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Abstract. There are now several large scale deployments of differential privacy used
to collect statistical information about users. However, these deployments periodically
recollect the data and recompute the statistics using algorithms designed for a single use.
As a result, these systems do not provide meaningful privacy guarantees over long time
scales. Moreover, existing techniques to mitigate this effect do not apply in the “local
model” of differential privacy that these systems use.

In this paper, we introduce a new technique for local differential privacy that makes it
possible to maintain up-to-date statistics over time, with privacy guarantees that degrade
only in the number of changes in the underlying distribution rather than the number of
collection periods. We use our technique for tracking a changing statistic in the setting
where users are partitioned into an unknown collection of groups, and at every time period
each user draws a single bit from a common (but changing) group-specific distribution. We
also provide an application to frequency and heavy-hitter estimation.

1. Introduction

After over a decade of research, differential privacy (Dwork et al., 2006) is moving from theory
to practice, with notable deployments by Google (Bittau et al., 2017; Erlingsson, Pihur and
Korolova, 2014), Apple (Differential Privacy Team, Apple, 2017), Microsoft (Ding, Kulkarni
and Yekhanin, 2017), and the U.S. Census Bureau (Abowd, 2016). These deployments
have revealed gaps between existing theory and the needs of practitioners. For example,
the bulk of the differential privacy literature has focused on the central model, in which
user data are collected by a trusted aggregator who performs and publishes the results of a
differentially private computation (Dwork and Roth, 2014). However, Google, Apple, and
Microsoft have instead chosen to operate in the local model (Bittau et al., 2017; Differential
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Privacy Team, Apple, 2017; Ding, Kulkarni and Yekhanin, 2017; Erlingsson, Pihur and
Korolova, 2014), where users individually randomize their data on their own devices and
send it to a potentially untrusted aggregator for analysis (Kasiviswanathan et al., 2008). In
addition, the academic literature has largely focused on algorithms for performing one-time
computations, like estimating many statistical quantities (Blum, Ligett and Roth, 2013;
Hardt and Rothblum, 2010; Roth and Roughgarden, 2010) or training a classifier (Bassily,
Smith and Thakurta, 2014; Chaudhuri, Monteleoni and Sarwate, 2011; Kasiviswanathan
et al., 2008). Industrial applications, however have focused on tracking statistics about a user
population, like the set of most frequently used emojis or words (Differential Privacy Team,
Apple, 2017). These statistics evolve over time and so must be re-computed periodically.

Together, the two problems of periodically recomputing a population statistic and
operating in the local model pose a challenge. Näıvely repeating a differentially private
computation causes the privacy loss to degrade as the square root of the number of recom-
putations, quickly leading to enormous values of ε. This näıve strategy is what is used in
practice (Bittau et al., 2017; Differential Privacy Team, Apple, 2017; Erlingsson, Pihur and
Korolova, 2014). As a result, Tang et al. (2017) discovered that the privacy parameters
guaranteed by Apple’s implementation of differentially private data collection can become
unreasonably large even in relatively short time periods.1 Published research on Google
and Microsoft’s deployments suggests that they encounter similar issues (Bittau et al., 2017;
Ding, Kulkarni and Yekhanin, 2017; Erlingsson, Pihur and Korolova, 2014).

On inspection the näıve strategy of regular statistical updates seems wasteful as aggregate
population statistics don’t change very frequently—we expect that the most frequently visited
website today will typically be the same as it was yesterday. However, population statistics
do eventually change, and if we only recompute them infrequently, then we can be too slow
to notice these changes.

The central model of differential privacy allows for an elegant solution to this problem.
For large classes of statistics, we can use the sparse vector technique (Dwork and Roth,
2014; Dwork et al., 2009; Hardt and Rothblum, 2010; Roth and Roughgarden, 2010) to
repeatedly perform computations on a dataset such that the error required for a fixed privacy
level grows not with the number of recomputations, but with the number of times the
computation’s outcome changes significantly. For statistics that are relatively stable over
time, this technique dramatically reduces the overall error. Unfortunately, the sparse vector
technique provably has no local analogue (Kasiviswanathan et al., 2008; Ullman, 2018).

In this paper we present a technique that makes it possible to repeatedly recompute a
statistic with error that decays with the number of times the statistic changes significantly,
rather than the number of times we recompute the current value of the statistic, all while
satisfying local differential privacy. This technique allows for tracking of evolving local data
in a way that makes it possible to quickly detect changes, at modest cost, so long as those
changes are relatively infrequent. Our approach guarantees privacy under any conditions,
and obtains good accuracy by leveraging three assumptions: (1) each user’s data comes from
one of m evolving distributions; (2), these distributions change relatively infrequently; and
(3) users collect a certain amount of data during each reporting period, which we term an

1Although the value of ε that Apple guarantees over the course of say, a week, is not meaningful on its
own, Apple does take additional heuristic steps (as does Google) that make it difficult to combine user data
from multiple data collections (Bittau et al., 2017; Differential Privacy Team, Apple, 2017; Erlingsson, Pihur
and Korolova, 2014). Thus, they may still provide a strong, if heuristic, privacy guarantee.
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epoch. By varying the lengths of the epochs (for example, collecting reports hourly, daily, or
weekly), we can trade off more frequent reports versus improved privacy and accuracy.

1.1. Our Results and Techniques. Although our techniques are rather general, we first
focus our attention on the problem of privately estimating the average of bits, with one bit
held by each user. This simple problem is widely applicable because most algorithms in
the local model have the following structure: on each individual’s device, data records are
translated into a short bit vector using sketching or hashing techniques. The bits in this
vector are perturbed to ensure privacy using a technique called randomized response, and
the perturbed vector is then sent to a server for analysis. The server collects the perturbed
vectors, averages them, and produces a data structure encoding some interesting statistical
information about the users as a whole. Thus many algorithms (for example, those based
on statistical queries) can be implemented using just the simple primitive of estimating the
average of bits.

We analyze our algorithm in the following probabilistic model (see Section 3 for a formal
description). The population of n users has an unknown partition into subgroups, each of
which has size at least L, time proceeds in rounds, and in each round each user samples a
private bit independently from their subgroup-specific distribution. The private data for
each user consists of the vector of bits sampled across rounds, and our goal is to track the
total population mean over time. We require that the estimate be private, and ask for the
strong (and widely known) notion of local differential privacy—for every user, no matter
how other users or the server behave, the distribution of the messages sent by that user
should not depend significantly on that user’s private data.

To circumvent the limits of local differential privacy, we consider a slightly relaxed
estimation guarantee. Specifically, we batch the rounds into T epochs, each consisting of
` rounds, and aim in each epoch t to estimate pt, the population-wide mean across the
subgroups and rounds of epoch t. Thus, any sufficiently large changes in this mean will
be identified after the current epoch completes, which we think of as introducing a small
“delay”.

Our main result is an algorithm that takes data generated according to our model,
guarantees a fixed level of local privacy ε that grows (up to a certain point) with the
number of distributional changes rather than the number of epochs, and guarantees that the
estimates released at the end of each epoch are accurate up to error that scales sublinearly in
1/` and only polylogarithmically with the total number of epochs T . Our method improves
over the näıve solution of simply recomputing the statistic every epoch – which would lead to
either privacy parameter or error that scales linearly with the number of epochs—and offers
a quantifiable way to reason about the interaction of collection times, reporting frequency,
and accuracy. We note that one can alternatively phrase our algorithm so as to have a fixed
error guarantee, and a privacy cost that scales dynamically with the number of times the
distribution changes2.

Theorem 1.1 Protocol for Bernoulli Means, Informal Version of Theorem 4.3. In the above
model, there is an ε-differentially private local protocol that achieves the following guarantee:
with probability at least 1 − δ, while the total number of elapsed epochs t in which some

2We can achieve a dynamic, data-dependent privacy guarantee using the notion of ex-post differential
privacy (Ligett et al., 2017), for example by using a so-called privacy odometer (Rogers et al., 2016).
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subgroup distribution has changed is fewer than ε ·min

(
L√

n ln(mT/δ)
, ln(T )

√
n
`

)
, the protocol

outputs estimates p̃t, where

|p̃t − pt| = O

(
ln(T )

√
ln(nT/δ)

`

)
where L is the smallest subgroup size, n is the number of users, ` is the chosen epoch length,
and T is the resulting number of epochs.

