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ABSTRACT. We develop differentially private methods for estimating various distributional
properties. Given a sample from a discrete distribution p, some functional f and accuracy
and privacy parameters « and ¢, the goal is to estimate f(p) up to accuracy «, while
maintaining e-differential privacy of the sample. We prove almost-tight bounds on the
sample size required for this problem for several functionals of interest, including support
size, support coverage, and entropy. We show that the cost of privacy is negligible in a
variety of settings, both theoretically and experimentally. Our methods are based on a
sensitivity analysis of several state-of-the-art methods for estimating these properties with
sublinear sample complexities.
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INTRODUCTION

How can we infer properties of a distribution given a sample from it? If data is in abundance,
the solution may be simple — the empirical distribution will approximate the true distribution.
However, challenges arise when data is scarce in comparison to the size of the domain, and
especially when we wish to quantify “rare events.” This is frequently the case: for example,
it has recently been observed that there are several very rare genetic mutations which occur
in humans, and we wish to know how many such mutations exist (Keinan and Clark, 2012;
Tennessen et al., 2012; Nelson et al., 2012). Many of these mutations have only been seen
once, and we can infer that there are many which have not been seen at all — therefore, the
empirical distribution will completely omit such unobserved events. Over the last decade, a
large body of work has focused on developing theoretically sound and effective tools for such
settings (see, e.g., (Orlitsky et al., 2016) and references therein), including the problem of
estimating the frequency distribution of rare genetic variations (Zou et al., 2016).

However, in many settings where one wishes to perform statistical inference, data may
contain sensitive information about individuals. For example, in medical studies, where the
data may contain individuals’ health records which could be used by insurance companies
to raise premiums. Alternatively, one can consider a map application which suggests routes
based on aggregate positions of individuals, which contains delicate information including
users’ residence data. In these settings, it is critical that our methods protect sensitive
information contained in the dataset. This does not preclude our overall goals of statistical
analysis, as we are trying to infer properties of the population p, and not the samples which
are drawn from said population.

That said, without careful experimental design, published statistical findings may be
prone to leaking sensitive information about the sample. As a notable example, it was
recently shown that one can determine the identity of some individuals who participated
in genome-wide association studies (Homer et al., 2008). This realization has motivated a
surge of interest in developing data sharing techniques with an explicit focus on maintaining
privacy of the data (Vu and Slavkovi¢, 2009; Johnson and Shmatikov, 2013; Uhler et al.,
2013; Yu et al., 2014; Simmons et al., 2016).

Privacy-preserving computation has enjoyed significant study in a number of fields,
including statistics and almost every branch of computer science, including cryptography,
machine learning, algorithms, and database theory — see, e.g., Dalenius (1977); Adam and
Worthmann (1989); Agrawal and Aggarwal (2001); Dinur and Nissim (2003); Dwork (2008);
Dwork and Roth (2014) and references therein. Perhaps the most celebrated notion of privacy,
proposed by theoretical computer scientists, is differential privacy (Dwork, McSherry, Nissim
and Smith, 2006). Informally, an algorithm is differentially private if its outputs on similar
datasets are statistically close (for a more precise definition, see Section 1). Differential
privacy has become the standard for theoretically-sound data privacy, leading to its adoption
by several large technology companies, including Google, Apple and Microsoft (Erlingsson
et al., 2014; Differential Privacy Team, Apple, 2017; Ding et al., 2017).

Our focus in this paper is to develop tools for private distribution property estimation.
In particular, we study the tradeoff between statistical accuracy, privacy, and error rate in
the sample size. Our model is that we are given sample access to some unknown discrete
distribution p, over a domain of size k, which is possibly unknown in some tasks. We wish
to estimate the following properties:
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e Support Coverage: If we take m samples from the distribution, what is the number of
unique elements we expect to see?

e Support Size: How many elements of the support have non-zero probability?

e Entropy: What is the Shannon entropy of the distribution?

For more formal statements of these problems, see Section 1.1. We require that our output
is accurate, differentially private, and correct with high probability. The goal is to give an
algorithm with minimal sample complexity n, while simultaneously being computationally
efficient.

Theoretical Results. Our main results show that privacy can be achieved for all these
problems at a very low cost. For example, if one wishes to privately estimate entropy, this
incurs an additional additive cost in the sample complexity which is very close to linear in
1/ae. We draw attention to two features of this bound. First, this is independent of k. All
the problems we consider have sample complexity ©(k/log k), so in the primary regime of
study where k£ > 1/ae, this small additive cost is dwarfed by the inherent sample complexity
of the non-private problem. Second, note that performing even the most basic statistical
task privately, estimating the bias of a coin, incurs this linear dependence. Surprisingly,
we show that much more sophisticated inference tasks can be privatized at almost no cost.
In particular, these properties imply that the additive cost of privacy is o(1) in the most
studied regime where the support size is large. In general, this is not true — for many other
problems, including distribution estimation and hypothesis testing, the additional cost of
privacy depends significantly on the support size or dimension (Diakonikolas et al., 2015;
Cai et al., 2017; Acharya et al., 2018b; Aliakbarpour et al., 2018; Acharya et al., 2019c). We
also provide lower bounds, showing that our upper bounds are almost tight. A more formal
statement of our results appears in Section 2.

Experimental Results. We demonstrate the efficacy of our method with experimental
evaluations. As a baseline, we compare with the non-private sample-optimal algorithms
of Orlitsky et al. (2016) and Wu and Yang (2019). Overall, we find that our algorithms’
performance is nearly identical, showing that, in many cases, privacy comes (essentially) for
free. We begin with an evaluation on synthetic data. Then, inspired by Valiant and Valiant
(2013); Orlitsky et al. (2016), we analyze a text corpus consisting of words from Hamlet, in
order to estimate the number of unique words which occur. Finally, we investigate name
frequencies in the US census data. This setting has been previously considered by Orlitsky
et al. (2016), but we emphasize that this is an application where private statistical analysis
is critical. This is evidenced by efforts of the US Census Bureau to incorporate differential
privacy into the 2020 US census (Dajani et al., 2017).

Techniques. Our approach works by choosing statistics for these tasks which possess
bounded sensitivity, which is well-known to imply privacy under the Laplace or Gaussian
mechanism. We note that bounded sensitivity of statistics is not always something that
can be taken for granted. Indeed, for many fundamental tasks, optimal algorithms for the
non-private setting may be highly sensitive, thus necessitating crucial modifications to obtain
differential privacy (Acharya et al., 2015; Cai et al., 2017). Thus, careful choice and design
of statistics must be a priority when performing inference with privacy considerations.

