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Abstract. We derive uniformly most powerful (UMP) tests for simple and one-sided
hypotheses for a population proportion within the framework of differential privacy (DP),
optimizing finite sample performance. We show that in general, DP hypothesis tests can be
written in terms of linear constraints, and for exchangeable data can always be expressed as
a function of the empirical distribution. Using this structure, we prove a ‘Neyman-Pearson
Lemma’ for binomial data under DP, where the DP-UMP only depends on the sample
sum. Our tests can also be stated as a post-processing of a DP summary statistic, whose
distribution we coin “Truncated-Uniform-Laplace” (Tulap), a generalization of the Staircase
and discrete Laplace distributions.

We show that by post-processing the Tulap statistic, we are able to obtain exact p-values
corresponding to the DP-UMP, uniformly most accurate (UMA) one-sided confidence
intervals, optimal confidence distributions, uniformly most powerful unbiased (UMPU)
two-sided tests, and uniformly most accurate unbiased (UMAU) two-sided confidence
intervals. As each of these quantities are a post-processing of the same summary statistic,
there is no increased cost to privacy by including these additional results, allowing for a
complete statistical analysis at a fixed privacy cost. We also show that our results can be
applied to distribution-free hypothesis tests for continuous data. Our simulation results
demonstrate that all our tests have exact type I error, and are more powerful than current
techniques.

1. Introduction

Differential privacy (DP), introduced by Dwork et al. (2006), offers a rigorous measure of
disclosure risk and more broadly, a formal privacy framework, such that privacy guarantees
hold regardless of the assumed knowledge of the malicious user. To satisfy DP, a procedure
cannot be a deterministic function of the sensitive data, but must incorporate additional
randomness, beyond sampling. Subject to the DP constraint, it is natural to search for
a procedure which maximizes the utility of the output. Many works address the goal of
minimizing the distance between the outputs of the randomized DP procedure and standard
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non-private algorithms, but fewer attempt to infer properties about the underlying population
(for notable exceptions, see related work), which is typically the goal in statistics and scientific
research. In this paper, we focus on the setting where each individual contributes a sensitive
binary value, and we wish to infer the population proportion via hypothesis tests and
confidence intervals, subject to DP. While a simple setting, there are many important
problems that fit this format, where privacy is a concern (such as determining the proportion
of binge drinkers in universities, the proportion of illegal immigrants in the US, or the
proportion of citizens participating in an illegal activity).

In particular, our main results are focused on deriving uniformly most powerful (UMP)
and uniformly most powerful unbiased (UMPU) tests, related p-values, and confidence
intervals, which optimize finite sample performance. Crucially, all of these statistical tools
can be expressed as a post-processing of a DP summary statistic, which has the distribution
we coin Truncated-Uniform-Laplace (Tulap). We show that by combining an understanding
of the Tulap distribution and classical statistical methods, we are able to compute several
private statistical results at a fixed privacy cost. Furthermore, while these tests are designed
for binary data, we also show that they can be used to construct certain hypothesis tests for
continuous data as well.

UMP tests are fundamental to classical statistics, being closely linked to sufficiency,
likelihood inference, and confidence sets. However, finding UMP tests can be hard and in
many cases they do not even exist (see Schervish, 1996, Section 4.4). Our results are the
first to achieve UMP tests under (ε, δ)−DP, and are among the first steps towards a general
theory of optimal inference under DP.

Related work Vu and Slavković (2009) were the first to perform classical hypothesis
tests under DP. They develop private tests for population proportions as well as for indepen-
dence in 2×2 contingency tables. In both settings, they fix the noise adding distribution, and
use approximate sampling distributions to perform these DP tests. A similar approach is used
by Solea (2014) to develop tests for normally distributed data. The work of Vu and Slavković
(2009) was extended by Wang, Lee and Kifer (2015) and Gaboardi et al. (2016), developing
additional tests for multinomial data. To implement their tests, Wang, Lee and Kifer (2015)
develop asymptotic sampling distributions, verifying via simulations that the type I errors
are reliable. On the other hand, Gaboardi et al. (2016) use simulations to compute an
empirical type I error. Uhler, Slavković and Fienberg (2013) develop DP chi-squared tests
and p-values for GWAS data, and derive the exact sampling distribution of their noisy
statistic. Working under “local differential privacy,” a stronger notion of privacy than DP,
Gaboardi and Rogers (2018) develop multinomial tests based on asymptotic distributions.
Given a DP output, Sheffet (2017) and Barrientos et al. (2019) develop significance tests for
regression coefficients. Following a common strategy in the field of Statistics, Wang et al.
(2018) develop approximating distributions for DP statistics, which can be used to construct
hypothesis tests and confidence intervals. In a recent work, Canonne et al. (2019) show
that for simple hypothesis tests, a DP test based on a clamped likelihood ratio test achieves
optimal sample complexity.

While not directly related to the testing problems we consider, Wasserman and Zhou
(2010) showed that the constraint of differential privacy can be interpreted in terms of
hypothesis tests on the database, and Kairouz, Oh and Viswanath (2017) leverage the
connection between DP and hypothesis tests to derive tight privacy bounds for the composition
of several mechanisms.
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Outside the hypothesis testing setting, there is some additional work on optimal popula-
tion inference under DP. Duchi, Jordan and Wainwright (2018) give general techniques to
derive minimax rates under local DP, and in particular give minimax optimal point estimates
for the mean, median, generalized linear models, and nonparametric density estimation.
Karwa and Vadhan (2017) develop nearly optimal confidence intervals for normally dis-
tributed data with finite sample guarantees, which could potentially be inverted to give
approximately UMP unbiased tests.

Related work on developing optimal DP mechanisms for general loss functions such
as Geng and Viswanath (2016a) and Ghosh, Roughgarden and Sundararajan (2009), give
mechanisms that optimize symmetric convex loss functions, centered at a real-valued statistic.
Similarly, Awan and Slavković (2018b) derive optimal mechanisms among the class of K-Norm
Mechanisms for a fixed statistic and sample size.

Our contributions The previous literature on DP hypothesis testing has a few
characteristics in common: 1) nearly all of the proposed methods first add noise to the data,
and perform their test as a post-processing procedure, 2) all of the hypothesis tests use
either asymptotic distributions or simulations to derive approximate decision rules, and 3)
while each procedure is derived intuitively based on classical theory, none show that they are
optimal among all possible DP algorithms.

In contrast, in this paper we search over all DP hypothesis tests at level α, deriving the
uniformly most powerful (UMP) test for a population proportion. We find that our DP-UMP
test can be stated as a post-processing of a noisy statistic, which allows us to efficiently
compute exact p-values, confidence intervals, and confidence distributions as post-processing.

Sections 2.1-2.5 appeared in an earlier version of this work (see, Awan and Slavković
(2018a)), and focus on developing DP-UMP simple and one-sided tests for binomial data.
In Section 2.2, we show that arbitrary DP hypothesis tests, which report ‘Reject’ or ‘Fail
to Reject’, can be written in terms of linear inequalities. In Theorem 2.2, we show that for
exchangeable data, DP tests need only depend on the empirical distribution. We use this
structure to find closed-form DP-UMP tests for simple hypotheses in Lemmas 2.7 and 2.9,
and extend these results to obtain one-sided DP-UMP tests in Theorem 2.10. These tests are
closely tied to our proposed Truncated-Uniform-Laplace (Tulap) distribution, which extends
both the discrete Laplace distribution (studied in Ghosh, Roughgarden and Sundararajan
(2009)), and the Staircase distribution of Geng and Viswanath (2016a) to the setting of
(ε, δ)-DP. We prove that the Tulap distribution satisfies (ε, δ)-DP in Theorem 2.11. While
the tests developed in the previous sections only result in the output ‘Reject’ or ‘Fail to
Reject’, in Section 2.5, we show that our DP-UMP tests can be stated as a post-processing
of DP summary statistic, distributed as Tulap. From this formulation, we obtain exact
p-values via Theorem 2.12 and Algorithm 1 which agree with our DP-UMP tests. In fact,
since releasing the Tulap summary statistic satisfies (ε, δ)-DP, we can also produce two-sided
p-values, confidence intervals, and confidence distributions all in terms of the private summary
statistic, thus offering a comprehensive DP statistical analysis for binomial data at a fixed
privacy cost.

To go beyond the simple tests and one-sided hypothesis results of Awan and Slavković
(2018a), we use a Bonferroni correction for multiple comparisons and the one-sided DP-UMP
tests to construct two-sided tests, which we detail in Section 2.6. In Section 2.7, we study
unbiased tests for two-sided hypotheses and derive a two-sided DP-UMPU test, using similar
techniques as in Sections 2.3 and 2.4. While these unbiased tests often do not have a
convenient form, we propose a close approximation, which can be used to efficiently compute
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p-values in Section 2.8. In Section 3 we develop methods to construct DP confidence intervals
for binomial data. We show in Section 3.2 that our one-sided DP-UMP tests give uniformly
most accurate one-sided confidence intervals. In Section 3.3, we show that the DP-UMPU
test, Bonferroni test and the approximately unbiased two-sided tests can all be used to
construct two-sided DP confidence intervals. Furthermore, we show that the DP-UMPU test
leads to uniformly most accurate unbiased confidence intervals. In Section 4.1, we derive
stochastically optimal confidence distributions in terms of the one-sided DP-UMP tests. In
Section 4.2, we apply our results to develop private distribution-free hypothesis tests of
continuous data.

In Section 5, we study each of our proposed tests and confidence intervals through
simulations. In Section 5.1, we compare our DP-UMP to the Normal approximation test of
Vu and Slavković (2009) as well as the non-private UMP test. In Section 5.2, we compare the
power of our different proposed two-sided tests, and in Section 5.3 we study the average width
of our two-sided confidence intervals. We conclude in Section 6 with discussion. Detailed
proofs and technical lemmas are postponed to Appendix A.

2. Hypothesis testing

2.1. Background and notation. We use capital letters to denote random variables and
lowercase letters for particular values. For a random variable X, we denote FX as its
cumulative distribution function (cdf), fX as either its probability density function (pdf) or
probability mass function (pmf), depending on the context.

For any set X , the n-fold cartesian product of X is X n = {(x1, x2, . . . , xn) | xi ∈X }.
We denote elements of X n with an underscore to emphasize that they are vectors. The
Hamming metric on X n is H : X n ×X n → Z≥0, defined by H(x, x′) = #{i | xi 6= x′i}.

Differential privacy, introduced by Dwork et al. (2006), provides a formal measure of
disclosure risk. The notion of DP that we give in Definition 2.1 more closely resembles the
formulation in Wasserman and Zhou (2010), which uses the language of distributions rather
than random mechanisms. It is important to emphasize that the notion of differential privacy
in Definition 2.1 does not involve any distribution model on X n.

Definition 2.1 (Differential Privacy: Dwork et al. (2006); Wasserman and Zhou (2010)).
Let ε > 0, δ ≥ 0, and n ∈ {1, 2, . . .} be given. Let X be any set, and (Y ,F ) be a measurable
space. Let P = {Px | x ∈X n} be a set of probability measures on (Y ,F ). We say that P
satisfies (ε, δ)-differential privacy ((ε, δ) - DP) if for all B ∈ F and all x, x′ ∈X n such that
H(x, x′) = 1, we have Px(B) ≤ eεPx′(B) + δ.

In Definition 2.1, we interpret x ∈X n as the database we collect, where X is the set
of possible values that one individual can contribute, and Y ∼ Px as the statistical result
we report to the public. With this interpretation, if a set of distributions satisfies (ε, δ)-DP
for small values of ε and δ, then if one person’s data is changed in the database, the change
in the distribution of Y is small. Ideally ε is a value less than 1, and δ � 1

n allows us to
disregard events which have small probability. A special case is when δ = 0, and (ε, 0)-DP is
referred to as pure DP.

One of our main goals in this paper is to find uniformly most powerful (UMP) hypothesis
tests, subject to DP. As the output of a DP method is necessarily a random variable, we
work with randomized hypothesis tests, which we review in Definition 2.2. Our notation
follows that of Schervish (1996, Chapter 4).
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Definition 2.2 (Hypothesis Test). Let (X1, . . . , Xn) ∈X n be distributed Xi
iid∼ fθ, where

θ ∈ Θ. Let Θ0,Θ1 be disjoint subsets of Θ. We call Θ0 the null and Θ1 the alternative. A
(randomized) test of H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 is a measurable function φ : X n → [0, 1].
The power of φ at θ is denoted βφ(θ) = Efθφ. We say a test φ is at level α if supθ∈Θ0

βφ(θ) ≤ α,
and at size α if supθ∈Θ0

βφ(θ) = α.
Let Φ be a set of tests. We say that φ∗ ∈ Φ is the uniformly most powerful level α

(UMP-α) test among Φ for H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 if 1) supθ∈Θ0
βφ∗(θ) ≤ α and 2)

for any φ ∈ Φ such that supθ∈Θ0
βφ(θ) ≤ α we have βφ∗(θ) ≥ βφ(θ), for all θ ∈ Θ1.

In Definition 2.2, φ(x) is the probability of rejecting the null hypothesis, given that we
observe x ∈ X n. That is, the output of a test is either ‘Reject’, or ‘Fail to Reject’ with
respective probabilities φ(x), and 1− φ(x). While the condition of (ε, δ)-DP does not involve
the randomness of X, for hypothesis testing, the level/size, and power of a test depend on
the model for X. In Section 2.2, we study the set of hypothesis tests which satisfy (ε, δ)-DP.