To interpret the theorem, consider the setting where there is only one subgroup and
L = n. Then to achieve error α we need, ignoring log factors, ` ≥ 1/α2 and that fewer than
εα
√
n changes have occured. We emphasize that our algorithm satisfies ε-differential privacy

for all inputs without a distributional assumption—only accuracy relies on distributional
assumptions.

Finally, we demonstrate the versatility of our method as a basic building block in the
design of locally differentially private algorithms for evolving data by applying it to the
well-known heavy hitters problem. We do so by implementing a protocol due to Bassily and
Smith (2015) on top of our simple primitive. This adapted protocol enables us to efficiently
track the evolution of histograms rather than single bits. Given a setting in which each user
in each round independently draws an object from a discrete distribution over a dictionary
of d elements, we demonstrate how to maintain a frequency oracle (a computationally
efficient representation of a histogram) for that dictionary with accuracy guarantees that
degrade with the number of times the distribution over the dictionary changes, and only
polylogarithmically with the number of rounds. We summarize this result below.

Theorem 1.2 Protocol for Heavy-Hitters, Informal Version of Theorem 5.2. In the above
model, there is an ε-differentially private local protocol that achieves the following guarantee:
with probability at least 1 − δ, while the total number of elapsed epochs t in which some

subgroup distribution has changed is fewer than ε ·min

(
L√

n ln(mT/δ)
, ln(T )

√
n ln(nT/δ)

`

)
the

protocol outputs estimate oracles f̂ t such that for all v ∈ [d]

|f̂ t(v)− Pt(v)| = O

(
ln(T )

√
ln(nT/δ)

`
+

√
ln(dnT/δ)

n

)
.

where n is the number of users, L is the smallest subgroup size, Pt is the mean distribution
over dictionary elements in epoch t, d is the number of dictionary elements, ` is the chosen
epoch length, and T is the resulting number of epochs.

1.2. Related Work. The problem of privacy loss for persistent local statistics has been
recognized since at least the original work of Erlingsson, Pihur and Korolova (2014) on RAP-
POR (the first large-scale deployment of differential privacy in the local model). Erlingsson,
Pihur and Korolova (2014) offers a heuristic memoization technique that impedes a certain
straightforward attack but does not prevent the differential privacy loss from accumulating
linearly in the number of times the protocol is run. Ding, Kulkarni and Yekhanin (2017)
give a formal analysis of a similar memoization technique, but the resulting guarantee is not
differential privacy—instead it is a privacy guarantee that depends on the behavior of other
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users, and may offer no protection to users with idiosyncratic device usage. In contrast, we
give a worst-case differential privacy guarantee.

Our goal of maintaining a persistent statistical estimate is similar in spirit to the model
of privacy under continual observation (Dwork et al., 2010). The canonical problem for
differential privacy under continual observation is to maintain a running count of a stream of
bits. However, the problem we study is quite different. In the continual observation model,
new users are arriving, while existing users’ data does not change. In our model each user
receives new information in each round. (Also, we work in the local model, which has not
been the focus of the work on continual observation.)

Subsequent work (Erlingsson et al., 2019) also studies locally private collection of data
that changes over time. Unlike our work, their model does not assume that data is generated
by an underlying evolving distribution. They instead suppose that data is deterministic and
changes infrequently, while we suppose that data (which may change frequently) comes from
a distribution that changes infrequently.

The local model was originally introduced by Kasiviswanathan et al. (2008), and the
canonical algorithmic task performed in this model has become frequency estimation (and
heavy hitters estimation). This problem has been studied in a series of theoretical (Bass-
ily and Smith, 2015; Bassily, Stemmer and Thakurta, 2017; Bun, Nelson and Stemmer,
2017; Differential Privacy Team, Apple, 2017; Hsu, Khanna and Roth, 2012) and practical
works (Bittau et al., 2017; Differential Privacy Team, Apple, 2017; Erlingsson, Pihur and
Korolova, 2014).

2. Local Differential Privacy

We require that our algorithms satisfy local differential privacy. Informally, differential
privacy is a property of an algorithm A, and states that the distribution of the output
of A is insensitive to changes in one individual user’s input. Formally, for every pair of
inputs x, x′ differing on at most one user’s data, and every set of possible outputs Z,
P [A(x) ∈ Z] ≤ eε · P [A(x′) ∈ Z]. A locally differentially private algorithm is one in which
each user i applies a private algorithm Ai only to their data.

Most local protocols are non-interactive: each user i sends a single message that
is independent of all other messages. Non-interactive protocols can thus be written as
A(x1, . . . , xn) = f(A1(x1), . . . , An(xn)) for some function f , where each algorithm Ai satisfies
ε-differential privacy. Our model requires an interactive protocol: each user i sends several
messages over time, and these may depend on the messages sent by other users. This
necessitates a slightly more complex formalism.

We consider interactive protocols among the n users and an additional center. Each
user runs an algorithm Ai (possibly taking a private input xi) and the central party runs an
algorithm C. We let the random variable tr(A1, . . . , An, C) denote the transcript containing
all the messages sent by all of the parties. For a given party i and a set of algorithms A′−i, C

′,
we let tri(xi;A

′
−i, C

′) denote the messages sent by user i in the transcript tr(Ai(xi), A
′
−i, C

′).
As a shorthand we will write tri(xi), since A′−i, C

′ will be clear from context. We say that
the protocol is locally differentially private if the function tri(xi) is differentially private for
every user i and every (possibly malicious) A′−i, C

′.

Definition 2.1 . An interactive protocol (A1, . . . , An, C) satisfies ε-local differential privacy
if for every user i, every pair of inputs xi, x

′
i for user i, and every set of algorithms A′−i, C

′,
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the resulting algorithm tri(xi) = tri(Ai(xi), A
′
−i, C

′) is ε-differentially private. That is, for
every set of possible outputs Z, P [tri(xi) ∈ Z] ≤ eε · P [tri(x

′
i) ∈ Z].

3. Overview: The Thresh Algorithm

Here we present our main algorithm, Thresh. The algorithmic framework is quite general,
but for this high level overview we focus on the simplest setting where the data is Bernoulli.
In Section 4 we formally present the algorithm for the Bernoulli case and analyze the
algorithm to prove Theorem 1.1.

To explain the algorithm we first recall the distributional model. There are n users,
each of whom belongs to a subgroup Sj for some j ∈ [m]; denote user i’s subgroup by g(i).
There are R = T` rounds divided into T epochs of length `, denoted E1, . . . , ET . In each
round r, each user i receives a private bit xri ∼ Ber(µrg(i)). We define the population-wide

mean by µr = 1
n(|S1|µr1 + . . .+ |Sm|µrm). For each epoch t, we use pt to denote the average

of the Bernoulli means during epoch t, pt = 1
`

∑
r∈Et µ

r. After every epoch t, our protocol
outputs p̃t such that |pt − p̃t| is small.

The goal of Thresh is to maintain some public global estimate p̃t of pt. After any epoch
t, we can update this global estimate p̃t using randomized response: each user submits some
differentially private estimate of the mean of their data, and the center aggregates these
responses to obtain p̃t. The main idea of Thresh is therefore to update the global estimate
only when it might become sufficiently inaccurate, and thus take advantage of the possibly
small number of changes in the underlying statistic pt. The challenge is to privately identify
when to update the global estimate.

The Voting Protocol. We identify these “update needed” epochs through a voting
protocol. Users will examine their data and privately publish a vote for whether they believe
the global estimate needs to be updated. If enough users vote to update the global estimate,
we do so (using randomized response). The challenge for the voting protocol is that users
must use randomization in their voting process, to keep their data private, so we can only
detect when a large number of users vote to update.

First, we describe a näıve voting protocol. In each epoch t, each user i computes a
binary vote ati. This vote is 1 if the user concludes from their own samples that the global
estimate p̃t−1 is inaccurate, and 0 otherwise. Each user casts a noisy vote using randomized
response accordingly, and if the sum of the noisy votes is large enough then a global update
occurs.

