
Journal of Privacy and Confidentiality
Vol. 9 (2) 2019

Submitted Mar 8, 2019
Published Oct 2019

A PRACTICAL METHOD TO REDUCE PRIVACY LOSS WHEN

DISCLOSING STATISTICS BASED ON SMALL SAMPLES

RAJ CHETTY AND JOHN N. FRIEDMAN

Harvard University and NBER

Brown University and NBER
e-mail address: john_friedman@brown.edu

Abstract. We develop a simple method to reduce privacy loss when disclosing statistics
such as OLS regression estimates based on samples with small numbers of observations.
We focus on the case where the dataset can be broken into many groups (“cells”) and one
is interested in releasing statistics for one or more of these cells. Building on ideas from the
differential privacy literature, we add noise to the statistic of interest in proportion to the
statistic’s maximum observed sensitivity, defined as the maximum change in the statistic
from adding or removing a single observation across all the cells in the data. Intuitively, our
approach permits the release of statistics in arbitrarily small samples by adding sufficient
noise to the estimates to protect privacy. Although our method does not offer a formal
privacy guarantee, it generally outperforms widely used methods of disclosure limitation
such as count-based cell suppression both in terms of privacy loss and statistical bias. We
illustrate how the method can be implemented by discussing how it was used to release
estimates of social mobility by Census tract in the Opportunity Atlas. We also provide a
step-by-step guide and illustrative Stata code to implement our approach.

1. Introduction

Social scientists increasingly use confidential data held by government agencies or private
firms to publish statistics based on small samples, from descriptive statistics on income
distributions and health expenditures in small areas (e.g., Cooper et al. 2018, Chetty et al.
2018) to estimates of the causal effects of specific schools and hospitals (e.g., Angrist, Pathak
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and Walters 2013, Hull 2018). Such statistics allow researchers and policymakers to answer
important questions. But releasing such statistics also raises concerns about privacy loss –
the disclosure of information about a specific individual – which can undermine public trust
and is typically prohibited by law in government agencies and user agreements in the private
sector.

In this paper, we develop a simple method to reduce privacy loss when disclosing
statistics such as OLS regression estimates based on small samples. We add noise to the
statistic of interest that is inversely proportional to the number of observations in the sample,
choosing the amount of noise that is added based on how much the statistic of interest
changes when one includes or excludes a single observation. Intuitively, our approach permits
the release of statistics in arbitrarily small samples by adding sufficient noise to the estimates
to protect privacy. We discuss an application of our noise-infusion method to releasing
Census tract-level estimates of social mobility and present a step-by-step guide and code for
implementing the method in other settings.

Currently, the most widely applied approaches to limiting such disclosure risks in social
science are cell suppression (omitting data for small cells) and data swapping (switching
individual values across cells). These techniques are simple to understand and are practical in
the sense that they are almost universally applicable to any statistic of interest. Unfortunately,
they remain prone to divulging information about specific individuals (e.g., Abowd and
Schmutte 2019). For example, even when one suppresses cells with a count of fewer than
say 100 individuals, one could in principle recover a single individual’s income by releasing
a mean over 150 individuals and a mean over 151 individuals and differencing the two
statistics. Such concerns are not merely theoretical: one can reconstruct individual data
with surprising accuracy from tables released by the U.S. Census Bureau that employed
traditional disclosure avoidance methods (Garfinkel, Abowd and Martindale, 2018).

The recent literature on differential privacy, initiated in seminal work by Dwork (2006)
and Dwork et al. (2006a),1 provides a path to solving this problem by developing metrics for
the privacy loss associated with the release of a statistic that can be held below a desired
risk tolerance threshold. This literature has developed straightforward methods to protect
privacy for simple statistics such as means and counts by adding noise to the estimates
(e.g., Dwork et al. 2006b, McSherry and Talwar 2007, Dwork 2006, Kasiviswanathan et al.
2011). However, methods to protect privacy when disclosing other parameters – such as
regression coefficients or quasi-experimental estimators – are considerably more complex,
often relying on either asymptotic results in large samples (e.g., Blum et al. 2005, Smith
2011, Chaudhuri, Monteleoni and Sarwate 2011, Kifer, Smith and Thakurta 2012) or the
use of robust statistics such as median regression (e.g., Nissim, Raskhodnikova and Smith
2007, Dwork and Lei 2009), limiting their application in social science.

Here, we build on ideas from the differential privacy literature to develop a method
of reducing the privacy loss from disclosing arbitrarily complex statistics in small samples.
Our approach combines some of the advantages of the differential privacy approach while
retaining the practical benefits of traditional approaches such as cell suppression. In
particular, the differential privacy literature generally focuses on developing mechanisms that
are “provably private” in the sense of offering well-defined (probabilistic) guarantees about
the risk of disclosing information about a single individual. We pursue a less ambitious goal.
Rather than attempting to develop a provably private algorithm, we propose a method that

1See also Dwork et al. (2017).
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outperforms existing methods of disclosure limitation such as cell suppression both in terms
of privacy loss and statistical bias.

