respective densities p and q with
respect to some base measure λ and let Z′ ∼ ν. The right-derivative3 of Dβ(µ‖ν) with respect

3The right-derivative of a real-valued function f(t) at t0 is defined as ∂+f(t0) = limt↓t0
f(t)−f(t0)

t−t0
, where

t ↓ t0 denotes limit of t ∈ (t0,∞) approaching t0. Right-derivatives exist for any convex function (see, e.g.,
(Liese and Vajda, 2006)).
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to β satisfies
∂+

∂β
Dβ(µ‖ν) = −Pr

[
p(Z′)

q(Z′)
> β

]
.

Proof. For any fixed u ∈ R, we have ∂+

∂β [u− β]+ = −I[u > β]. Therefore,

∂+

∂β
Dβ(µ‖ν) =

∂+

∂β

∫ [
p(z)

q(z)
− β

]
+

dν(z)

=

∫
∂+

∂β

[
p(z)

q(z)
− β

]
+

dν(z)

= −
∫

I
[
p(z)

q(z)
> β

]
+

dν(z)

= −Pr
[
p(Z′)

q(Z′)
> β

]
.

Now we turn to the connections with Rényi differential privacy. Since the moment
generating function of a random variable completely characterizes its distribution, we see
that knowing the divergences Rα(M(x)‖M(x′)) for all α ∈ (1,∞) and x ' x′ is equivalent
to knowing the distributions of Lx,x

′

M . In this sense, we already see that the Rényi divergences
used to define RDP contain the same information as the hockey-stick divergences used
to define DP. The following result provides an integral representation which makes this
relation more tangible by expressing the moment generating function in terms of hockey-stick
divergences.

Theorem 8 . Let µ and ν be probability distributions with respective densities p and q with
respect to some base measure λ. Assume that Z ∼ µ and let L = log(p(Z)/q(Z)). For s > 0,
let ϕ(s) = E[esL] be the moment generating function of L. Then we have

ϕ(s) = 1 + s(s+ 1)

∫ ∞
0

(
esεDeε(µ‖ν) + e−(s+1)εDeε(ν‖µ)

)
dε .

Proof. Recall that for any non-negative random variable X one has E[X] =
∫∞

0 Pr[X > t]dt.
We use this to write the moment generating function of the corresponding privacy loss
random variable for s ≥ 0 as follows:

ϕ(s) =

∫ ∞
0

Pr[esL > t]dt =

∫ ∞
0

Pr

[
p(Z)

q(Z)
> t1/s

]
dt .
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Next we observe the probability inside the integral above can be decomposed in terms of a
divergence and a second integral with respect to ν:

Pr

[
p(Z)

q(Z)
> t1/s

]
= Pr[p(Z) > t1/sq(Z)]

=

∫
I[p(z) > t1/sq(z)]dµ(z)

=

∫
I[p(z) > t1/sq(z)]p(z)dλ(z)

=

∫
I[p(z) > t1/sq(z)](p(z)− t1/sq(z))dλ(z) + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dλ(z)

=

∫
[p(z)− t1/sq(z)]+dλ(z) + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dλ(z)

= Dt1/s(µ‖µ′) + t1/s
∫

I[p(z) > t1/sq(z)]dν(z)

= Dt1/s(µ‖µ′) + t1/sPr

[
p(Z′)

q(Z′)
> t1/s

]
,

where Z′ ∼ ν. Note the term Dt1/s(µ‖µ′) above is not a divergence in the sense of Csiszár
when t1/s < 1. Nonetheless, integrating with respect to t we get an expression for ϕ(s)
involving two terms that we will need to massage further:

ϕ(s) =

∫ ∞
0

Dt1/s(µ‖µ′)dt+

∫ ∞
0

t1/sPr

[
p(Z′)

q(Z′)
> t1/s

]
dt .

To compute the second integral in the RHS above we perform the change of variables dt′ =
t1/sdt, which comes from taking t′ = t1+1/s/(1+1/s), or, equivalently, t = ((1+1/s)t′)1/(1+1/s).
This allows us to relate this integral to ϕ(s) as follows:∫ ∞

0
t1/sPr

[
p(Z′)

q(Z′)
> t1/s

]
dt =

∫ ∞
0

Pr

[
p(Z′)

q(Z′)
> ((1 + 1/s)t′)1/(s+1)

]
dt′

=

∫ ∞
0

Pr

[
s

s+ 1

(
p(Z′)

q(Z′)

)s+1

> t′

]
dt′

=
s

s+ 1
E

[(
p(Z′)

q(Z′)

)s+1
]

=
s

s+ 1

∫ (
p(z)

q(z)

)s+1

dν(z)

=
s

s+ 1

∫ (
p(z)

q(z)

)s
dµ(z)

=
s

s+ 1
ϕ(s) .

Putting the derivations above together we see that

ϕ(s) = (s+ 1)

∫ ∞
0

Dt1/s(µ‖ν)dt .
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Now we observe that some terms in the integral above do not correspond to a hockey-
divergence between µ and ν, e.g., for t ∈ (0, 1) the term Dt1/s(µ‖ν) is not a divergence.
Instead, using the definition of Dt1/s(µ‖ν) we can see that these terms are equal to 1− t1/s +

t1/sDt−1/s(ν‖µ), where the last term is now a divergence. Thus, we split the integral in the
expression for ϕ(s) into two parts and obtain

ϕ(s) = (s+ 1)

∫ 1

0

(
1− t′1/s + t′

1/s
Dt′−1/s(ν‖µ)

)
dt′ + (s+ 1)

∫ ∞
1

Dt1/s(µ‖ν)dt

= 1 + (s+ 1)

∫ 1

0
t′

1/s
Dt′−1/s(ν‖µ)dt′ + (s+ 1)

∫ ∞
1

Dt1/s(µ‖ν)dt .