The problem with this protocol is that small changes in the underlying mean pt may
cause some users to vote 1 and others to vote 0, and this might continue for an arbitrarily
long time without inducing a global update. As a result, each voter “wastes” privacy in
every epoch, which is what we wanted to avoid. We resolve this issue by having voters also
estimate their confidence that a global update needs to occur, and vote proportionally. As a
result, voters who have high confidence will lose more privacy per epoch (but the need for a
global update will be detected quickly), while voters with low confidence will lose privacy
more slowly (but may end up voting for many rounds).

In more detail, each user i decides their confidence level by comparing |p̂t − p̂f(t)
i |—the

difference between the local average of their data in the current epoch and their local average
the last time a global update occurred—to a small set of discrete thresholds. Users with
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the highest confidence will vote in every epoch, whereas users with lower confidence will
only vote in a small subset of the epochs. We construct these thresholds and subsets so
that in expectation no user votes in more than a constant number of epochs before a global
update occurs, and the amount of privacy each user loses from voting will not grow with the
number of epochs required before an update occurs.

4. Thresh: The Bernoulli Case

4.1. The Thresh Algorithm (Bernoulli Case). We now present pseudocode for the
algorithm Thresh (Figure 1), including both the general framework as well as the specific
voting and randomized response procedures. We emphasize that the algorithm only touches
user data through the subroutines Vote, and Est (Figure 2), each of which accesses data
from a single user in at most two epochs. Thus, it is an online local protocol in which user
i’s response in epoch t depends only on user i’s data from at most two epochs t and t′ (and
the global information that is viewable to all users). Thresh uses carefully chosen thresholds

τb = 2(b+ 1)
√

ln(12nT/δ)/2` for b = −1, 0, . . . , blog(T )c to discretize the confidence of each
user; see Section 4.2 for details on this choice.

We begin with a privacy guarantee for Thresh. Our proof uses the standard analysis
of the privacy properties of randomized response, combined with the fact that users have a
cap on the number of updates that prevents the privacy loss from accumulating. We remark
that our privacy proof does not depend on distributional assumptions, which are only used
for the proof of accuracy. We sketch a proof here. A full proof appears in Section A of the
Appendix.

Theorem 4.1 . The protocol Thresh satisfies ε-local differential privacy (Definition 2.1)

Proof Sketch: Näıvely applying composition would yield a privacy parameter that scales
with T . Instead, we will rely on our defined privacy “caps” cVi and cEi that limit the number
of truthful votes and estimates each user sends. Intuitively, each user sends at most O( εa + ε

b )
messages that depend on their private data, and the rest are sampled independently of
their private data. Thus, we need only bound the privacy “cost” of each of these O( εa + ε

b )
elements of a user’s transcript coming from a different distribution and bound the sum of
the costs by ε. �

4.2. Accuracy Guarantee. Our accuracy theorem needs the following assumption on L,
the size of the smallest subgroup, to guarantee that a global update occurs whenever any
subgroup has all of its member users vote “yes.”

Assumption 4.2 . L >
(

3√
2

+
√

32
ε

)√
n ln(12mT/δ).

This brings us to our accuracy theorem, followed by a proof sketch (see Appendix B for
full details).

Theorem 4.3 . Given number of users n, number of subgroups m, smallest subgroup size L,
number of rounds R, privacy parameter ε, and chosen epoch length ` and number of epochs
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Algorithm 1 Global Algorithm: Thresh

Require: number of users n, number of epochs T , minimum subgroup size L, number of
subgroups m, epoch length `, privacy parameter ε, failure parameter δ

1: Initialize global estimate p̃0 ← −1
2: Initialize vote privacy counters cV1 , . . . , c

V
n ← 0, . . . , 0

3: Initialize estimate privacy counters cE1 , . . . , c
E
n ← 0, . . . , 0

4: Initialize vote noise level a← 4
√

2n ln(12mT/δ)

L− 3√
2

√
n ln(12mT/δ)

5: Initialize estimate noise level b←
√

2 ln(12T/δ)/2n

log(T )
√

ln(12nT/δ)/2`−
√

ln(12T/δ)/2n

6: for each epoch t ∈ [T ] do
7: for each user i ∈ [n] do
8: User i publishes ati ← Vote(i, t)
9: end for

10: GlobalUpdatet ←
(

1
n

∑n
i=1 a

t
i >

1
ea+1 +

√
ln(10T/δ)

2n

)
11: if GlobalUpdatet then
12: f(t)← t
13: for each i ∈ [n] do
14: User i publishes p̃ti ← Est(i, t)
15: end for

16: Aggregate user estimates into global estimate: p̃t ← 1
n

∑n
i=1

p̃ti(e
b+1)−1

eb−1
17: else
18: f(t)← f(t− 1)
19: for each i ∈ [n] do
20: User i publishes p̃ti ← Ber( 1

eb+1
)

21: end for
22: p̃t ← p̃t−1

23: end if
24: Analyst publishes p̃t

25: end for

Figure 1. Pseudocode for Thresh.

T = R/`, with probability at least 1− δ, in every epoch t ∈ [T ] such that fewer than

ε

4
·min

(
L

8
√

2n ln(12mT/δ)
− 1,

1√
2

[
log(T )

√
n

`
− 1

])
changes have occurred in epochs 1, 2, . . . , t, Thresh outputs p̃t such that

|p̃t − pt| ≤ 4(blog(T )c+ 2)

√
ln(12nT/δ)

2`
.

Proof Sketch: We begin by proving correctness of the voting process. Lemma B.1
guarantees that if every user decides that their subgroup distribution has not changed then



LOCAL DIFFERENTIAL PRIVACY FOR EVOLVING DATA 9

Algorithm 2 Local Subroutine: Vote

Require: user i, epoch t
1: Compute local estimate p̂ti ← 1

`

∑
r∈Et x

r
i

2: b∗ ← highest b such that |p̂ti − p̂
f(t)
i | > τb

3: VoteYesti ← (cVi < ε/4 and 2blog T c−b∗ divides t)
4: if VoteYesti then
5: cVi ← cVi + a

6: ati ← Ber( ea

ea+1)
7: else
8: ati ← Ber( 1

ea+1)
9: end if

10: Output ati

Algorithm 3 Local Subroutine: Est

Require: user i, epoch t
1: SendEstimateti ← {cEi < ε/4}
2: if SendEstimateti then
3: cEi ← cEi + b

4: p̃ti ← Ber(
1+p̂ti(e

b−1)

eb+1
)

5: else
6: p̃ti ← Ber( 1

eb+1
)

7: end if
8: Output p̃ti

Figure 2. Pseudocode for Vote and Est.

a global update does not occur, while Lemma B.2 guarantees that if every user in some
subgroup decides that a change has occurred, then a global update occurs. By Lemma B.3,
for each user i the individual user estimates driving these voting decisions are themselves
accurate to within t` = O(

√
ln(nT/δ)/`) of the true µtg(i). Finally, by Lemma B.4 guarantees

that if every user decides that a change has occurred, then a global update occurs that
produces a global estimate p̃t that is within t` of the true pt.

To reason about how distribution changes across multiple epochs affect Thresh, we use
the preceding results to show that the number of global updates never exceeds the number
of distribution changes (Lemma B.6). A more granular guarantee then bounds the number
of changes any user detects—and the number of times they vote accordingly—as a function
of the number of distribution changes (Lemma B.7). These results enable us, in Lemma B.8,
to show that each change increases a user’s vote privacy cap cVi by at most 2 and estimate
privacy cap cEi by at most 1.