To this end, we leverage recent results of Acharya et al. (2017a), which studies estimators
for non-private versions of the problems we consider. The main technical work in their paper
exploits bounded sensitivity to show sharp cutoff-style concentration bounds for certain
estimators, which operate using the principle of best-polynomial approximation. They use
these results to show that a single algorithm, the Profile Maximum Likelihood (PML), can
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estimate all these properties simultaneously. On the other hand, we consider the sensitivity
of these estimators for purposes of privacy — the same property is utilized by both works for
very different purposes, a connection which may be of independent interest. Specifically, we
hope that by drawing this connection, researchers will revisit statistics which use similar
analysis and investigate their amenability to privacy.

We note that bounded sensitivity of a statistic may be exploited for purposes other than
privacy. For instance, by McDiarmid’s inequality, any such statistic also enjoys very sharp
concentration of measure, implying that one can boost the success probability of the test
at an additive cost which is logarithmic in the inverse of the failure probability. One may
naturally conjecture that, if a statistical task is based on a primitive which concentrates in
this sense, then it may also be privatized at a low cost. However, this is not true — estimating
a discrete distribution in ¢; distance is such a task, but the cost of privatization depends
significantly on the support size (Acharya et al., 2019b).

One can observe that, algorithmically, our method is quite simple: compute the non-
private statistic, and add a relatively small amount of Laplace noise. The non-private
statistics have recently been demonstrated to be practical (Orlitsky et al., 2016; Wu and
Yang, 2019), and the additional cost of the Laplace mechanism is minimal. This is in contrast
to several differentially private algorithms which invoke significant overhead in the quest
for privacy. Our algorithms attain almost-optimal rates (which are optimal up to constant
factors for most parameter regimes of interest), while simultaneously operating effectively in
practice, as demonstrated in our experimental results.

Related Work. Over the last decade, there have been a flurry of works on the problems
we study in this paper by the computer science and information theory communities, including
Shannon and Rényi entropy estimation (Paninski, 2003; Valiant and Valiant, 2017; Jiao et al.,
2017; Acharya et al., 2017b; Obremski and Skorski, 2017; Wu and Yang, 2019), support
coverage and support size estimation (Valiant and Valiant, 2017, 2016; Raghunathan et al.,
2017; Orlitsky et al., 2016; Wu and Yang, 2019). A recent paper studies the general problem
of estimating functionals of discrete distribution from samples in terms of the smoothness of
the functional (Fukuchi and Sakuma, 2017). These have culminated in a nearly-complete
understanding of the sample complexity of these properties, with optimal sample complexities
(up to constant factors) for most parameter regimes.

Recently, there has been significant interest in performing statistical tasks under differ-
ential privacy constraints. Perhaps most relevant to this work are Cai et al. (2017); Acharya
et al. (2018b); Aliakbarpour et al. (2018), which study the sample complexity of differentially
privately performing classical distribution testing problems, including identity and closeness
testing. Some recent work focuses on the testing of simple hypotheses: Canonne et al.
(2019) studies the sample complexity of this problem, while Awan and Slavkovic (2018)
provides a uniformly most powerful (UMP) test for binomial data (though Brenner and
Nissim (2014) shows that UMP tests can not exist in general). Other works investigating
private hypothesis testing include Wang et al. (2015a); Gaboardi et al. (2016); Kifer and
Rogers (2017); Kakizaki et al. (2017); Rogers (2017); Campbell et al. (2018); Swanberg et al.
(2019); Couch et al. (2019), which focus less on characterizing the finite-sample guarantees
of such tests, and more on understanding their asymptotic properties and applications to
computing p-values. There has also been study on private distribution learning (Diakonikolas
et al., 2015; Duchi et al., 2018; Karwa and Vadhan, 2018; Kamath et al., 2018), in which
we wish to estimate parameters of the distribution, rather than just a particular property
of interest. Private hypothesis testing and learning have also been considered in the local
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model of differential privacy Sheffet (2018); Gaboardi and Rogers (2018); Acharya et al.
(2019a,c). Similar to our work, Smith (2011) shows that the cost of privacy in statistical
estimation can be a lower order term — roughly, he shows that this is the case for any
statistic which is asymptotically normal. A number of other problems have been studied
with privacy requirements, including clustering (Wang et al., 2015b; Balcan et al., 2017),
principal component analysis (Chaudhuri et al., 2013; Kapralov and Talwar, 2013; Hardt
and Price, 2014), ordinary least squares (Sheffet, 2017), and much more.

1. PRELIMINARIES

Let A & {(p(1),...,p(k)) : p(i) > O,Zlep(i) = 1,1 < k < oo} be the set of discrete

distributions over a countable support. Let Aj be the set of distributions in A with at most
k non-zero probability values. A property f(p) is a mapping from A to R. We now describe
the classical distribution property estimation problem, and then state the problem under
differential privacy.

The Hamming distance between two sequences X™ and Y is defined as dpgm (X™, Y") =
> I(X; #Y;), the number of positions X™ and Y differ. An estimator f is e-differentially

private (DP) (Dwork et al., 2006) if for any X™ and Y, with dpem (X", Y"™) < 1 Pr (F(X")eS)

T Pr(f(Yymes) —
e®, for all measurable S.

Property Estimation. Given «, (5, f, and independent samples X" from an unknown
distribution p, design an estimator! f : X™ — R such that with probability at least 1 — 3,

f(X”) — f(p)’ < a. The sample complezity of f,

def . p
Cj(fa.8) “min {n : Pr (|f(X™) = £(p)| > a) < 8}
is the smallest number of samples required to estimate f to accuracy «, with probability
of error 5. We study the problem for § = 1/3, and by the median trick, we can boost

the success probability to 1 — 3 with an additional multiplicative log(1/3) more samples.?

Therefore, focusing on 5 = 1/3, we define C f( f,a) Lo f( f,a,1/3). The sample complexity

of estimating a property f(p) is the minimum sample complexity over all estimators:
C(f, o) = min; C4(f, o).

Private Property Estimation. Given a,¢, 3, f, and independent samples X" from an
unknown distribution p, design an e-differentially private estimator f : X™ — R such

that with probability at least 1 — §, f(X”) — f(p)‘ < «. Similar to the non-private
setting, the sample complexity of e-differentially private estimation problem is C(f, a,e) =
min j.f is eDP C f( f,a,1/3), the smallest number of samples n for which there exists such an

e-DP +a estimator with error probability at most 1/3.