Finally, we can obtain the desired equation by performing a series of simple changes of
variables t′ = 1/t, β = t1/s, and β = eε:

ϕ(s) = 1 + (s+ 1)

∫ ∞
1

t−2−1/sDt1/s(ν‖µ)dt+ (s+ 1)

∫ ∞
1

Dt1/s(µ‖ν)dt

= 1 + s(s+ 1)

∫ ∞
1

(
βs−1Dβ(µ‖ν) + β−s−2Dβ(ν‖µ)

)
dβ

= 1 + s(s+ 1)

∫ ∞
0

(
esεDeε(µ‖ν) + e−(s+1)εDeε(ν‖µ)

)
dε .

As a direct consequence of this result we observe that the RDP guarantees of any
mechanismM can be bounded in terms of its privacy profile. In particular, we can express
the full Rényi privacy profile

εM(α) = sup
x'x′

Rα(M(x)‖M(x′))

as a function of the privacy profile as follows.

Corollary 9 . For any mechanism M we have

εM(α) ≤ 1

α− 1
log

(
1 + α(α− 1)

∫ ∞
0

(
e(α−1)ε + e−αε

)
δM(ε)dε

)
. (3.4)

We note that a weaker result for converting privacy profiles with a fixed parametric form
into zCDP guarantees was given in (Bun and Steinke, 2016, Lemma 3.7).

3.5. Application: RDP of Pure DP Mechanisms. We now provide an application
of the results from the last two sections to bound the RDP guarantees of any pure DP
mechanism. The interest of this result resides in obtaining tight quantitative bounds on
RDP guarantees of a wide family of mechanisms, which can then be used in composition
calculations involving a large number of mechanisms to obtain tight privacy guarantees in
the spirit of the moments accountant technique of Abadi et al. (2016) (see also (Wang et al.,
2019)).

Theorem 10 . Let M be a mechanism with privacy profile δM. Let θ = δM(0) =
supx'x′ TV(M(x),M(x′)) and suppose there exists ε∗ > 0 such that δM(ε) = 0 for ε ≥ ε∗.
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Then the RDP profile of M satisfies

εM(α) ≤ 1

α− 1
log

(
1 + θ

(
eε∗ + 1

eε∗ − 1

)
(e(α−1)ε∗ − 1)

)
.

Proof. By the convexity of the re-parametrized privacy profile (Theorem 5) we can assume
that δM(ε) ≤ [a − beε]+ with a = θ

1−e−ε∗ and b = e−ε∗a. Now we just need to plug this
upper bound into (3.4) and compute the integral to obtain:

e(α−1)εM(α) ≤ α(α− 1)

∫ ∞
0

(
e(α−1)ε + e−αε

)
δM(ε)dε

≤ θα(α− 1)

1− e−ε∗
∫ ε∗

0

(
e(α−1)ε + e−αε

)
(1− eε−ε∗)dε

=
θ

1− e−ε∗ (1 + e−ε∗)(e(α−1)ε∗ − 1) .

Note that the bound above satisfies limα→∞ εM(α) = ε∗, so the bound is tight for large
values of α. In fact, one can also check by comparison with (Mironov, 2017, Proposition
5) that this bound is achieved with equality for randomized response. Other results for
converting the guarantees of pure DP mechanism into concentrated-like notions of DP can
be found in (Dwork and Rothblum, 2016, Theorem 3.5), (Bun and Steinke, 2016, Proposition
3.3), and (Mironov, 2017, Lemma 1). These bounds generally show that εM(α) = O(αε2

∗),
which is the case when αε∗ is small. Our bound, albeit more cumbersome, is more accurate
and valid for all ranges of parameters, which makes it more suitable for numerical privacy
calibration.

4. Privacy Amplification by Subsampling

A well-known method for increasing privacy of a mechanism is to apply the mechanism to a
random subsample of the input database, rather than on the database itself. Intuitively, the
method decreases the chances of leaking information about a particular individual because
nothing about that individual can be leaked in the cases where the individual is not included
in the subsample. The question addressed in this section is to devise methods for quantifying
amplification and for proving optimality of the bounds. This turns out to be a surprisingly
subtle problem.

Formally, a subsampling mechanism is a randomized algorithm S : X → P(Y ) that takes
as input a database x and outputs a finitely supported distribution over datasets. The most
common forms of subsampling methods are subsampling with and without replacement and
Poisson subsampling. We assume that both X and Y contain databases (modelled as sets,
multisets, or tuples) over a universe U that represents all possible records contained in a
database. However, we distinguish between X and Y because the input database x ∈ X and
a possible output y ∈ Y might not always have the same type. For example, sampling with
replacement from a set x yields a multiset y.

Now, consider a mechanism M : Y → P(Z), and define the subsampled mechanism
MS : X → P(Z) by the clauseMS(x) =M(S(x)), where the composition notation means
we feed a sample from S(x) intoM. Furthermore, assume a neighboring relation 'Y on Y
such thatM is (ε, δ)-differentially private with respect to 'Y , and a neighboring relation 'X
on X. What are the possible values ε′ and δ′ such thatMS is (ε′, δ′)-differentially private
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with respect to 'X? We are specifically interested in the case where ε′ ≤ ε and δ′ ≤ δ. In
such cases, the subsampled mechanism has better privacy parameters than the original one,
i.e., subsampling amplifies privacy.