Finally, recall that Thresh has each user i compare their current local estimate p̂ti
to their local estimate in the last global update, p̂

f(t)
i , to decide how to vote, with higher
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thresholds for |p̂ti − p̂
f(t)
i | increasing the likelihood of a “yes” vote. This implies that if every

user in some subgroup computes a local estimate p̂ti such that |p̂ti − p̂
f(t)
i | exceeds the highest

threshold, then every user sends a “yes” vote and a global update occurs, bringing with it
the accuracy guarantee of Lemma B.4. In turn, we conclude that |p̃t − pt| never exceeds the
highest threshold, and our accuracy result follows. �

We conclude this section with a few remarks about Thresh. First, while the provided
guarantee depends on the number of changes of any size, one can easily modify Thresh to
be robust to changes of size ≤ c, paying and additive c term in the accuracy. Second, the
accuracy’s dependence on ` offers guidance for its selection: roughly, for desired accuracy α,
one should set ` = 1/α2. Finally, in practice one may want to periodically assess how many
users have exhausted their privacy budgets, which we can achieve by extending the voting
protocol to estimate the fraction of “live” users. We primarily view this as an implementation
detail outside of the scope of the exact problem we study.

5. An Application to Heavy Hitters

We now use the methods developed above to obtain similar guarantees for a common problem
in local differential privacy known as heavy hitters. In this problem each of n users has their
own dictionary value v ∈ D (e.g. their homepage), and an aggregator wants to learn the
most frequently held dictionary values (e.g. the most common homepages), known as “heavy
hitters”, while satisfying local differential privacy for each user. The heavy hitters problem
has attracted significant attention (Bassily, Stemmer and Thakurta, 2017; Bun, Nelson and
Stemmer, 2017; Hsu, Khanna and Roth, 2012; Mishra and Sandler, 2006). Here, we show
how our techniques combine with an approach of Bassily and Smith (2015) to obtain the first
guarantees for heavy hitters on evolving data. We note that our focus on this approach is
primarily for expositional clarity; our techniques should apply just as well to other variants,
which can lead to more efficient algorithms.

5.1. Setting Overview. As in the simpler Bernoulli case, we divide time into ` · T rounds
and T epochs. Here, in each round r each user i draws a sample vri from a subgroup-specific
distribution Prg(i) over the d values in dictionary D and track P1, . . . ,PT , the weighted

average dictionary distribution in each epoch. We will require the same Assumption 4.2 as
in the Bernoulli case, and we also suppose that d� n, a common parameter regime for this
problem.

In the Bernoulli case users could reason about the evolution of µtj directly from their own
` samples in each epoch. Since it is reasonable to assume d� `, this is no longer possible
in our new setting—Ptj is too large an object to estimate from ` samples. However, we
can instead adopt a common approach in heavy hitters estimation and examine a “smaller”
object using a hash on dictionary samples. We will therefore have users reason about the
distribution ptj over hashes that Ptj induces, which is a much smaller joint distribution of m

(transformed) Bernoulli distributions. Our hope is that users can reliably “detect changes”
by analyzing ptj , and the feasibility of this method leans crucially on the properties of the
hash in question.
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5.2. Details and Privacy Guarantee. First we recall the details of the one-shot protocol
from Bassily and Smith (2015). In their protocol, each user starts with a dictionary value
v ∈ [d] with an associated basis vector ev ∈ Rd. The user hashes this to a smaller vector
h ∈ Rw using a (population-wide) Φ, a w × d Johnson-Lindenstrauss matrix where w � d.
The user then passes this hash ẑti = Φev to their own local randomizer R, and the center
aggregates these randomized values into a single z̄ which induces a frequency oracle.

We will modify this to produce a protocol HeavyThresh in the vein of Thresh. In each
epoch t each user i computes an estimated histogram p̂ti and then hashes it into Φp̂ti ∈ Rw,
where w = 20n (we assume the existence of a subroutine GenProj for generating Φ). Each
user votes on whether or not a global update has occurred by comparing Φp̂ti to their estimate

during the most recent update, Φp̂
f(t)
i , in HeavyVote. Next, HeavyThresh aggregates

these votes to determine whether or not a global update will occur. Depending on the result,
each user then calls their own estimation subroutine HeavyEst and outputs a randomized
response using R accordingly. If a global update occurs, HeavyThresh aggregates these
responses into a new published global hash ỹt; if not, HeavyThresh publishes ỹt−1. In
either case, HeavyThresh publishes (Φ, ỹt) as well. This final output is a frequency oracle,
which for any v ∈ [d] offers an estimate 〈Φev, ỹt〉 of Pt(v).

HeavyThresh will use the following thresholds with τb = 2(b+ 1)
√

2 ln(16wnT/δ)/w`
for b = −1, 0, . . . , blog(T )c. See Section 5.3 for details on this choice. Fortunately, the
bulk of our analysis uses tools already developed either in Section 4 or Bassily and Smith
(2015). Our privacy guarantee is almost immediate: since HeavyThresh shares its voting
protocols with Thresh, the only additional analysis needed is for the estimation randomizer
R (Lemma C.1). Using the privacy of R, privacy for HeavyThresh follows by the same
proof as for the Bernoulli case.

Theorem 5.1 . HeavyThresh is ε-local differentially private.

5.3. Accuracy Guarantee. As above, an accuracy guarantee for HeavyThresh unfolds
along similar lines as that for Thresh, with additional recourse to results from Bassily

and Smith (2015). We again require Assumption 4.2 and also assume d = 2o(n
2/`) (a weak

assumption made primarily for neatness in Theorem 1.2). Our result and its proof sketch
follow, with details and full pseudocode in Appendix Section D.

Theorem 5.2 . With probability at least 1− δ, in every epoch t ∈ [T ] such that fewer than

ε

4
·min

 L

8
√

2n ln(12mT/δ)
− 1,

log(T )

√
n ln(320n2T/δ)

10` −
√

ln(16dT/δ)
10 − 2 ln(320nT/δ)

√
5
n√

ln(320nT/δ)
(

1 + 20√
n

)


changes have occurred in epochs 1, 2, . . . , t,

|f̂ t(v)− Pt(v)| < 4(log(T ) + 2)

√
2 ln(320n2T/δ)

`
+

√
ln(16ndT

δ )

n
.

Proof Sketch: Our proof is similar to that of Theorem 4.3 and proceeds by proving
analogous versions of the same lemmas, with users checking for changes in the subgroup
distribution over observed hashes rather than observed bits. This leads to one new wrinkle
in our argument: once we show that the globally estimated hash is close to the true hash,
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we must translate from closeness of hashes to closeness of the distributions they induce
(Lemma D.4). The rest of the proof, which uses guarantees of user estimate accuracy to 1.
guarantee that sufficiently large changes cause global updates and 2. each change incurs a
bounded privacy loss, largely follows that of Theorem 4.3. �
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Appendix A. Missing Proofs from Section 4

Theorem A.1 . The protocol Thresh satisfies ε-local differential privacy (Definition 2.1)

Proof. To begin, we fix an arbitrary private user i and arbitrary algorithms A′−i, C
′ for the

other users and for the center. Fix any pair of inputs xi, x
′
i for user i. To ease notation, let

tr = tri(Ai(xi), A
′
−i, C

′) and tr′ = tri(Ai(x
′
i), A

′
−i, C

′) be the random variables corresponding
to the messages sent by user i in the protocol with inputs xi, x

′
i, respectively. Note that we

drop the subscript i, since user i will be fixed throughout. To prove the theorem, it suffices
to show

P [tr = z]

P [tr′ = z]
≤ eε

for every possible set of messages z.
The structure of the transcripts is as follows: each epoch t contributes two elements,

first the vote at (the output of Vote(i, t)) and the estimate p̃t (the output of Est(i, t)). So
we can write z = ((a1, p̃1), . . . , (aT , p̃T )) and

P [tr = z]

P [tr′ = z]
=

T∏
t=1

P
[
trt = (at, p̃t) | tr<t = z<t

]
P [tr′t = (at, p̃t) | tr′<t = z<t]

.

For any execution of the protocol, we can partition the set of epochs into those epochs
SV ⊆ [T ] where in at least one of tr and tr′ user i sets VoteYesti to True, and those ScV where
VoteYesti is False in both tr and tr′; similarly, we can partition [T ] into those epochs SE
where SendEstimateti is True in at least one of tr and tr′ and those ScE where SendEstimateti
is False in both tr and tr′.

Since every epoch in SV causes the counter cvi to increase by a, SV contains at most
ε/4a epochs from each of tr and tr′, so |SV | ≤ ε/2a.