2.2. Problem setup and exchangeability condition. We begin this section by consider-
ing arbitrary hypothesis testing problems under DP. Let φ : X n → [0, 1] be any test. Since
the only possible outputs of the mechanism are ‘Reject’ or ‘Fail to Reject’ with probabilities
φ(x) and 1− φ(x), the test φ satisfies (ε, δ)-DP if and only if for all x, x′ ∈ X n such that
H(x, x′) = 1,

φ(x) ≤ eεφ(x′) + δ and (1− φ(x)) ≤ eε(1− φ(x′)) + δ. (2.1)

Remark 2.1. For any simple hypothesis test, where Θ0 and Θ1 are both singleton sets, the
DP-UMP test φ∗ is the solution to a linear program. If X is finite, this observation allows
one to explore the structure of DP-UMP tests through numerical linear program solvers.

Given the random vector X ∈X n, initially it may seem that we need to consider all φ,
which are arbitrary functions of X. However, assuming that X is exchangeable, Theorem 2.2
below says that for any DP hypothesis tests, we need only consider tests which are functions
of the empirical distribution of X. In other words, φ need not consider the order of the entries
in X. This result is reminiscent of De Finetti’s Theorem (see Schervish, 1996, Theorem 1.48)
in classical statistics.

Theorem 2.2. Let Θ be a set and {µθ}θ∈Θ be a set of exchangeable distributions on X n. Let
φ : X n → [0, 1] be a test satisfying (2.1). Then there exists φ′ : X n → [0, 1] satisfying (2.1)
which only depends on the empirical distribution of X, such that

∫
φ′(x) dµθ =

∫
φ(x) dµθ,

for all θ ∈ Θ.

Proof Sketch. Define φ′ by φ′(x) = 1
n!

∑
π∈σ(n) φ(π(x)), where σ(n) is the symmetric group on

n letters. For any π ∈ σ(n), φ(π(·)) satisfies (ε, δ)-DP. By exchangeability,
∫
φ(π(x)) dµθ =∫

φ(x) dµθ. Since condition 2.1 is closed under convex combinations, and integrals are linear
operators, the result follows.

We now state the particular problem which is the primary focus of the remainder of
Section 2. Each individual contributes a sensitive binary value to the database, and the
database can be thought of as a random vector X ∈ {0, 1}n, where Xi represents the
sensitive data of individual i. We model X as Xi

iid∼ Bern(θ), where θ is unknown. Then
the statistic X =

∑n
i=1Xi ∼ Binom(n, θ) encodes the empirical distribution of X. By
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Theorem 2.2, we can restrict our attention to tests which are functions of X. Such tests
φ : {0, 1, . . . , n} → [0, 1] satisfy (ε, δ) -DP if and only if for all x ∈ {1, 2, . . . , n},

φ(x) ≤ eεφ(x− 1) + δ (2.2)
φ(x− 1) ≤ eεφ(x) + δ (2.3)

(1− φ(x)) ≤ eε(1− φ(x− 1)) + δ (2.4)
(1− φ(x− 1)) ≤ eε(1− φ(x)) + δ. (2.5)

We denote the set of all tests which satisfy (2.2)-(2.5) as Dn
ε,δ =

{
φ : φ satisfies (2.2)-(2.5)

}
.

Remark 2.3. For arbitrary DP hypothesis testing problems, the number of constraints
generated by (2.1) could be very large, even infinite, but for our problem we only have 4n
constraints.

2.3. Simple DP-UMP tests when δ = 0. In this section, we derive the DP-UMP test
when δ = 0 for simple hypotheses. In particular, given n, ε > 0, α > 0, θ0 < θ1, and
X ∼ Binom(n, θ), we find the UMP test at level α among Dn

ε,0 for testing H0 : θ = θ0 versus
H1 : θ = θ1.

Before developing these tests, we introduce the Truncated-Uniform-Laplace (Tulap)
distribution, defined in Definition 2.3, which is central to all of our main results. To motivate
this distribution, recall that Geng and Viswanath (2016a) show for general loss functions
that adding discrete Laplace noise L ∼ DLap(e−ε) to X is optimal under (ε, 0)-DP. For this
reason, it is natural to consider a test which post-processes X + L. However, we know by
classical UMP theory that since X + L is discrete, a randomized test is required. Instead of
using a randomized test, by adding uniform noise U ∼ Unif(−1/2, 1/2) to X + L, we obtain
a continuous sampling distribution, from which a deterministic test is available. We call the
distribution of (X + L+ U) | X as Tulap(X, b, 0). In the setting of (ε, δ)-DP, we require an
additional parameter q, which is linked to the value δ. The distribution Tulap(X, b, q) is
obtained by truncating between the (q/2)th and (1− q/2)th quantiles of Tulap(X, b, 0).

0.
0
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Figure 1. Plot of the Tulap density function for arbitrary m, b = e−1 , and
q = .06.
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In Definition 2.3, we use the nearest integer function [·] : R→ Z. For any real number
t ∈ R, [t] is defined to be the integer nearest to t. If there are two distinct integers which are
nearest to t, we take [t] to be the even one. Note that, [−t] = −[t] for all t ∈ R.

Definition 2.3 (Truncated-Uniform-Laplace (Tulap)). Let N and N0 be real-valued random
variables. Let m ∈ R, b ∈ (0, 1) and q ∈ [0, 1). We say that N0 ∼ Tulap(m, b, 0) and
N ∼ Tulap(m, b, q) if N0 and N have the following cdfs:

FN0(x) =

{
b−[x−m]

1+b

(
b+ (x−m− [x−m] + 1

2)(1− b)
)

if x ≤ [m]

1− b[x−m]

1+b

(
b+ ([x−m]− (x−m) + 1

2)(1− b)
)

if x > [m],

FN (x) =


0 if FN0 < q/2
FN0

(x)− q
2

1−q if q2 ≤ FN0(x) ≤ 1− q
2

1 if FN0 > 1− q
2 .

Note that a Tulap random variable Tulap(m, b, q) is continuous and symmetric about m.
An illustration of the Tulap pdf is in Figure 1. While the name Tulap reflects the ability
for the parameter q to restrict the support of the distribution, in the case where q = 0 the
support is in fact unbounded. We will see in this section that for (ε, 0)-DP, the untruncated
distribution arises in the development of the DP-UMP test. In Section 2.4, we see that when
δ > 0 the parameter q is dependent on δ and ε to limit the support.

Remark 2.4. The Tulap distribution extends the staircase and discrete Laplace distribu-
tions as follows: Tulap(0, b, 0)

d
= Staircase(b, 1/2) and [Tulap(0, b, 0)]

d
= DLap(b), where

Staircase(b, γ) is the distribution in Geng and Viswanath (2016a). Geng and Viswanath
(2016a) show that for a real valued statistic T and convex symmetric loss functions centered
at T , the optimal noise distribution for (ε, 0)-DP is Staircase(b, γ) for b = e−ε and some
γ ∈ (0, 1). If the statistic is a count, then Ghosh, Roughgarden and Sundararajan (2009)
show that DLap(b) is optimal. Our results agree with these works when δ = 0, and extend
them to the case of arbitrary δ.

Now that we have defined the Tulap distribution, we are ready to develop the UMP
test among Dn

ε,0 for the simple hypotheses H0 : θ = θ0 versus H1 : θ = θ1. In classical
statistics, the UMP for this test is given by the Neyman-Pearson lemma, however in the
DP framework, our test must satisfy (2.2)-(2.5). Within these constraints, we follow the
logic behind the Neyman-Pearson lemma as follows. Let φ ∈ Dn

ε,0. Thinking of φ(x) defined
recursively, equations (2.2)-(2.5) give upper and lower bounds for φ(x) in terms of φ(x− 1).
Since θ1 > θ0, and binomial distributions have a monotone likelihood ratio (MLR) in x,
larger values of x give more evidence for θ1 over θ0. Thus, φ(x) should be increasing in x
as much as possible, subject to (2.2)-(2.5). Lemma 2.5 shows that taking φ(x) to be such a
function is equivalent to having φ(x) be the cdf of a Tulap random variable.

Lemma 2.5. Let ε > 0 be given. Let φ : {0, 1, 2, . . . , n} → (0, 1). The following are
equivalent:
(1) There exists m ∈ (0, 1) such that for x = 0, . . . , n,

φ(x) =

{
m if x = 0

min{eεφ(x− 1), 1− e−ε(1− φ(x− 1))} if x > 0.
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(2) There exists m ∈ (0, 1) such that for x = 0, . . . , n,

φ(x) =


m if x = 0

eεφ(x− 1) if x > 0 and φ(x− 1) ≤ 1
1+eε

1− e−ε(1− φ(x− 1)) if x > 0 and φ(x− 1) > 1
1+eε .

(3) There exists m ∈ R such that φ(x) = FN0(x −m) for x = 0, 1, 2, . . . , n, where N0 ∼
Tulap(0, b = e−ε, 0).

Proof Sketch. First show that (1) and (2) are equivalent by checking which constraint is
active. We then verify that FN0(x −m) satisfies the recurrence of (2). This can be done
using the properties of the Tulap cdf, stated in Lemma A.2, found in Section A.

While the form of (1) in Lemma 2.5 is intuitive, the connection to the Tulap cdf in (3)
allows for a usable closed-form of the test. This connection with the Tulap distribution is
crucial for the development in Section 2.5, which shows that the test in Lemma 2.5 can be
achieved by post-processing X +N , where N is distributed as Tulap.

It remains to show that the tests in Lemma 2.5 are in fact UMP among Dn
ε,0. The main

tool used to prove this is Lemma 2.6, which can be viewed as an abstraction of the standard
Neyman-Pearson Lemma. The proof of Lemma 2.6 uses the same trick as the proof of the
Neyman-Pearson Lemma given in Lehmann and Romano (2008, Theorem 3.2.1(ii)).

Lemma 2.6. Let (X ,F , µ) be a measure space and let f and g be two densities on X
with respect to µ. Suppose that φ1, φ2 : X → [0, 1] are such that

∫
φ1f dµ ≥

∫
φ2f dµ,

and there exists k ≥ 0 such that φ1 ≥ φ2 when g ≥ kf and φ1 ≤ φ2 when g < kf . Then∫
φ1g dµ ≥

∫
φ2g dµ.

Proof. Note that (φ1−φ2)(g−kf) ≥ 0 for almost all x ∈X (with respect to µ). This implies
that

∫
(φ1−φ2)(g−kf) dµ ≥ 0. Hence,

∫
φ1g dµ−

∫
φ2g dµ ≥ k

(∫
φ1f dµ−

∫
φ2f dµ

)
≥ 0.

Next we present one of our key results, Lemma 2.7, which can be viewed as a ‘Neyman-
Pearson lemma’ for binomial data under (ε, 0)-DP. Lemma 2.7 is the simplest case of our
general DP-UMP result in Theorem 2.10, in which we have a simple hypothesis and δ = 0.
Since δ = 0, the Tulap random variable is actually untruncated in this setting. While Lemma
2.7 is the simplest case of Theorem 2.10, it contains most of the big ideas required to prove
the general result.

Lemma 2.7. Let ε > 0, α ∈ (0, 1), 0 ≤ θ0 < θ1 ≤ 1, and n ≥ 1 be given. Observe
X ∼ Binom(n, θ), where θ is unknown. Set the decision rule φ∗ : Z → [0, 1] by φ∗(x) =
FN0(x−m), where N0 ∼ Tulap(0, b = e−ε, 0) and m is chosen such that Eθ0φ∗(x) = α. Then
φ∗ is UMP-α test of H0 : θ = θ0 versus H1 : θ = θ1 among Dn

ε,0.

Proof Sketch. Let φ be any other test which satisfies (2.2)-(2.5) at level α. Then, since φ∗ can
be written in the form of (1) in Lemma 2.5, there exists y ∈ Z such that φ∗(x) ≥ φ(x) when
x ≥ y and φ∗(x) ≤ φ(x) when x < y. By the MLR property of the binomial distribution and
applying Lemma 2.6, we have βφ∗(θ1) ≥ βφ(θ1).
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While the classical Neyman-Pearson lemma results in an acceptance and rejection region,
the DP-UMP always has some probability of rejecting the null, due to the constraints
(2.2)-(2.5). As ε ↑ ∞, the DP-UMP converges to the non-private UMP, explored in Remark
2.16.

2.4. Simple and one-sided DP-UMP tests when δ ≥ 0. In this section, we extend the
results of Section 2.3 to allow for δ ≥ 0. We begin by proposing the form of the DP-UMP
test for simple hypotheses. As in Section 2.3, the DP-UMP test is increasing in x as much
as (2.2)-(2.5) allow. Lemma 2.8 states that such a test can be written as the cdf of a Tulap
random variable, where the parameter q depends on ε and δ. We omit the proof of Lemma
2.9, which mimics the proof of Lemma 2.7.

Lemma 2.8. Let ε > 0 and δ ≥ 0 be given and set b = e−ε and q = 2δb
1−b+2δb . Let

φ : {0, 1, 2, . . . , n} → [0, 1]. The following are equivalent:
(1) There exists y ∈ {0, 1, 2, . . . , n} and m ∈ (0, 1) such that for x = 0, . . . , n,

φ(x) =


0 if x < y

m if x = y

min{eεφ(x− 1) + δ, 1− e−ε(1− φ(x− 1)) + e−εδ, 1} if x > y.

(2) There exists y ∈ {0, 1, 2, . . . , n} and m ∈ (0, 1) such that for x = 0, . . . , n,

φ(x) =



0 if x < y

m if x = y

eεφ(x− 1) + δ if x > y and φ(x− 1) ≤ 1−δ
1+eε

1− e−ε(1− φ(x− 1)) + e−εδ if x > y and 1−δ
1+eε ≤ φ(x− 1) ≤ 1− δ

1 if x > y and φ(x− 1) > 1− δ.

(3) There exists m ∈ R such that φ(x) = FN (x−m) where N ∼ Tulap(0, b, q).

Proof Sketch. The equivalence of (1) and (2) only requires determining which constraints
are active. To show the equivalence of (2) and (3), we verify that FN (x−m) satisfies the
recurrence of (2), using the expression of FN (x) in terms of FN0(x) given in Definition 2.3,
and the results of Lemma 2.5.

