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Abstract. The U.S. Census Bureau recently released data on earnings percentiles of grad-
uates from post-secondary institutions. This paper describes and evaluates the disclosure
avoidance system developed for these statistics. We propose a differentially private algo-
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1. Introduction

The Post-Secondary Employment Outcomes (PSEO) data is produced by the U.S. Census
Bureau, and is a data product that publishes earnings and employment outcomes of graduates
from post-secondary institutions.1 Originally released in March 2018, the first release of
PSEO published earnings percentiles by institution, degree level, degree field, graduation
cohort, and year post-graduation2 by linking transcript data from colleges and universities to
the Longitudinal Employer-Household Dynamics (LEHD) data (Abowd et al., 2009). This
data product is the first to publish earnings using national earnings data, and is used to
inform administrators, policy-makers, parents and students about differences in earnings
outcomes by institution and field of study.

While this data significantly advances our knowledge of post-secondary outcomes, the risk
with such data is that an individual’s outcomes could be identified. The U.S. Census Bureau
is bound by Title 13 Section 5,3 which does not allow disclosure of individual characteristics or
jobs. Violation of this requirement carries significant penalties for employees and contractors,
and can result in fines up to $250,000 and imprisonment up to five years.

One aspect of the data that increases the risk of disclosure is that states also release data
on earnings using the same microdata for the Unemployment Insurance (UI) and transcript
linkage, but are constrained to UI earnings in the same state.4 This feature of outside parties
having the data frame (graduates from an institution) and a partial record of earnings (all
in-state earnings) increases the likelihood of disclosing an individual’s earnings.5 For these
reasons, differential privacy (DP) (Dwork, 2006) is an ideal choice for a privacy definition,
as it gives us the strongest protection of an individual’s earnings.

Our paper makes contributions to the application of differential privacy algorithms. First,
we describe our DP algorithm, which allows the release of an arbitrary number of percentiles
of the distribution. Our algorithm first estimates differentially private cumulative distribution
function (CDFs) for subsets of the student population, by (i) estimating the histogram over
earnings using the Geometric noise mechanism, (ii) inferring a CDF function from these noisy
counts, and (iii) reading off percentiles from the above constructed CDF. The algorithm uses
geometric noise on a histogram, and takes advantage of composition properties of differential
privacy. Nissim, Raskhodnikova and Smith (2007)’s smooth sensitivity algorithm is another
algorithm for protecting percentiles, and we show that our algorithm is more accurate for
most privacy loss values.6 Additionally, while our algorithm outputs percentiles that satisfy
common sense constraints (e.g. 50th percentile less than 75th percentile), repeated invocation
of the smooth sensitivity based approach may not satisfy these constraints. Our histogram
approach also solves this problem, and allows for the release of additional, higher-level cells.
Given that the focus of our paper is to compare the statistical properties of different methods
of protecting data, it is in the same vein as Wasserman and Zhou (2010), while focusing on
a specific application.

1The data from PSEO are available here: https://lehd.ces.census.gov/data/pseo_beta.html
2At the time of this writing, there are a total of 28593 possible crossings of these data elements.
3https://www.law.cornell.edu/uscode/text/13/chapter-5
4For example, Colorado and Texas both publish earnings outcomes using in-state earnings data.
5Suppose all individuals except one stay in a state for employment. If we release the national earnings and
the state releases similar in-state numbers, the earnings of the missing individual would be disclosed.
6Another differentially-private algorithm for protecting percentiles is the exponential mechanism, which is
Algorithm 2 in Smith (2011).

https://lehd.ces.census.gov/data/pseo_beta.html
https://www.law.cornell.edu/uscode/text/13/chapter-5
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The remainder of the paper proceeds as follows. Section 2 provides definitions of
differential privacy that we refer to for rest of the paper, while Section 3 describes the
datasets we use and the need for differential privacy. Section 4 describes the algorithm we
use to protect the PSEO data, and provides a proof that our algorithm satisfies ε-differential
privacy. Section 5 then evaluates the algorithm compared to other algorithms, and Section
6 concludes.