1Technically, we design a family of estimators, one for each n > 0. For readability, we slightly abuse
notation and refer to this entire family of estimators as f.

2The median trick involves repeating the estimator O(log(1/3)) times on disjoint sets of samples, then
taking the median of the estimates. If the original estimator has success probability 2/3, the boosted estimator
will have success probability 1 — 3. This also preserves privacy by post processing since each estimate is
differentially private.
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In their original paper, (Dwork et al., 2006) provide a scheme for differential privacy,
known as the Laplace mechanism. This method adds Laplace noise to a non-private scheme
in order to make it private. We first define the sensitivity of an estimator, and then state
their result in our setting.

Definition 1.1. The sensitivity of an estimator f : [k]" — R is

def ¢ ny _ fryn
Buf = dham&l’%,xyn)gl‘f(X )Y )"

Lemma 1.2. Let Dj(a,e) =min{n: A ; < ac}.

C(f,a,e) = 0| min< C:(f,a :(a/4, 3
(f,02) in {Cy(f.a/2) + Dy (/s e>}>

Proof. Dwork et al. (2006) showed that for a function with sensitivity A I adding Laplace

noise X ~ Lap(A,, i /€) makes the output an e-differentially private. By the definition of
D f(%, €), the Laplace noise we add has parameter at most §. Recall that the probability

density function of Lap(b) is %bef%, hence we have Pr (| X| > a/2) < 6% By the union

bound, we get an additive error larger than oo = § +§ with probability at most 1/3+ e% < 0.5.
Hence, with the aforementioned median trick, we can boost the error probability to 1/3, at
the cost of a constant factor in the number of samples. ]

To prove sample complexity lower bounds for differentially private estimators, we observe
any estimator which a-approximates a property can be used to perform hypothesis testing
between two distributions which are a-separated in said property: in short, estimation is a
harder problem than testing. To derive lower bounds on the sample complexity of private
hypothesis testing, Acharya et al. (2018b) gives the following argument based on coupling:

Lemma 1.3. Suppose there is a coupling between distributions X' ~ p and Y ~ q over
X", such that E [dpem(X™,Y™)] < D. Then, any e-differentially private algorithm that
distinguishes between p and q with error probability at most 1/3 must satisfy D = Q(%)

1.1. Problems of Interest.

Support Coverage. For a distribution p, and an integer m, let S, (p) = >, (1—(1—p(x))™),
be the expected number of symbols that appear when we obtain m independent samples
from the distribution p. The objective is to find the least number of samples n in order to
estimate Sy,(p) to an additive tam.

Support coverage arises in many ecological and biological studies (Colwell et al., 2012)
to quantify the number of new elements (gene mutations, species, words, etc) that can be
expected to be seen in the future. Good and Toulmin (1956) proposed an estimator that,
for any constant a, requires m/2 samples to estimate S, (p).

3Asymptotics in this paper are with respect to a and € tending to 0, and the parameters n, k, m, when
appearing in an expression, tending to infinity.
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Support Size. The support size of a distribution p is S(p) = [{z : p(z) > 0}|, the number
of symbols with non-zero probability values. However, notice that estimating S(p) from
samples can be hard due to the presence of symbols with negligible, yet non-zero probabilities.

To circumvent this issue, Raskhodnikova et al. (2009) proposed to study the problem when

the smallest probability is bounded. Let AZ% &t {pe A:Vzelk],p(z) € {0} U[1/k,1]}

be the set of all distributions where all non-zero probabilities have value at least 1/k. For
peEAS 1, our goal is to estimate S(p) up to tak with the least number of samples from p.

Entropy. The Shannon entropy of a distribution p is H(p) = >, p(z) log ﬁ, H(p) is a
central object in information theory (Cover and Thomas, 2006), and also arises in many
fields such as machine learning (Nowozin, 2012), neuroscience (Berry et al., 1997; Nemenman
et al., 2004), and others. Estimating H(p) is hard with any finite number of samples due
to the possibility of infinite support. To circumvent this, a natural approach is to consider
distributions in Ay. The goal is to estimate the entropy of a distribution to an additive +a.

2. STATEMENT OF RESULTS

Our theoretical results for estimating support coverage, support size, and entropy are given
below. All results are with 0 < o« < 1 and 0 < ¢ < 1. Algorithms for these problems and
proofs of these statements are provided in Section 3. Our experimental results are described
and discussed in Section 4.

Theorem 2.1. The sample complexity of support coverage estimation is

mlog(l/a mlog(l/a
O( logg(m/ ) + log(2g—(i-a/m§>’ when m Z ais’

O(l—i-l), when m < L

a? ae ace '’

C(Sm,a,e) = {
Furthermore,

C(Smeae) =0 ™A 4 L),

logm ae

Theorem 2.2. The sample complexity of support size estimation is
O(klogz(l/a) + klog2(1/<)c)>7 when k > 1

log k log(2+-<k) o
C(S,a,e) = O(klog(1/a) + L), when L <k < L,
O(klogk + %), when k< L.
Furthermore,
klog?(1/a) | 1 \
C(S,a,e) = Q( Tog & +a5>, when k > =,
Q(klogk + &), when k < L.

Theorem 2.3. Let A > 0 be any small fized constant. To be concrete, A can be chosen to
be any constant between 0.01 and 1. We have the following upper bounds on the sample
complexity of entropy estimation:

log? (mi 1 1
C(H,a,e) = O(k 4 08 (mlr;{k,n}) + —log ()),
! a ae

Qg
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and

C(H,a,e) = O( k N 10g2(min{k,n}) N <1>1+,\>.

AMalogk a? Qe

Furthermore, *

2 .
C(H,0,c) = o —F  log(win{k,n}) | loghY
alogk 2 e

These results can all be implemented in near-linear time in the number of samples. This
is straightforward for most of our algorithms, though one must use the Remez algorithm to
achieve this running time for entropy estimation.

We provide some discussion of our results. At a high level, we wish to emphasize the following
two points:

(1) Our upper bounds show that the cost of privacy in these settings is often negligible
compared to the sample complexity of the non-private statistical task, especially when
for distributions with a large support. Furthermore, our upper bounds are almost tight
in all parameters.

(2) The algorithmic complexity introduced by the requirement of privacy is minimal, con-
sisting only of a single step which noises the output of an estimator. Therefore, our
methods are realizable in practice, and we demonstrate their effectiveness on several
synthetic and real-data examples.