We formalize the problem of privacy amplification using privacy profiles. Let X and Y
be two sets equipped with neighboring relation 'X and 'Y , respectively. LetM : Y → P(Z)
be a mechanism with privacy profile δM with respect to 'Y , and let S be a subsampling
mechanism. The goal is to relate the privacy profiles of M andMS , via an inequality of
the form: for every ε ≥ 0, there exists 0 ≤ ε′ ≤ ε such that δMS (ε′) ≤ h(δM(ε)), where h is
some function to be determined.

The main challenge in the analysis of privacy amplification by subsampling resides in
the fact that the output distribution of the subsampled mechanism µ = MS(x) ∈ P(Z)
is a mixture distribution. In particular, writing µy = M(y) ∈ P(Z) for any y ∈ Y and
taking ω = S(x) ∈ P(Y ) to be the (finitely supported) distribution over subsamples from x
produced by the subsampling mechanism, we can write µ =

∑
y ω(y)µy = ωM , where M

denotes the Markov kernel operating on measures defined by M. Consequently, proving
privacy amplification requires reasoning about the mixtures obtained when sampling from
two neighboring datasets x 'X x′, and how the privacy parameters are affected by the
mixture.

Our contribution is to provide a unified method for deriving privacy amplification by
subsampling bounds. Our method recovers all existing results in the literature and is useful to
derive novel amplification bounds. In most cases our method also provides optimal constants
which are shown to be tight by a generic lower bound. Our analysis relies on properties of
divergences and privacy profiles, together with two additional ingredients.

The first ingredient is a novel advanced joint convexity property that uses ideas from
probabilistic couplings, and more specifically the maximal coupling construction, to provide
upper bounds on the hockey-stick divergence between overlapping mixture distributions. The
second ingredient is a (rather specialized) notion of distance-compatible coupling, which we
use to establish an upper bound for the divergences obtained by advanced joint convexity in
terms of group-privacy profiles.

The combination of these results yields a bound of the privacy profile ofMS as a function
of the group-privacy profiles ofM. Based on this inequality, we will establish several privacy
amplification result and prove tightness results. This methodology can be applied to any of
the settings discussed above in terms of dataset representation, neighboring relation, and
type of subsampling. Table 1 summarizes several results that can be obtained with our
method, where some of the notation is defined below.

We focus on order-independent representations of datasets without repetitions, i.e., sets
or multisets. This is mostly for technical convenience, since all our results also hold if one
considers datasets represented as tuples. More specifically, we assume a universe of records U
and let 2 = {0, 1}. We write 2U and NU for the spaces of all sets and multisets with records
from U . Note every set is also a multiset. For n ≥ 0 we also write 2Un and NUn for the spaces
of all sets and multisets containing exactly n records4 from U . Given x ∈ NU we write xu for
the number of occurrences of u ∈ U in x. The support of a multiset x is the defined as the
set supp(x) = {u ∈ U : xu > 0} of elements that occur at least once in x. Given multisets
x, x′ ∈ NU we write x′ ⊆ x to denote that x′u ≤ xu for all u ∈ U .

4In the case of multisets records are counted with multiplicity.
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Subsampling 'Y 'X η δ′ Theorem

Poisson(γ) R R γ γδ 13

WOR(n,m) S S m
n

m
n δ 14

WR(n,m) S S 1−
(
1− 1

n

)m ∑m
k=1

(
m
k

) (
1
n

)k (
1− 1

n

)m−k
δk 15

WR(n,m) S R 1−
(
1− 1

n

)m ∑m
k=1

(
m
k

) (
1
n

)k (
1− 1

n

)m−k
δk 16

Table 1. Summary of privacy amplification bounds. Amplification parameter
η: eε′ = 1 + η(eε − 1). Types of subsampling: without replacement (WOR)
and with replacement (WR). Neighboring relations: remove/add-one (R) and
substitute one (S).

For multisets, we consider the two following neighboring relations. The remove/add-one
relation is obtained by letting x 'r x′ hold whenever x ⊆ x′ with |x| = |x′| − 1 or x′ ⊆ x
with |x| = |x′| + 1; i.e., x′ is obtained by removing or adding a single element to x. The
substitute-one relation is obtained by letting x 's x′ hold whenever ‖x − x′‖1 = 2 and
|x| = |x′|; i.e., x′ is obtained by replacing an element in x with a different element from
U . Note how 'r relates pairs of datasets with different sizes, while 's only relates pairs of
datasets with the same size.

4.1. Technical Tools. We introduce two main technical tools used in our analysis. The first
technical tool is a strengthening of joint convexity, which we call advanced joint convexity.
This result may be of independent interest.

4.1.1. Advanced Joint Convexity. The privacy amplification phenomenon is tightly connected
to an interesting new form of joint convexity for hockey-stick divergences, which we call
advanced joint convexity.

Theorem 11 Advanced Joint Convexity of Dβ. Let µ, µ′ ∈ P(Z) be measures satisfying
µ = (1− η)µ0 + ηµ1 and µ′ = (1− η)µ0 + ηµ′1 for some η, µ0, µ1, and µ′1. Given β ≥ 1, let
β′ = 1 + η(β − 1) and θ = β′/β. Then the following holds:

Dβ′(µ‖µ′) = ηDβ(µ1‖(1− θ)µ0 + θµ′1) . (4.1)

Proof. Let p and p′ be the densities of µ and µ′ with respect to some base measure λ. By
linearity of the Radon-Nikodym derivative, we have p = (1−η)p0+ηp1 and p′ = (1−η)p0+ηp′1,
where p0, p1 and p′1 are the respective densities of µ0, µ1 and µ′1 with respect to λ. Now
note that for every measurable z ∈ Z,

[p(z)− β′p′(z)]+ = η[p1(z)− β((1− θ)p0(z) + θp′1(z))]+ .