2. Preliminaries

This section provides definitions of differential privacy and dataset definitions for the
remainder of the paper. For more complete treatments of differential privacy, consult Dwork
(2006), Dwork et al. (2006) and Dwork and Roth (2014).

Database Definition Let D be a database of records with k variables (A1, ..., Ak).
The domain of each variable Ai is denoted dom(Ai). D has n observations.

Our focus for the remainder is count queries over tables, where a count query is defined
below:

Definition 2.1 Marginal Query. The count query qφ(D) is the number of observations from
D that satisfy φ, which is an arbitrary boolean predicate on the attributes (A1, ..., Ak). In
plain terms, it is the count of observations that have certain values of the variables. For
example, the number of students graduating with an English degree in 2008, or the number
of students earning less than $25,000.

Differential Privacy An algorithm is differentially private if its output is not sig-
nificantly affected by the presence or absence of a single record from D. Consider two
databases, D and D′, which differ by the presence of a single record. These databases are
called neighbors.

Definition 2.2 Differential Privacy. Let M be an algorithm to output data, and tables
D and D′ be neighboring databases (i.e. |(D \ D′) ∪ (D′ \ D)| = 1). Then M satisfies
ε-differential privacy if for all D and D′ and for all S ⊂ range(M),

Pr[M(D) ∈ S]

Pr[M(D′) ∈ S]
≤ eε

To satisfy differential privacy, for a given query qv(D), we have to add noise to that
result which is related to the sensitivity of the query.

Definition 2.3 Sensitivity. Let L denote the set of all possible tables, and q be a query
function on tables. The sensitivity of the query is denoted ∆q and is defined as:

∆q = maxD,D′neighbors∈L||q(D)− q(D′)||1
For count queries, the sensitivity of the query is 1.7

Definition 2.4 Local Sensitivity. Let D be a table, and D′ be a table that differs by one
element, and q be a query function on tables. The local sensitivity of the query is denoted
LSq and is defined as:

LSq = ||q(D)− q(D′)||1
The following theorems are adapted from Dwork and Roth (2014).

7For completeness, a proof is in the appendix.
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Theorem 2.1 (Sequential Composition). Let M and B be ε1- and ε2-differentially private
algorithms. Releasing the outputs of M(D) and B(D) on the same database D results in
(ε1 + ε2)-differential privacy.

Theorem 2.2 (Parallel Composition). Let a database D be partitioned into k disjoint subsets,
Di, and k queries Bi(Di), each of which are ε-differentially private. Then the results of
these queries, B(D), is also ε-differentially private.

2.1. Algorithms.

Definition 2.5 Geometric Mechanism. Let q(D) be a query on a database D. Let η ∼
Geo(X, p)−Geo(Y, p) denote a random variable draw from the distribution generated from
the difference of two random variables (X,Y) which are distributed according to the geometric
distribution, where p = 1 − e−ε. The algorithm which returns q̃(D) = q(D) + ηd satisfies
ε-differential privacy, where ηd is a vector of d independently drawn Geometric random
variables.

This definition draws on the definition from Ghosh, Roughgarden and Sundararajan
(2012).

3. Datasets and Issues

The input database for the PSEO, D, has attributes A which we separate as follows: strati-
fying attributes Ac, which define the cells over which we calculate earnings characteristics;
and earnings, Ae.

We denote ×i∈cdom(Ai) the cross product of all domains, which represents the space of
all possible records in D. Each combination i ∈ ×i∈cdom(Ai) will be referred to as a cell.
We perform queries on each cell separately, taking advantage of the parallel composition
theorem from Section 2. For the purpose of this paper, we consider only a static set of
queries on the data, and leave the question of dynamic queries to future work.

To produce the PSEO, we combine two datasets. First, the earnings information comes
from the LEHD, which has quarterly earnings records from 50 states and the District of
Columbia. We supplement these earnings data with earnings records from the Office of
Personnel Management; these data cover a large share of the federal workforce, but exclude
certain occupations and departments (such as Department of Defense).