Lemma 2.9. Let ε > 0, δ ≥ 0, α ∈ (0, 1), 0 ≤ θ0 < θ1 ≤ 1, and n ≥ 1 be given. Observe
X ∼ Binom(n, θ), where θ is unknown. Set b = e−ε and q = 2δb

1−b+2δb . Define φ
∗ : Z→ [0, 1]

by φ∗(x) = FN (x −m) where N ∼ Tulap(0, b, q) and m is chosen such that Eθ0φ∗(x) = α.
Then φ∗ is UMP-α test of H0 : θ = θ0 versus H1 : θ = θ1 among Dn

ε,δ.

So far we have focused on simple hypothesis tests, but since our test only depends on θ0,
and not on θ1, our test is in fact the DP-UMP for one-sided tests, as stated in Theorem 2.10.
Theorem 2.10 also shows that we can use our tests to build DP-UMP tests for H0 : θ ≥ θ0

versus H1 : θ < θ0 as well. Hence, Theorem 2.10 is our most general result so far, containing
Lemmas 2.7 and 2.9 as special cases.

Theorem 2.10. Let X ∼ Binom(n, θ). Set φ∗(x) = FN (x−m1) and ψ∗(x) = 1−FN (x−m2),
where N ∼ Tulap

(
0, b = e−ε, q = 2δb

1−b+2δb

)
and m1,m2 are chosen such that Eθ0φ∗(x) = α

and Eθ0ψ
∗(x) = α. Then φ∗(x) is UMP-α among Dn

ε,δ for testing H0 : θ ≤ θ0 versus
H1 : θ > θ0, and ψ∗(x) is UMP-α among Dn

ε,δ for testing H0 : θ ≥ θ0 versus H1 : θ < θ0.
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2.5. Optimal one-sided private p-values. For the DP-UMP tests developed in Sections
2.3 and 2.4, the output is simply to ‘Reject’ or ‘Fail to Reject’ H0. In scientific research,
however, p-values are often used to weigh the evidence in favor of the alternative hypothesis
over the null. Intuitively, a p-value is the smallest level α, for which a test outputs ‘Reject’.
Definition 2.4 gives a formal definition of a p-value.

Definition 2.4 (p-Value: Casella and Berger (2002)). For a random vector Xi
iid∼ fθ, a

p-value for H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 is a statistic p(X) taking values in [0, 1], such
that for every α ∈ [0, 1],

sup
θ∈Θ0

Pθ(p(X) ≤ α) ≤ α.

The smaller the value of p(X), the greater evidence we have for H1 over H0.

In this section, we show that our proposed DP-UMP tests can be implemented as a
simple threshold test, where the test statistic is a function of a Tulap random variable. We
show that the test statistic itself satisfies (ε, δ)-DP. This allows for differentially private
p-values to be computed as a post-processing of the test statistic. We prove in Theorem 2.12
that these private p-values agree with the DP-UMP tests in Sections 2.3 and 2.4. While we
state our p-values for one-sided tests, they also apply to simple tests as a special case.

Since our DP-UMP test from Lemma 2.9 rejects with probability φ∗(x) = FN (x−m),
given N ∼ FN , φ∗(x) rejects the null if and only if X + N ≥ m. So, our DP-UMP tests
can be stated as a post-processing of X + N . We prove in Theorem 2.11 that releasing
X +N satisfies (ε, δ)-DP. By the post-processing property of DP (see Dwork and Roth, 2014,
Proposition 2.1), once we release X +N , any function of X +N also satisfies (ε, δ)-DP. Thus,
we can compute our private UMP-α tests as a function of X +N for any α. The smallest α
for which we reject the null is the p-value for that test. In fact Algorithm 1 and Theorem
2.12 give a more elegant method of computing this p-value.

Theorem 2.11. Let X be any set, and T : X n → Z, with sup |T (x)−T (x′)| ≤ 1, where the
supremum is over the set {(x, x′) ∈X n ×X n | H(x, x′) = 1}. Then the set of distributions{

Tulap
(
T (x), b = e−ε, q = 2δb

1−b+2δb

)∣∣∣x ∈X n
}

satisfies (ε, δ)-DP.

Proof Sketch. Since Tulap random variables are continuous and have a MLR in T (x), by
Lemma A.3 in Section A, it suffices to show that for all t ∈ R, the cdf of a Tulap random
variable FN (t− T (x)) satisfies (2.1), with φ(x) replaced with FN (t− T (x)). This is already
established in Lemma 2.8, by the equivalence of (1) and (3).

Theorem 2.12. Let ε > 0, δ ≥ 0, X ∼ Binom(n, θ) where θ is unknown, and Z|X ∼
Tulap(X, b = e−ε, q = 2δb

1−b+2δb). Then
(1) p(θ0, Z) := P (X +N ≥ Z | Z) is a p-value for H0 : θ ≤ θ0 versus H1 : θ > θ0, where the

probability is over X ∼ Binom(n, θ0) and N ∼ Tulap(0, b, q).
(2) Let 0 < α < 1 be given. The test φ∗(x) = PZ∼Tulap(x,b,q)(p(θ0, Z) ≤ α | X) is UMP-α

for H0 : θ ≤ θ0 versus H1 : θ > θ0 among Dn
ε,δ.

(3) For all θ1 > θ0, p(θ0, Z) is the stochastically smallest (ε, δ)-DP p-value for H0 : θ ≤ θ0

versus H1 : θ ≥ θ0.
(4) The output of Algorithm 1 is equal to p(θ0, Z).

In the following corollary, we see that 1− p(θ0, Z) = P (X +N ≤ Z | Z) is the corresponding
p-value for H0 : θ ≥ θ0 versus H1 : θ < θ0, with all the analogous properties.
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Corollary 2.13. In the same setup as Theorem 2.12, 1 − p(θ0, Z) = P (X + N ≤ Z | Z)
is the stochastically smallest (ε, δ)-DP p-value for H0 : θ ≥ θ0 versus H1 : θ < θ0, and
ψ∗(x) = PZ∼Tulap(x,b,q)(1− p(θ0, Z) ≤ α | X) agrees with the UMP-α test in Theorem 2.10.

Algorithm 1 UMP one-sided p-value for binomial data under (ε, δ)-DP
INPUT: n ∈ N, θ0 ∈ (0, 1), ε > 0, δ ≥ 0, Z ∼ Tulap

(
X, b = e−ε, q = 2δb

1−b+2δb

)
1: Set FN as the cdf of N ∼ Tulap(0, b, q)

2: Set F = (FN (0− Z), FN (1− Z), . . . , FN (n− Z))>

3: Set B = (
(n
0

)
θ00(1− θ0)n−0,

(n
1

)
θ10(1− θ0)n−1, . . . ,

(n
n

)
θn0 (1− θ0)n−n)>

OUTPUT: F>B

To implement Algorithm 1, we must be able to sample a Tulap random variable, which
Algorithm 2 provides. The algorithm is based on the expression of Tulap(m, b, 0) in terms
of geometric and uniform variables, and uses rejection sampling when q > 0 (see Bishop,
2006, Chapter 11 for an introduction to rejection sampling). A proof that the output of this
algorithm follows the correct distribution can be found in Lemma A.1 in Section A.

Algorithm 2 Sample from Tulap distribution: N ∼ Tulap(m, b, q)

INPUT: m ∈ R, b ∈ (0, 1), q ∈ [0, 1)

1: Draw G1, G2
iid∼ Geom(1− b) and U ∼ Unif(−1/2, 1/2)

2: Set N = G1 −G2 + U
3: If FN0

(N) < q/2 or FN0
(N) > 1− q/2, where N0 ∼ Tulap(0, b, 0), go to 1:

OUTPUT: N +m

Remark 2.14. It has been noted in the DP literature, such as in Haeberlen, Pierce and
Narayan (2011), that the running time of an algorithm can potentially leak information
about the value of the noise used or entries of the database itself. While Algorithm 2 has
variable runtime, in fact the runtime is independent of the output value and the sensitive
statistic m. To see this, observe that the value N generated at each iteration, is independent
of all previous values. So, the number of iterations and the final output are independent.
Since m is only added to N at the end, the runtime does not depend on m either.

Furthermore, since FN0(N) ∼ U(0, 1), we observe that the runtime follows the distribu-
tion Geom(1− q), as the probability of “success” is (1− q) and we want to know when the
first “success” is. In particular, the expected running time is 1/(1− q) iterations.

Remark 2.15. Since we know that releasing Z = X + N , where N is a Tulap random
variable, satisfies (ε, δ)-DP, one could release Z and compute all of the desired inference
quantities as a post-processing of Z, at no additional cost to privacy. In the remainder of
the paper, we show that private two-sided p-values, confidence intervals, and confidence
distributions can all be expressed as a post-processing of the summary statistic Z, leading to
a more complete DP statistical analysis of binomial data at a fixed privacy cost.

Remark 2.16 (Asymptotic Relative Efficiency). One may wonder about the asymptotic
properties of the DP-UMP test compared to the non-private UMP test. It is not hard to
show that for any fixed ε > 0, δ, and θ0 ∈ (0, 1), our proposed DP-UMP test has asymptotic
relative efficiency (ARE) of 1, relative to the non-private UMP test (see Van der Vaart,
2000, Section 14.3 for an introduction to ARE). Let X ∼ Binom(n, θ0). Define the two test
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statistics as T1 = X and T2 = X +N , where N ∼ Tulap(0, b, q). The ARE of the DP-UMP
relative to the non-private UMP test is limn→∞(C2(n)/C1(n))2, where

Ci(n) =

(
d

dθ
EθTi

∣∣∣
θ=θ0

)/√
nVarθ0(Ti), for i = 1, 2.

We compute EθTi = nθ, Varθ0(T1) = nθ0(1 − θ0), and Varθ0(T2) = nθ0(1 − θ0) + Var(N).
Since Var(N) is a constant, we have that C1 = (θ0(1− θ0))−1/2 and C2 → (θ0(1− θ0))−1/2,
and so the ARE is 1.

For δ = 0, we have a simple closed formula for the variance of N : Var(N) = 2 exp(−ε)
(1−exp(−ε))2 .

In this setting, we can also consider the rate at which (C2(n)/C1(n))2 converges to 1, as a
function of n and ε. We have that(

C2

C1

)2

=
Varθ0(T1)

Varθ0(T2)
=

1

1 + 2 exp(−ε)
(1−exp(−ε))2

1
nθ0(1−θ0)

.

Applying the Taylor expansion of 1/(1 + x) about x = 0, we arrive at two formulas. If
ε → 0 such that 1

ε = o (
√
n) we have that (C2/C1)2 = 1 − O

(
1
nε2

)
and if ε → ∞, then

(C2/C1)2 = 1 − O
(

1
n exp(ε)

)
. We see that as long as 1/ε = o(

√
n), the DP-UMP has the

same ARE as the non-private UMP. On the other hand, if ε→∞, the DP-UMP converges
to the non-private UMP at an exponential rate.

2.6. Bonferroni two-sided tests. In this section as well as in Sections 2.7 and 2.8, we
develop “two-sided” tests for hypotheses of the form H0 : θ = θ0 versus H1 : θ 6= θ0. One way
of viewing this problem is as a multiple testing problem, where we test both H0 : θ ≤ θ0 and
H0 : θ ≥ θ0. It is well known that if p1 is a p-value for H0 : θ ≤ θ0 and p2 is a p-value for
H0 : θ ≥ θ0, then p = 2 min(p1, p2) is a p-value for H0 : θ = θ0.

More generally, if we are interested in testing H0 : θ ∈ ∩ki=1Θk, and pi is a p-value for
testing H0 : θ ∈ Θk, then p = kmin{p1, . . . , pk} is a p-value for H0 : θ ∈ ∩ki=1Θk. We call
this setting a multiple testing problem or an intersection-union test (See Casella and Berger,
2002, Section 8.2.3). The factor k in the computation of p is called the Bonferroni correction.
Other concepts related to multiple testing are false discovery rate (Benjamini and Hochberg,
1995), and adaptive data analysis which each offer methods of adjusting global error rates
when running multiple statistical analyses on the same database. Recently, there has been
an interesting line of work, beginning with Dwork et al. (2015), which shows that the tools
of DP can be used to address the problem of adaptive data analysis.

Using the Bonferroni correction, we can combine the DP-UMP p-values from Theorem
2.12 and Corollary 2.13 to derive a DP two-sided test given in Proposition 2.17. The proof
of Proposition 2.17 is fairly mechanical, and is left to Section A.

Proposition 2.17. Let ε > 0, δ ≥ 0, X ∼ Binom(n, θ) where θ is unknown, and Z | X ∼
Tulap

(
X, b = e−ε, q = 2δb

1−b+2δb

)
. Then

(1) p′(θ0, Z) = 2 min(p(θ0, Z), 1 − p(θ0, Z)) is a (ε, δ)-DP p-value for H0 : θ = θ0 versus
H0 : θ 6= θ0 for any θ0 ∈ (0, 1), where p is the one-sided p-value from Theorem 2.12.

(2) The test φ′(X) = PZ(p′(θ0, Z) ≤ α | X) is in Dn
ε,δ and can be written in the form

φ′(x) = φ∗(x) + ψ∗(x), where φ∗, ψ∗ are as defined in Theorem 2.10 at size α/2.
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(3) The test φ′(X) is uniformly more powerful than any level α/2 test in Dn
ε,δ for H0 : θ = θ0

versus H1 : θ 6= θ0.

The major benefit of the tests in Proposition 2.17 is in their simplicity, as they generally do
not optimize any particular criteria. However, since they are more powerful than any DP
test of level α/2, they are not unreasonable tests, and perform relatively well compared to
other candidate tests.

2.7. DP-UMP unbiased two-sided tests. In Section 2.6, we developed two-sided DP
tests using a Bonferroni correction. While we were able to show that they are preferred over
any level α/2 test, they are not optimal when compared to other size α DP tests.