For concreteness, we focus on the problem of releasing estimates from univariate ordinary
least squares (OLS) regressions estimated in small samples (e.g., small geographic units).
We consider the case where the dataset can be broken into many groups (“cells”) and
one is interested in releasing statistics for one or more of these cells. For example, we
may be interested in disclosing the predicted values from a regression of children’s income
percentile ranks in adulthood on their parents’ income ranks in each Census tract in the U.S.
Following the differential privacy literature, we add noise to each regression estimate that is
proportional to the sensitivity of the estimate, defined as the impact of changing a single
observation on the statistic. Intuitively, if a statistic is very sensitive to a single observation,
one needs to add more noise to keep the likelihood of disclosing a single person’s data below
a given risk tolerance threshold.

The key technical challenge is determining the sensitivity of the regression estimates.
The most common approach in the differential privacy literature is to measure the global
sensitivity of the statistic by computing the maximum amount a regression estimate could
change when a single observation is added or removed for any possible realization of the data.
The advantage of this approach is that the actual data are not used to compute sensitivity,
permitting formal guarantees about the degree of privacy loss. The problem is that in
practice, the global sensitivity of regression estimates is infinite: one can always formulate a
dataset (intuitively, with sufficiently little variance in the independent variable) such that the
addition of a single observation will change the estimate by an arbitrarily large amount. As
a result, respecting global sensitivity effectively calls for adding an infinite amount of noise
and hence does not provide a path forward to disclose standard OLS regression estimates.

At the other extreme, one can compute the local sensitivity of a regression statistic as
the maximum amount a regression estimate changes when a single observation is added or
removed from the actual data in a given sample. While this is a finite value, the problem with
this approach is that releasing the local sensitivity of statistics may itself release confidential
information. Intuitively, local sensitivity is itself a statistic computed in a small sample and
thus reveals some information about the underlying data.2

Our approach to computing sensitivity is a hybrid that lies between local and global
sensitivity. We calculate local sensitivity in each cell (e.g., each Census tract) and then
define the maximum observed sensitivity (MOS) of the statistic as the maximum of the local
sensitivities across all cells (e.g. across all tracts in a given state), adjusting for differences
in the number of observations across cells.3 Drawing on results from the differential privacy
literature, we show that by adding noise proportional to the MOS, one can guarantee
that the privacy loss from releasing the cell-specific statistics (e.g., regression estimates)
themselves falls below any desired exogenously specified risk tolerance threshold ε. The only
uncontrolled privacy risk comes from the release of the MOS parameter (a single number),
which is disclosed without noise and hence reveals information about the underlying data

2For example, outliers may greatly affect local sensitivity and hence the disclosure of local sensitivity can
reveal information about the presence of outliers. See Section 3 and Figure 1 below for an illustration and
further discussion of these issues.
3When one is interested in releasing an estimate for a single cell (e.g., a quasi-experimental estimate based on
policy changes in a single school), one can construct “placebo” estimates by pretending that similar changes
occurred in other cells (other schools) and then following the same approach to compute the MOS. See Step
1c of the implementation guide in the Appendix for further details.
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that has unknown privacy risk. Importantly, however, we can compute the MOS in a
sufficiently large sample that the disclosure risk from releasing it is likely to be negligible.
For example, the Census Bureau’s Disclosure Review Board has adopted the interim policy
of not requiring additional noise infusion for statistics based on populations at least as large
as the smallest state, based on the rationale that the number of individuals in such groups
is large enough that it is unlikely one could identify a single person using typical statistics.4

We illustrate how the method can be implemented by discussing how we used it to
produce the Opportunity Atlas, which provides public estimates of children’s long-term
outcomes by the tract in which they grew up (Chetty et al. 2018). We reduced the sensitivity
of the statistics we released through procedures such as bounding variables and winsorization.
We then chose the privacy threshold ε by following Abowd and Schmutte (2019) and
weighing the privacy losses of a higher ε against the social benefits, which we defined as
providing more accurate information to a family seeking to move to a higher-opportunity
neighborhood. Ultimately, the noise we added to the estimates to protect privacy was
smaller than the sampling error inherent in the estimates themselves and hence did not
affect the precision of the statistics significantly. The tract-level estimates released using
this approach have been viewed by half-a-million users, are currently being used to inform
moving-to-opportunity housing voucher policies by housing authorities, and have been used
as inputs by other researchers in downstream analyses (e.g., Morris, Gregory and Hartley
2018). The Opportunity Atlas thus provides a large-scale, real-world demonstration that
our approach can be used to construct statistics from confidential data that provide useful
information for social science and policy applications while limiting privacy risk.

Our approach outperforms the most popular disclosure limitation protocol that social
scientists currently use (suppression of cells based on small counts) both in terms of reducing
privacy loss and statistical bias.5 In terms of privacy loss, it is straightforward to show
that cell suppression has infinite (uncontrolled) privacy risk. As discussed above, even if
one suppresses cells with counts below some threshold, one can recover information about a
single individual by releasing statistics (e.g., means) from adjacent datasets that differ by a
single observation.6 In contrast, our noise-infusion approach would yield only probabilistic
information about the additional observation, with a probability that is controlled by the
choice of the risk tolerance threshold ε. Our approach reduces the dimensionality of the
statistics that create uncontrolled privacy risks to a single number (the MOS parameter)
that can be estimated in large samples, thereby significantly reducing the scope for privacy
loss.