Graduate records are from education partners, and as of September 2019, we include
data from the University of Texas System; the Colorado Department of Higher Education;
University of Michigan-Ann Arbor. These data include institution, field of study, degree
date, degree level, and background characteristics. We match these data to produce cell-level
estimates of earnings, where the cell is defined by a combination of degree level, degree field,
institution, graduation cohort, and year after graduation.8

We total earnings from all jobs for an individual, and restrict our sample to individuals
earning more than the equivalent of full-time work at the prevailing federal minimum wage.

8Graduation cohorts are three or five year groups of graduates, depending on the degree level.
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3.1. Utility. Researchers and analysts working with these data are interested in the earnings
outcomes of graduates by the stratifying attributes described above. A number of states have
produced similar data, but have been unable to measure earnings outcomes for graduates
that move out of state.9 Additionally, College Scorecard produced similar earnings outcomes
by institution for enrolees, not graduates.10

There are four different outcomes that we release for every cell. First, we measure the
25th, 50th and 75th percentiles of earnings. Second, we release the cell count. For the
purpose of this paper, we are focusing on protecting the earnings percentiles.

We outline two use cases for these data.
Students and Parents Students and parents want to be informed about potential

outcomes of graduating with a degree in a certain field, or from a specific institution. In
this case, the users of the data care about how closely the released reported earnings values
correspond with the true earnings values. Additionally, they may care about errors less
when true value is larger, implying a similar sized error has less utility cost when the true
earnings are $100,000 than if the true earnings are $40,000.11

State Boards of Education As of 2018, ten states included some measure of labor
market outcomes for students into their performance-based funding formulas for public
post-secondary institutions (Li, 2018).12 Many of these formulas focus on job placement
and entry-level earnings, but in a non-linear way. For example, the Florida College System
uses entry-level wages and compares them with entry-level wages in the colleges area. In
the Florida College System, colleges receive credit for earnings of graduates up to 100%
of earnings up to entry-level wages, but no additional credit for having graduate earnings
above that cutoff.13 This formula implies that errors are more costly for lower true earnings
values, compared with higher earnings values (where there may be no additional benefit to
the institution).

Accuracy Measure In both of the above use cases, accuracy is more valuable at lower
earnings levels than higher earnings levels. For that reason, to compare our differentially-
private algorithms, we use a relative accuracy measure (rather than an additive measure of
error), which we describe in Section 5.14

3.2. Privacy Requirements. There are a number of privacy requirements for the PSEO
data, which are covered by Title 13 of the U.S. Code. Under Title 13, the Census Bureau
cannot “make any publication whereby the data furnished by any particular establishment or
individual under this title can be identified.” This statute has two implications for our work.

9Colorado’s earnings data on graduates is here: https://highered.colorado.gov/Data/Workforce/EdPays.

html. Florida’s earnings data is here: https://www.floridacollegesystem.com/resources/data/fcs_

graduate_outcomes_dashboard.aspx
10Documentation on College Scorecard is available at https://collegescorecard.ed.gov/data/

documentation/
11Individuals may care less about an equally sized error if the true value is lower because of diminishing
marginal utility, a concept in economics that assumes that the utility function in concave. (Varian, 2010)
12https://www.thirdway.org/report/lessons-learned-a-case-study-of-performance-funding-in-higher-
education
13For more details on the actual formula, see https://www.floridacollegesystem.com/sites/www/Uploads/
Publications/Funding%20Formula/Wages_1718Model.pdf
14One interesting alternative error measure is one that penalizes positive errors more than negative errors,
due to loss aversion.

https://highered.colorado.gov/Data/Workforce/EdPays.html
https://highered.colorado.gov/Data/Workforce/EdPays.html
https://www.floridacollegesystem.com/resources/data/fcs_graduate_outcomes_dashboard.aspx
https://www.floridacollegesystem.com/resources/data/fcs_graduate_outcomes_dashboard.aspx
https://collegescorecard.ed.gov/data/documentation/
https://collegescorecard.ed.gov/data/documentation/
https://www.thirdway.org/report/lessons-learned-a-case-study-of-performance-funding-in-higher-education
https://www.thirdway.org/report/lessons-learned-a-case-study-of-performance-funding-in-higher-education
https://www.floridacollegesystem.com/sites/www/Uploads/Publications/Funding%20Formula/Wages_1718Model.pdf
https://www.floridacollegesystem.com/sites/www/Uploads/Publications/Funding%20Formula/Wages_1718Model.pdf
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First, we cannot disclose the earnings of an individual. Additionally, we cannot disclose the
existence of a job (a linkage between an employee and an employer) held by an individual.