In this section, we continue our exploration of DP tests for H0 : θ = θ0 versus H1 : θ 6= θ0.
While one may hope to develop UMP tests in this setting, it is well known that among
all tests, there is no UMP test, even without privacy. Indeed, the left-side DP-UMP and
the right-side DP-UMP have higher power in different regions. Instead, we must restrict
to a smaller class of tests. In classical statistics, it is common to restrict to unbiased tests.
We show that there exists a DP-UMP unbiased test (DP-UMPU) for H0 : θ = θ0 versus
H1 : θ 6= θ0, and write the test in terms of the Tulap distribution.

Definition 2.5 (Unbiased Test). A test φ : X n → [0, 1] is unbiased for H0 : θ ∈ Θ0 versus
H1 : θ ∈ Θ1 if for all θ0 ∈ Θ0 and all θ1 ∈ Θ1 we have that Eθ0φ ≤ Eθ1φ.

Intuitively, unbiased means that the marginal probability of ‘Reject’ is always higher in
the alternative than in the null.

While in the one-sided case, the DP-UMP test increases as much as possible in terms
of either x or −x, now that we restrict to unbiased tests, the DP-UMP needs to increase
as fast as possible in both directions. It turns out that there exists a center k, where the
DP-UMPU test is symmetric about k, and increases as much as possible in both directions,
subject to (2.2)-(2.5). This gives the form in Theorem 2.18.

Theorem 2.18. Let X ∼ Binom(n, θ), 0 < θ0 < 1 and 0 < α < 1. There exists a UMPU
size α test among Dn

ε,δ for H0 : θ = θ0 versus H1 : θ 6= θ0, which is of the form

φ∗(x) =

{
FN (x− k −m) if x ≥ k
FN (k − x−m) if x < k,

where k and m are chosen such that EX∼θ0(X − nθ0)φ(X) = 0 and EX∼θ0φ(X) = α.

Proof Sketch. We must show that there exists k and m which solve the two equations, and
then argue that φ∗ is UMP among all level α unbiased tests in Dn

ε,δ. The proof is inspired by
the Generalized Neyman Pearson Lemma (Lehmann and Romano, 2008, Theorem 3.6.1),
and has a similar strategy as Theorem 2.10.

In Figure 2, we illustrate the DP-UMPU test, demonstrating that the value k depends
on the size α. In particular k generally does not equal nθ0, an intuitive guess for the point
of symmetry of the test.

In Theorem 2.10, we were able to derive DP p-values that agree with these tests. However,
in Theorem 2.18, the quantity k depends on n, α, and θ0, and there is no clear functional
form of k in terms of these quantities. Thus it does not seem that there is a simple formula
for the p-values of the test in Theorem 2.18. The following corollary shows that in the case
when θ0 = 1

2 , the value of k is n
2 and a convenient form for the p-value exists.
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Figure 2. Plot of the DP-UMPU test φ(x) for H0 : θ = .75 versus H1 : θ 6=
.75 at size α = .1 and α = .01, with n = 10, ε = 1, δ = 0. The solid vertical
line indicates the value nθ0 = 7.5, and the dashed vertical lines indicate the
value of k in Theorem 2.18, which are approximately 7.2 and 7.1 for α = .1
and α = .01, respectively.

Corollary 2.19. In the setup of Theorem 2.18, if θ0 = 1
2 then k = n

2 . Let Z | X ∼
Tulap

(
X, b = e−ε, 2δb

1−b+2δb

)
, then the corresponding p-value is

p(Z) = PX∼θ0,N

(
|X +N − n/2| ≥ |Z − n/2|

∣∣∣Z) ,
which can be computed via Algorithm 3, setting θ0 = 1

2 .

Proof Sketch. It suffices to check that when k = n
2 , the test is unbiased. This is done using

the symmetry of both φ(x) and fX(x) about x = n
2 .

Remark 2.20. While Corollary 2.19 only applies in the case that θ0 = 1
2 , this is in fact a

common setting. This arises when we are interested in testing whether two mutually exclusive
(and collectively exhaustive) events are equally likely, such as whether the probability of
being born male versus female is 1

2 . In Section 4.2, we see that for the sign and median test,
when testing whether the medians of two random variables are equal or not, this can be
expressed as testing H0 : θ = 1

2 versus H1 : θ 6= 1
2 .

2.8. Asymptotically unbiased two sided tests. In the previous section, we developed
the DP-UMPU two-sided test, and showed that in the case where θ0 = 1/2, we can easily
compute p-values. When θ0 6= 1/2, k depends on α and there is no natural test statistics,
making the problem more challenging. Nevertheless, based on Corollary 2.19 we conjecture
that |X +N −nθ0| is a test statistic which provides a close approximation to the DP-UMPU
test. In Figure 2, we see that k is approximately equal to nθ0, even for n as small as 10. We
show in Proposition 2.22 that this test statistic in fact leads to an asymptotically unbiased
test. In Section 5.2, we see that this asymptotically unbiased test performs very similarly to
the UMPU test from Section 2.7 for finite samples.
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Algorithm 3 Asymptotically unbiased DP p-value
INPUT: n ∈ N, θ0 ∈ (0, 1), ε > 0, δ ≥ 0, Z ∼ Tulap

(
X, b = e−ε, q = 2δb

1−b+2δb

)
1: Set T = |Z − nθ0|
2: Call p(θ, Z) the p-value computed by Algorithm 1
3: Set p = p(θ0, T + nθ0) + 1− p(θ0, nθ0 − T )

OUTPUT: p

Proposition 2.21. The output of Algorithm 3 is

p(θ0, Z) = PX∼θ0,N

(
|X +N − nθ0| > |Z − nθ0|

∣∣∣Z) ,
which is a p-value for H0 : θ = θ0 versus H0 : θ 6= θ0 and satisfies (ε, δ)-DP. The corresponding
test φ(x) = PN (p(θ0, Z) ≤ α | X) is of the form of Theorem 2.18, with k = nθ0.

Proof Sketch. It is easy to verify that when θ = θ0, p(θ0, Z) is marginally distributed as
U(0, 1). Since p(θ0, Z) ∼ U(0, 1), we have that Pθ0(p(θ0, Z) ≥ α) = α. The p-value satisfies
(ε, δ)-DP since it is a post-processing of Z.

Proposition 2.22. In the setting of Theorem 2.18, holding ε, δ, α, and θ0 all fixed, the test
in Proposition 2.21 is asymptotically unbiased.

Proof Sketch. In the proof of Theorem 2.18, we saw that if φ is of the form in Theorem 2.18
and Eθ0(X − nθ0)φ(X) = 0, then φ is unbiased. Let φ be the test in Proposition 2.21. Then
it suffices to show that limn→∞ Eθ0

X−nθ0√
nθ0(1−θ0)

φ(X)√
n

= 0. Recall that if X ∼ Binom(n, θ0),

then X−nθ0√
nθ0(1−θ0)

d→ N(0, 1). Using the fact that φ(x) is symmetric about k = nθ0, we see

that the expectation is the integration of the product of two even functions and one odd
function. Hence the expectation is zero.

Remark 2.23. Since Proposition 2.22 shows that the test φ′ in Proposition 2.21 is asymp-
totically unbiased, and since it is of the form of the UMPU test φ∗ of Theorem 2.18, as the
sample size increases, the power of the test φ′ is very similar to that of φ∗. In Section 5.2,
we see that even at n = 30, the performance is very close between φ′ and φ∗.

3. Confidence intervals

3.1. Background and notation. A confidence set is a popular method of expressing
uncertainty about a population quantity. Since all estimates have some error in them, a
confidence set communicates the set of values in which we expect the population quantity to
lie. While confidence sets can be of arbitrary forms, typically we prefer confidence sets which
are intervals, since this simpler form improves interpretability.

Definition 3.1 (Confidence Interval). Let Xi
iid∼ fθ, where θ ∈ Θ ⊂ R. A (random)

confidence interval (CI) is a set of random variables C = {C(x) | x ∈X n}, each of which
takes values in {[a, b] ∈ R2 | a ≤ b}. We say that C has coverage γ if for all θ ∈ Θ,

PX∼θ(θ ∈ C(X)) ≥ γ.
If one of a or b in a confidence interval C is constant, then we call C a one-sided confidence
interval, otherwise we call C a two-sided confidence interval.
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For convenience, we will often suppress the dependence of a confidence interval on x,
and simply write C rather than C(x). In classical statistics, there is a well known connection
between hypothesis tests and confidence sets (see Casella and Berger, 2002, Chapter 9). For
a deterministic test of level α, with rejection region R, the set Θ \R is a confidence set with
coverage 1 − α. For randomized tests, it is more convenient to work with p-values. The
following Proposition shows how one can use a p-value to build a confidence set. See Geyer
and Meeden (2005) for a deeper understanding of randomized tests, p-values, and confidence
sets in terms of fuzzy set theory.

Proposition 3.1. If p(θ | X) is a p-value, then C(X) = {θ | p(θ | X) ≥ α} is a confidence
set with coverage 1− α.

In order to decide whether one confidence interval is to be preferred over another, we
require some criteria. In classical statistics, one considers uniformly most accurate (UMA)
confidence intervals, which have properties related to UMP tests. UMA confidence intervals
are defined in terms of false coverage, which is the analogue of the power of the corresponding
test. The UMA property is important in theory and practice, because it results in smaller
confidence intervals, and more accurately communicates the uncertainty of the parameter in
question. Our definitions of false coverage and UMA follow that of Casella and Berger (2002,
Section 9.3.2).

Definition 3.2 (False Coverage and Uniformly Most Accurate). Let C be a confidence
interval for θ ∈ Θ. The false coverage probability of θ′ under θ is defined as Pθ(θ′ ∈ C).
However, the allowable values of θ and θ′ vary depending on the structure of C:

if C(X) = [L(X), U(X)], then only consider θ′ 6= θ
if C(X) = [L(X),max{Θ}], then only consider θ′ < θ
if C(X) = [min{Θ}, U(X)], then only consider θ′ > θ.

The Uniformly Most Accurate (UMA) confidence interval among a set of confidence intervals,
minimizes the false coverage for all valid pairs θ and θ′.

To understand the reason for limiting the values of θ and θ′ in false coverage, consider
the case where C(X) = [L(X),max{Θ}]. In this setting, we are only concerned when we
cover a false value θ′ which is lesser than the true θ, as this represents an unnecessarily wide
interval.

3.2. One-sided confidence intervals. In this section, we show how we can use our DP-
UMP tests to produce private confidence intervals for Bernoulli data. In the following
Theorem, we show that the one-sided confidence interval based on our DP-UMP one-sided
test is UMA. Furthermore, this interval is still a function of our private test statistic
Z = X +N , and so after releasing Z, there is no additional cost to privacy when providing
this confidence interval.

Theorem 3.2. Let Z = X + N , where X ∼ Binom(n, θ) and N ∼ Tulap(0, b = e−ε, q =
2δb

1−b+2δb), and let p(θ0, Z) be the one-sided private p-value for H0 : θ ≤ θ0 versus H1 : θ ≥ θ0,
defined in Theorem 2.12. Let α ∈ (0, 1) be given. The confidence interval C∗α = {θ0 |
p(θ0, Z) ≥ α} is the UMA (ε, δ)-DP confidence interval of the form [L, 1] with coverage 1−α.
Proof Sketch. Releasing C∗α satisfies (ε, δ)-DP by the post-processing property of DP. The fact
that C∗α is UMA is shown by observing that the false coverage probability can be interpreted
as the power of a corresponding test, which is the DP-UMP.
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Corollary 3.3. Using the same setup as Theorem 3.2, the interval Cα = {θ0 | (1−p(θ0, Z)) ≥
α} is the UMA (ε, δ)-DP confidence interval of the form [0, U ], with coverage 1− α.

Remark 3.4. The value L∗ in the interval C∗α = [L∗, 1] of Theorem 3.2 can be easily
computed by minimizing (p(θ0, Z)− α)2 over the interval θ0 ∈ [0, 1]. This can be done using
standard optimization software.

3.3. Two-sided confidence intervals. As we saw in Theorem 3.2, when p(θ0, Z) is a one-
sided p-value, the set {θ0 | p(θ0, Z) ≥ α} forms a one-sided confidence interval. Similarly, if
p(θ0, Z) is a two-sided p-value, then {θ0 | p(θ0, Z) ≥ α} is of the form [L,U ]. In this section,
we will consider the DP confidence intervals produced by each of our proposed two-sided
tests from Sections 2.6-2.8.

First, we introduce our optimality criterion for two-sided confidence intervals. Just as
there is generally no UMP two-sided test, there does not exist a UMA two-sided confidence
interval. In Section 2.7, we saw that for two-sided tests, we imposed the condition of
unbiasedness in order to obtain a UMP test. Similarly, we will consider an analogous notion
of unbiasedness for confidence intervals. Intuitively, a confidence interval is unbiased if the
probability of false coverage is always smaller than the true coverage. Unbiased confidence
intervals and unbiased hypothesis tests are in one-to-one correspondence via the connection
in Proposition 3.1.

Definition 3.3 (Unbiased Confidence Interval). Let C(X) be a confidence interval for θ.
We call C unbiased if for all θ 6= θ′, Pθ(θ′ ∈ C) ≤ Pθ(θ ∈ C).

The next result shows that our DP-UMPU test from Theorem 2.18 leads to a DP-UMA
unbiased (DP-UMAU) confidence interval.

Theorem 3.5. Let ε > 0, δ ≥ 0, X ∼ Binom(n, θ) where θ is unknown. Let Z | X ∼
Tulap

(
X, b = e−ε, q = 2δb

1−b+2δb

)
. We construct the corresponding randomized p-value as

p∗(Z) = min
{
α
∣∣∣|Z − k(α)| ≥ m(α)

}
,

where k(·) and m(·) satisfy the requirements of Theorem 2.18. The set C∗ = {θ | p∗(x, U) ≥
α} is an unbiased, DP confidence interval with coverage (1− α), and C∗ is the DP-UMAU
confidence interval with coverage (1− α).