We demonstrate the benefits of our noise infusion approach in terms of statistical bias
using an example from the Opportunity Atlas. Using noise-infused tract-level data, Chetty
et al. (2018) show that black women who grow up in Census tracts with more single parents
have significantly higher teenage birth rates. If one were to instead conduct their analysis

4 Of course, this logic cannot be uniformly applied to all statistics; for instance, if one were to release the
maximum income observed in a given state, one might be able to identify the person whose income is being
reported. Nevertheless, for typical statistics such as means or medians of bounded variables, there is a
common intuition – though no formal proof – that the privacy risks in large samples are generally small
enough to be ignored.
5 We focus on comparisons to count-based suppression mechanisms, but similar points apply to data swapping
as well (Alexander, Davern and Stevenson 2010, Abowd and Schmutte 2015).
6 Of course it is theoretically possible to prevent such releases by tracking every release and the exact sample
used to generate it, but in practice this would be very difficult given the broad uses of many administrative
data sets.

http://www.opportunityatlas.org
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suppressing cells where where very few (less than 5) teenage births occur – a common
approach to limit disclosure risk for rare outcomes – this strong relationship would vanish
and the correlation would be zero. This is because the suppression rule leads to non-random
missing data by excluding cells with low teenage birth rates (as pointed out more generally by
Abowd and Schmutte (2015)). In short, count suppression would have led Chetty et al. (2018)
to miss the relationship between teenage birth rates and single parent shares, illustrating
how our algorithm outperforms existing approaches not just in principle but in practical
applications of current interest to social scientists.

The rest of this paper is organized as follows. The next section sets up the problem and
defines the key concepts. Section 3 describes our noise infusion method, both in general terms
and in the application to the Opportunity Atlas. Section 4 shows how our noise infusion
method outperforms cell suppression methods. Section 5 concludes. A step-by-step guide to
implementing the method (along with illustrative Stata code) is provided in Appendix A.

2. The Problem

Our goal is to disclose a statistic θ that is a scalar estimated using a small number of
observations in a confidential dataset while minimizing the risk of privacy loss. Although
our approach can be applied to any statistic, we focus for concreteness on the problem of
releasing predicted values from univariate regressions that are estimated in subgroups of the
data, indexed by g:

yig = αg + βgxig + νig.

For example, Chetty et al. (2018) regress children’s income ranks in adulthood (y) on their
parents’ income ranks (x) by Census tract g. They then seek to release the predicted
values from these regressions at the 25th percentile of the parent income distribution
θg = αg + 0.25 × βg in their Opportunity Atlas. Because each Census tract contains
relatively few observations, releasing {θg} raises concerns about preserving the privacy of
the underlying individual data.

Noise Infusion. One intuitive way to reduce the risk of privacy loss is to add noise to the
estimates {θg}. An attractive feature of this approach is that the privacy loss from publishing
noise-infused statistics can be quantified and thereby controlled below desired levels (Dwork

et al. 2006a and Wasserman and Zhou 2010). To see this, let θ̃g = θg + ωg denote the
noise-infused statistic, where ωg is an independently and identically distributed draw from

distribution F (ω), so that the conditional distribution of θ̃g given θg is F
(
θ̃g − θg

)
. Let

Dg = {xig, yig} denote the empirically observed data in cell g and Dg denote the set of

theoretically possible datasets for tract g. The privacy loss from disclosing θ̃g can be
measured using the log likelihood ratio

log
f(θ̃g − θg(D1

g))

f(θ̃g − θg(D2
g))

, (2.1)

where D1
g , D

2
g ∈ Dg are two adjacent datasets (i.e., differ by only one observation) and

f() denotes the density of F (ω). Intuitively, this ratio measures the likelihood that the

published statistic θ̃g stems from underlying dataset D1
g , relative to D2

g ; from a Bayesian
perspective, the larger this ratio (in absolute value), the more one could update one’s priors

between D1
g and D2

g given the release of statistic θ̃g.
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When no noise is infused (i.e., V ar (ωg) = 0), this likelihood ratio will be infinite (except
in the knife-edge case where two datasets produce exactly the same value of θg), as one
could perfectly distinguish between any two datasets D1

g and D2
g that do not happen to

produce exactly the same value of θg. As the noise variance increases, the likelihood ratio
falls, and it becomes more difficult to determine whether the published statistic results from
one dataset or another.

Differential Privacy. Modern privacy mechanisms limit privacy loss by placing an upper
bound on the likelihood ratio in (2.1), effectively providing a “worst case” guarantee on the
degree of privacy loss. In the terminology introduced by Dwork (2006) and Dwork et al.
(2006a), a privacy algorithm is “ε-differentially private” if

log
f(θ̃g − θg(D1

g))

f(θ̃g − θg(D2
g))

< ε ∀D1
g , D

2
g ∈ Dg , ∀ θ̃g ∈ R. (2.2)

The parameter ε can be interpreted as the maximum risk one is willing to tolerate when
releasing the statistic of interest. If one uses a mean-zero Laplace distribution for noise ωg

(with density l (ω; 0, b) = 1
2b exp

[
− |ω|b

]
), where ωg is independent of the statistic of interest,

the log-likelihood ratio is

log
f(θ̃g − θg(D1

g))

f(θ̃g − θg(D2
g))

=

∣∣∣θ̃g − θg(D2
g)
∣∣∣− ∣∣∣θ̃g − θg(D1

g)
∣∣∣

b
.