Similar privacy requirements are also affirmed in the recent re-introduction of the College
Transparency Act, which explicity states in the legislation, “In carrying out the public
reporting and disclosure requirements of this Act, the Commissioner shall use appropriate
statistical disclosure limitation techniques necessary to ensure that the data released to
the public cannot include personally identifiable information or be used to identify specific
individuals.” These privacy requirements present the constraints under which we can release
data from PSEO.

The new information the PSEO includes over previous datasets is national earnings
data, which may change the dataset D in one of two ways. First, it may change the value of
Ae for an individual. Second, it may include an individual row in the dataset that was not
previously there (if an individual had no in-state earnings). Given the privacy requirements
and the new information provided by PSEO, the object that we need to keep private is
the addition or removal of a single row from the dataset D, creating D′, which includes
employment and earnings information about an individual, and makes differential privacy a
very appropriate privacy protection method in this setting.

4. Methodology

In this section, we discuss the differentially private algorithms we evaluate in the next section.
In Section 4.1 we describe the histogram approach, while in Section 4.2 we describe the
smooth sensitivity approach from Nissim, Raskhodnikova and Smith (2007). For each of
these algorithms, we describe the input and output data, and then describe the algorithm in
detail. The next section compares the relative accuracy for each algorithm.15

4.1. Histogram Algorithm. The histogram algorithm for extracting percentiles can be
seen as an extension of Dwork et al. (2006), who describes the perturbation of a histogram;
we put structure on the histogram, and extract additional moments from the protected
counts.

Inputs. For each cell, the input of the algorithm is a list of earnings values, e1, e2, ..., eN ,
which are earnings for all individuals in a given cell.

Outputs. There are two outputs of the algorithm. The first is a list of protected counts for
each histogram bin within a cell, (q̃c1, q̃

c
2, ..., q̃

c
M ) (there are M bins in the histogram). Using

these counts, the second output obtained is a list of percentiles, which are read from the
empirical cumulative density function (CDF).

Constructing the Histogram. To construct the histogram, consider a set of bin definitions,
such that earnings value ei is in bin j if bj ≤ ei < bj+1, where the values bj are public
information and the same across all cells in the dataset.

Using these bin definitions, consider a function qCj , which returns the count of earnings
values that fall in bin j. The list of values qc1, q

c
2, ..., q

c
M summarize the histogram.

15The code which describes these algorithms is available at Foote, Machanavajjhala and McKinney (2019).
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Protecting Bin Counts. From the definition of the histogram above, we protect the
queries qcj , which returns the count of the observations in a given bin j, with a privacy loss
of ε. Additionally, these queries imply the corresponding empirical CDF:

F (j) =

∑j
i=1 q

c
i∑M

i=1 q
c
i

(4.1)

The sensitivity of each of these queries is 1, and therefore we can protect each of
these queries with privacy loss ε by adding geometric noise as described above in Section 2.
Therefore, our protected counts are:

q̃cj = qcj + ζ

Where ζ is distributed according to the geometric noise distribution.

Calculating Protected Percentiles. We use these fuzzed values to create a fuzzed CDF,

F̃ (j) =

∑j
i=1 q̃

c
i∑M

i=1 q̃
c
i

If we assume that earnings are distributed uniformly within a bin, we can use F̃ (j) to

extract protected percentiles. Note that F̃ (j) will not necessarily be non-decreasing, because
there may be cases when q̃j < 0.16

To calculate a percentile Y, we find the first bin J such that∑J−1
i=1 q̃

c
i∑M

i=1 q̃
c
i

< Y/100 ≤
∑J

i=1 q̃
c
i∑M

i=1 q̃
c
i

(4.2)

Then, the Yth percentile is bJ + (bJ+1 − bJ)× (Y/100×
∑J q̃ci )−

∑J−1 q̃ci
q̃cJ

.17

We use this technique to calculate the 25th, 50th, and 75th percentile values.