The proof of Theorem 3.5 is similar to the proof of Theorem 3.2, and is postponed to
Section A.

While Theorem 3.5 gives the DP-UMAU confidence interval, it is not easy to implement,
since k and m do not have simple closed forms, as discussed in Section 2.7. Instead, we can
use Proposition 3.6 to produce computationally convenient confidence intervals based on the
p-values from Proposition 2.17 and Algorithm 3.

Proposition 3.6. Let ε > 0, δ ≥ 0, X ∼ Binom(n, θ) where θ is unknown, and Z | X ∼
Tulap

(
X, b = e−ε, q = 2δb

1−b+2δb

)
. Consider the two quantities

(1) C1
α = {θ0 | p′(θ0, Z) ≥ α} = (C∗α/2) \ (C∗1−α/2), where p′(θ, Z) is the Bonferroni p-value

from Proposition 2.17 and C∗α is the one-sided confidence interval from Theorem 3.2.
(2) C2

α = {θ0 | p(θ0, Z) ≥ α}, where p(θ0, Z) is the p-value from Proposition 2.21.
Both C1

α and C2
α are (ε, δ)-DP confidence intervals of the form [L,U ] with coverage (1− α).
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Remark 3.7. Since the confidence interval C2
α from Proposition 3.6 is based on the approx-

imation to the DP-UMPU test, it serves as an approximation to the DP-UMAU confidence
interval from Proposition 3.5.

Similar to Proposition 2.17, which stated that the Bonferroni two-sided test is uniformly
more powerful than any level α/2 DP test, the following Corollary shows that C1

α in
Proposition 3.6 is uniformly more accurate than any DP confidence interval with coverage
1− α/2. The proof is found in Section A.

Corollary 3.8. In the setting of Proposition 3.6, C1
α is uniformly more accurate than any

(ε, δ)-DP confidence interval with coverage 1− α/2.

4. Confidence distributions and distribution-free inference

4.1. Confidence distributions. A confidence distribution is a frequentist estimator, which
contains information to produce hypothesis tests, confidence intervals, p-values, point es-
timates, etc (see Xie and Singh, 2013 for an introduction to Confidence Distributions).
Much like in Bayesian statistics, where the posterior distribution is used to do inference, a
confidence distribution contains the relevant information for frequentist statistics. Intuitively,
a confidence distribution µ is a probability measure on Θ such that for S ⊂ Θ, µ(S) is the
coverage of S. Confidence distributions also have the property that the cdf of µ evaluated at
θ0 is a p-value for H0 : θ ≤ θ0 versus H1 : θ > θ0.

The goal of this section is to release a confidence distribution, which satisfies DP. In
particular, we show that using our one-sided DP-UMP tests we can produce optimal DP
confidence distributions.

Definition 4.1 (Confidence Distribution: Xie and Singh (2013)). Let Xi
iid∼ fθ for θ ∈ Θ and

Xi ∈X . A confidence distribution is a family of random variables {Hn(x, θ) | x ∈X n, θ ∈
Θ} (we will suppress the dependence on x and write Hn(θ)), each of which takes values in
[0, 1] such that
(1) for each x ∈X n, Hn(·) is a cdf on Θ, and
(2) at the true value θ = θ0, Hn(θ0) = Hn(X, θ0) ∼ U [0, 1] (over the randomness of Hn and

X).

Supposing that we have two methods of constructing confidence distributions, what criteria
should we use to choose between them? In the following definition, we say that one confidence
distribution is superior to another if the mass is more closely distributed near the true value
θ0.

Definition 4.2 (Xie and Singh, 2013). For real-valued random variables X,Y , X
sto
≤ Y means

that P (X ≤ t) ≥ P (Y ≤ t) for all t ∈ R. Let H1 and H2 be two confidence distributions.

We say that H1 is superior to H2 at θ = θ0 if for all ε > 0, H1(θ0 − ε)
sto
≤ H2(θ0 − ε) and

1−H1(θ0 + ε)
sto
≤ 1−H2(θ0 + ε).

In Section 5 of Xie and Singh (2013), they discuss how using a UMP one-sided test
results in the optimal confidence distribution. Theorem 4.1 below similarly shows that our
DP-UMP one-sided test results in the optimal DP confidence distribution.
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Theorem 4.1. Let Z = X + N , where X ∼ Binom(n, θ) and N ∼ Tulap(0, b = e−ε, q =
2δb

1−b+2δb), and let p(θ0, Z) be the one-sided private p-value for H0 : θ ≤ θ0 versus H1 : θ ≥ θ0.
Define H∗n(θ0) = p(θ0, Z). Then H∗n is a confidence distribution which satisfies (ε, δ)-DP,
and is superior to any other (ε, δ)-DP confidence distribution.

Proof. That H∗n satisfies (ε, δ)-DP follows by the post-processing property of DP. The fact
that H∗n is a confidence distribution follows from the fact that p(θ0, Z) is monotonic in θ0,
and p(θ0, Z) ∈ [0, 1]. If H∗n were not superior, then this contradicts that p(θ0, Z) corresponds
to the UMP test among Dn

ε,δ for H0 : θ ≤ θ0 versus H1 : θ > θ0.

4.2. Application to distribution-free inference. In this section, we show how our DP-
UMP tests for count data can be used to test certain hypotheses for continuous data. In
particular, we give a DP version of the sign and median test allowing one to test the median
of either paired or independent samples. For an introduction to the sign and median tests,
see Sections 5.4 and 6.4 of Gibbons and Chakraborti (2014). Let ε > 0 and δ ∈ [0, 1) be
given, and let N ∼ Tulap(0, b, q) for b = e−ε and q = 2δb

1−b−2δb .
Sign test: We observe n iid pairs (Xi, Yi) for i = 1, . . . , n. Then for all i = 1, . . . , n,

Xi
d
= X and Yi

d
= Y for some ordinal random variables X and Y . The variables X and Y

need not be numeric, but we assume that for any pair (Xi, Yi) we can determine if Xi > Yi
or not. For simplicity, we also assume that there are no pairs with Xi = Yi. Denote the
unknown probability θ = P (X > Y ). We want to test a hypothesis such as H0 : θ ≤ θ0 versus
H1 : θ > θ0. The sign test uses the test statistic T = #{Xi > Yi}. Since the sensitivity of T
is 1, by Theorem 2.11, T +N satisfies (ε, δ)-DP. Note that the test statistic is distributed
as T ∼ Binom(n, θ). Using Algorithm 1, we obtain a private p-value for the sign test as a
post-processing of T +N .

To test whether median(X) = median(Y ), we consider the hypothesis H0 : θ = 1
2 versus

H1 : θ 6= 1
2 . Using the same test statistic Z = T +N , we obtain a p-value for the sign test

via Algorithm 3.
Median test: We observe two independent sets of iid ordinal data {Xi}ni=1 and {Yi}ni=1,

where all Xi and Yi are distinct values, and we have a total ordering on these values. We
assume that there exists random variables X and Y such that Xi

d
= X and Yi

d
= Y for all i.

We want to test H0 : median(X) ≤ median(Y ) versus H1 : median(X) > median(Y ). The
median test uses the test statistic T = #{i | rank(Xi) > n}, where rank(Xi) = #{Xj ≤
Xi}+ #{Yj ≤ Xi}. Since the sensitivity of T is 1, by Theorem 2.11, T +N satisfies (ε, δ)-DP.
When median(X) = median(Y ), T ∼ HyperGeom(n = n,m = n, k = n). Using Algorithm
1, with B replaced with the pmf of HyperGeom(n = n,m = n, k = n), we obtain a private
p-value for the median test as a post-processing of T +N .

To test whether median(X) = median(Y ), we consider the hypothesis H0 : θ = 1
2 versus

H1 : θ 6= 1
2 . Using the same test statistic Z = T +N , we obtain a p-value for the sign test

via Algorithm 3, with B replaced with the pmf of HyperGeom(n = n,m = n, k = n).

5. Simulations

5.1. One-sided hypothesis testing simulations. In this section, we study the empirical
performance of our DP-UMP test compared to the Normal approximation proposed by Vu
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and Slavković (2009) and the non-private UMP test. Our goal is to understand the difference
in performance between these tests.

We define the empirical power to be the proportion of times a test ‘Rejects’ when the
alternative is true, and the empirical type I error as the proportion of times a test ‘Rejects’
when the null is true. For our simulations, we focus on small samples as the noise introduced
by DP methods is most impactful in this setting.

In Figure 3, we plot the empirical power of our UMP test, the Normal approximation
from Vu and Slavković (2009), and the non-private UMP. For each n, we generate 10,000
samples from Binom(n, .95). We privatize each X by adding N ∼ Tulap(0, e−ε, 0) for the
DP-UMP and L ∼ Lap(1/ε) for the Normal approximation. We compute the UMP p-value
via Algorithm 1 and the approximate p-value for X + L, using the cdf of N

(
X,n/4 + 2/ε2

)
.

The empirical power is given by (10000)−1#{p-value< .05}. The DP-UMP test indeed gives
higher power compared to the Normal approximation. The largest discrepancy in power
between these two tests is at n = 128 with a difference of .039. In terms of a percentage, the
greatest difference between the DP-UMP and the Normal approximation is at n = 32, with
the approximate test achieving only 79.5% the power as the DP-UMP.

In Figure 4 we plot the empirical type I error of the DP-UMP and the Normal approxi-
mation tests. We fix ε = 1 and δ = 0, and vary θ0. For each θ0, we generate 100,000 samples
from Binom(30, θ0). For each sample, we compute the DP-UMP and Normal approximation
tests at type I error α = .05. We plot the proportion of times we reject the null as well as
moving average curves. The DP-UMP, which is provably at type I error α = .05 achieves
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type I error very close to .05, but the Normal approximation has a higher type I error for
small values of θ0, and a lower type I error for large values of θ0.

5.2. Two-sided hypothesis testing simulations. In this section, we compare the various
tests we have developed for H0 : θ = θ0 versus H1 : θ 6= θ0. As the DP-UMPU does not have
a simple formula for p-values, we are particularly interested in understanding how closely the
test of Algorithm 3 approximates the DP-UMPU. We also include the one-sided DP-UMPU
tests, since these provide upper bounds for the power of the two-sided tests. For each of the
simulations, we were able to compute the power exactly, since we have closed forms for the
tests in terms of the Tulap distribution, and power is just an expected value.

In Figures 5-8, we plot the power of our proposed DP test for varying values of the true
θ and sample size n. The label “UMP Left” corresponds to the DP-UMP test for H0 : θ ≤ θ0,
“UMP Right” corresponds to the DP-UMP test for H0 : θ ≥ θ0, “UMPU” corresponds to
the test from Theorem 2.18, “Approx UMPU” corresponds to the test from Section 2.8, and
“Bonferroni” corresponds to the test from Proposition 2.17.

In Figures 5 and 6, we see how the tests perform when the null value is more extreme
(θ0 = .1). As our theory showed, the DP-UMP test for H0 : θ ≤ θ0 is the most powerful for
true values > θ0, and the DP-UMP test for H0 : θ ≥ θ0 is the most powerful for true values
< θ0. We see that the DP-UMPU test and the approximately unbiased test perform well on
both sides. However, the Bonferroni test suffers a loss in power, demonstrating that either
the DP-UMPU, or the approximately unbiased test should be preferred.

In Figure 7 we study our tests when n = 100 and θ0 = .5. In this case, the approximate
test is identical to the DP-UMPU test, which we know from Corollary 2.19. The Bonferroni
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test can also be shown to be unbiased in this setting, however it still suffers a loss in power
since it is not UMP. As in Figure 5, the one-sided tests give upper bounds on the power.

In Figures 5, 6, and 7, we see that all of the proposed tests have power equal to α = .05
when the true value of θ is equal to the null. This confirms that all of our tests have type I
error exactly α, as claimed.

Figure 8 compares the power of the tests as the sample size increases. In this simulation,
we are testing H0 : θ0 = .8 versus H1 : θ0 6= .8 where the true value is θ = .75. We use the
values ε = .1, δ = 0, and α = .05. In this plot, we see again that the DP-UMP test for
H0 : θ ≤ θ0 has more power than any of the other tests. The power of the UMPU and the
approximate UMPU are indistinguishable, and the power of the Bonferroni test is slightly
lower than either the UMPU or approximate UMPU tests. As we expect, the power of the
DP-UMP test for H0 : θ ≥ θ0 goes to zero as n→∞.

5.3. Two-sided confidence interval simulations. In this section, we study the perfor-
mance of the private confidence intervals given in Proposition 3.6. The label “Approx UMPU”
corresponds to the interval C2

α defined in Proposition 3.6, and “Bonferroni” corresponds to
the interval C1

α defined in Proposition 3.6. As the DP-UMAU cannot be easily computed,
our goal is to determine which of these two confidence intervals provides better performance.

In Figure 9, we compute the average width of the intervals depending on the true value
of θ over 1000 replicates for each value of θ. For this simulation, n = 30, ε = 1, δ = 0, and
α = .05. In Figure 9, we see that the approximately unbiased confidence interval achieves
smaller width than the Bonferroni confidence interval for moderate θs, at the expense of
larger widths for more extreme θs. At θ = 1

2 , the approximately unbiased confidence interval
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is 97.8% the width of the Bonferroni confidence interval, but at θ close to 0 or 1, the
approximately unbiased confidence interval is 4.1% wider than the Bonferroni confidence
interval. The empirical coverage varied between .93 and .962 for both confidence intervals,
with an average coverage of 0.9496. The Monte Carlo standard error of these estimates is√
.95 ∗ (1− .95)/(1000) = 0.0069, suggesting that the confidence intervals have coverage

(1− α) = .95 as claimed by Proposition 3.6.
In Figure 10, we explore the average width, but vary the sample size instead of θ. For

this simulation, the true value of θ is 1
2 , ε = 1, δ = 0, and α = .05. The average width is

computed at each value of n, over 1000 replicates. We see that the approximately unbiased
confidence interval consistently achieves a slightly smaller average width than the Bonferroni
confidence interval. The largest discrepancy is at n = 16, where is approximately unbiased
confidence interval has an average width 97.53% of the Bonferroni confidence interval. We
see that as the sample size increases, the average width of these two confidence intervals
becomes more similar.