It follows that one can achieve the desired bound from (2.2) by setting the Laplace scale

parameter b =
∆θg
ε , where

∆θg = max
D1
g ,D

2
g∈Dg

∣∣θg (D1
g

)
− θg

(
D2
g

)∣∣
is the “sensitivity” of the statistic θg (Dwork et al. 2006a). Sensitivity measures the maximum
amount that the statistic can change between any two adjacent datasets. When sensitivity
is higher – that is when changing a single observation changes θg more – one must add
more noise to prevent people from distinguishing one dataset from another. To see the
intuition, consider releasing the mean wealth for a small group of households. If a very
wealthy individual is potentially in that small group, the inclusion or exclusion of her data
could change the reported mean substantially. One must therefore infuse a large amount of
noise to protect her privacy when releasing statistics on mean wealth. In contrast, if one
seeks to release the mean education in a group, there is less scope for outliers and hence
the inclusion or exclusion of any one individual is unlikely to have a significant impact (i.e.,
sensitivity is low). In this case, privacy loss can be limited by adding a modest amount of
noise.

If sensitivity ∆θg were publicly known, one could obtain differentially private statistics
that satisfy any exogenously specified privacy loss threshold ε simply by adding noise

ωg ∼ L
(

0,
∆θg
ε

)
. (2.3)
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to the statistics one seeks to release.7 In practice, ∆θg is not known ex-ante, as it depends
on the particular values in the dataset Dg; hence, the key remaining question is how it
should be calculated.

Global Sensitivity. The standard approach to measuring ∆θg in the differential privacy
literature is to calculate global sensitivity, the maximum amount a statistic can change under
any theoretically possible configuration of the data. For instance, consider releasing the
mean of N observations that are bounded between 0 and 1. The most that this statistic can
change by changing a single observation in the data is by replacing a value of 0 with a value
of 1 (or the reverse), thereby changing the mean by 1

N . Hence, global sensitivity is 1
N in this

case. Since this computation of global sensitivity does not rely on the actual data, it can be
released publicly along with the statistic θ̃g without any further privacy loss, yielding a fully
differentially private disclosure mechanism. Researchers have applied this global-sensitivity
approach to release simple statistics such as counts and means (Dwork et al. 2006a); indeed,
the privacy protection plan for tabular data publications from the 2020 Decennial Census
uses such methods (U.S. Census Bureau 2018).

Unfortunately, global sensitivity is typically infinite for OLS regression estimates and
many other statistics of interest to social scientists. To see this in our setting, consider the
limiting case where V ar(xig) approaches 0 (e.g., all parents in a given cell have virtually the
same income). In this case, the slope of the regression line (and therefore the predicted value
θg) grows arbitrarily large. Adding a single value (x, y) to the dataset that is sufficiently
far from the estimated regression line could therefore have an arbitrarily large effect on
the statistic of interest, as illustrated in Appendix Figure 1. Thus, global sensitivity is
infinite, implying that adding any finite amount of noise will not meet the differential privacy
guarantee in (2.2).

In summary, standard methods of computing global sensitivity in the differential privacy
literature do not provide a straightforward way to disclose many statistics of interest to
social scientists. We propose an alternative approach to computing sensitivity in the next
section.

3. Maximum Observed Sensitivity Algorithm

The problem with global sensitivity is that empirically unrealistic but theoretically feasible
data configurations drive sensitivity to infinity. In this section, we propose an algorithm
that instead focuses on values of sensitivity that are empirically relevant. Our approach is
analogous to an Empirical Bayes estimator, in that we use the data itself to construct a
prior on possible levels of sensitivity rather than using an uninformed prior that permits all
theoretically possible values (as in the calculation of global sensitivity).

Local Sensitivity. The starting point for our algorithm is measuring local sensitivity
(Nissim, Raskhodnikova and Smith 2007) defined as the largest amount that adding or
removing a single point can affect the statistic θg given the data that is actually observed in
cell g. Figure 1 illustrates the computation of local sensitivity by considering a hypothetical
Census tract with twenty observations of parent and child income percentiles. Based on
these observations, the predicted value of children’s income (y) at the 25th percentile of the
parental income distribution (x = 0.25) is θg = 0.212.

7 As in much of the differential privacy literature, we take the privacy loss threshold ε as given. One way
to choose ε is to weigh the tradeoffs between the social value of a more accurate statistic and the costs of
potential privacy loss (Abowd and Schmutte 2019).
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Figure 1: Calculation of local sensitivity

Notes: This figure shows how we calculate local sensitivity in a hypothetical cell (Census tract)
with 20 individuals. The figure presents a scatter plot of children’s income ranks in adulthood vs.
their parents’ income rank. The parameter of interest (θg) is the predicted value of child income
rank at the 25th percentile of the parent income distribution, as calculated from a univariate
regression of child income rank on parent income rank in these data (shown by the solid best-fit
line). In these data, the predicted value is θg = 0.212 . Local sensitivity is defined by the maximum
absolute change in the predicted value by adding a point to or removing a point from the data. In
this example, that occurs when adding the point (0,1), shown by the hollow dot in the upper left
corner of the figure. With the addition of that point, the estimated regression line shifts to the
dashed line, increasing θg by 0.137 - the local sensitivity of θg .