4.1.1. Choosing Bin Definitions. The key question with the above technique is how to define
the bins. (that is, the bis from above) There are two interrelated decisions; first, how many
bins to have (that is, what is M); second, what the width of the bins are.

In the next section, we evaluate the accuracy rates of different choices. We compare two
main ways to decide what the bin widths are. First, the log normal approach, which uses
percentiles of a log normal distribution as the bin widths. This approach has the advantage
of making it equally likely that an observation is in any of the bins, since earnings are
typically distributed log-normally.18

16While conceptually we are able to post-process the data to guarantee q̃j ≥ 0, and in some instances accuracy
will improve, we find these potential gains in accuracy of the outputs are minimal.
17In words, if a bin J includes the Yth percentile, and the Yth percentile is W of the way through the interval
defined by bin J, then the Yth percentile is the lower-bound value of bin J, bJ , plus W × width. Choosing
the first such bin J that satisfies the constraint ensures that the percentiles are properly ordered.
18In our application for the PSEO, we define the bins as follows. The bottom cutoff is $10,000, which is
very close to the minimum value in the data by construction. For the next 19 bis, we choose every 5th
percentile of the log normal distribution with mean 11.003 and standard deviation 0.753. The mean and
standard deviation were calculated using the 5-year ACS Public-Use Microsample. We calculated the mean
and standard deviation of wage and salary income for employed individuals with a BA or above. Additionally,
for bM , we use the 97.5th percentile value of the distribution, which is about $260,000. Finally, for any
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The second approach, which we call the “even bins” approach, evenly spaces the bins
between the minimum and maximum values. This approach has the advantage of being very
transparent and easy to use, particularly if there is not an obvious parametric approximation
for the distribution of the outcome being protected.

For both approaches, the bottom cutoff is $10,000. The sample frame for the PSEO is
full-time equivalent at the federal minimum wage, which is close to $10,000.

Proposition 4.1. The histogram algorithm satisfies ε-differential privacy
Proof:

The algorithm can be broken down into three steps.
1. Choosing bin definitions: This is done without looking at the private data, and hence

it does not incur any privacy loss.
2. Measuring bin counts noisily: Each bin count, q̃ci , is released under ε-differential

privacy, using the geometric mechanism. Since the bins are disjoint sets, releasing all the
bin counts satisfies ε-differential privacy.

3. Computing percentile values: From the composition property of differential privacy,
the following function is also ε-differentially private:

J∑
i=1

q̃ci

Since Yth percentile = bJ + (bJ+1 − bJ) × (Y/100×
∑J q̃ci )−

∑J−1 q̃ci
q̃cJ

is a function of ε-

differentially private values, the Yth percentile is also ε-differentially private, as is the
histogram algorithm.

In addition to the above proposition, the clear corollary is that the histogram list of
counts (q̃1, q̃2, ..., q̃M ) is ε-differentially private (Proposition 1 in Hay et al. (2010)); this
result allows the list of values (q̃1, q̃2, ..., q̃M ) to also be considered releasable.

4.2. Competing Algorithms . This subsection describes the smooth sensitivity algorithm
for protecting percentiles, originally from Nissim, Raskhodnikova and Smith (2007).

Inputs. For each cell (defined as in Section 2), the input of the algorithm is a list of sorted
earnings values, Aie = (e1, e2, ..., eN ), which are earnings for all individuals in a given cell i.

Outputs. The outputs of the algorithm are the 25th, 50th and 75th percentile values, which
we refer to as P̃25, P̃50 and p̃75.

earnings greater than that value, we count it in the final bin, M . In the case where a percentile is in the
largest bin, we define bM+1 to be the 99.9th percentile of earnings from the log normal distribution, which is
614597. Together, we have 21 bins. For reference, these histogram values are in the appendix. Additionally,
in this particular application, a log-normal histogram made the most sense; however, the method is more
general. The goal of the histogram should be such that a randomly chosen observation has an equally likely
probability of landing in any bin, thereby decreasing the number of bins with no observations in them. The
specific distribution chosen depends on the expected distribution of the underlying data.
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Calculating Percentiles. Let px(D) denote the query that returns the Xth percentile of an
input dataset D.