6. Discussion and future directions

In this paper, we derived uniformly most powerful simple and one-sided tests for Bernoulli
data among all DP α-level tests. Previously, while various hypothesis tests under DP have
been proposed, none have satisfied such an optimality criterion. While our initial DP-UMP
tests only output ‘Reject’ or ‘Fail to Reject’, we showed that they can be achieved by
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post-processing a noisy sufficient statistic based on the Tulap distribution. This allows us to
produce private p-values which agree with the DP-UMP tests. We also applied our techniques
to produce two-sided tests, confidence intervals, and confidence distributions.

The ability to produce private p-values and confidence intervals, rather than simply an
accept/reject decision, has practical importance as well, since both the statistics and scientific
community have been strongly arguing for providing more complete information on basic
statistical inference when determining statistical significance, as the latter cannot and should
not be equated with scientific significance (Nuzzo, 2014; Wasserstein, Lazar et al., 2016).
Gardner and Altman (1986) argues that instead of only reporting significance, scientists
should report “sample estimates, confidence intervals, test statistics, and p-values” to provide
full statistical information of the study. We have shown in this paper, that all of these results
can be produced within the constraint of differential privacy, at a fixed privacy budget.

A simple, yet fundamental observation that underlies our results is that DP tests can
be written in terms of linear constraints. This idea alone allows for a new perspective on
DP hypothesis testing, which is particularly applicable to other discrete problems, such as
multinomial models or difference of population proportions. Stating the problem in this form
allows for the consideration of all possible DP tests, and allows the exploration of UMP tests
through numerical linear program solvers.

We showed that for exchangeable data, DP tests need only depend on the empirical
distribution. For binary data, the empirical distribution is equivalent to the sample sum,
which is a complete sufficient statistic for the binomial model. However, in general it is not
clear whether optimal DP tests are always a function of complete sufficient statistics as is
the case for classical UMP tests. It would be worth investigating whether there is a notion
of sufficiency which applies for DP tests.

When δ = 0, our optimal noise adding mechanism, the proposed Tulap distribution, is
related to the discrete Laplace distribution, which Ghosh, Roughgarden and Sundararajan
(2009) and Geng and Viswanath (2016a) also found is optimal for a general class of loss
functions. For δ > 0, a truncated discrete Laplace distribution is optimal for our problem.
Little previous work has looked into optimal noise adding mechanisms for (ε, δ)-DP. Geng
and Viswanath (2016b) studied this problem to some extent, but did not consider truncated
Laplace distributions. Steinke (2018) and Bun et al. (2018) propose that truncated Laplace
can be viewed as the “canonical distribution” for (ε, δ)-DP in a way that Laplace is “canonical”
for (ε, 0)-DP. Further exploration in the use of truncated Laplace distributions in the (ε, δ)-DP
setting may be fruitful.

It is interesting to consider whether there exist DP-UMP tests in the settings of either
concentrated DP (Dwork and Rothblum, 2016; Bun and Steinke, 2016), or Renyi DP (Mironov,
2017). Unfortunately, our DP-UMP tests rely on the fact that the inequalities of (ε, δ)-DP
produce linear constraints on the test φ. However, for concentrated DP and Renyi DP, the
constraints are not linear. More sophisticated techniques may be required to understand
these settings.

In our work, we found that there was a close connection between our UMP tests and the
discrete Laplace distribution, which Ghosh, Roughgarden and Sundararajan (2009) showed
is universal utility maximizing for binary data. However, Brenner and Nissim (2014) show
that when the data are non-binary, there is no universal utility maximizing mechanism. As
Canonne et al. (2019) discuss, this result seems to imply that in settings where the data is
non-binary, it may not be possible to develop DP-UMP tests. Even if this is the case, finding
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statistically sound techniques to account for the additional randomness due to privacy, is
still an essential problem to consider, to help with the usability of DP.
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Appendix A. Detailed proofs and technical lemmas

Proof of Theorem 2.2. Define φ′ by φ′(x) = 1
n!

∑
π∈σ(n) φ(π(x)), where σ(n) is the symmetric

group on n letters. First note that φ(π(x)) satisfies (2.1) for all π ∈ σ(n), and that∫
φ(π(x)) dµθ =

∫
φ(x) dµθ. Then by exchangeability,∫

φ′(x) dµθ =

∫
1

n!

∑
π∈σ(n)

φ(π(x)) dµθ =
1

n!

∑
π∈σ(n)

∫
φ(π(x)) dµθ

=
1

n!

∑
π∈σ(n)

∫
φ(x) dµθ =

∫
φ(x) dµθ.

To see that φ′ satisfies (ε, δ)-DP, we check condition (2.1):

φ′(x) =
1

n!

∑
π∈σ(n)

φ(π(x)) ≤ 1

n!

∑
π∈σ(n)

(eεφ(π(x′)) + δ)

=
1

n!

∑
π∈σ(n)

eεφ(π(x′)) +
1

n!

∑
π∈σ(n)

δ = eεφ′(x′) + δ

(1− φ′(x)) =

1− 1

n!

∑
π∈σ(n)

φ(π(x))

 =
1

n!

∑
π∈σ(n)

(1− φ(π(x)))

≤ 1

n!

∑
π∈σ(n)

(
eε(1− φ(π(x′))) + δ

)
= eε

(
1− φ′(π(x′))

)
+ δ.

In Lemma A.1 which follows, we use the notation L ∼ DLap(b) to denote that the
random variable L follows a discrete Laplace distribution, which has pmf fL(x) = 1−b

1+bb
|x| for

x ∈ Z (Inusah and Kozubowski, 2006). Furthermore, we write G ∼ Geom(p) to denote that
G is a geometric random variable with pmf fG(x) = (1− p)xp for x ∈ {0, 1, 2, . . .}.

Lemma A.1.
(1) Let L ∼ DLap(b), U ∼ Unif(−1/2, 1/2), G1, G2

iid∼ Geom(1−b), and N0 ∼ Tulap(m, b, 0).
Then L+ U +m

d
= G1 −G2 + U +m

d
= N0.

(2) Let N be the output of Algorithm 2 with inputs m, b, q. Then N ∼ Tulap(m, b, q).
(3) The random variable N ∼ Tulap(m, b, q) is continuous and symmetric about m.

Proof of Lemma A.1.

(1) We know that L d
= G1−G2, as shown in Inusah and Kozubowski (2006). Let fU (·) denote

the pdf of U , and FU denote the cdf of U . We will use the property that fU (x) = fU (−x)
and FU (−x) = 1− FU (x). Then the pdf of L+ U is

fL+U (x) = fU (x− [x])

(
1− b
1 + b

)
b|[x]| =

fU (x− [x])
(

1−b
1+b

)
b−[x] [x] ≤ 0

fU (x− [x])
(

1−b
1+b

)
b[x] [x] > 0.
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If [x] ≤ 0, then we have

FL+U (x) =

∫ x

−∞
fU (t− [t])

(
1− b
1 + b

)
b−[t] dt

=

∫ [x]−1/2

−∞
fU (t− [t])

(
1− b
1 + b

)
b−[t] dt+

∫ x

[x]−1/2
fU (t− [x])

(
1− b
1 + b

)
b−[x] dt

=

[x]−1∑
t=−∞

(
1− b
1 + b

)
b−t +

∫ x

[x]−1/2
fU (t− [x])

(
1− b
1 + b

)
b−[x] dt

=
b−[x]+1

1 + b
+ FU (x− [x])

(
1− b
1 + b

)
b−[x]

=
b−[x]

1 + b
(b+ FU (x− [x])(1− b)).

Since, L+ U is symmetric about zero, as both L and U are symmetric about zero, for
[x] ≥ 0 we have FL+U (x) = 1− FL+U (−x). The rest follows by replacing x with x−m,
and FU (x) = x+ 1/2.

(2) If q = 0, then by part (1), it is clear that the output of Algorithm 2 has the correct
distribution. If q > 0, then by rejection sampling, we have that N ∼ Tulap(m, b, q). For
an introduction to rejection sampling, see Bishop (2006, Chapter 11).

(3) This property follows immediately from (1), and that Tulap(m, b, q) is truncated equally
on both sides of m.

Lemma A.2. Let N ∼ Tulap(m, b, q) and let t ∈ Z. Then FN (t) =

{
b−tC(m) t ≤ [m]

1− btC(−m) t > [m],

where C(m) = (1+b)−1b[m](b+([m]−m+1/2)(1−b)). C(m) is positive, monotone decreasing,
and continuous in m. Furthermore, b−[m]C(m) = 1− b[m]C(−m).

Proof of Lemma A.2. The form of the cdf at integer values is easily verified from Lemma
A.1. It is clear that C(m) is positive. It is also clear that C(m) is continuous and monotone
decreasing for all m ∈ R \ {z + 1/2 | z ∈ Z}. So, we will check that C is continuous at
m = z + 1/2 for z ∈ Z:

lim
ε↓0

(1 + b)C(z + 1/2 + ε) = lim
ε↓0

bz+1(b+ (1− ε)(1− b)) = bz+1

lim
ε↓0

(1 + b)C(z + 1/2− ε) = lim
ε↓0

bz(b+ ε(1− b)) = bz+1.

Since C is continuous on R and monotone decreasing almost everywhere, it follows that C is
monotone decreasing on R as well.

Call α(m) = [m]−m+ 1/2, which lies in [0, 1]. Note that α(−m) = −[m] +m+ 1/2 =
1− α(m). Then

(1 + b)b−[m]C(m) = b+ α(m)(1− b) = b+ (1− α(−m))(1− b) = b+ (1− b)− α(−m)(1− b)

= (1 + b)− (b+ α(−m)(1− b)) = (1 + b)(1− b[m]C(−m)).
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Proof of Lemma 2.5. First we show that (1) and (2) are equivalent. Clearly the m is the
same for both. We must show that for p ∈ (0, 1), eεp ≤ 1−e−ε(1−p) whenever p ≤ 1

1+eε , and
eεp > 1− e−ε(1− p) when p > 1

1+eε . Setting equal eεp = 1− e−ε(1− p) we find that p = 1
1+eε .

As p → 1, we have that eεp > 1 − e−ε(1 − p) and as p → 0, we have eεp < 1 − e−ε(1 − p).
We conclude that (1) and (2) are equivalent.

Next we show that (2) and (3) are equivalent. First we show that FN0(x−m) satisfies
the recurrence relation in (2). Set b = e−ε. First we show that for t ∈ Z such that t ≤ [m]−1,
FN0(t−m) ≤ 1

1+eε and for t ≥ [m], FN0(t−m) ≥ 1
1+eε . Since, FN0(t−m) is increasing in t,

it suffices to check t = [m]− 1 and t = [m]:

FN0([m]− 1−m) = b−[m]+1+[m] (b+ ([m]−m+ 1/2)(1− b))
1 + b

≤ b

1 + b
=

1

1 + eε

FN0([m]−m) = b−[m]+[m] (b+ ([m]−m+ 1/2)(1− b))
1 + b

≥ b

1 + b
=

1

1 + eε
,

where we use the fact that 0 ≤ [m]−m+ 1/2 ≤ 1. Now, let t ∈ Z and check three cases:
• Let t < [m], then eεFN0(t−m) = eεb−tC(m) = b−(t+1)C(m) = FN0(t+ 1−m).
• Let t = [m]. Using Lemma A.2, 1 − e−ε(1 − FN0(t − m)) = 1 − b(1 − b−[m]C(m)) =

1− b+ b(1− b[m]C(−m)) = 1− b+ b− b[m+1]C(−m) = FN0(t+ 1−m).
• Let t > m. Then 1 − e−ε(1 − FN0(t − m)) = 1 − b(btC(−m)) = 1 − bt+1C(−m) =
FN0(t+ 1−m).

Finally, for any value c ∈ (0, 1), we can find m such that FN0(0−m) = c, by the Intermediate
Value Theorem (Larson and Edwards, 2010, Theorem 1.13). On the other hand, given m,
set φ(0) = FN0(0−m).

Proof of Lemma 2.7. First note that φ∗ ∈ Dn
ε,0, since by Lemma 2.5, φ∗(x) = min{eεφ∗(x−

1), 1−e−ε(1−φ∗(x−1))}. So, φ∗ satisfies (2.2)-(2.5). Next, since by Lemma A.2, FN0(x−m)
is a continuous, decreasing function in m with limm↑∞ FN0(x−m) = 0 and limm↓−∞ FN0(x−
m) = 1, we can find m such that Eθ0φ∗(x) = α by the Intermediate Value Theorem (Larson
and Edwards, 2010, Theorem 1.13).

Now that we have argued that φ∗ is a valid test, the rest of the result is an application
of Lemma 2.6. It remains to show that the assumptions are satisfied for the lemma to apply.

Let φ ∈ Dn
ε,0 such that Eθ0φ(x) ≤ α. We will show that there exists y ∈ {0, 1, 2, . . . , n}

such that for x < y, φ∗(x) < φ(x) and for x ≥ y, φ∗(x) ≥ φ(y). Suppose to the contrary that
for all x ∈ {0, 1, . . . , n}, φ∗(x) < φ(x). It follows that Eθ0φ∗(x) < Eθ0φ(x) ≤ α, contradicting
the fact that Eθ0φ∗(x) = α. We conclude that there exists y such that φ∗(y) ≥ φ(y).