Before we continue, we emphasize that, in Theorems 2.1 and 2.2, we consider the
“sublinear” regime to be of primary interest (when m > é or k> é, respectively), both
technically, and, due to settings as discussed before where many symbols may be unseen,
in terms of parameter regimes which may be of greatest interest in practice. We include
results for other regimes mostly for completeness.

First, we examine our results on support coverage and support size estimation in the
sublinear regime, when m > a% (focusing on support coverage for simplicity, but support
size is similar). In this regime, if ¢ = Q(1/m!~7) for any constant v > 0, then up to constant
factors, our upper bound is within a constant factor of the optimal sample complexity
without privacy constraints. In other words, for most meaningful values of ¢, privacy comes
for free. In the non-sublinear regime for these problems, we provide upper and lower bounds
which match in a number of cases. We note that in this regime, the cost of privacy may
not be a lower order term — however, this regime only occurs when one requires very high
accuracy, or unreasonably strict privacy, which we consider to be of somewhat less interest.
For instance, most deployments of differential privacy we are aware of choose ¢ to be a small
constant; choosing it to be inversely linear in m for large m would be rather unusual.

Next, we turn our attention to entropy estimation. We note that the second upper
bound in Theorem 2.3 has a parameter A that indicates a tradeoff between the sample
complexity incurred in the first and third term. This parameter determines the degree of a
polynomial to be used for entropy estimation. As the degree becomes smaller (corresponding
to a large \), accuracy of the polynomial estimator decreases, however, at the same time,
low-degree polynomials have a small sensitivity, allowing us to privatize the outcome.

4A brief discussion on why the upper bounds are larger than the lower bound: (1) For the first upper bound,
it is enough to show k+1/(ae)log(1/(ae)) > log k/(ae). This is equivalent to showing kae > log(kae), which
is easy to see. (2) For the second upper bound, we only need to consider the case when log k/(ac) > k/(alog k),
which implies 1/e > k/(log k)?. Then we have(1/(ag))*t* > 1/(ae)(k/(log k)?)* = Q(log k/(ae))
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In terms of our theoretical results, one can think of A = 0.01. With this parameter
setting, it can be observed that our upper bounds are almost tight. For example, one can see
that the upper and lower bounds match to either logarithmic factors (when looking at the
first upper bound), or a very small polynomial factor in 1/ae (when looking at the second
upper bound). For our experimental results, we empirically determined an effective value for
the parameter A on a single synthetic instance. We then show that this choice of parameter
generalizes, giving highly-accurate private estimation in other instances, on both synthetic
and real-world data.

3. ALGORITHMS AND ANALYSIS

We will prove our results for support coverage in Section 3.1, support size in Section 3.2,
and entropy in Section 3.3. For each problem, we analyze our algorithms, proving an upper
bound, and then describe a construction and prove a corresponding lower bound.

The general methodology of our algorithms is the following:

(1) Compute a non-private estimate of the property;
(2) Privatize this estimate by adding a Laplace noise, whose parameter is determined by
analyzing the sensitivity of the estimator.

3.1. Support Coverage Estimation. In this section, we prove Theorem 2.1, restated
below. We prove the upper bound in Section 3.1.1, and the lower bound in Section 3.1.2.

Theorem 2.1. The sample complexity of support coverage estimation is

mlog(1/a) | mlog(1/a) )
O( E)gg(m/ )—i—log?ZngEm)), when m > _-,

O(l—i-l), when m < =

oz U as ag”

C(Sm,a,e) = {

Furthermore,

C(Spr a0, ) = Q<m1°g(1/a) + 1>.

logm ae

3.1.1. Upper Bound for Support Coverage Estimation. We split the analysis into two regimes
of a. First, we focus on the case where m < %, and we prove the upper bound O (% + é)
The algorithm in this case is simple: assuming n > m, we group the dataset into n/m
batches of size m.” Let Y; be the number of unique symbols observed in batch j. Our

estimator is

~ ny M '
Sm(X") = — ; Y;.

Observe that E [Y;] = Sy, (p), and that Var[Y;] < m. The latter can be seen by observing
that Y} is the sum of m negatively correlated indicator random variables, each one being
the indicator of whether that sample in the batch is the first time the symbol is observed.
This gives that S,,,(X™) is an unbiased estimator of S,,(p), with variance O(m2/n). By
Chebyshev’s inequality, since we want an estimate which is accurate up to +am, this gives

5This will only affect the sample complexity by a constant since m < % Similarly, when m > %, we
assume n < m.
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us that Cg (Sm(p), a/2) =0 (é) Furthermore, we can see that the sensitivity of S,,(X™)
is at most 2m/n. By Lemma 1.2, there is a private algorithm for support coverage estimation

as long as
A(&AX>>§aa

m

With the above bound on sensitivity, this is true with n = O(1/ae), giving the desired upper
bound.
Now, we turn our attention to the case where m > %, and we prove the upper bound

1) (mlog(l/a) + mlog(1l/a)

Tog m Tog(2tem) ) Let ¢; be the number of symbols that appear ¢ times in X". We

will use the following non-private support coverage estimator from Orlitsky et al. (2016):
n
i=1

where Z is a Poisson random variable with mean r (which is a parameter to be instantiated
later), and t = (m —n)/n.

Our private estimator of support coverage is derived by adding Laplace noise to this
non-private estimator with the appropriate noise parameter, and thus the performance of our
private estimator, is analyzed by bounding the sensitivity and the bias of this non-private
estimator according to Lemma 1.2.

Setting r = log(3/a), Orlitsky et al. (2016) showed that there is a constant C, such that
with n = C2- log(3/a) samples, with probability at least 0.9,

logm

A~

Sm(X™) _ Sm(p)

m m

<o«

If we change one sample in X", at most two of the ¢;’s change. Orlitsky et al. (2016)
also showed that the sensitivity of the estimator can be bounded by:

m m  i€ln] m

A (5m<X">> <2 max(1— (—t) -Pr(Z 1) <> (1 + e“t—”). (32)

By Lemma 1.2, there is a private algorithm for support coverage estimation as long as

A(ﬁaxw>§a&

m

which by (3.2) holds if
2(1 +exp(r(t—1))) < asm.
Let r = log(3/a), note that t — 1 = — 2.9 Since aem > 2, the condition above reduces to

3 m 1
— | — = < — — .
log (a) (n 2) _log<2a£m 1)

6Here we assume n < m /2. Else we can simply ignore samples other than the first m/2.
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This is equivalent to
N> : mlog(3/a)
log(saem — 1) + 2log(3/a)
B mlog(3/a)
~ log(3em — 3/a) +log(3/a)’
Then the condition above reduces to the requirement that
n—Q mlog(l/a) .
log(2 + em)