Plugging this identity in the definition of Dβ′ , we get the desired equality.
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Note that writing β = eε and β′ = eε
′ in the above lemma, we get the relation

ε′ = log(1 + η(eε − 1)). Applying standard joint convexity to the right hand side above we
conclude: Dβ′(µ‖µ′) ≤ (1 − θ)ηDβ(µ1‖µ0) + θηDβ(µ1‖µ′1). On the other hand, applying
joint convexity directly on Dβ′(µ‖µ′) instead of advanced joint complexity yields a weaker
bound which implies amplification for the δ privacy parameter, but not for the ε privacy
parameter.

When using advanced joint convexity to analyze privacy amplification we consider two
elements x and x′ and fix the following notation. Let ω = S(x) and ω′ = S(x′) and µ = ωM
and µ′ = ω′M , where we use the notation M to denote the Markov kernel associated with
mechanismM operating on measures over Y . We then consider the mixture factorization
of ω and ω′ obtained by taking the decompositions induced by projecting the maximal
coupling π = (1− η)π0 + ηπ1 on the first and second marginals: ω = (1− η)ω0 + ηω1 and
ω′ = (1 − η)ω0 + ηω′1, where η = TV(S(x),S(x′)). It is easy to see from the construction
of the maximal coupling that ω1 and ω′1 have disjoint supports. In this way we obtain the
canonical mixture decompositions µ = (1 − η)µ0 + ηµ1 and µ′ = (1 − η)µ0 + ηµ′1, where
µ0 = ω0M , µ1 = ω1M and µ′1 = ω′1M .

In the specific context of differential privacy this result yields for every x 'X x′:

Deε
′ (MS(x)‖MS(x′)) ≤ η ·

(
(1− θ)Deε(µ1‖µ0) + θDeε(µ1‖µ′1)

)
(4.2)

for eε′ = 1 + η(eε − 1), some θ ∈ [0, 1], and η = TV(S(x),S(x′)) being the total variation
distance between the distributions over subsamples. It is interesting to note that the nonlinear
relation ε′ = log(1 + η(eε − 1)) already appears in some existing privacy amplification results
(e.g., Li et al. (2012)). Although for small ε and η this relation yields ε′ = O(ηε), our results
show that the more complicated nonlinear relation is in fact a fundamental aspect of privacy
amplification by subsampling. In particular, the relation ε′ = log(1 + η(eε − 1)) displays a
phase transition: for small ε the result behaves like ηε, while for large ε the result behaves
like ε (i.e., the amplification effect vanishes). This is illustrated in Figure 4.
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Figure 4. Phase transition in privacy amplification by subsampling.
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4.1.2. Distance-compatible Coupling. The other tool we use to prove general privacy amplifi-
cation bounds based on hockey-stick divergences is the existence of a certain type of couplings
between two distributions like the ones occurring in the right hand side of (4.1). Recall that
any coupling π between two distributions ν, ν ′ ∈ P(Y ) can be used to rewrite the mixture
distributions µ̃ = νM and µ̃′ = ν ′M as µ̃ =

∑
y,y′ πy,y′M(y) and µ̃′ =

∑
y,y′ πy,y′M(y′).

Using the joint convexity of Deε and the definition of group-privacy profiles yields the bound

Deε(µ̃‖µ̃′) ≤
∑
y,y′

πy,y′Deε(M(y)‖M(y′)) ≤
∑
y,y′

πy,y′δM,dY (y,y′)(ε) . (4.3)

Since this bound holds for any coupling π, one can set out to optimize it by finding a coupling
the minimizes the right hand side of (4.3). We show that the existence of couplings whose
support is contained inside a certain subset of Y × Y is enough to obtain an optimal bound.
Furthermore, we show that when this condition is satisfied the resulting bound depends only
on ν and the group-privacy profiles ofM.

Let dY be the path-distance induced by 'Y . We say that two distributions ν, ν ′ ∈ P(Y )
are dY -compatible if there exists a coupling π between ν and ν ′ such for any (y, y′) ∈ supp(π)
we have dY (y, y′) = dY (y, supp(ν ′)), where the distance between a point y and the set supp(ν ′)
is defined as the distance between y and the closest point in supp(ν ′).

Theorem 12 . Let C(ν, ν ′) be the set of all couplings between ν and ν ′ and for k ≥ 1 let
Yk = {y ∈ supp(ν) : dY (y, supp(ν ′)) = k}. If ν and ν ′ are dY -compatible, then the following
holds:

min
π∈C(ν,ν′)

∑
y,y′

πy,y′δM,dY (y,y′)(ε) =
∑
k≥1

ν(Yk)δM,k(ε) . (4.4)

Proof. The result follows from a few simple observations. The first observation is that for
any coupling π ∈ C(ν, ν ′) and y ∈ supp(ν ′) we have∑

y′

πy,y′δM,dY (y,y′)(ε) ≥
∑
y′

πy,y′δM,dY (y,supp(ν′))(ε) =
∑
y

νyδM,dY (y,supp(ν′))(ε) ,

where the first inequality follows from dY (y, y′) ≥ dY (y, supp(ν ′)) and the fact that δM,k(ε)
is monotonically increasing with k. Thus the RHS of (4.4) is always a lower bound for the
LHS. Now let π be a dY -compatible coupling. Since the support of π only contains pairs
(y, y′) such that dY (y, y′) = dY (y, supp(ν ′)), we see that∑

y,y′

πy,y′δM,dY (y,y′)(ε) =
∑
y,y′

πy,y′δM,dY (y,supp(ν′))(ε) =
∑
y

νyδM,dY (y,supp(ν′))(ε) .