To compute local sensitivity, we recalculate this predicted value, adding new points one
by one to see how much they affect the estimate of θg. In the example in Figure 1, adding a
point at (0, 1) – that is, an outlier where a child from a very low income family has a very
high income in adulthood – has the biggest impact on the predicted value.8 If that point
is added, the original regression line flattens to become the dashed line, and the predicted
value at the 25th percentile rises to θg = 0.349. The local sensitivity in this example is
therefore LSθ,g = 0.349− 0.212 = 0.137.

Adding noise proportional to this level of sensitivity would, per equation (2.2), guarantee

the desired upper bound on privacy loss from the public release of the statistic θ̃g. However,
in order for users of this statistic to know the variance of the noise V ar(ω) that was added –
which is necessary for valid downstream inference – one must also release the value of local

8 Formally, measuring local sensitivity requires consideration of three sets of cases – adding a point, removing
a point, or changing a point – and finding the case that produces the largest change in θg. In the example in
Figure 1 and in most practical applications with well-behaved distributions, adding a point in the corner
of the dataspace typically produces the largest change in θg and thereby pins down sensitivity. Hence, the
computation of local sensitivity can generally be simplified using a grid search in which one adds points to
the corners of the dataspace.
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Figure 2: Maximum Observed Sensitivity Envelope

Notes: This figure demonstrates our calculation of the Maximum Observed Sensitivity Envelope
(MOSE) for a hypothetical dataset consisting of several cells (Census tracts) analogous to that in
Figure 1. To construct this figure, we calculate the local sensitivity within each cell as described
in Figure 1, and then plot the local sensitivity vs. the number of individuals in the cell. We use
log scales on both axes. The MOSE, depicted by the solid line, is the function MOSE(Ng) = χ

Ng
,

where χ = maxg [Ng × LSθ,g] = 13.02 in this example.

sensitivity LSθ,g, which discloses additional information and thereby can create a privacy

risk.9 Intuitively, LSθ,g is itself a statistic that is estimated from the data Dg, just like

θ̃g, and so it may reveal something about the underlying individual data. For instance, if
sensitivity is very large, that may reveal that the data in cell g are tightly clustered around
the regression line (as in the example in Figure 1). Hence, measuring sensitivity locally in
each cell does not directly provide a feasible path to disclosing the statistics of interest while
controlling privacy risk.

Maximum Observed Sensitivity. To reduce the information loss associated with disclosing
local sensitivity in each cell, we measure sensitivity based on the largest local sensitivity
across all cells. If all cells have the same number of observations Ng, we simply define
sensitivity as ∆θg = maxg[LSθ,g]. In most empirical applications, however, cells differ in size.
Since smaller cells typically have higher sensitivity, defining ∆θg = maxg[LSθ,g] yields too
conservative a bound on sensitivity. Figure 2 illustrates this point by presenting a scatter
plot of local sensitivity LSθ,g, calculated as in Figure 1, vs. Ng across cells (using log scales).
If we were to simply define ∆θg = maxg[LSθ,g], sensitivity would be pinned down entirely
by the smallest cells and would far exceed the actual local sensitivity of the estimates in
larger cells.

9 In principle, a privacy risk exists even when V ar(ω) is not directly released, because one may be able to

deduce information about V ar(ω) from the observed θ̃g.
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To achieve a tighter bound, we define an upper envelope to the set of points in Figure 2,
which we term the maximum observed sensitivity envelope, as

MOSE(Ng) =
χ

Ng
,

where χ = maxg [Ng × LSθ,g] is a scalar pinned down by the local sensitivity in one cell.
The MOSE, illustrated by the solid line in Figure 2, is linear because both axes in the figure
use log scales. Importantly, the MOSE weakly exceeds local sensitivity LSθ,g in all cells

by construction, as shown in the Figure 2, but falls as Ng rises.10 Hence, by adding noise
proportional to sensitivity ∆θg = χ

Ng
in cell g, we can achieve the privacy guarantee in (2.2)

when releasing
{
θ̃g

}
.

Our MOS method is still not differentially private because the scaling parameter χ
is released publicly without noise, which discloses information that may not satisfy the
guarantee in (2.2). However, the only potential uncontrolled privacy risk arises from the

release of the single number χ; the privacy loss from releasing the cell-specific statistics
{
θ̃g

}
themselves is guaranteed to be below ε. Moreover, we can take steps to reduce (though not
formally bound) the privacy risk from releasing χ by computing it in a sufficiently large
sample (e.g., across all tracts in a state). For example, the Census Bureau’s Disclosure
Review Board has adopted the interim policy of not requiring additional noise infusion for
statistics based on populations at least as large as the smallest state, because the number
of individuals in such groups is large enough that it is unlikely one could identify a single
person using typical statistics.

Our method can be summarized as follows.