3.1.2. Lower Bound for Support Coverage Estimation. We now prove the following lower
bound on the sample complexity of support coverage:
mlog(l/a 1
C(Spm, €)= Q<g(/) + >
logm ae
The first term is the sample complexity of non-private support coverage estimation, shown
in Orlitsky et al. (2016). We therefore only prove the second term as a lower bound.
We first consider the case when ma < 1. We construct the following two distributions:

U is uniform over [m]; Us is distributed over m + 1 elements [m] U {V} where Us[i] =
=2 i € [m] and U,[V] = a.. Then we have

Sy (U1) :m<1 - <1 ;)m) and Sp, (Us) :m<1 - <1 1;na)m> F1-(1-a)™

Now we look at the difference between S,,(U1) and S, (Us).

where the third equation comes from the fact that Va,b € R,m € NT g™ — b = (a —
D) (Tt e - o).
When ma < 1, the first term in (3.3) can be bounded by
1—(1—a)™>0.5ma.
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In order to bound the second term, we recall the folklore that (1 — =)™ < e~ when
m > ¢ > 0. Then we can upper bound (1 - l_—a)m_l by

m
(1 1—a>m_1 _ 1 _ 1
I (N ()
1
Suppose m > 10 and o < 15,
1—a\™! 1 1
1— < < < 0.5.
< m - (1 — Tln) cel=a = (0.9¢09

Hence we conclude

S (Uz) — S (Uy) > (0.5 —

(0.9¢)°?

Now we move to the case when ma > 1. In this situation, we slightly change the
construction of Us. Now Us is distributed over m + 1 elements [m] U {V} where Us[i] =
1262 "y ¢ [m] and Us[V] = 6a.

m

sty (- (1-2)") 01w - (-52)')
(1155 (- 2)) -

) -ma = Q(ma).

Since when m > 0, (1 — %)mfl > 1 we have S, (U1) — S (Uz) = Q(mav).
Hence we know in both settings, their support coverage differs by Q(am). Moreover,

their total variation distance is O(ﬁ) The following lemma is folklore, based on the

coupling interpretation of total variation distance and the fact that total variation distance
is subadditive for product measures.

Lemma 3.1. For any two distributions p and q, there is a coupling between n i.i.d. samples
from the two distributions with an expected Hamming distance dpv(p,q) - n.

Using Lemma 3.1 and dpv (ug,uz) = O(lj%a), we get the following.

Lemma 3.2. Suppose u1 and ua are as defined before, there is a coupling between u} and

uy with expected Hamming distance equal to O(%)

Moreover, given n samples, we must be able to privately distinguish between u; and
ug given an « accurate estimator of support coverage with privacy considerations. Thus,

according to Lemma 1.3 and 3.2, we must have n = Q(é)
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3.2. Support Size Estimation. We will now prove Theorem 2.2, restated below. We
prove the upper bound in Section 3.2.1 and the lower bound in Section 3.2.2.

Theorem 2.2. The sample complexity of support size estimation is

O(k’logQ(l/a) + k:log2(1/04))7 when k > é’

logk Tog(2+ek)
C(8,e.2) =  O(klog(1/a) + ), when L <k < L,
Furthermore,
klog?(1/a) | 1 o1
C(S,a,e) = Q( log k +a5>, when k > =,
Q(klogk + %), when k < 1.

3.2.1. Upper Bound for Support Size Estimation. We split the analysis into two regimes.

First we consider the case when k& > % In this case we show an upper bound of

O(klolgjg(i/a) + ki;;%;i_/;)) This bound is O(M) when k& > % Hence we denote it

by the “sparse” case.

Sparse case. In the sparse case, k& > % In Orlitsky et al. (2016), it is shown that
the support coverage estimator can be used to obtain optimal results for support size
estimation. In particular, their result is based on the following observation which states that
if m = klog(3/a), then S,,(p) is a good estimate for S(p).

)

Lemma 3.3. Suppose m > klog(3/«), then for any p € Ay

Proof. Note that Sp,(p) < S(p) from its definition. For the other side, using p(z) > 1/k,

S(p) = Smp) = Y, (L—pla)"< Y ™
z:p(x)>0 z:p(x)>0
< ko elosG3/a) _ %O‘

Further, we have:
(X" = 50)| < [$(X™) = 5u(p)| + [Sim(0) ~ S(v)

Therefore, estimating Sy, (p) for m = klog(3/«), up to £ak/3, also estimates S(p) up

klog(3/a)

to +ak. Using the same estimator in (3.1) with ¢ = — 1, according to Orlitsky

et al. (2016), n = O(Jg"m log(l/a)) = 0<1o’§k log2(1/a)> samples are enough with success
probability at least 0.9.
The computations for sensitivity are similar. From Lemma 1.2, we need to find the

value of n such that

2 +2e7(-1 < ack,
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where r = log(3/a),t = w — 1 and we assume that n < 1klog(3/a), else we just keep
the first %klog(i’) /a) samples and discard the other ones. By computations similar to the
previous case, this reduces to

klog?(3/a)
~ log O‘Tgk + log %

B klog?(1/a)
e .

Therefore

for the sensitivity result to hold.

Dense case. Now, we consider k < é Let N, denote the number of times x appears in
the sample X", and

wx™) N, >0}
be the set of symbols that appear in X™. Our non-private estimator for support size is

S(X™) = Z min {1, ]Yf} .
zEW(X™) 3k
We analyze this algorithm for k£ < é and é <k< % separately.
When k < é, then ka < 1, and since the support size is an integer, we need to output
the exact support size. S (X™) is equal to S(p) when all the symbols in the support appear
at least g times. For any symbol z, since p(x) > %, by the Chernoff bound,

n 2n? /9k? 2n
Pr (Nx< 3k‘> _exp( P ) exp( Qk) (3.6)

k

When n > 18k log k, we have Pr (Nx < 3%) < 1%4 Then by the union bound, the probability
of all the symbols appearing at least 57 is greater than 1 — k% > 2/3 for k > 2, showing that
our algorithm is correct with probability at least %

Now, note that the sensitivity of S(X") is at most 3k/n. By Lemma 1.2, we can privatize
the non-private estimator as long as

A(S(X”)) <e.

Since the sensitivity is at most 3k/n, n = O(k/e), is enough to privatize the estimator.
Combining the two claims above, n = O(k: log k + f) is enough to estimate the support size
for the case when k < 1/a.