Applying this result to the bound resulting from the right hand side of (4.1) yields most
of the concrete privacy amplification results presented in the next paragraphs.

4.2. Poisson Subsampling. We first analyze privacy amplification of Poisson subsampling
with respect to the remove/add-one relation. In this case the subsampling mechanism Spoγ :
2U → P(2U ) takes a set x and outputs a sample y from the distribution ω = Spoγ (x) supported
on all sets y ⊆ x given by ω(y) = γ|y|(1−γ)|x|−|y|. This corresponds to independently adding
to y each element from x with probability γ. Now, given a mechanismM : 2U → P(Z) with
privacy profile δM with respect to 'r, we are interested in bounding the privacy profile of
the subsampled mechanismMSwoγ with respect to 'r.
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Theorem 13 . Let M′ = MSpoγ . For any ε ≥ 0 we have δM′(ε
′) ≤ γδM(ε), where

ε′ = log(1 + γ(eε − 1)).

Proof. Given x, x′ ∈ 2U with x 'r x′, we write ω = Swoη (x) and ω′ = Swoη (x′) and note that
TV(ω, ω′) = η. Next we define x0 = x ∩ x′ and observe that either x0 = x or x0 = x′ by the
definition of 'r. Let ω0 = Spoη (x0). Then the decompositions of ω and ω′ induced by their
maximal coupling have either ω1 = ω0 when x = x0 or ω′1 = ω0 when x′ = x0. Noting that
applying advanced joined convexity in the former case leads to an additional cancellation we
see that the maximum will be attained when x′ = x0. In this case, the distribution ω1 is given
by ω1(y∪{v}) = ω0(y). This observation yields an obvious d'r -compatible coupling between
ω1 and ω0 = ω′1: first sample y′ from ω0, and then build y by adding v to y′. Since every
pair of datasets generated by this coupling has distance one with respect to d'r , Theorem 12
yields the bound δM′(ε′) ≤ ηδM(ε).

Privacy amplification with Poisson sampling was used in (Chaudhuri and Mishra, 2006;
Beimel et al., 2010; Kasiviswanathan et al., 2011; Beimel et al., 2014), which considered
loose bounds. A proof of this tight result in terms of (ε, δ)-DP was first given in (Li et al.,
2012). In the context of the moments accountant technique based on the moment generating
function of the privacy loss random variable, (Abadi et al., 2016) provide an amplification
result for Gaussian output perturbation mechanisms under Poisson subsampling.

4.3. Subsampling Without Replacement. Another known results on privacy amplifi-
cation corresponds to the analysis of sampling without replacement with respect to the
substitution relation. In this case one considers the subsampling mechanism Swom : 2Un → P(2Um)
that given a set x ∈ 2Un of size n outputs a sample from the uniform distribution ω = Swom (x)
over all subsets y ⊆ x of size m ≤ n. Then, for a given a mechanism M : 2Um → P(Z)
with privacy profile δM with respect to the substitution relation 's on sets of size m, we
are interested in bounding the privacy profile of the mechanismMSwom with respect to the
substitution relation on sets of size n.

Theorem 14 . Let M′ = MSwom . For any ε ≥ 0 we have δM′(ε′) ≤ (m/n)δM(ε), where
ε′ = log(1 + (m/n)(eε − 1)).

Proof. The analysis proceeds along the lines of the previous proof. First we note that for any
x, x′ ∈ 2Un with x 's x′, the total variation distance between ω = Swom (x) and ω′ = Swom (x′)
is given by η = TV(ω, ω′) = m/n. Applying advanced joint convexity (Theorem 11) with the
decompositions ω = (1−η)ω0 +ηω1 and ω′ = (1−η)ω0 +ηω′1 given by the maximal coupling,
the analysis of Deε′ (ωM‖ω′M) reduces to bounding the divergences Deε(ω1M‖ω0M) and
Deε(ω1M‖ω′1M). In this case both quantities can be bounded by δM(ε) by constructing
appropriate d's-compatible couplings and combining (4.3) with Theorem 12.

We construct the couplings as follows. Suppose v, v′ ∈ U are the elements where x and
x′ differ: xv = x′v + 1 and x′v′ = xv′ + 1. Let x0 = x ∩ x′. Then we have ω0 = Swom (x0).
Furthermore, writing ω̃1 = Swom−1(x0) we have ω1(y) = ω̃1(y ∩ x0) and ω′1(y) = ω̃1(y ∩ x0).
Using these definitions we build a coupling π1,1 between ω1 and ω′1 through the following
generative process: sample y0 from ω̃1 and then let y = y0 ∪ {v} and y′ ∪ {v′}. Similarly, we
build a coupling π1,0 between ω1 and ω0 as follows: sample y0 from ω̃1, sample u uniformly
from x0\y0, and then let y = y0∪{v} and y′ = y0∪{u}. It is obvious from these constructions
that π1,1 and π0,1 are both d's-compatible. Plugging these observations together, we get
δM′(ε

′) ≤ (m/n)δM(ε).
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This setting has been used in (Beimel et al., 2013; Bassily et al., 2014; Wang et al., 2016)
with non-tight bounds. A proof of this tight bound formulated in terms of (ε, δ)-DP can be
directly recovered from Ullman’s class notes (Ullman, 2017), although the stated bound is
weaker. Rényi DP amplification bounds for subsampling without replacement were recently
developed by Wang et al. (2019), who also emphasized the importance of Rényi privacy
profiles in their analysis.