For any t ∈ ScV , user i will sample at and p̃t from Ber( 1
ea+1) in both tr and tr′. Thus∏

t∈ScV

P
[
trt = (at, p̃t) | tr<t = z<t

]
P [tr′t = (at, p̃t) | tr′<t = z<t]

= 1.

To complete the proof, we need to bound∏
t∈SV

P
[
trt = (at, p̃t) | tr<t = z<t

]
P [tr′t = (at, p̃t) | tr′<t = z<t]

≤ eε/2,

which will hold because every factor in the product is at most ea and |SV | ≤ ε/2a. To see
why, consider some epoch t ∈ SV . The first component of trt is the vote at ∈ {0, 1}. The
only two possibilities for how at is chosen are at ∼ Ber( 1

ea+1) or at ∼ Ber( ea

ea+1). One can

easily verify that for any at ∈ {0, 1},
P
[
at | tr<t = z<t

]
P [at | tr′<t = z<t]

≤ ea.

We now consider the second component of trt, which is p̃t. As in the SV case, since
every epoch in SE causes the counter cEi to increase by b, SE contains at most ε/4b epochs
from each of tr and tr′, so |SE | ≤ ε/2b.

When SendEstimatet is False, then p̃t is sampled from

Ber

(
1

eb + 1

)
,
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and when SendEstimatet is True, then p̃t is sampled from

Ber

(
1 + p̂t(eb − 1)

eb + 1

)
depending on the value of the private data p̂t, which lies in [0, 1]. Thus, the parameter

in the Bernoulli distribution lies in [ 1
eb+1

, eb

eb+1
]. Again, one can easily verify that for any

p̃t ∈ {0, 1},
P
[
p̃t | tr<t = z<t, at

]
P [p̃t | tr′<t = z<t, at]

≤ eb.

Putting it together, we have

P [tr = z]

P [tr′ = z]
=

T∏
t=1

P
[
trt = (at, p̃t) | tr<t = z<t

]
P [tr′t = (at, p̃t) | tr′<t = z<t]

=
∏
t∈SV

P
[
trt = at | tr<t = z<t

]
P [tr′t = at | tr′<t = z<t]

·
∏
t∈SE

P
[
trt = p̃t | tr<t = z<t, at

]
P [tr′t = p̃t) | tr′<t = z<t, at]

≤ ea·|SV | · eb·|SE | ≤ eε/2 · eε/2 ≤= eε.

This completes the proof.

Appendix B. Missing Proofs From Section 4.2

We begin the proof of our accuracy guarantee with a series of lemmas. Recalling that we set

a =
4
√

2n ln(12mT/δ)

L− 3√
2

√
n ln(12mT/δ)

and

b =

√
2 ln(12T/δ)/2n

log(T )
√

ln(12nT/δ)/2`−
√

ln(12T/δ)/2n
,

we start by showing that if every user votes that a change has not occurred, then a global
update will not occur.

Lemma B.1 . With probability at least 1− δ/6, in every epoch t ∈ [T ], if every user i sets
VoteYesti ← False then GlobalUpdatet ← False.

Proof. Since every user i sets VoteYesti ← False, every ati is an iid draw from a Bern
(

1
ea+1

)
distribution. Thus a Chernoff bound says

P

[∣∣∣∣∣ 1n
n∑
i=1

ati −
1

ea + 1

∣∣∣∣∣ ≥
√

ln(12T/δ)

2n

]
≤ δ

6T
.

Since GlobalUpdatet ←
(

1
n

∑n
i=1 a

t
i >

1
ea+1 +

√
ln(12T/δ)

2n

)
, GlobalUpdatet ← False. Union-

bounding across T epochs completes the proof.
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Similarly, we also want to ensure that if every user in some subgroup votes that an
update has occurred then a global update will indeed occur.

Lemma B.2 . With probability at least 1− δ/3, in every epoch t ∈ [T ], if there is a subgroup
j where every user i ∈ Sj sets VoteYesti ← True then GlobalUpdatet ← True.

Proof. Since |Sj | ≥ L, Chernoff bounds imply that the aggregate vote satisfies

1

n

n∑
i=1

ati >
1

n

[
Lea

ea + 1
−
√
L ln(12mT/δ)

2
+
n− L
ea + 1

−
√

(n− L) ln(12mT/δ)

2

]
.

Recalling that GlobalUpdatet ← True if and only if 1
n

∑n
i=1 a

t
i >

1
ea+1 +

√
ln(12T/δ)

2n , it suffices

to show that

1

n

[
Lea

ea + 1
−
√
L ln(12mT/δ)

2
+
n− L
ea + 1

−
√

(n− L) ln(12mT/δ)

2

]
>

1

ea + 1
+

√
ln(12T/δ)

2n
.

Rearranging, it is enough to show that

L >
3√
2
· e

a + 1

ea − 1
·
√
n ln(12mT/δ)

and using the fact that ea+1
ea−1 <

a+2
a it is enough that

a >
3
√

2n ln(12mT/δ)

L− 3√
2

√
n ln(12mT/δ)

,

which follows from our setting of a. Union-bounding across m subgroups and T epochs
completes the proof.

We now show that every user in every epoch obtains an estimate p̂ti of µtg(i) of bounded

inaccuracy. This will enable us to—among other things—guarantee that users do not send
“false positive” votes.

Lemma B.3 . With probability at least 1− δ/6, in each epoch t ∈ [T ] each user i has

|p̂ti − µtg(i)| <
√

ln(12nT/δ)

2`
.

Proof. E
[
p̂ti
]

= µtg(i), so by an additive Chernoff bound

P

[
|p̂ti − µtg(i)| ≥

√
ln(12nT/δ)

2`

]
≤ 2 exp

−2

[√
ln(12nT/δ)

2`

]2

`

 = δ/6nT.

A union bound across n users and T epochs then completes the proof.

Next, in those epochs in which a global update occurs and no user i has hit their
estimation privacy cap cEi , in the interest of asymptotic optimality we want to obtain a
similar error for the resulting collated estimate p̃t.

Lemma B.4 . With probability at least 1− δ
3 , in every epoch t ∈ [T ] where every user i sets

SendEstimateti ← True, ∣∣pt − p̃t∣∣ < 2(log(T ) + 2)

√
ln(12nT/δ)

2`
.
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Proof. Since every user i sets SendEstimateti ← True we know that for all i

p̃ti ∼ Ber

(
1 + p̂ti(e

b − 1)

eb + 1

)
,

so

E
[
p̃t
]

= E

[
1

n

n∑
i=1

p̃ti(e
b + 1)− 1

eb − 1

]
=

1

n

n∑
i=1

E
[
p̃ti
]

(eb + 1)− 1

eb − 1
=

1

n

n∑
i=1

p̂ti.

Since p̃t is an average of { −1
eb−1

, eb

eb−1
}-valued random variables, we transform it into the

{0, 1}-valued random variable

Y =

(
p̃t +

1

eb − 1

)
· e

b − 1

eb + 1
.

Applying an additive Chernoff bound as above yields

P

[
|Y − E [Y ]| ≥

√
ln(12T/δ)

2n

]
≤ δ

6T
,

which implies that

P

[∣∣∣∣∣p̃t − 1

n

n∑
i=1

p̂ti

∣∣∣∣∣ ≥
(
eb + 1

eb − 1

)√
ln(12T/δ)

2n

]
≤ δ

6T
.

Similarly, as E
[

1
n

∑n
i=1 p̂

t
i

]
= pt,

P

[∣∣∣∣∣ 1n
n∑
i=1

p̂ti − pt
∣∣∣∣∣ ≥

√
ln(12T/δ)

2n

]
≤ δ

6T
.

Combining these results in the triangle inequality yields that with probability at least 1− δ
6T

|p̃t − pt| < 2

(
eb + 1

eb − 1

)√
ln(12T/δ)

2n
.

Since eb+1
eb−1

< b+2
b , this implies that

|p̃t − pt| < 2

(
b+ 2

b

)√
ln(12T/δ)

2n

so to get

|p̃t − pt| < 2(log(T ) + 2)

√
ln(12nT/δ)

2`
,

it suffices that

b >

√
2 ln(12T/δ)/n

(log(T ) + 2)
√

ln(12nT/δ)/2`−
√

ln(12T/δ)/2n
.