Set εx such that
∑

x∈X εx = ε.19

For each X in 25,50,75, compute the true percentile y = px(D). Then return the
protected percentile, ỹ = y + Spx(D) ·Gamma(1/εx), where the Gamma(.) distribution is

defined as 1/|1 + x|4.
We next describe how to compute the smooth sensitivity, Spx(D) for the percentile

query.

Definition 4.1 Smooth Sensitivity for Percentiles. Define the smooth upper bound, SqX (d)
to LSqmed

(d), such that adding noise proportional to SqX satisfies differential privacy require-
ment.20

These smooth upper bounds must satisfy the following requirements:

∀d, Sq(d) ≥ LSq(d)

∀d, d′differing by one entrySq(d) ≤ exp(β)Sq(d
′) (4.3)

From these above, the β-smooth sensitivity is:

S?q,β(d) = maxd′(LSq(d
′)exp(−mβ))

Where d, d′ differ by m entries.
For completeness, we show how to derive the smooth sensitivity of the median function

q50. The same algorithm can be used for any percentile. Applying this framework to the
query of the median:

LSqmed
(d) = max(eM − eM−1, eM+1 − eM ) for M =

N + 1

2
(4.4)

This implies that

S∗qmed,β
(d) = maxk=0,...,n (exp(−kβ)maxt=0,...,k+1(eM+t − eM+t−k−1)) (4.5)

More generally, for any percentile X, LSqX (d) = max(eM − eM−1, eM+1 − eM )forM =
(N+1)X

100 , which implies the β-smooth sensitivity for percentile X is:

S∗qX ,β(d) = maxk=0,...,n (exp(−kβ)maxt=0,...,k+1(eM+t − eM+t−k−1)) (4.6)

The smooth sensitivity value for a percentile X from earnings list E is defined as S∗x,β(E).

If the true percentile of the earnings list is Px(E), then it is protected in the following
way:

P̃x(E) = Px(E) + η
S∗x,β(E)

ε/16

19When using the smooth sensitivity algorithm with a privacy budget of ε, the researcher can allocate privacy
loss differently depending on the goal of the output. If the researcher desires accuracy to be similar across
the three queries, then he could allocate more privacy loss to more sensitive queries. If he instead desires to
allocate privacy loss equally, then εx = ε/3.
20Formally, if for some query q(.), and neighboring datasets d and d′, log( Pr(q(d)=X)

Pr(q(d′)=X)
< ε, then q(.) is

ε-differentially private.
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Where η is drawn from the distribution h(y) = 1
1+|y|4 and β = εx/4. According to

Lemma 2.5 of Nissim, Raskhodnikova and Smith (2007), the output P̃x(E) is εx-differentially
private.

5. Evaluation

This section describes the experiments we ran on the simulated earnings data, and proceeds
as follows. First, we describe the accuracy measures we use. Second, we describe the
algorithms we compared and the range of parameter settings we tested. We then present
the results of our experiments.

5.1. Data For Simulations. The data we use for the experiments in this paper are
constructed using the protected histograms from the PSEO as inputs.21 That is, we take
the differentially private histograms, and generate individual observations based on the
counts in each bin. For example, if a bin has a count of 5, we generate 5 observations by
randomly drawing earnings from a uniform distribution between the two bin edges. This
approach allows us to run simulations on a dataset that has similar statistical properties to
the underlying data.

5.2. Error Measures. We use relative accuracy to assess the quality of the protected data,
where relative accuracy is defined as below:

RelAccuracy = 1− |Protected− True|
True

(5.1)

Where True is the true value (a percentile of the distribution), and Protected is the
value after applying the differentially-private algorithm. The numerator of the second term
is the absolute value of the L1 error, which we scale by the true value, so that the accuracy
values are expressed as a percent deviation from the true value. For interpretation, an
algorithm that always has an output of 0 will have a relative error of 1 and a relative
accuracy of 0.