4.4. Subsampling With Replacement. Next we consider the case of sampling with
replacement with respect to the substitution relation 's. The subsampling with replacement
mechanism Swrm : 2Un → P(NUm) takes a set x of size n and outputs a sample from the
multinomial distribution ω = Swrm (x) over all multisets y of size m ≤ n with supp(y) ⊆ x,
given by ω(y) = (m!/nm)

∏
u∈U xu/(yu!). In this case we suppose the base mechanism

M : NUm → P(Z) is defined on multisets and has privacy profile δM with respect to 's. We
are interested in bounding the privacy profile of the subsampled mechanismMSwrm : 2Un → P(Z)
with respect to 's.
Theorem 15 . LetM′ =MSwrm . Given ε ≥ 0 and ε′ = log(1 + (1− (1− 1/n)m)(eε − 1)) we
have

δM′(ε
′) ≤

m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

Proof. To bound the privacy profile of the subsampled mechanismMSwrm on 2Un with respect
to 's we start by noting that taking x, x′ ∈ 2Un , x 's x′, the total variation distance between
ω = Swrm (x) and ω′ = Swrm (x′) is given by η = TV(ω, ω′) = 1 − (1 − 1/n)m. To define
appropriate mixture components for applying the advanced joint composition property we
write v and v′ for the elements where x and x′ differ and x0 = x ∩ x′ for the common part
between both datasets. Then we have ω0 = Swrm (x0). Furthermore, ω1 is the distribution
obtained from sampling ỹ from ω̃1 = Swrm−1(x) and building y by adding one occurrence of v
to ỹ. Similarly, sampling y′ from ω′1 corresponds to adding v′ to a multiset sampled from
Swrm−1(x′).

Now we construct appropriate distance-compatible couplings. First we let π1,1 ∈ P(NUm×
NUm) be the distribution given by sampling y from ω1 as above and outputting the pair (y, y′)
obtained by replacing each v in y by v′. It is immediate from this construction that π1,1

is a d's-compatible coupling between ω1 and ω′1. Furthermore, using the notation from
Theorem 12 and the construction of the maximal coupling, we see that for k ≥ 1:

ω1(Yk) =
ω(Yk)− (1− η)ω0(Yk)

η
=

Pry∼ω[yv = k]

η
=

1

η

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
,

where we used ω0(Yk) = 0 since ω0 is supported on multisets that do not include v. Therefore,
the distributions µ1 = ω1M and µ′1 = ω′1M satisfy

ηDeε(µ1‖µ′1) ≤
m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) . (4.5)

On the other hand, we can build a d's-compatible coupling between ω1 and ω0 by first
sampling y from ω1 and then replacing each occurrence of v by an element picked uniformly
at random from x0. Again, this shows that Deε(µ1‖µ0) is upper bounded by the right hand
side of (4.5).
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Therefore, we conclude that

δM′(ε
′) ≤

m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

Note that if m = γn, then 1 − (1 − 1/n)m ≈ γ. A version of this bound in terms of
(ε, δ)-DP that implicitly uses the group privacy property can be found in (Bun et al., 2015).
Our bound matches the asymptotics of (Bun et al., 2015) while providing optimal constants
and allowing for white-box group privacy bounds.

4.5. Hybrid Results. Using our method it is also possible to analyze new settings which
have not been considered before. One interesting example occurs when there is a mismatch
between the two neighboring relations arising in the analysis. For example, suppose one
knows the group-privacy profiles δM,k of a base mechanismM : NUm → P(Z) with respect
to the substitution relation 's. In this case one could ask whether it makes sense to study
the privacy profile of the subsampled mechanism MSwrm : 2U → P(Z) with respect to the
remove/add relation 'r. In principle, this makes sense in settings where the size of the inputs
toM is restricted due to implementation constraints (e.g., limited by the memory available
in a GPU used to run a private mechanism that computes a gradient on a mini-batch of size
m). In this case one might still be interested in analyzing the privacy loss incurred from
releasing such stochastic gradients under the remove/add relation. Note that this setting
cannot be implemented using sampling without replacement since under the remove/add
relation we cannotguarantee a priori that the input dataset will have at least size m because
the size of the dataset must be kept private (Vadhan, 2017). Furthermore, one cannot hope
to get a meaningful result about the privacy profile of the subsampled mechanism across all
inputs sets in 2U ; instead the privacy guarantee will depend on the size of the input dataset
as shown in the following result.

Theorem 16 . LetM′ =MSwrm . For any ε ≥ 0 and n ≥ 0 we have

sup
x∈2Un ,x'rx′

Deε′ (M′(x)‖M′(x′)) ≤
m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) ,

where ε′ = log(1 + (1− (1− 1/n)m)(eε − 1)).