Substituting in our setting of

b =

√
2 ln(12T/δ)/2n

log(T )
√

ln(12nT/δ)/2`−
√

ln(12T/δ)/2n

and union-bounding over T epochs completes the proof.
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Finally, we use the above lemmas to reason about how long users’ privacy budgets last.
We’ll first define a useful term for this claim.

Definition B.5 . We say a change ∆t occurs in epoch t ∈ [T ] if there exists subgroup j
such that µtj 6= µt−1

j . Given changes ∆t1 and ∆t2 where t1 < t2, we say that ∆t1 and ∆t2

are adjacent changes if there does not exist a change ∆t3 such that t1 < t3 < t2.

This lets us prove the following lemma bounding the frequency of global updates.

Lemma B.6 . With probability at least 1 − δ, given adjacent changes ∆t1 and ∆t2,
GlobalUpdatet ← True in at most one epoch t ∈ [t1, t2).

Proof. First, with probability at least 1 − δ all of the preceding lemma in this section apply,
and we condition on them for the remainder of this proof.

Assume instead that GlobalUpdatet ← True and GlobalUpdatet
′ ← True as well for

t1 ≤ t < t′ ≤ t2 − 1, and that GlobalUpdatet3 ← False for all t3 ∈ (t, t′). Recall that by

Lemma B.1, if in epoch t′ every user i sets VoteYest
′
i ← False then

1

n

n∑
i=1

at
′
i ≤

1

ea + 1
+

√
ln(12T/δ)

2n
,

which means GlobalUpdatet
′ ← False. Therefore since we know GlobalUpdatet

′ ← True,
it follows that at least one user i sets VoteYest

′
i ← True. By the thresholding structure of

Thresh, this implies that

|p̂t′i − p̂ti| > 2

√
ln(12nT/δ)

2`
.

Since Lemma B.3 guarantees that both p̂t
′
i and p̂ti are within

√
ln(12nT/δ)

2` of µt
′

g(i) and µtg(i)
respectively, it follows that µt

′

g(i) 6= µtg(i). This contradicts the fact that ∆t1 and ∆t2 were

adjacent changes.

We similarly bound the frequency with which users vote that a change has occurred.

Lemma B.7 . With probability at least 1− δ, given adjacent changes ∆t1 and ∆t2 such that
a global update occurs in t3 ∈ [t1, t2), for each user i there is at most one epoch t ∈ (t3, t2)
where VoteYesti ← True.

Proof. First, with probability at least 1− δ all of the preceding lemmas in this section apply,
and we condition on them for the remainder of this proof. In particular, Lemma B.6 implies
that t3 is the only epoch in [t1, t2) in which a global update occurs.

For contradiction, let t3 < t4 < t5 < t2 and assume that user i sets VoteYest4i ← True

and VoteYest5i ← True. Since there is only one t ∈ [T − 1] such that 2blog(T )c−1 divides t, and
the construction of the Vote subroutine requires this for a user m to set VoteYestm ← True,

without loss of generality we may suppose that |p̂t4i − p̂
f(t4)
i | > Tb and |p̂t5i − p̂

f(t5)
i | > Tb′

where b > b′ ≥ 1. However, Lemma B.3 then implies that every user m in Sg(i) has

|p̂t5m − p̂
f(t5)
i | > T ′b, so by Lemma B.6 GlobalUpdatet5 ← True, a contradiction of t3 being

the only epoch in [t1, t2) in which a global update occurs.

Our last lemma before our main theorem ties the above results together to relate changes
to increases in users’ privacy caps ci. This will eventually let us lower bound the time for
which Thresh outputs accurate results.
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Lemma B.8 . Denote by cti the value of ci in epoch t. Then with probability at least 1− δ,
across all epochs, given any two adjacent changes ∆t1 and ∆t2, for every user i

ct2−1
i,E ≤ ct1−1

i,E + 1

and
ct2−1
i,V ≤ ct1−1

i,V + 2.

Proof. First, with probability at least 1− δ all of the preceding lemmas in this section apply,
and we condition on them for the remainder of this proof.

Fix a user i. First, ci,E increases in any epoch t where SendEstimateti ← True. This only
happens in epoch where GlobalUpdatet ← True, and by Lemma B.6, at most one global
update occurs in epochs in [t1, t2), so ct2−1

i,E ≤ ct1−1
i,E + 1. We analyze ci,V in two cases.

Case 1: For all t ∈ [t1, t2), GlobalUpdatet ← False. Here, since no global update occurs,

if ct2−1
i,V > ct1i + 2 then there must exist 3 epochs t ∈ [t1, t2) where user i sets VoteYesti ←

True, a contradiction of Lemma B.7.
Case 2: For some epoch t∗ ∈ [t1, t2), GlobalUpdatet

∗ ← True. It then suffices to show
that user i sets VoteYesti ← True in at most two epochs t ∈ [t1, t2 − 1] (possibly including
t∗).

Assume instead that VoteYest3i , VoteYest4i , and VoteYest5i ← True for distinct t3, t4, t5 ∈
[t1, t2). By Lemmas B.3 and B.4, VoteYesti ← False in any epoch t ∈ [t∗ + 1, t2). Therefore
t3, t4, t5 ∈ [t1, t

∗], and at least two are in [t1, t
∗ − 1] and do not trigger a global update. This

again contradicts Lemma B.7.

Taken together, these preliminary results let us prove our main accuracy theorem.

Theorem B.9 . With probability at least 1− δ, in every epoch t ∈ [T ] such that fewer than

ε

4
·min

(
L

8
√

2n ln(12mT/δ)
− 1,

1√
2

[
log(T )

√
n

`
− 1

])
changes have occurred in epochs 1, 2, . . . , t,

|p̃t − pt| ≤ 4(blog(T )c+ 2)

√
ln(12nT/δ)

2`
.

Proof. First, with probability at least 1 − δ all of the preceding lemmas and corollaries in
this section apply, and we condition on them for the remainder of this proof. In particular,
since

min
( ε

8a
,
ε

4b

)
=
ε

4
·min

(
1

2a
,

1

b

)
=
ε

4
·min

(
L− 3√

2

√
n ln(12mT/δ)

8
√

2n ln(12mT/δ)
,

log(T )
√

ln(12nT/δ)/2`−
√

ln(12T/δ)/2n√
2 ln(12T/δ)/2n

)

>
ε

4
·min

(
L

8
√

2n ln(12mT/δ)
− 1,

1√
2

[
log(T )

√
n

`
− 1

])
we know that the number of changes thus far is less than min

(
ε

8a ,
ε
4b

)
, and by Lemma B.8

for every user i, cVi < ε/4 and cEi < ε/4, i.e. no user has exceeded their voting or estimation
privacy budget.
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Now suppose for contradiction that

|p̃t − pt| > 4(blog(T )c+ 2)

√
ln(12nT/δ)

2`
.

By Lemma B.4 this means GlobalUpdatet ← False, so by Lemma B.2 for every subgroup
j ∈ [m] there exists user i ∈ Sj such that

|p̂ti − p̂
f(t)
i | ≤ 2(blog(T )c+ 1)

√
ln(12nT/δ)

2`
.

Lemma B.3 then implies that

|µtj − µ
f(t)
j | ≤ 2(blog(T )c+ 2)

√
ln(12nT/δ)

2`
.

Since this holds for every subgroup j, we get that

|pt − pf(t)| ≤ 2(blog(T )c+ 2)

√
ln(12nT/δ)

2`
,

and since GlobalUpdatet ← False, by Lemma B.4 this means that p̃t = p̃f(t) and

|p̃t − pt| ≤ 4(blog(T )c+ 2)

√
ln(12nT/δ)

2`
.

a contradiction.

Appendix C. Missing Proofs from Section 5.2

We start with full pseudocode for HeavyThresh (Figure 3) as well as its subroutines
(Figures 4 and 5).

Next, we prove a lemma guaranteeing the privacy of the R subroutine.

Lemma C.1 . R is ε-locally DP.

Proof. Choose a possible output z of R. Let h1 and h2 be two arbitrary input hashes. It
suffices to show

P [R(h1) = z]

P [R(h2) = z]
≤ eε.