This notion of relative accuracy fits well with the utility of the data. As students and
policy-makers evaluate the data, they care about how close the reported values are to the
truth. Our measure of accuracy also scales the absolute difference, since errors of $10,000
have different implications for outcomes for lower earnings majors than higher earnings
majors (that is, similar magnitude errors are more costly from a utility perspective if the
true earnings are smaller)

Finally, note that in our setting, the range of earnings values is strictly above $10,000,
which means that minimum value of True for any percentile is never 0, so RelAccuracy is
always defined.

21We use the March 2018 vintage of the PSEO
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5.3. Algorithms Compared. We compare two different histogram algorithms, which
provide the same guarantee of privacy. First, the PSEO approach, which is a histogram
where the bins are percentiles of a log-normal distribution (referred to as “Log-Normal”
hereafter). Second, a histogram where the bins are uniformly distributed across the range of
earnings values (referred to as ”Even” hereafter). To compare these approaches to an existing
method of releasing percentiles, we also evaluate the accuracy of the smooth sensitivity
algorithm in our setting.

5.4. Parameter Values. We run our experiments on a number of different combinations
of parameter values.

• Bins: 10 - 30
• Epsilon: 0.1 - 3, in steps of 0.1
• Percentiles: 25th, 50th and 75th

For each of the combinations above, we draw noise 20 times and calculate the average
relative accuracy.

5.5. Results of Experiments. We summarize the results of these simulations in Figures
1-3. In the following figures, we only show the accuracy results for the 50th percentile of
earnings; Figures 4 and 5 display results for the 25th and 75th percentiles, respectively.
Figure 1 shows the relative accuracy for a number of bin counts (10,15,20,25), comparing
the three candidate algorithms.22 What we find is that the log-normal histogram scheme
is strictly better than the evenly-spaced scheme, with significant reductions in the error.
Strikingly, for most values of ε, the log-normal approach is also more accurate than the
smooth sensitivity approach.23

Figure 2 fixes the bin count constant at 20, and shows the accuracy measure by cell
size categories. The results show that for every cell bin, the log-normal approach is more
accurate. Our results show that in each cell-size bin, for the smooth sensitivity algorithm to
have similar accuracy, the privacy loss parameter has to be much higher. This is true even
for large cells, which are much less sensitive.

There are two main reasons driving the lower accuracy for the smooth sensitivity
approach. First, for smaller cells, the local sensitivity (LS) can be quite large. Second, the
distribution from which draws are made has very fat tails, and combined with the large
values of LS, causes the protected percentiles to differ considerably from the truth.

Given that the log-normal approach is clearly more accurate, the next decision to make
in protecting the data is how many bins the histogram should have; that is, how is the
relative accuracy related to the number of bins used. Theoretically, the effect is ambiguous.
Having more bins means that the bins are less wide, which should increase the accuracy
within a bin. However, having more bins also increases the total noise infused into the data,
as well as the share of each bin’s count that is noise, since geometric noise is drawn for each
bin.

To test the relationship empirically, Figure 3 graphs the relationship between bins
and accuracy. It appears that accuracy is decreasing in bin size, and that the noise effect

22Since the smooth sensitivity approach does not depend on the bin count, these are invariant.
23Figures showing the accuracy for the 25th and 75th percentiles are in the appendix. We also include an
additional error measure, which sums up the L1 errors across the percentiles; this measure also shows that
the log-norm approach is more accurate.
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Figure 1. Relative Accuracy by Histogram Method, 50th Percentile

Notes: Log-Normal is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green

dominates the width effect. However, the effects are relatively small, such that the accuracy
only decreases by about 2 percentage points from 10 to 30 bins.24

One thing to note here is that in our comparisons above, for the smooth sensitivity each
percentile is calculated as a separate query, which implies that the required privacy loss is
much higher for the smooth sensitivity approach.