Next, consider the case é <k< % Assume without loss of generality that o < 0.5. Let

Y(X™) = ST 1N, = n/3k),
z€S(p)

be the number of symbols appearing at least g times in X". For any z with p(x) > %

from (3.6), Pr (Nx < %) < o? < 0.5a, since & < 0.5. Therefore, by the linearity of

expectations, E[Y(X™)] > S(p)(1 — 0.5a). Moreover, Var (Y (X™)) < 0.5a - S(p) since it is

the sum of S(p) negatively correlated Bernoulli random variables with bias less than 0.5c.
By Chebyshev’s inequality, and noting that S(p) < k,
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n 0.5a5(p) 1
> < < .
Pr(Y(X") > S(p) + ak) < =55 < o, (3.7)
Similarly,
. 2
Pr (Y (X") < S(p) - ak) < —000W)__ o 2 (3.8)
(ak — 0.5a8(p))” ~ ko
Therefore,
5 2
P — Y (X" >1—-—>=
L(S(p) — ok < Y(X") < S(p) +ak) 21— o> 2

where the last inequality uses the fact that ka > ¢, where ¢ is some constant.
Furthermore, we can see that the sensitivity of S (X™) is the same, which is at most
3k/n.
By Lemma 1.2, there is a private algorithm for support coverage estimation as long as

A(g(X”)> < kae.

With the above bound on sensitivity, this is true with n = O(a%), giving the desired upper
bound.

3.2.2. Lower Bound for Support Size Estimation. We will prove the following lower bound

klog?(1/c 1 1
C(S,a,c) = Q( 1gog(k/)+£>v when k > >
Q(klogk + £). when k < 1

given in Theorem 2.2.

First we consider the case k > é The first term of the complexity is the lower bound
for the non-private setting, which follows by combining the lower bound of Orlitsky et al.
(2016) for support coverage, with the equivalence between estimation of support size and
coverage as implied by Lemma 3.3. We prove the final term as a lower bound.

Let u; be the uniform distribution over [k] and ugy be the uniform distribution over
[(1 —a)k]. Then, S(u1) — S(u2) = ak, and dry(u1,u2) = a. Hence by Lemma 3.1, we know
the following:

Lemma 3.4. Suppose uy ~ U[k] and ug ~ U[(1 — o)k, there is a coupling between u} and
uy with expected Hamming distance an.

If we can estimate the support size, then we can use it to obtain a tester that can
distinguish between w1, us. However, we know from Lemma 1.3 and Lemma 3.4, that to
distinguish between any two distributions with total variation distance «, using an e-DP

algorithm, we must have
1
=>n=1 <>
ex

Then we move to the second case when k < é Because ka < 1, we need to recover the
support size exactly. The first term of the complexity is the lower bound for the non-private
setting which can be proved using a coupon-collector-style argument, so here we focus on
the second term.

an >

Q= ™ | =

This proves the second term when k >
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We consider the following two distributions: u; is a uniform distribution over [k] and us
is a uniform distribution over [k — 1]. We must distinguish between these two distributions,
for which drv(u1,u2) = 4. This is equivalent to choosing o = 1/k in the argument above,

and therefore we obtain
n 1 k
—>-=n=0Q(-).
k ~ ¢ €

3.3. Entropy Estimation. In this section, we prove our main theorem about entropy
estimation, Theorem 2.3, restated below. We describe and analyze two upper bounds.
The first is based on the empirical entropy estimator, and is described and analyzed in
Section 3.3.1. The second is based on the method of best-polynomial approximation, and
appears in Section 3.3.2. We prove the lower bound in Section 3.3.3.

Theorem 2.3. Let A > 0 be any small fized constant. To be concrete, A can be chosen to
be any constant between 0.01 and 1. We have the following upper bounds on the sample
complezity of entropy estimation:

C(H, a,¢) = 0(2 + logQ(mZ;{k’"}) + L log <1>>

ag ag
and "
k log?(min{k,n}) 1
C(H =0 1 |
(H, o) ()\zalogk + o2 + o
Furthermore, 7
log?(mi 1
C(H,a,e) =Q k + og”(min{k,n}) N ogk |
alogk a2 e

3.3.1. Upper Bound for Entropy Estimation: The Empirical Estimator. Our first private
entropy estimator is derived by adding Laplace noise into the empirical entropy estimator.
Let p,, denote the empirical distribution from the samples X". Let A(H(p,,)) denote the
sensitivity of the empirical entropy. Then, our privatized empirical entropy estimator adds a
Laplace noise with parameter w, to H(pn). By analyzing its sensitivity and bias of
this estimator, we obtain the first upper bound in Theorem 2.3.

Let p,, be the empirical distribution, and let H(p,) be the entropy of the empirical
distribution. The theorem is based on the following three facts:

A() = O "), (3.9)

1) - B G =0 (%), (5.10)
2/ .
Var (H(pn)) = O (k)g (mlz{k’ ”})>. (3.11)

TA brief discussion on why the upper bounds are larger than the lower bound: (1) For the first upper bound,
it is enough to show k+1/(ae) log(1/(ae)) > log k/(ae). This is equivalent to showing kae > log(kae), which
is easy to see. (2) For the second upper bound, we only need to consider the case when log k/(ae) > k/(alogk),
which implies 1/e > k/(log k)?. Then we have(1/(ag))*t* > 1/(ae)(k/(log k)?)* = Q(log k/(ae))
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With these three facts in hand, by Lemma 1.2, the sample complexity of the empirical
estimator is any n for which A(H (p,,)) < ag, |H(p) — E [H (pn)]| = O(«) and Var (H (py)) =
log? (min{k,n}) )
log"(minik.nj) )

O(az). From the equations above, these are satisfied when n = O g + o

We now prove the three facts.

Proof of (3.9). When one symbol changes, at most two N,’s change, each by at most one.
Therefore,

1 n J n
A(H(py)) <2 — — Z log —
(H(pn) <2- | max || == log 7y = log
J J
=2 =1 — —
P g P B +1‘
< 2. max max llog ,‘7 = "
j=1l..n—1 n ] + 1 n ¥ + 1
11
<2 max{, ogn}j
n’n
:2_10gn
n

Proof of (3.10). The variance bound below is from Paninski (2003). By concavity of entropy,
E[H(pn)] < H(p).

Therefore,

= E(D(pu )
<E [d(hn | 9)]

5 (u(z) — p(2)) ]

p(x)

x

E
< 3 @
3
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Proof of (3.11). The variance bound of @ is given precisely in Lemma 15 of Jiao et al.