Maximum Observed Sensitivity (MOS) Disclosure Algorithm

To publish a statistic θg estimated using confidential data given a privacy risk threshold

ε, release θ̃g = θg + ωg, where the noise

ωg ∼ L(0,
χ

εNg
) or ωg ∼N

(
0, σ =

√
2
χ

εNg

)
follows a LaPlace or Gaussian distribution, χ = maxg [Ng × LSθ,g] is the MOS parameter,
and LSθ,g is local sensitivity, the maximum amount the statistic changes by adding or
removing one observation in cell g.

See Appendix A for a step-by-step guide to implementing this method (accompanied

by illustrative Stata code). Cell-specific counts can be released as Ñg = Ng + νg, where
υg ∼ L(0, 1

ε ). The release of the counts in addition to the point estimates effectively doubles
the privacy loss, making the algorithm 2ε-differentially private (aside from the release of the
MOS parameter χ). Standard errors in each cell can be released using analogous methods;

10 One could potentially achieve even tighter bounds using other functional forms rather than the 1
Ng

scaling

we use to define the upper envelope. In practice, the 1
Ng

functional form yields a tight envelope (as illustrated

in Figure 2) because the sensitivity of many common statistics (e.g., means, variances, and covariances)
decays at rate 1

Ng
. However, sensitivities for other statistics decay at other rates (e.g., the decay rate for

standard deviations is 1√
Ng

); users may wish to choose an appropriately scaled envelope to optimize the

method for their setting.
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see Appendix A for details. Releasing standard errors in addition to the point estimates and
counts further increases the privacy risk threshold to 3ε.

Application: Opportunity Atlas. To further facilitate implementation, we discuss how
we applied this method to release the Opportunity Atlas, which provides publicly available
estimates of children’s outcomes in adulthood by parental income, race, gender, and the
tract in which they grew up (see Chetty et al. (2018) for details). This application illustrates
how estimators can be optimized to minimize privacy loss (and hence the amount of noise
that must be added to protect privacy) and maximize their utility in practical applications.

First, we worked only with bounded variables and used statistical transformations that
limit the influence of outliers. For instance, rather than attempting to report estimates of
mean income measured in dollars, we converted both children’s and parents’ incomes into
percentile ranks.

Second, we winsorized both parent and child income ranks within each tract at the
5th and 95th percentiles by replacing all observations lying outside those quantiles in the
distribution with the values of the cutoffs. In small tracts, we always replaced at least
one high and low point with the next most extreme values. We found that winsorization
substantially reduced the MOSE (by reducing the influence of outliers on each ∆θg), and
thereby allowed us to release more accurate estimates at a given level of privacy loss.11

Third, we entirely omitted very small cells with fewer than 20 children to comply with
other regulations governing the use of the data and because the estimates from these cells
were too noisy to be useful. More generally, excluding very small cells can be useful to
stabilize the estimates and reduce the risk of extremely high values of sensitivity ∆θg that
may in turn end up affecting the maximum observed sensitivity calculation. Note however
that such censoring, if based on the true value of Ng, can introduce additional privacy risk
by implicitly disclosing additional information. If regulations permit censoring instead on
the released statistic Ñg, there would be no additional privacy loss. More generally, any
such pre-processing of the data based on non-public information potentially introduces
additional privacy loss, and so such adjustments should ideally be made on the basis of
publicly available information.

Fourth, we estimated the scaling parameter χ separately by state-gender-race groups, a
level of aggregation that our data provider (the Census Bureau) determined had negligible
privacy risks in our application.12 We chose the privacy parameter ε by weighing the privacy
losses against the potential social benefits of the statistics, as in Abowd and Schmutte (2019).
Motivated by the real-world application of these data to help households with housing
vouchers find higher-opportunity neighborhoods in which to live (Seattle Housing Authority
2017), we measured the social benefits of accuracy as the potential error rates faced by a
housing authority wishing to identify the best and worst tracts in a given county for a given
outcome. Specifically, we calculated the probability that tracts which appear in the top
or bottom tail of the distribution of public (noise-infused) estimates in a given county are

11 One must account for winsorization (and any other features of the estimation process) in the calculation of
local sensitivity, in order to estimate the sensitivity of the composed function including both the winsorization
and the estimation. That is, one must add an additional point to the pre-winsorized data and then winsorize
before running the regression of interest.
12 Estimating the envelope at the state-by-subgroup level reduces the scale on which the MOSE is based.
If this approach is implemented at too granular a level, release of the MOSE could raise privacy concerns.
Researchers should consult with their data providers or other context-specific experts to determine the
appropriate level at which to estimate the MOSE.
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actually in the true top or bottom tail in the confidential data for different values of ε. After
plotting these error rates vs. ε and consulting with the Census Bureau, we set ε = 8 as a
value that preserved sufficient accuracy for this application while injecting adequate noise to
provide meaningful privacy protection.

Finally, we used a Normal distribution for the noise ωg instead of a Laplace distribution
because we expected the statistics we released to be used as an input in many downstream
analyses (e.g., Morris, Gregory and Hartley 2018). Normally distributed noise is convenient
for downstream statistical inference, such as the construction of confidence intervals or
Bayesian shrinkage estimators.13

4. Comparison to Current Methods of Disclosure Limitation

In this section, we compare the properties of our noise infusion approach to existing methods
of disclosure limitation. In particular, we contrast our method with count-based cell
suppression – the leading technique used to limit disclosure risk – on three dimensions:
privacy loss, statistical bias, and statistical precision.