Let y be the smallest point in {0, 1, 2, . . . , n} such that φ∗(y) ≥ φ(y). Our induction
hypothesis is that for all x ∈ {y, y + 1, . . . , n}, φ∗(y) ≥ φ(y). For induction, suppose that
for some x ≥ y we know that φ∗(x) ≥ φ(x). We will show that φ∗(x + 1) ≥ φ(x + 1). By
Lemma 2.5, we know that φ∗(x+ 1) = min{eεφ∗(x), 1− e−ε(1− φ∗(x))}, and by constraints
(2.2)-(2.5), we know that φ(x+ 1) ≤ min{eεφ(x), 1− e−ε(1− φ(x))}.
• Case 1: If φ∗(x) ≤ 1

1+eε , then by Lemma 2.5, φ∗(x+ 1) = eεφ∗(x) ≥ eεφ(x) ≥ φ(x+ 1).

• Case 2: If φ∗(x) > 1
1+eε , then by Lemma 2.5, φ∗(x+ 1) = 1− e−ε(1−φ∗(x)) ≥ 1− e−ε(1−

φ(x)) ≥ φ(x+ 1).

We conclude that φ∗(x+ 1) ≥ φ(x+ 1). By induction, the inequality φ∗(x) ≥ φ(x) holds for
all x ∈ {y, y + 1, y + 2, . . . , n}. So, we have that φ∗(x) ≥ φ(x) for x ∈ {y, y + 1, y + 2, . . . , n}
and φ∗(x) < φ(x) for x ∈ {0, 1, 2, . . . , y − 1}. Since Binom(n, θ) has a monotone likelihood
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ratio in θ, by Lemma 2.6 we have that Eθ1φ∗(x) ≥ Eθ1φ(x). We conclude that φ∗ is UMP-α
among Dn

ε,0 for the stated hypothesis test.

Proof of Lemma 2.8. We will abbreviate F (x) := FN0(x − m), where N0 ∼ Tulap(0, b =
e−ε, 0) to simplify notation. First we will show that (1) and (2) are equivalent. It is clear that
y and m are the same in both. Next consider 1− e−ε(1− p) + e−εδ = eεp+ δ, solving for p
gives p = 1−δ

1+eε . Considering as p→ 0 and p→ 1, we see that 1− e−ε(1− p) + e−εδ ≥ eεp+ δ

when p ≤ 1−δ
1+eε and 1− e−ε(1− p) + e−εδ ≤ eεp+ δ when p ≥ 1−δ

1+eε .
Next solving 1− e−ε(1−p) + e−εδ = 1 for p gives p = 1− δ. So, 1− e−ε(1−p) + e−εδ ≤ 1

when p ≤ 1− δ and 1− e−ε(1− p) + e−εδ ≥ 1 when p ≥ 1− δ. Lastly, solving eεp+ δ = 1
for p gives p = 1−δ

eε ≥
1−δ
1+eε . Combining all of these comparisons, we see that (1) is equivalent

to (2).
Before we justify the equivalence of (2) and (3), we argue the following claim. Let φ(x)

be defined as in (3). Then φ(x) ≤ 1−δ
1+eε if and only if F (x) ≤ 1

1+eε . Suppose that φ(x) ≤ 1−δ
1+eε .

Then F (x)−q/2
1−q ≤ 1−δ

1+eε . Thus,

F (x) ≤ (1− q)(1− δ)
1 + eε

+
q

2

=
1

1 + eε

(
(1− q)(1− δ) +

(
b+ 1

b

)
q

2

)
=

1

1 + eε

(
(1− b)(1− δ)

1− b+ 2δb
+

(
b+ 1

b

)
δb

1− b+ 2δb

)
=

1

1 + eε
(1− b+ 2δb)−1((1− b)(1− δ) + (b+ 1)δ)

=
1

1 + eε
.

We are now ready to show that φ(x) as described in (3) fits the form of (2).
• Suppose that 0 < φ(x) < 1−δ

1+eε . By the above, we know that F (x) ≤ 1
1+eε . By Lemma 2.5,

eεφ(x) + δ =
eεF (x)− q

2b

1− q
+ δ =

F (x+ 1)− q
2

1− q
+

q
2 −

q
2b

1− q
+ δ

= φ(x+ 1) +
δb

1− b

(
1− 1

b

)
+ δ = φ(x+ 1).

• Suppose that 1−δ
1+eε < φ(x) ≤ 1− δ. Then we have F (x) > 1

1+eε . Then

1− e−ε(1− φ(x)) + e−εδ = 1− e−ε
(

1− F (x)− q/2
1− q

)
+ e−εδ

= (1− q)−1
(
1− q − e−ε (1− F (x)− q/2)

)
+ e−εδ

= (1− q)−1(1− e−ε(1− F (x)) + bq/2− q) + bδ

= (1− q)−1(F (x+ 1)− q/2) +
(b− 1)q/2

1− q
+ bδ

= φ(x+ 1) +
δb(b− 1)

1− b
+ bδ

= φ(x+ 1).



DP INFERENCE BINOMIAL 33

• Finally, we must show that if φ(x) = 1 then φ(x − 1) ≥ 1 − δ. It suffices to show that
F (x) ≥ 1−q/2 implies that F (x−1) ≥ (1−δ)(1−q)+q/2 = 1− (1/b)(q/2). We prove the
contrapositive. Suppose that F (x− 1) < 1− (1/b)(q/2). Then since F satisfies property
(2.4), we know that

F (x) ≤ 1− e−ε(1− F (x− 1)) < 1− b(1− (1− (1/b)(q/2)))

= 1− b(1− 1 + (1/b)(q/2)) = 1− q/2.
We have justified that φ(x) in (3) satisfies the recurrence relation in (2). Given φ′

of the form in (2), with first non-zero entry at y, by Lemma A.2 and the Intermediate
Value Theorem (Larson and Edwards, 2010, Theorem 1.13), we can find m ∈ R such that
φ(y) = φ′(y). We conclude that (1), (2), and (3) are all equivalent.

Proof of Theorem 2.10. First we show that φ∗ is UMP-α for H0 : θ ≤ θ0 versus H1 : θ > θ0.
Since φ∗(x) is increasing and Binom(n, θ) has a monotone likelihood ratio in θ, Eθφ∗ ≤
Eθ0φ

∗ = α for all θ ≤ θ0 (property of MLR). By Lemma 2.7, we know that φ∗(x) is most
powerful for any alternative θ1 > θ0 versus the null θ0. So, φ∗ is UMP-α.

Next we show that ψ∗ is UMP-α for H1 : θ ≥ θ0 versus H1 : θ < θ0. First note that
supθ≥θ0 Eθψ

∗ = α. Let ψ be another test with supθ≥θ0 Eθψ ≤ α. Let θ1 < θ0, we will show
that Eθ1ψ∗ ≥ Eθ1ψ. Define ψ̃∗(x) = ψ∗(n−x) = 1−FN0(n−x−m2) = FN0(x+m2−n) and
ψ̃(x) = ψ(n−x). Then using the map (x, θ) 7→ (n−x, 1−θ), we have that EX∼(1−θ0)ψ̃

∗(X) =
EX∼(1−θ0)ψ

∗(n−X) = EY∼θ0ψ∗(Y ) = α. By a similar argument for ψ, we have that both
ψ̃∗ and ψ̃ are level α for H0 : θ ≤ 1− θ0 versus H1 : θ > 1− θ0. Since E(1−θ0)ψ̃

∗ = α, and
ψ̃∗(x) = FN0(x−m′), we have that ψ̃∗ is UMP-α for H0 : θ ≤ (1−θ0) versus H1 : θ > (1−θ0).
Then for θ1 < θ0,

EX∼θ1ψ
∗(X) = EY∼(1−θ1)ψ̃

∗(Y ) ≥ EY∼(1−θ1)ψ̃(Y ) = EX∼θ1ψ(X).

We conclude that ψ∗ is UMP-α for H1 : θ ≥ θ0 versus H1 : θ < θ0.

Lemma A.3. Observe x ∈ X n. Let T : X n → R, and let {µx | x ∈ X n} be a set of
probability measures on R, dominated by Lebesgue measure. Suppose that µx is parameterized
by T (x) and µx has MLR in T (x). Then {µx} satisfies (ε, δ)-DP if and only if for all
H(x1, x2) = 1 and all t ∈ R the following two inequalities hold:

µx1((−∞, t)) ≤ eεµx2((−∞, t)) + δ (A.1)
µx1((t,∞)) ≤ eεµx2((t,∞)) + δ. (A.2)

Proof of Lemma A.3. Let α ∈ [0, 1] be given. We will only consider B ⊂ R (Lebesgue mea-
surable) such that µx2(B) = α. Then demonstrating (ε, δ)-DP requires sup

{B|µx2 (B)=α}
µx1(B) ≤

eεα+ δ. We interpret this problem as testing the hypothesis H0 : x = x2 versus H1 : x = x1,
using the rejection region B, where α is the type I error, and µx1(B) is the power. We know
that sup

{B|µx2 (B)=α}
µx1(B) is achieved by the Neyman-Pearson Lemma. Since µx has an MLR

in T (x), arg sup{B|µx2 (B)=α} µx1(B) is either of the form (−∞, t) or (t,∞), depending on
whether T (x1) is greater or lesser than T (x2). Since µx1 is dominated by Lebesgue measure
for all x1, µx2((−∞, t)) is continuous in t, which allows us to achieve exactly α type I error.
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Proof of Theorem 2.11. Let Z ∼ Tulap
(
T (x), b = e−ε, 2δb

1−b+2δb

)
. We know that the distri-

bution of Z is symmetric with location T (x), and the pdf fZ(t) is increasing as a function
of |t − T (x)|. It follows that fZ(t) has a MLR in T (x). By Lemma 2.8, we know that
φ(x) = FZ(m) satisfies (2.2)-(2.5), so by Lemma A.3, we have the desired result.

Proof of Theorem 2.12. We denote by FZ∼θ0(·) the cdf of the random variable Z, distributed
as Z | X ∼ Tulap(X, b, q) and X ∼ Binom(n, θ0).
(1) First we show that p(θ0, Z) is a p-value, according to Definition 2.4. To this end, consider

sup
θ≤θ0

PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ)

(p(θ, Z) ≤ α) = PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ0)

(p(θ0, Z) ≤ α),

where we use the fact thatX has a monotone likelihood ratio in θ. Note that p(θ0, Z) = 1−
FZ∼θ0(Z). When X ∼ Binom(n, θ0), we have that p(θ0, Z) = 1−FZ∼θ0(Z) ∼ Unif(0, 1).
So,

PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ0)

(p(θ0, Z) ≤ α) = PU∼Unif(0,1)(U ≤ α) = α.

(2) Let N ∼ Tulap(0, b, q), and recall from Lemma 2.9 that the UMP-α test for H0 : θ ≤ θ0

versus H1 : θ > θ0 is φ∗(x) = FN (x−m), where m satisfies Eθ0φ∗(x) = α. We can write
φ∗ as

φ∗(x) = FN (x−m) = PN∼Tulap(0,b,q)(N ≤ X −m | X)

= PN (X +N ≥ m | X) = PZ|X∼Tulap(X,b,q)(Z ≥ m | X),

where m is chosen such that

α = EX∼θ0φ
∗(X) = EX∼θ0PZ|X∼Tulap(X,b,q)(Z ≥ m | X)

= PZ|X∼Tulap(X,b,q)
X∼Binom(n,θ0)

(Z ≥ m) = 1− FZ∼θ0(m),

where F is the cdf of the marginal distribution of Z, where Z|X ∼ Tulap(X, b, q) and
X ∼ Binom(n, θ0). From this equation, we have that m is the (1 − α)-quantile of the
marginal distribution of Z.

Let R|X ∼ Bern(φ∗(X)) and Z|X ∼ Tulap(X, b, q). Then

R|X d
= I(Z ≥ m) | X d

= I(FZ∼θ0(Z) ≥ FZ∼θ0(m)) | X
d
= I (1− α ≤ FZ∼θ0(Z)) |X
d
= I (p(θ0, Z) ≤ α) |X.

Taking the conditional expected value E(· | X) of both sides gives

φ∗(x) = E(R | X) = PZ|X∼Tulap(X,b,q)(p(θ0, Z) ≤ α | X).

(3) Let p′(X) be any other (ε, δ)-DP p-value, and let θ1 > θ0. We wish to show that

PX∼θ1,N (p(θ0, X +N) ≤ α) ≥ PX∼θ1(p′(X) ≤ α).

However, the left side is just EX∼θ1φ∗(X), the power of the DP-UMP test, and the right
is the power of the corresponding DP test of p′. Since φ∗ is uniformly most powerful
among (ε, δ)-DP tests, the inequality is justified.
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(4) We can express p(θ0, Z) in the following way:

p(θ0, Z) = PX∼Binom(n,θ0)
N∼Tulap(0,b,q)

(X +N ≥ Z) = PX,N (−N ≤ X − Z)

= EX∼Binom(n,θ0)PN (N ≤ X − Z | X) = EX∼Binom(n,θ0)FN (X − Z)

=

n∑
x=0

FN (x− Z)

(
n

x

)
θx0 (1− θ0)n−x,

which is just the inner product of the vectors F and B in algorithm 1.

Proof of Proposition 2.17. First p′(θ0, Z) satisfies (ε, δ)-DP by post-processing. To verify (2),
let α ∈ (0, 1), and consider

PN∼Tulap(p′(θ0, X +N) ≤ α | X) = P (2 min{p(θ0, X +N), 1− p(θ0, X +N)} ≤ α | X)

= P (p(θ0, X +N) ≤ α/2 | X)

+ P (p(θ0, X +N) ≥ 1− α/2 | X)

− P (1− α/2 ≤ p(θ0, X +N) ≤ α/2 | X)

= φ∗(X) + ψ∗(X)− 0,

where we use the fact that 1− α/2 ≥ α/2, implying that the last probability is zero. To see
that p′(θ0, Z) is a p-value, we compute

PX∼θ0,N (p′(θ0, X +N) ≤ α) = EX∼θ0P (p′(θ0, X +N) ≤ α | X)

= EX∼θ0 [φ∗(X) + ψ∗(X)]

= α/2 + α/2.