Proof. Suppose x 'r x′ with |x| = n and |x′| = n− 1. This is the worst-case direction for the
neighboring relation like in the proof of Theorem 13. Let ω = Swrm (x) and ω = Swrm (x′). We
have η = TV(ω, ω′) = 1− (1− 1/n)m, and the factorization induced by the maximal coupling
has ω0 = ω′1 = ω′ and ω1 is given by first sampling ỹ from Swrm−1(x) and then producing y by
adding to ỹ a copy of the element v where x and x′ differ. This definition of ω1 suggests the
following coupling between ω1 and ω0: first sample y from ω1, then produce y′ by replacing
each copy of v with a element from x′ sampled independently and uniformly. By construction
we see that this coupling is d's-compatible, so we can apply Theorem 12. Using the same
argument as in the proof of Theorem 15 we see that ηω1(Yk) =

(
m
k

)
(1/n)k(1 − 1/n)m−k.
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Thus, we finally get

Deε′ (MS
wr
m (x)‖MSwrm (x′)) = ηDeε(ω1M‖ω0M)

≤ η
m∑
k=1

ω1(Yk)δM,k(ε)

=

m∑
k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

4.6. When the Neighboring Relation is “Incompatible”. Now we consider a simple
example where distance-compatible couplings are not available: Poisson subsampling with
respect to the substitution relation. Suppose x, x′ ∈ 2Un are sets of size n related by the
substitution relation 's. Let ω = Spoη (x) and ω′ = Spoη (x′) and note that TV(ω, ω′) = η. Let
x0 = x∩x′ and v = x\x0, v′ = x′ \x0. In this case the factorization induced by the maximal
coupling is obtained by taking ω0 = Spoη (x0), ω1(y ∪ {v}) = ω0(y), and ω′1(y ∪ {v′}) = ω0(y).
Now the support of ω0 contains sets of sizes between 0 and n− 1, while the supports of ω1

and ω1 contain sets of sizes between 1 and n. From this observation one can deduce that ω1

and ω0 are not d's-compatible, and ω1 and ω′1 are not d'r -compatible.
This argument shows that the method we used to analyze the previous settings cannot be

extended to analyze Poisson subsampling under the substitution relation, regardless of whether
the privacy profile of the base mechanism is given in terms of the replacement/addition or
the substitution relation. This observation is saying that some pairings between subsampling
method and neighboring relation are more natural than others. Nonetheless, even without
distance-compatible couplings it is possible to provide privacy amplification bounds for
Poisson subsampling with respect to the substitution relation, although the resulting bound
is quite cumbersome.

Theorem 17 . LetM : 2U → P(Z) be a mechanism with privacy profile δM with respect to
's. Then the privacy profile with respect of 's of the subsampled mechanism M′ =MSpoγ :
2Un → P(Z) on datasets of size n satisfies the following:

δM′(ε
′) ≤ γθδM(ε) + γ(1− θ)

(
n−1∑
k=1

γ̃kδM(εk) + γ̃n

)
,

where ε′ = log(1 + γ(eε − 1)), θ = eε
′
/eε, εk = ε+ log( γ

1−γ (nk − 1)), and γ̃k =
(
n−1
k−1

)
γk−1(1−

γ)n−k.

Proof. Suppose x, x′ ∈ 2Un are sets of size n related by the substitution relation 's. Let
ω = Spoη (x) and ω′ = Spoη (x′) and note that TV(ω, ω′) = η. Let x0 = x ∩ x′ and v = x \ x0,
v′ = x′ \ x0. In this case the factorization induced by the maximal coupling is obtained by
taking ω0 = Spoη (x0), ω1(y ∪ {v}) = ω0(y), and ω′1(y ∪ {v′}) = ω0(y). From this factorization
we see it is easy to construct a coupling π1,1 between ω1 and ω′1 that is d's-compatible.
Therefore we have Deε(ω1M‖ω′1M) ≤ δM(ε).

Since we have already identified that no d's-compatible coupling between ω1 and ω0

can exist, we shall further decompose these distributions “by hand.” Let νk = Swok (x0) and
note that νk corresponds to the distribution ω0 conditioned on |y| = k. Similarly, we define
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ν̃k as the distribution corresponding to sampling ỹ from Swok−1(x0) and outputting the set
y obtained by adding v to ỹ. Then ν̃k equals the distribution of ω1 conditioned on |y| = k.
Now we write γk = Pry∼ω0 [|y| = k] =

(
n−1
k

)
γk(1 − γ)n−1−k and γ̃k = Pry∼ω1 [|y| = k] =(

n−1
k−1

)
γk−1(1−γ)n−k. With these notations we can write the decompositions ω0 =

∑n−1
k=0 γkνk

and ω1 =
∑n

k=1 γ̃kν̃k. Further, we observe that the construction of ν̃k and νk shows there
exist d's-compatible couplings between these pairs of distributions when 1 ≤ k ≤ n − 1,
leading to Deε(ν̃kM‖νkM) ≤ δM(ε). To exploit this fact we first write

Deε(ω1M‖ω0M) = Deε

(
n−1∑
k=1

γ̃kν̃kM + γ̃nν̃nM

∥∥∥∥∥γ0ν0M +
n−1∑
k=1

γkνkM

)
.

Now we use that hockey-stick divergences can be applied to arbitrary nonnegative measures,
which are not necessarily probability measures, using the same definition we have used so
far. Under this relaxation, given non-negative measures νi, ν ′i, i = 1, 2, on a measure space Z
we have Dα(ν1 + ν2‖ν ′1 + ν ′2) ≤ Dα(ν1‖ν ′1) +Dα(ν2‖ν ′2), Dα(aν1‖bν2) = aDαb/a(ν1‖ν2) for
a ≥ 0 and b > 0, and Dα(ν1‖0) = ν1(Z). Using these properties on the decomposition above
we see that

Deε(ω1M‖ω0M) ≤
n−1∑
k=1

γ̃kDeεk (ν̃kM‖νkM) + γ̃n

≤
n−1∑
k=1

γ̃kδM(εk) + γ̃n ,

where eεk = (γk/γ̃k)e
ε = (γ/(1− γ))(n/k − 1)eε.