(2017). To obtain the bound of lOgQ", we apply the bounded differences inequality in the

n

form stated in Corollary 3.2 of Boucheron et al. (2013).
Lemma 3.5. Let f: Q" — R be a function. Suppose further that

<.

/
max ,‘f(zl,...,zn)—f(zl,...,zi,l,zi,...,zn)
21532052

Then for independent variables Z1, ..., Zy,

n

Var(f(Z1,..., Zn)) < izca

Therefore, by Lemma 3.5 and (3.9)

Var (H(py)) < n- (

3.3.2. Upper Bound for Entropy Estimation: Best-Polynomial Approximation. We now
obtain the second upper bound in Theorem 2.3. Best polynomial approximation has been
used to obtain sample-optimal entropy estimators in the non-private setting. We add a
suitable Laplace noise to this estimate to privatize it.

In the non-private setting the optimal sample complexity of estimating H(p) over Ay is
given by Theorem 1 of Wu and Yang (2016)

@( k N log?(min{k,n}) )

alogk a2

However, this estimator can have a large sensitivity. Acharya et al. (2017a) designed an
estimator that has the same sample complexity but a smaller sensitivity. We restate Lemma
6 of Acharya et al. (2017a) here:

Lemma 3.6. Let A > 0 be a fized small constant, which may be taken to be any value
between 0.01 and 1. Then there is an entropy estimator with sample complexity

@( 1 k N 10g2(min{k,n}))’

A2 alogk a?

and has sensitivity n* /n.

We can now invoke Lemma 1.2 on the estimator in this lemma to obtain the upper
bound on private entropy estimation.
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3.3.3. Lower Bound for Entropy Estimation. We now prove the lower bound for entropy
estimation. Note that any lower bound on privately testing two distributions p, and ¢ such
that H(p) — H(q) = O(«) is a lower bound on estimating entropy.

We analyze the following construction for Proposition 2 of Wu and Yang (2016). The
two distributions p and ¢ over [k] are defined as:

2 o 1-p1) .
p(l)—g,p(z)—ik_1 Jori=2,...k, (3.12)

_2-n o 1-q() o
q(1) = 3 ,q(i) = = Jfori=2,... k. (3.13)

Then, by the grouping property of entropy,
1 1+
H(p) = h(2/3) + 5 -Toa(k — 1), and H(g) = A((2—n)/3) + =1 -loa(k — 1),

which gives
H(p) — H(q) = Q(nlogk).
For n = a/ log k, the entropy difference becomes ©(«).
The total variation distance between p and ¢ is 77/3. By Lemma 3.1, there is a coupling
over X" and Y generated from p and ¢ with expected Hamming distance at most dv (p, ¢)-n.
This along with Lemma 1.3 gives a lower bound of {(log k/ae) on the sample complexity.

4. EXPERIMENTS

We evaluated our methods for entropy estimation and support coverage on both synthetic and
real data. Overall, we found that privacy is quite cheap: private estimators achieve accuracy
which is comparable or near-indistinguishable to non-private estimators in many settings. Our
results on entropy estimation and support coverage appear in Sections 4.1 and 4.2, respectively.
Code of our implementation is available at https://github.com/HuanyuZhang/INSPECTRE
and archived as Acharya et al. (2020).

4.1. Entropy. We compare the performance of our entropy estimator with a number of
alternatives, both private and non-private. Non-private algorithms considered include the
plug-in estimator (plug-in), the Miller-Madow Estimator (MM) (Miller, 1955), the sample
optimal polynomial approximation estimator (poly) of Wu and Yang (2016). We analyze
the privatized versions of plug-in and poly in Sections 3.3.1 and 3.3.2, respectively. The
implementation of the latter is based on code from the authors of Wu and Yang (2016)%. We
compare performance on different distributions including uniform, a distribution with two
steps, Zipf(1/2), a distribution with Dirichlet-1 prior, and a distribution with Dirichlet-1/2
prior, and over varying support sizes.

While plug-inand MM are parameter free, poly (and its private counterpart) have to
choose the degree L of the polynomial to use, which manifests in the parameter A in the
statement of Theorem 2.3. Wu and Yang (2016) suggests the value of L = 1.6logk in
their experiments. However, since we add further noise, we choose a single L as follows:
(i) Run privatized poly for different L values and distributions for k& = 2000, ¢ = 1, (b)
Choose the value of L that performs well across different distributions (See Figure 1). We
choose L = 1.2 -logk from this, and use it for all other experiments. To evaluate the

8See https://github.com/Albuso0/entropy for their code for entropy estimation.
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sensitivity of poly, we computed the estimator’s value at all possible input values, computed
the sensitivity, (namely, A = maxg, = (x»yn)<1|poly(X"™) —poly(Y")]), and added noise

distributed as Lap (0, %)

Uniform Two steps Zipf 1/2

— L=0.3l0g(k) — L=0.3l0g(k) 16 — L=0.3l0g(k)
12 L=0.6log(k) 14 L=0.6log(k) L=0.6log(k)
— L=0.9l0g(k) — L=0.9l0g(k) 14 —— L=0.9l0g(k)
— L=1.2log(k) 12 — L=1.2log(k) — L=12log(k)

— L=15log(k) —— L=15log(k) 12 — L=15log(k)
— L=18l0g(k) — L=1.8l0g(k)

— L=1.8log(k)

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Number of samples Number of samples Number of samples

Dirichlet-1/2 prior

— L=0.3l0g(k)

L=0.6l0g(k)
— L=0.9l0g(k)
— L=1.2log(k)
— L=15log(k)
— L=18log(k)

Dirichlet-1 prior

—— L=0.3log(k)
175 L=0.6log(k) 2.0
— L=09l0g(k)
150 —— L=1.2log(k)
= L=1.5log(k)
—— L=1.8log(k) 15

250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Number of samples Number of samples

FiGURE 1. RMSE comparison between private Polynomial Approximation
Estimators for entropy with various values for degree L, k = 2000, ¢ = 1.
The degree L represents a bias-variance tradeoff: a larger degree decreases
the bias but increases the sensitivity, necessitating the addition of Laplace
noise with a larger variance.

The RMSE (Root Mean Square Error) of various estimators for £ = 1000 and ¢ = 1 for
various distributions are illustrated in Figure 2. The RMSE is averaged over 100 iterations
in the plots.

We observe that the performance of our private-poly is near-indistinguishable from
the non-private poly, particularly as the number of samples increases. It also performs
significantly better than all other alternatives, including the non-private Miller-Madow and
the plug-in estimator. The cost of privacy is minimal for several other settings of k£ and &,
for which results appear in Appendix A.