Finally, to see that φ′ is more powerful than any level α/2 test, notice that φ∗ and ψ∗ are
the most powerful DP tests depending on whether θ > θ0 or θ < θ0, respectively. Since
φ′ = φ∗ + ψ∗, it is more powerful than either of these tests.

Proof of Theorem 2.18. We must show that there exists k and m which solve the two
equations, and then argue that φ∗ is UMP among all level α tests in Dn

ε,δ. The proof
is inspired by the Generalized Neyman Pearson Lemma Lehmann and Romano (2008,
Theorem 3.6.1), and has a similar strategy as Theorem 2.10.

Let θ1 6= θ0. We will show that φ∗ is most powerful among unbiased size α tests in
Dn
ε,δ for testing H0 : θ = θ0 versus H1 : θ = θ1. Set f1(x) =

(
n
x

)
θx0 (1 − θ0)n−x, f2(x) =

(x− nθ0)
(
n
x

)
θx0 (1− θ0)n−x, and f3(x) =

(
n
x

)
θx1 (1− θ1)n−x. Let φ ∈ Dn

ε,δ be any unbiased size
α test, not identical to φ∗.
(1) There exists k,m ∈ R such that φ∗ satisfies EX∼θ0(X−nθ0)φ(X) = 0 and EX∼θ0φ(X) =

α.
Proof. Set g1(k,m) = EX∼θ0φ∗(X)−α and g2(k,m) = EX∼θ0(X −nθ0)φ∗(X). We need
to show that there exists k and m such that g1(k,m) = g2(k,m) = 0.

Then, g2 partitions R2 into two disjoint regions: the pairs (k,m) such that g2 ≤ 0
and those such that g2 > 0. We claim that the solutions to g1 = 0 form a curve. To see
this, notice that for any k ∈ R, there exists a unique m ∈ R such that g1(k,m) = 0. In
particular, when k = −1, and m(−1) is the value such that g1(−1,m(−1)) = 0, then
g2(−1,m(−1)) > 0, since g2 measures the covariance between X and φ∗(X) and both
are increasing functions of X. Similarly, for k = n+ 1, g2(n+ 1,m(n+ 1)) < 0.
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Since, both g1 and g2 are continuous functions, by the Intermediate Value Theorem
(Royden and Fitzpatrick, 1988, Proposition 11, p. 182), there exists −1 ≤ k ≤ n+ 1 and
m ∈ R such that g1(k,m) = g2(k,m) = 0.

(2) Since φ is unbiased, it’s power must have a local minimum at θ0 so, d
dθEθφ

∣∣∣
θ=θ0

= 0.

This is equivalent to requiring that
∑
φf2 = 0.

Proof. We calculate the derivative of the power:

d

dθ
βφ =

d

dθ

n∑
x=0

(
n

x

)
θx(1− θ)n−xφ(x)

=
n∑
x=0

(
n

x

)
θx(1− θ)n−xφ(x)

(
x

θ
+
x− n
1− θ

)
=

1

θ(1− θ)
Eθ(X − nθ)φ(X)

=
1

θ(1− θ)
∑

φf2.

(3) There exists yl ≤ k ≤ yu (integers) such that φ∗(x) ≥ φ(x) when x ≥ yu or x ≤ yl, and
φ∗(x) ≤ φ(x) when yl ≤ x ≤ yu.
Proof. Since φ is not identical to φ∗, there exists x ∈ {0, . . . , n} such that φ∗(x) 6= φ(x).
If φ∗(x) > φ(x) for all 0 ≤ x ≤ n, then set yl = floor(k) and yu = ceil(k). If φ∗(x) ≤ φ(x)
for all 0 ≤ x ≤ n, then it cannot be that φ is size α. We conclude that there exists a
value y such that φ∗(y) > φ(y). If y > k, then for every x ≥ y, φ∗(x) > φ(x), since φ∗
increases as much as possible. Alternatively, if y < k then for all x ≤ y, φ∗(x) < φ(x).
So, we have that either yl ≤ k exists or yu ≥ k exists. We need to show that both exist.

Suppose without loss of generality that yu ≥ k exists, and suppose to the contrary
that yl ≤ k does not exist. Then it is the case that φ∗(x) > φ(x) when x ≥ yu and
φ∗(x) ≤ φ(x) when x < yu. Notice that f2(x)

f1(x) = x− nθ0. So, φ∗(x) ≥ φ(x) if and only if
f2(x) ≥ cf1(x) for the constant c = yu − 1

2 − nθ0. Then for all x = 0, 1, 2, . . . , n,

(φ∗(x)− φ(x))(f2(x)− cf1(x)) ≥ 0,

and (φ∗(yu)− φ(yu))(f2(yu)− cf1(yu)) > 0. Summing over x gives
n∑
x=0

(φ∗(x)− φ(x))(f2(x)− cf1(x)) > 0∑
φ∗f2 −

∑
φf2 − c

∑
φ∗f1 + c

∑
φf1 > 0

−
∑

φf2 > 0∑
φf2 < 0,

We see that φ is not unbiased, contradicting our initial assumption. We conclude that
both yl and yu exist.
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(4) There exists k1, k2 ∈ R such that f3(x) ≥ k1f1(x) + k2f2(x) when x 6∈ (yl, yu) and
f3(x) ≤ k1f1(x) + k2f2(x) when x ∈ (yl, yu).
Proof. We need to consider what forms the set {x | f3(x) ≥ k1f1(x) + k2f2(x)} can take
on. These are solutions to

1 ≥ k1f1(x) + k2f2(x)

f3(x)

1 ≥ (k1 + k2(x− nθ0))
(1− θ0)n

(1− θ1)n
θx0 (1− θ0)x

θx1 (1− θ1)x(
1− θ1

1− θ0

)n(θ1(1− θ1)

θ0(1− θ0)

)x
≥ k1 − k2nθ0 + k2x.

The left side is either convex or constant in x. The right side is linear in x. If the left
is strictly convex (when θ1 6= 1 − θ0), we can always choose k1 and k2 such that the
set of solutions is of the form (−∞, yl] ∪ [yu,∞). If θ1 = 1− θ0, set k1 =

(
1−θ1
1−θ0

)n
and

k2 = 0.

(5) The test φ∗ is more powerful than φ at any θ1.
Proof. We have established that there exists k1 and k2 such that φ∗(x) ≥ φ(x) whenever
f3(x) ≥ k1f1(x) + k2f2(x) and φ∗(x) ≤ φ(x) when f3(x) ≤ k1f1(x) + k2f2(x). Then

(φ∗(x)− φ(x))(f3(x)− k1f1(x)− k2f2(x)) ≥ 0.

Then
n∑
x=0

(φ∗(x)− φ(x))(f3(x)− k1f1(x)− k2f2(x)) ≥ 0

n∑
x=0

φ∗(x)f3(x)−
n∑
x=0

φ(x)f3(x) ≥ 0

EX∼θ1φ
∗(X) ≥ EX∼θ1φ(X).

Since our argument does not depend on the choice of θ1, we conclude that φ∗ is more
powerful than any other size α unbiased test in Dn

ε,δ. Finally, noting that by taking
φ(x) := α, we see that φ∗ is indeed unbiased. Hence, φ∗ is the UMP-α among unbiased
tests in Dn

ε,δ.
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Proof of Corollary 2.19. We have to show that when using k = n
2 , φ is unbiased. Call

A = EX∼Binom(n,1/2)(X − n
2 )φ(X). Then

A =

(
1

2

)n n∑
x=0

(
n

x

)(
x− n

2

)
φ(x)

=

(
1

2

)n n∑
y=0

(
n

y

)(n
2
− y
)
φ(n− y)

=

(
1

2

)n n∑
y=0

(
n

y

)(n
2
− y
)
φ(y)

= −A,

where we made the substitution y = n − x, and used the fact that both
(
n
·
)
and φ(·) are

symmetric about k = n
2 . We see that A = −A, which implies that A = 0.

Proof of Proposition 2.21. Call p∗(θ0, Z) the output of Algorithm 3. First we will understand
the distribution of p∗(θ0, Z) when θ = θ0:

p∗(θ0, Z) = p(θ0, T + nθ0) + 1− p(θ0, nθ0 − T )

= PZ∼θ0(Z ≥ T + nθ0) + PZ∼θ0(Z ≤ nθ0 − T )

= PZ∼θ0(Z − nθ0 ≥ T or Z − nθ0 ≤ −T )

= PZ∼θ0(|Z − nθ0| ≥ T )

= 1− FT (T )

∼ U(0, 1).

Since p∗(θ0, Z) ∼ U(0, 1), we have that Pθ0(p∗(θ0, Z) ≥ α) = α. The p-value satisfies
(ε, δ)-DP since it is a post-processing of Z.

Proof of Proposition 2.22. In the proof of Theorem 2.18, we saw that if φ is of the form
in Theorem 2.18 and Eθ0(X − nθ0)φ(X) = 0, then φ is unbiased. Let φ be the test in
Proposition 2.21. Then it suffices to show that limn→∞ Eθ0

X−nθ0√
nθ0(1−θ0)

φ(X)√
n

= 0. We begin by

recalling that if X ∼ Binom(n, θ0) then by the Central Limit Theorem, we have that
X − nθ0√
nθ0(1− θ0)

d→ N(0, 1).

Using this we have

lim
n→∞

Eθ0
X − nθ0√
nθ0(1− θ0)

φ(X)√
n

= lim
n→∞

EZ∼N(0,1)Z
φ(Z

√
nθ0(1− θ0) + nθ0)√

n

= lim
n→∞

EZ∼N(0,1)Zφ
′(Z),

where

φ′(z) =
1√
n
φ(z
√
nθ0(1− θ0) + nθ0) =

1√
n

{
FN (z

√
nθ0(1− θ0)−m) if z ≥ 0

FN (−z
√
nθ0(1− θ0)−m) if z < 0,
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(we assume that k = nθ0). Notice that φ′ is symmetric about 0. So,

EZ∼N(0,1)Zφ
′(Z) = E(Zφ′(Z)I(Z ≤ 0) + E(Zφ′(Z)I(Z ≥ 0))

= −E(Zφ′(Z)I(≥ 0) + E(Zφ′(Z)I(Z ≥ 0))

= 0.

Proof of Theorem 3.5. It is easy to verify that C∗ is unbiased, and has the appropriate
coverage. Suppose to the contrary that C∗ is not UMA among DP unbiased confidence
intervals. Then there exists two values θ 6= θ0 and another DP confidence interval C ′, which
is unbiased with coverage (1− α) such that

Pθ(θ0 ∈ C ′) < Pθ(θ0 ∈ C∗),
or equivalently,

Pθ(θ0 6∈ C ′) > Pθ(θ0 6∈ C∗). (A.3)
At this point, note that φ′(x) = P (θ0 6∈ C ′ | X) is a size α, unbiased DP test for H0 : θ = θ0

versus H1 : θ 6= θ0. Furthermore, φ∗(x) = P (θ0 6∈ C∗ | X) is the size α DP-UMPU test from
Theorem 2.18. But then equation (A.3) is equivalent to Eθφ′ > Eθφ∗, which implies that φ∗
is not the DP-UMPU.

Proof of Theorem 3.2. Releasing C∗α satisfies (ε, δ)-DP by the post-processing property of
DP. The object C∗α is of the form [L, 1] by the monotonicity of p(θ0, Z) in θ0 (for a fixed Z).
The coverage of C∗α is 1− α, by the fact that p(θ0, Z) is a p-value.

Next we check that C∗α is in fact UMA. Suppose to the contrary that there exists another
DP test C ′α with coverage 1− α, and there exists θ0 < θ1 such that Pθ1(θ0 ∈ C ′α) < Pθ1(θ0 ∈
C∗α), which is equivalent to

Pθ1(θ0 6∈ C ′α) > Pθ1(θ0 6∈ C∗α). (A.4)

Notice that φ∗(x) = P (θ0 6∈ C∗α | x) is the UMP size α test from Lemma 2.9 for
H0 : θ ≤ θ0 versus H1 : θ > θ0, and φ′(x) = P (θ0 6∈ C ′α) is another test, which is also level α
for the same test. Observe that φ′ satisfies (ε, δ)-DP since it outputs ‘Reject’ if and only if
I(θ0 6∈ C ′α) = 1, which is a post-processing of the DP confidence interval C ′α.

Now, note that (A.4) can be equivalently expressed as Eθ1φ′ > Eθ1φ∗, which says that φ′
has more power at θ1 than φ∗, which contradicts that φ∗ is UMP-α among Dn

ε,δ. We conclude
that C∗α is UMA.

Proof of Corollary 3.8. Suppose to the contrary that there exist θ0 6= θ1 and a (ε, δ)-DP
confidence interval C ′ with coverage 1− α/2 such that

Pθ1(θ0 ∈ C ′) < Pθ1(θ0 ∈ C1
α),

or equivalently,
Pθ1(θ0 6∈ C ′) > Pθ1(θ0 6∈ C1

α). (A.5)
We can then construct two hypothesis tests φ1(x) = P (θ0 6∈ C1

α(x) | x), and φ′(x) = P (θ0 6∈
C ′(x) | x) for H0 : θ = θ0 versus H1 : θ 6= θ0. Note that φ1(x) is the test from Proposition
2.17 at size α, and φ′ has size α/2. Now, (A.5) implies that Eθ1φ′ > Eθ1φ1, which contradicts
Proposition 2.17, which states that φ1 must be uniformly more powerful than φ′.
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