Case 1: h1 and h2 are zero vectors. ThenR(h1) andR(h2) have identical output distributions
and the result is immediate.

Case 2: Exactly one (WLOG h1) hash is a nonzero vector. Then

P [R(h2) = z] =
1

2w
.

Similarly,

P [R(h1) = z] ≤ 1

w
·
(

1

2
+

1

2cε

)
.

Therefore
P [R(h1) = z]

P [R(h2) = z]
≤ 1 +

1

cε
= 1 +

eε − 1

eε + 1
≤ eε.
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Algorithm 4 Global Algorithm: HeavyThresh

Require: number of users n, number of epochs T , minimum subgroup size L, number of
subgroups m, epoch length `, privacy parameter ε, failure parameter δ

1: Initialize global estimate ỹ0 ← −1
2: Initialize update counters c1, . . . , cn ← 0, 0, . . . , 0

3: Initialize vote noise level a← 4
√

2n ln(12mT/δ)

L− 3√
2

√
n ln(12mT/δ)

4: Initialize estimate noise level b←
2

(√
ln(16wT/δ)

nw
+

ln(16wT/δ)
√
w

n2

)
2(log(T )+2)

√
2 ln(16wnT/δ)

w`
−2
√

ln(16dT/δ)
2wn

− ln(16wT/δ)
√
w

n2

5: w ← 20n
6: Initialize JL matrix Φ← GenProj(w, d)
7: for each epoch t ∈ [T ] do
8: for each user i ∈ [n] do
9: User i publishes ati ← HeavyVote(i, t)

10: end for

11: GlobalUpdatet ←
(

1
n

∑n
i=1 a

t
i >

1
ea+1 +

√
ln(16T/δ)

2n

)
12: if GlobalUpdatet then
13: f(t)← t
14: for each i ∈ [n] do
15: User i publishes z̃ti ← HeavyEst(i, t)
16: end for
17: Aggregate user estimates into global estimate:

ỹt ← 1
n

∑n
i=1 z̃

t
i

18: else
19: f(t)← f(t− 1)
20: for each i ∈ [n] do
21: User i publishes z̃ti ← R(0, b)
22: end for
23: ỹt ← ỹt−1

24: end if
25: Analyst publishes ỹt

26: Analyst publishes FOt ← (Φ, ỹt)
27: end for

Figure 3. Pseudocode for HeavyThresh.

Case 3: Neither h1 nor h2 is a zero vector. Then by the logic above

P [R(h1) = z]

P [R(h2) = z]
≤

1 + eε−1
eε+1

1− eε−1
eε+1

=
eε + 1 + eε − 1

eε + 1− eε + 1
= eε.
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Algorithm 5 Local Subroutine: HeavyVote

Require: user i, epoch t

1: Compute local estimate p̂ti ← 1
`

∑t`
r=(t−1)`+1 v

r
i

2: Compute local hash ŷti ← Φp̂ti
3: b∗ ← highest b such that ||ŷti − ŷ

f(t)
i ||∞ > τb

4: VoteYesti ← (cVi < ε/4a and 2blog T c−b∗ divides t)
5: if VoteYesti then
6: cVi ← cVi + a

7: ati ← Ber( ea

ea+1)
8: else
9: ati ← Ber( 1

ea+1)
10: end if
11: Output ati

Algorithm 6 Frequency Oracle: AFO
Require: Frequency oracle (Φ, 1

n

∑n
i=1 zi), dictionary value to be estimated v ∈ [d]

1: Output f̂(v) = 〈Φev, z̄〉

Figure 4. Pseudocode for HeavyVote and AFO.

Appendix D. Missing Proofs From Section 5.3

First, recall that we set

a =
4
√

2n ln(12mT/δ)

L− 3√
2

√
n ln(12mT/δ)

and

b =

2

(√
ln(16wT/δ)

nw + ln(16wT/δ)
√
w

n2

)
2(log(T ) + 2)

√
2 ln(16wnT/δ)

w` − 2

√
ln(16dT/δ)

2wn − ln(16wT/δ)
√
w

n2

We start with a result about R.

Lemma D.1 . For all ε > 0 and x ∈ [− 1√
w
, 1√

w
]w, E [R(x, ε)] = x.

Proof. In the case where x = 0, we get

E [R(x)]j =
1

w
·
(
−cε
√
w

2
+
cε
√
w

2

)
= 0,

and for x 6= 0

E [R(x)]j =
1

w

[(
1

2
+
xj
√
w

2cε

)
cε
√
w +

(
1

2
− xj

√
w

2cε

)
(−cε

√
w)

]
= xj .
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Algorithm 7 Local Subroutine: HeavyEst

Require: user i, epoch t
1: SendEstimateti ← {cEi < ε/4b}
2: if SendEstimateti then
3: ci ← cEi + b
4: z̃ti ← R(ŷti , b)
5: else
6: z̃ti ← R(0, b)
7: end if
8: Output z̃ti

Algorithm 8 Client Randomizer: R
Require: Hashed histogram h = Φp̂ti, privacy parameter ε

1: Sample j ∈ [w] uniformly at random

2: cε ← eb+1
eb−1

3: z ← 0 ∈ Rw
4: if h 6= 0 then
5: Draw x ∼ Uni(0, 1)

6: if x < 1
2 +

hj
√
w

2cε
then

7: zj ← cε
√
w

8: else
9: zj ← −cε

√
w

10: end if
11: else
12: zj ← cε

√
w or − cε

√
w u.a.r

13: end if
14: Output z

Figure 5. Pseudocode for HeavyEst and R.

Lemmas B.1 and B.2, since they cover portions of the voting process shared between
Vote and HeavyVote, apply here with only their failure probabilities changed to δ/8 and
δ/4. We start with an analogue of Lemma B.3.

Lemma D.2 . With probability at least 1− δ/8, for every epoch t and user i, defining by
ptg(i) the d-dimensional vector where ptg(i)(q) = Ptg(i)(q),∥∥∥Φp̂ti − Φptg(i)

∥∥∥
∞
<

√
2 ln(16wnT/δ)

w`
.

Proof. Φp̂ti is a vector with entries in ± 1√
w

, so setting X =

√
w
(

Φp̂ti+
1√
w

)
2 we get X ∈ [0, 1]m

where each index Xj has E [Xj ] =

√
w
(

(Φpt
g(i)

)j+
1√
w

)
2 . A Chernoff bound then says that, with
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probability at least 1− δ
8 , for every user i and every epoch t

‖X − E [Xj ]‖∞ <

√
ln(16wnT/δ)

2`
.

Scaling this result by 2√
w

and transforming X back into Φp̂ti yields the claim.

This brings us to an analogue of Lemma B.4.

Lemma D.3 . With probability at least 1− δ/8, for every epoch t where every user i sets
SendEstimateti ← True,∥∥ỹt − Φpt

∥∥
∞ < 2(log(T ) + 2)

√
2 ln(16wnT/δ)

w`
.

Proof. By Lemma D.1, E
[
ỹt
]

= 1
n

∑n
i=1 Φp̂ti, and we want to begin by bounding

∥∥ỹt − 1
n

∑n
i=1 Φp̂ti

∥∥.

First, since each of the n random variables ẑti that make up ỹt = 1
n

∑n
i=1 ẑ

t
i is a zero vector

except for an independently randomly chosen index s ∈ [w], for each s ∈ [w] we can bound
the number N t

j of vectors ẑti that are nonzero in index s by an additive Chernoff bound:

P

[
N t
s >

n

w
+

√
n ln(8wT/δ)

2

]
≤ δ

8wT
.

Union bounding over w indices, since ỹt is normalized by 1/n, we get that

ỹt ∈

[
−cε
√
w

(
1

w
+

√
ln(8wT/δ)

2n

)
, cε
√
w

(
1

w
+

√
ln(8wT/δ)

2n

)]w
.