Privacy Loss. Like most noise-infusion approaches, our method is likely to reduce the
risk of privacy loss substantially relative to count-based cell suppression. This is because
even if one suppresses cells with counts below some threshold, one can recover information
about a single individual by releasing statistics (e.g., sample means) from adjacent datasets
that differ by a single observation. Hence, statistics released after cell suppression still
effectively have infinite (uncontrolled) privacy risk ε. In contrast, our maximum observed
sensitivity approach reduces the dimensionality of the statistics that create uncontrolled
privacy risks to one number (χ). Moreover, that number can typically be estimated in a
sufficiently large sample that its release could reasonably be viewed as posing negligible
privacy risk.14

Statistical Bias. Our method also offers significant advantages in downstream statistical
inference. Because we infuse random noise using parameters that are publicly known, one
can obtain unbiased estimates of any parameter of interest using standard techniques. In
contrast, count-based suppression can create bias in ways that cannot be easily identified or
corrected ex-post.

To illustrate this point, we examine how results reported by Chetty et al. (2018) in their
analysis of the Opportunity Atlas tract-level data would have changed had they used cell
suppression. In particular, the authors show that black women who grow up in Census tracts
with more single parents have significantly higher teenage birth rates, even among tracts
with low poverty rates. Figure 3a shows a version of this finding by presenting a binned
scatter plot of teenage birth rates for black women with parents at the 25th percentile vs.
the share of single-parent families in the tracts in which they grew up, restricting the sample
to low-poverty Census tracts (below 7%). There is a clear positive relationship between
the two variables: an OLS regression implies that a 1 percentage point increase in single
parent shares is associated with a 0.136 percentage point increase in teenage birth rates for

13 Although the Census Bureau has permitted experimental approaches like the one used here and the one
used in OnTheMap to recommend privacy loss levels, the Data Stewardship Executive Policy Committee,
which oversees the Disclosure Review Board, controls privacy loss levels for production applications.
14 We do not formalize this idea here, but the prior literature has identified some conditions under which
low-dimensional summaries of large data sets can be proven to carry little risk (e.g. Bhaskar et al. 2011,
Bassily et al. 2013).

https://onthemap.ces.census.gov/
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Figure 3: Association between Teenage Birth Rates and Single Parent Shares
A. Noise-Infused Data

B. Count-Suppressed Data

Notes: This figure presents binned scatter plots of the relationship between teenage birth rates for
black women and single parent shares across low-poverty Census tracts. Teenage birth rates are
obtained from the publicly available Opportunity Atlas data and are defined as the fraction of
black women who have a teenage birth among those born in the 1978-1983 birth cohorts and raised
in families at the 25th percentile of the household income distribution in a given Census tract.
Data on the fraction of single headed households is obtained from the 2000 Decennial Census.
We restrict the sample to Census tracts with a poverty rate of less than 7% based on the 2000
Decennial Census and winsorize tracts in the bottom or top 1% of the distribution of teenage
birth rates to reduce the influence of outliers. To construct the binned scatter plots, we first bin
tracts into 20 groups based on their single-parent share, weighting each tract by the number of
black children under the age of 18 living in households with below median income. Each dot then
plots the mean teenage birth rate (y-axis) vs. the mean single-parent share (x-axis) in each of the
twenty bins. We estimate the best-fit line using an OLS regression on the tract-level data, again
weighting by the number of black children under the age of 18 living in households with below
median income. Panel A shows this relationship directly using the noise-infused, publicly available
Opportunity Atlas data on teenage birth. Panel B replicates Panel A after omitting tracts where
relatively few women have teenage births. Specifically, we impute the number of teenage births in
a tract as the product of the predicted teenage birth rate for black women with parents at the
25th percentile of the income distribution, the total count of black women in the sample, and the
fraction of black women with parents with below median income. We then suppress cells if the
implied count lies in the interval [0.5, 4.5) .



14 R. CHETTY AND J.N. FRIEDMAN

black women growing up in low-income families in low-poverty areas. The OLS regression
coefficient provides an unbiased estimate of this statistic despite the addition of noise to the
tract-level estimates because the noise simply enters the error term and is orthogonal to the
independent variable by construction.15

We now examine how this result would have changed with cell suppression. When
studying binary outcomes such as teenage birth, a common practice in the cell suppression
approach is to omit data in tracts where very few (e.g., fewer than 5) teenage births occur
(Washington State Department of Health 2018). (Current practice typically does not suppress
a count of 0.) We mimic this rule in the Opportunity Atlas data by omitting tracts where
black women raised in low-income families have between 1 and 4 teenage births (inclusive).16

Figure 3b replicates Figure 3a in the sample where tracts with 1-4 teenage births are
suppressed. The strong positive correlation in Figure 3a disappears, with a slope that is now
not statistically distinguishable from 0. The reason is that count-based suppression induces
measurement error that is correlated with single parent shares through two sources. First,
suppressing cells with few teenage births mechanically omits tracts with low teenage birth
rates (Appendix Figure 2a), which are concentrated in areas with few single parents. Second,
black women who grow up in areas with a smaller black population tend to have fewer teenage
births (Appendix Figure 2b); tracts with a small black population in turn are more likely to
be suppressed and also tend to be areas with few single parents. Identifying and correcting
for these biases would be very difficult if one only had access to the post-suppression data.
In short, one would likely have missed the association between teenage birth rates and single
parent shares in low-poverty areas had Chetty et al. (2018) released data that followed
standard cell-suppression techniques – illustrating that our noise infusion approach has
significant advantages in terms of statistical bias not only in theory but in practice.