Formally, note that RelAccuracy is a function of ε. Now consider two different sets
of privacy loss parameters, (εH(y)) and (εSS(y)), such that for a given yth percentile,
RelAccuracy(εw(y)) > a, where a is an accuracy level (e.g., a = 0.9 is 90% accuracy). To
guarantee that all percentiles have at least an accuracy above a in the histogram approach, a
practicioner must use a total privacy loss budget ε∗H = maxy∈Y [εH(y)] if using the histogram
approach, or ε∗SS =

∑
y∈Y εSS(y) if using the smooth sensitivity approach (because each

percentile is a distinct query). Our results show that for most values of ε, the histogram
approach is more accurate, and there is no additional privacy loss from calculating additional
percentiles.

24For reference, the PSEO uses 21 bins in its protection system. These bins are shown in the appendix.
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Figure 2. Relative Accuracy by Cell Size

(a) 30-49 (b) 50-79

(c) 80-99 (d) 100-199

(e) 200-299 (f) 300+

Notes: Log-Normal is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green
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Figure 3. Relative Accuracy by Bin Count

Notes: Log-Normal is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green

6. Conclusion

In the world of readily available microdata for analysis, statistical agencies need to take
confidentiality seriously. Increasingly, outside parties have access to a large share of the
microdata used in the production of statistics, which makes protecting the data with
conventional methods much more difficult.

In 2018, the U.S. Census Bureau released the Post-Secondary Employment Outcomes,
which uses differential privacy to protect the underlying microdata while releasing detailed
information on the distribution of earnings for graduates.

In this paper, we describe the method we use to protect the data, and compare our
method to other potential methods of protecting the data in a differentially private way. We
find that it yields significant improvements over previous methods for protecting percentiles.

Our method for releasing detailed distributional characteristics of earnings is easily
generalized to other settings, and we believe that it can be used for other settings where
distributions characteristics are of interest. For example, there is a lot of interest in releasing
statistics on earnings and wealth inequality at the national and local levels; our paper
proposes one approach to releasing these statistics using differential privacy.
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Appendix A. Proof of Sensitivity of Count

Consider a dataset D, and a neighboring dataset D′ which differs by one observation.
Furthermore, consider a count query qc(.) on a dataset, which returns the number of
observations with certain attributes, which we will refer to as X. Now consider the cases
below:

|qc(D)− qc(D′)| =

{
1, if the differing observation has the attributes X

0, otherwise.
(A.1)

In the case of the count query, S(qc) = 1. Therefore, for any count query qc(d), if we
draw ζ ∼ Lap(1/ε), then q̃c(d) = qc(d) + ζ is ε-differentially private.

Appendix B. Tables and Figures Appendix

Table 1. Histogram bin values

Bin Lower Bound Upper Bound
1 10000 17403
2 17403 22876
3 22876 27512
4 27512 31857
5 31857 36128
6 36128 40449
7 40449 44914
8 44914 49605
9 49605 54609
10 54609 60027
11 60027 65982
12 65982 72639
13 72639 80226
14 80226 89080
15 89080 99735
16 99735 113106
17 113106 130970
18 130970 157509
19 157509 207050
20 207050 262475
21 262475 614597
Notes: Except for the lowest value, these are all per-
centiles from a log normal distribution with mean
11.003 and standard deviation 0.753. Any observa-
tion will be classified into the final bin (21) if it has
a value above 262475. For purposes of calculating the
percentiles, we use the upper bound value for bin 21 of
614597, which is the 99.9th percentile of the log normal
distribution.
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Figure 4. Relative Accuracy by Histogram Method, 25th Percentile

Notes: Log-Norm is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green

This work is licensed under the Creative Commons License Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit https://creativecommons.
org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, 171 Second St, Suite
300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany
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Figure 5. Relative Accuracy by Histogram Method, 75th Percentile

Notes: Log-Norm is Solid Blue; Even is Dashed Red; Smooth-sensitivity is Dash-dot Green
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Figure 6. Overall L1 Error by Histogram Method

Notes: Log-Norm is Solid Blue; Even is Dashed Red. Error measure is the sum of the three L1 error
measures across the 25th, 50th and 75th percentile measures.
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