4.7. Lower Bounds. In this section we show that many of the results given in the previous
section are tight by constructing a randomized membership mechanism that attains these
upper bounds. For the sake of generality, we state the main construction in terms of tuples
instead of multisets. In fact, we prove a general lemma that can be used to obtain tightness
results for any subsampling mechanism and any neighboring relation satisfying two natural
assumptions.

For p ∈ [0, 1] let Rp : {0, 1} → P({0, 1}) be the randomized response mechanism that
given b ∈ {0, 1} returns b with probability p and 1 − b with probability 1 − p. Note that
for p = (eε + δ)/(eε + 1) this mechanism is (ε, δ)-DP. Let ν0 = Rp(0) and ν1 = Rp(1).
For any ε ≥ 0 and p ∈ [0, 1] define ψp(ε) = [p − eε(1 − p)]+. It is easy to verify that
Deε(ν0‖ν1) = Deε(ν1‖ν0) = ψp(ε). Now let U be a universe containing at least two elements.
For v ∈ U and p ∈ [0, 1] we define the randomized membership mechanismMv,p that given
a tuple x = (u1, . . . , un) ∈ U? returnsMv,p(x) = Rp(I[v ∈ x]). We say that a subsampling
mechanism S : X → P(U?) defined on some set X ⊆ U? is natural if the following two
conditions are satisfied:
(1) For any x ∈ X and u ∈ U , if u ∈ x then there exists y ∈ supp(S(x)) such that u ∈ y.
(2) For any x ∈ X and u ∈ U , if u /∈ x then we have u /∈ y for every y ∈ supp(S(x)).

Theorem 18 . Let X ⊆ U? be equipped with a neighboring relation 'X such that there exist
x 'X x′ with v ∈ x and v /∈ x′. Suppose S : X → P(U?) is a natural subsampling mechanism
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and let η = supx'Xx′ TV(S(x),S(x′)). For any ε ≥ 0 and ε′ = log(1 + η(eε − 1)) we have

δMSv,p(ε
′) = sup

x'Xx′
Deε′ (MSv,p(x)‖MSv,p(x′)) = ηψp(ε) .

Proof. We start by observing that for any x ∈ X the distribution µ =MSv,p(x) must be a
mixture µ = (1 − θ)ν0 + θν1 for some θ ∈ [0, 1]. This follows from the fact that there are
only two possibilities ν0 and ν1 forMv,p(y) depending on whether v /∈ y or v ∈ y. Similarly,
taking x 'X x′ we get µ′ =MSv,p(x′) with µ′ = (1−θ′)ν0 +θ′ν1 for some θ′ ∈ [0, 1]. Assuming
(without loss of generality) θ ≥ θ′, we use the advanced joint convexity property of Dα to get

Deε′ (µ‖µ′) = θDeε(ν1‖(1− θ′/θ)ν0 + (θ′/θ)ν1)

≤ θ(1− θ′/θ)Deε(ν1‖ν0) = (θ − θ′)ψp(ε) ≤ θψp(ε) ,

where ε′ = log(1 + θ(eε − 1)) and θ = eε
′
/eε, and the inequality follows from joint convexity.

Now note the inequalities above are in fact equalities when θ′ = 0, which is equivalent to
the fact v /∈ x′ because S is a natural subsampling mechanism. Thus, observing that the
function θ 7→ θψp(log(1 + (eε

′ − 1)/θ)) is monotonically increasing, we get

sup
x'Xx′

Deε
′ (MSv,p(x)‖MSv,p(x′)) = sup

x'Xx′,v /∈x′
θψp(log(1 + (eε

′ − 1)/θ))

= ηψp(log(1 + (eε
′ − 1)/η)) = ηψp(ε) .

We can now apply this result to show that the first three results from previous section are
tight. This requires specializing from tuples to (multi)sets, and plugging in the definitions of
neighboring relation, subsampling mechanism, and η used in each of these theorems. Other
than that, the proof is a direct calculation.

Corollary 19 . The mechanism Mv,p attains the bounds in Theorems 13, 14, 15 for every
p and η.

5. Conclusion

We have introduced and developed the concept of privacy profiles as a method to capture
the whole set of privacy guarantees offered by a given mechanism. The results in Section 3
provide explicit examples of privacy profiles for well-known mechanisms and study some
geometric properties of privacy profiles. We also showed how the concept of privacy profile
is connected to the methods used to bound differential privacy in terms of privacy loss
random variables, and to alternative definitions of privacy, including (zero)-concentrated and
Rényi differential privacy. These results, we hope, shed further light into the nature of these
alternative definitions. In particular, our thesis is that the functional views of differential
privacy (i.e., δ(ε)) and Rényi differential privacy (i.e., ε(α)) provide deeper insights into the
privacy properties of a given mechanism than what can be achieved by a point-wise guarantee
(i.e., (ε, δ) and (α, ε)), and that when this lens is considered, both approaches to measure
privacy contain essentially the same information as illustrated by the results in Section 3.4.

We have also developed a general method for reasoning about privacy amplification by
subsampling. Our method is applicable to many different settings, some which have already
been studied in the literature, and others which are new. Technically, our method leverages
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a new tool of independent interest: advanced joint convexity. In the future, it would be
interesting to apply our tools to more elaborate forms of subsampling, especially those which
are widely used in the design of statistical surveys (Särndal et al., 2003).
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