Thus scaling, applying a Chernoff bound to each index, then re-scaling and union bounding
over all w indices and T epochs gives us that with probability at least 1 − δ

8 in every epoch
t where GlobalUpdatet ← True∥∥∥∥∥ỹt − 1

n

n∑
i=1

Φp̂ti

∥∥∥∥∥
∞

< 2cε

(
1

w
+

√
ln(8wT/δ)

2n

)√
w ln(16wT/δ)

2n

< cε

(√
2 ln(16wT/δ)

wn
+

ln(16T/δ)
√
w

n

)
.

Similarly, ∥∥∥∥∥Φpt − 1

n

n∑
i=1

Φp̂ti

∥∥∥∥∥
∞

= ‖Φ‖∞ ·

∥∥∥∥∥pt − 1

n

n∑
i=1

p̂ti

∥∥∥∥∥
∞

≤ 1√
w
·
√

ln(16dT/δ)

2n

=

√
ln(16dT/δ)

2wn

where the inequality holds with probability at least 1 − δ
8 in every epoch t by the definition

of Φ and a Chernoff bound on the sampling error of n samples from Pt, union bounded over
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d dictionary elements and T epochs. By triangle inequality,∥∥ỹt − Φpt
∥∥
∞ < cε

(√
ln(16wT/δ)

nw
+

ln(16wT/δ)
√
w

n

)
+

√
ln(16dT/δ)

2wn

and since cε = eb+1
eb−1

< b+2
b , it is enough to set b such that

b+ 2

b

(√
ln(16wT/δ)

nw
+

ln(16wT/δ)
√
w

n

)
+

√
ln(16dT/δ)

2wn
≤ 2(log(T )+2)

√
2 ln(16wnT/δ)

w`
.

Substituting in our value

b =

2

(√
ln(16wT/δ)

nw + ln(16wT/δ)
√
w

n2

)
2(log(T ) + 2)

√
2 ln(16wnT/δ)

w` − 2

√
ln(16dT/δ)

2wn − ln(16wT/δ)
√
w

n2

yields the claim.

We’ll need the following result to translate bounds on
∥∥ỹt − Φpt

∥∥ into accuracy bounds

relative to Pt.

Lemma D.4 . With probability at least 1− δ/8, in every epoch t, if∥∥ỹt − Φpt
∥∥
∞ < B,

then, denoting by f̂ t the frequency oracle induced by (Φ, ỹt),

max
v∈[d]

∣∣∣f̂ t(v)− Pt(v)
∣∣∣ ≤ B√w + 2

√
ln(16ndT/δ)

n
.

Proof. The outline of our proof is similar (and in some steps identical) to that of Theorem
2.5 in (Bassily and Smith, 2015), but we provide it here for completeness. First,

max
v∈[d]
|f̂ t(v)− Pt(v)| = max

v∈[d]

∣∣〈ỹt,Φev〉 − 〈pt, ev〉∣∣
= max

v∈[d]

∣∣〈ỹt − Φpt,Φev〉+ 〈Φpt,Φev〉 − 〈pt, ev〉
∣∣

≤ max
v∈[d]

∣∣〈ỹt − Φpt,Φev〉
∣∣+ max

v∈[d]

∣∣〈Φpt,Φev〉 − 〈pt, ev〉∣∣ .
Then by Corollary 6.4 from (Blum, Ligett and Roth, 2013), since γ =

√
ln(16ndT/δ)

n and

w = 20n = 20 ln(16ndT/δ)
γ2

, we get that with probability at least 1 − δ
8T we can bound the

second term by

max
v∈[d]

∣∣〈Φpt,Φev〉 − 〈pt, ev〉∣∣ ≤ γ (∥∥pt∥∥2

2
+ ‖ev‖22

)
≤ 2γ.

By our assumption we can bound the first term by∥∥ỹt − Φpt
∥∥
∞ · ‖Φev‖1 ≤ B

√
w.

Together with a union bound over the T epochs, these yield the claim.



LOCAL DIFFERENTIAL PRIVACY FOR EVOLVING DATA 27

We can use these lemmas to prove an analogue of Corollary B.6. First, we specify our
setting-specific redefinition of change.

Definition D.5 . We say a change ∆t occurs in epoch t ∈ [T ] if there exists subgroup
j ∈ [m] such that Ptj 6= P

t−1
j .

This lets us state the necessary result.

Lemma D.6 . With probability at least 1 − δ, given adjacent changes ∆t1 and ∆t2,
GlobalUpdatet ← True in at most one epoch t ∈ [t1, t2).

Proof. The proof is identical to that of Lemma B.6, only replacing Lemma B.3 with
Lemma D.2.

Lemmas B.7 and B.8 apply in this setting unmodified, which finally lets us prove the
following accuracy guarantee.

Theorem D.7 Accuracy Guarantee. With probability at least 1− δ, in every epoch t ∈ [T ]
such that fewer than

ε

4
·min

 L

8
√

2n ln(12mT/δ)
− 1,

log(T )

√
n ln(320n2T/δ)

10` −
√

ln(16dT/δ)
10 − 2 ln(320nT/δ)

√
5
n√

ln(320nT/δ)
(

1 + 20√
n

)


changes have occurred in epochs 1, 2, . . . , t,

|f̂ t(v)− Pt(v)| < 4(log(T ) + 2)

√
2 ln(320n2T/δ)

`
+

√
ln(16ndT

δ )

n
.

Proof. The proof is nearly identical to that of Theorem 4.3, replacing all lemmas with their
heavy-hitter analogues proven above. We provide it here for completeness.

First, with probability at least 1 − δ all of the preceding lemmas and corollaries in this
section apply, and we condition on them for the remainder of this proof. In particular, since
min

(
ε

8a ,
ε
4b

)
=
ε

4
·min

(
1

2a
,

1

b

)

=
ε

4
·min

L− 3√
2

√
n ln(12mT/δ)

8
√

2n ln(12mT/δ)
,

2(log(T ) + 2)

√
2 ln(16wnT/δ)

w` − 2

√
ln(16dT/δ)

2wn − ln(16wT/δ)
√
w

n2

2

(√
ln(16wT/δ)

nw + ln(16wT/δ)
√
w

n2

)


>
ε

4
·min

 L

8
√

2n ln(12mT/δ)
− 3

16
,

(log(T ) + 2)

√
2 ln(320n2T/δ)

20n` −
√

ln(16dT/δ)
40n2 − ln(320nT/δ)

√
20n

n2√
ln(320nT/δ)

(
1
n + 20

n3/2

)


>
ε

4
·min

 L

8
√

2n ln(12mT/δ)
− 1,

log(T )

√
n ln(320n2T/δ)

10` −
√

ln(16dT/δ)
10 − 2 ln(320nT/δ)

√
5
n√

ln(320nT/δ)
(

1 + 20√
n

)

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we know that the number of changes thus far is less than min
(
ε

8a ,
ε
4b

)
, and by Lemma B.8

for every user i, cVi < ε/4 and cEi < ε/4, i.e. no user has exceeded their voting or estimation
privacy budget.

Now suppose for contradiction that in epoch t

|Φpt − ỹt−1| > 4(log(T ) + 2)

√
2 ln(16wnT/δ)

w`
.

By Lemma D.3 this means GlobalUpdatet ← False, so by Lemma B.2 for every subgroup
j ∈ [m] there exists user i ∈ Sj such that

||Φp̂ti − Φp̂
f(t)
i ||∞ ≤ 2(log(T ) + 1)

√
2 ln(16wnT/δ)

w`
.

Lemma D.2 then implies that

||Φptg(i) − Φp
f(t)
g(i) ||∞ ≤ 2(log(T ) + 2)

√
2 ln(16wnT/δ)

w`
.

Since this holds for every subgroup j, we get that

||Φpt − Φpf(t)||∞ ≤ 2(log(T ) + 2)

√
2 ln(16wnT/δ)

w`
,

and since GlobalUpdatet ← False, by Lemma D.3 this means that ỹt = ỹf(t), so

||ỹt − Φpt|||∞ ≤ 2(log(T ) + 2)

√
2 ln(16wnT/δ)

w`
.

Plugging this quantity into Lemma D.4 as B gives that for all v ∈ [d]

|f̂ t(v)− Pt(v)| < 2(log(T ) + 2)

√
2 ln(16wnT/δ)

`
+

√
ln(16ndT

δ )

n
.

Substituting w = 20n yields the claim.
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