4.2. Support Coverage. We investigate the cost of privacy for the problem of support
coverage. We provide a comparison between the Smoothed Good-Toulmin estimator (SGT)
of Orlitsky et al. (2016) and our algorithm, which is a privatized version of their statistic (see
Section 3.1.1). Our implementation is based on code provided by the authors of Orlitsky et al.
(2016). As shown in our theoretical results, the sensitivity of SGT is at most 2(1 + e”(t — 1)),
necessitating the addition of Laplace noise with parameter 2(1 4+ ¢"(*=1))/e. Note that while

the theory suggests we select the parameter r = log(1/«a), « is unknown. We instead set
n(t+1)>2
—1

r= 4 log, , as previously done in Orlitsky et al. (2016).



INSPECTRE: PRIVATELY ESTIMATING THE UNSEEN 21

Uniform Two steps Zipf 1/2

— Plug-in \ — Plug-in — Plug-in

— Miller 30 \ — Miller 30 — Miller

3.0 — poly — Poly — poly

— Poly-Laplace — Poly-Laplace
Plug-in-Laplace Plug-in-Laplace

— Poly-Laplace

Plug-in-Laplace 25

o~

200 400 600 800 1000 200 400 600 800 1000 200 00 500 800 1000
Number of samples Number of samples Number of samples

Dirichlet-1 prior Dirichlet-1/2 prior
—— Plug-in 254 — Plug-in
— Miller — Miller

25 — Poly — Poly

—— Poly-Laplace — Poly-Laplace

Plug-in-Laplace \ Plug-in-Laplace
20

200 400 500 800 1000 200 400 600 800 1000
Number of samples Number of samples

FiGURE 2. Comparison of various estimators for entropy, k = 1000, ¢ = 1.

4.2.1. FEvaluation on Synthetic Data. In our synthetic experiments, we consider different
distributions over different support sizes k. We generate n = k/2 samples, and then estimate
the support coverage at m = n - t. For large t, estimation is harder. Some results of our
evaluation on synthetic data are displayed in Figure 3. We compare the performance of SGT
and privatized versions of SGT with parameters ¢ = 1,2, and 10. For this instance, we fixed
the domain size k = 20000. We ran the methods described above with n = k/2 samples and
estimated the support coverage at m = nt, for ¢t ranging from 1 to 10. The performance of
the estimators is measured in terms of RMSE over 1000 iterations.

We observe that, in this setting, the cost of privacy is relatively small for reasonable
values of €. This is as predicted by our theoretical results, where unless ¢ is extremely
small (less than 1/k) the non-private sample complexity dominates the privacy requirement.
However, we found that for smaller support sizes (as shown in Section A.2), the cost of
privacy can be significant. We provide an intuitive explanation for why no private estimator
can perform well on such instances. To minimize the number of parameters, we instead argue
about the related problem of support-size estimation. Suppose we are trying to distinguish
between distributions which are uniform over supports of size 100 and 200. We note that, if
we draw n = 50 samples, the “profile” of the samples (i.e., the histogram of the histogram)
will be very similar for the two distributions. In particular, if one modifies only a few samples
(say, five or six), one could convert one profile into the other. In other words, these two
profiles are almost-neighboring datasets, but simultaneously correspond to very different
support sizes. This pits the two goals of privacy and accuracy at odds with each other, thus
resulting in a degradation in accuracy.

4.2.2. Ewvaluation on Census Data and Hamlet. We conclude with experiments for support
coverage on two real-world datasets, the 2000 US Census data and the text of Shakespeare’s
play Hamlet, inspired by investigations in Orlitsky et al. (2016) and Valiant and Valiant
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Uniform Two steps Zipf 1/2

Non-private
Private eps=10
Private eps=2
1500 Private eps=1

Non-private
Private eps=10
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Private eps=1

Non-private
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Private eps=2
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1000f
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°
g
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Non-private

Private eps=2
Private eps=1

1600r| —  Private eps=10|

1400f

1200f

1000f

RMSE

F1cURE 3. Comparison between our private support coverage estimator with
non-private SGT when k& = 20000

(2017). Our investigation on US Census data is also inspired by the fact that this is a setting
where privacy is of practical importance, evidenced by the proposed adoption of differential
privacy in the 2020 US Census (Dajani et al., 2017).

The Census dataset contains a list of last names that appear at least 100 times. Since
the dataset is so oversampled, even a small fraction of the data is likely to contain almost
all the names. As such, we make the task non-trivial by subsampling m;.q = 86080
individuals from the data, obtaining 20412 distinct last names. We then sample n of the
Myotas iIndividuals without replacement and attempt to estimate the total number of last
names. Figure 4 displays the RMSE over 100 iterations of this process. We observe that
even with an exceptionally stringent privacy budget of € = 0.5, the performance is almost
indistinguishable from the non-private SGT estimator.

Non-private
Private eps=2
Private eps=1
Private eps=0.5

5000

4000)
£ 3000
z

2000)

1000}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of seen names

FI1GURE 4. Comparison between our private support coverage estimator with
the SGT on Census Data.
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The Hamlet dataset has myoq; = 31,999 words, of which 4804 are distinct. Since the
distribution is not as oversampled as the Census data, we do not need to subsample the data.
Besides this difference, the experimental setup is identical to that of the Census dataset.
Once again, as we can see in Figure 5, we get near-indistinguishable performance between the
non-private and private estimators, even for very small values of . Our experimental results
demonstrate that privacy is realizable in practice, with particularly accurate performance
on real-world datasets.

Non-private
Private eps=2
Private eps=1
Private eps=0.5

RMSE

01 02 03 04 05 06 07 08 09 10
Fraction of seen words

F1GURE 5. Comparison between our private support coverage estimator with
the SGT on Hamlet.
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F1GURE 6. Comparison of various estimators for the entropy, k = 100, ¢ = 1.

APPENDIX A. ADDITIONAL EXPERIMENTAL RESULTS

This section contains additional plots of our synthetic experimental results. Section A.1l
contains experiments on entropy estimation, while Section A.2 contains experiments on
estimation of support coverage.

A.1. Entropy Estimation. We present four more plots of our synthetic experimental
results for entropy estimation. Figures 6 and 7 are on a smaller support of £ = 100, with
e =1 and 2, respectively. Figures 8 and 9 are on a support of kK = 1000, with € = 0.5 and 2.

A.2. Support Coverage. We present three additional plots of our synthetic experimental
results for support coverage estimation. In particular, Figures 10, 11, and 12 show support
coverage for £k = 1000, 5000, 100000.
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