Statistical Precision. The key drawback of adding noise – which is typically the primary
concern of most researchers – is that the estimates are less precise than those that would be
obtained using cell suppression techniques (for the cells that are not suppressed). We again
assess the practical importance of this concern in the context of the Opportunity Atlas.
We find that the noise that was added to protect privacy does not meaningfully decrease
precision because it is much smaller than the noise already present in the estimates due to
sampling variation.

Table 1 demonstrates this point by decomposing the total (count-weighted) variance
in the publicly-available tract-level statistics into the components reflecting sampling noise
variance (based on the standard errors of the estimates), privacy noise variance (based on
the known parameters of the noise distribution), and the remaining “signal” variance (which
reflects the variance of the underlying “truth” under the assumptions used to estimate
the standard errors). The first row shows this breakdown for teenage birth rates for black
women raised in low-income families, the outcome analyzed in Figure 3. Just 0.8% of the

15 Raw estimates of other statistics, such as the correlation between teenage birth rates and single parent
shares, will be biased because of the addition of noise. But those biases can be easily corrected using standard
techniques to correct for measurement error, e.g., by rescaling the correlation by the (known) amount of
variance in teenage birth rates that is due to noise.
16 For simplicity, we conduct this analysis in the publicly available Opportunity Atlas data rather than the
confidential data. To do so, we impute the number of teenage births to black women in low-income families
as the product of the predicted teenage birth rate for black women with parents at the 25th percentile
of the income distribution, the total count of black women in the sample, and the fraction of black
women with parents with below-median income. We then suppress cells if the implied count lies in the
interval [0.5, 4.5).
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Table 1: Variance Decomposition for Tract-Level Estimates:
Selected Outcomes and Demographic Groups

Signal
Variance

(1)

Sampling Noise
Variance

(2)

Privacy Noise
Variance

(3)

Panel A. Teenage Birth Rate, for Daughters of Parents at the 25th Percentile

Black Females 71.00 % 28.18 % 0.82 %
White Females 70.58 % 28.31 % 1.11 %

Panel B. Share Incarcerated, for Sons of Parents at the 25th Percentile

Black Males 56.39 % 40.21 % 2.32 %
White Males 33.64 % 38.85 % 27.51 %

Panel C. Household Income Rank, for Children of Parents at the 25th Percentile

All Children 90.96 % 8.97 % 0.08 %
Black Children 75.19 % 23.59 % 1.22 %
White Children 78.90 % 20.82 % 0.27 %
Hispanic Children 69.62 % 29.08 % 1.30 %
Asian Children 69.99 % 28.94 % 1.06 %
American Indian &
Alaska Native Children 81.90 % 17.28 % 0.82 %
White Males 64.71 % 34.60 % 0.69 %
White Females 70.36 % 28.93 % 0.71 %
Black Males 66.58 % 31.29 % 2.13 %
Black Females 73.16 % 25.17 % 1.67 %

Notes: This table reports a variance decomposition of Census-tract-level statistics from the Opportunity
Atlas (Chetty et al., 2018), which are predicted outcomes for children based on the tract in which they grow
up. We focus on predicted outcomes of children with parents at the 25th percentile of the parental income
distribution. See Chetty et al. (2018) for definitions of these variables. We restrict the sample to tracts in
which the outcome variable of interest is calculated using more than fifty observations. We then decompose
the total tract-level variance into the fraction that comes from signal variance (reflecting the variance of the
latent parameters of interest under our modelling assumptions), noise variance due to sampling variation, and
noise variance from the noise we infused to protect privacy. Each row in the table presents this decomposition
for a particular outcome variable and demographic group. The three percentages add to 100% across each row
(as the three variance components are independent). To calculate the decomposition, we first calculate the
total variance in the outcome across tracts, weighting by the number of children in the relevant demographic
group with parent income below the national median. We then estimate the noise variance due to sampling
error as the mean of the squared standard errors (again using the same weights). We calculate the privacy
noise variance in each tract based on the sensitivity and privacy risk parameters used in our application of
the MOS algorithm and the tract-specific count, and again take a weighted mean across tracts. Finally, we
compute the signal variance as the total variance minus the sum of the two noise variances. Panel A presents
this variance decomposition for the teenage birth rate for the demographic subgroup specified in the first
column, following the U.S. Census Bureau’s definitions of race and Hispanic identity. The first row (of Panel
A) corresponds to data plotted in Figure 3. Panels B and C replicate Panel A using the share incarcerated
and child household income rank, respectively.
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total variance across tracts and only 2.8% of the total noise variance comes from the added
privacy noise. Phrased differently, the reliability of the estimates (the ratio of signal variance
to total variance) falls very slightly, from 71.8% to 71.0%, due to the addition of noise to
protect privacy. The other rows of Table 1 provide a similar breakdown for other outcomes
and subgroups. For most outcomes, the privacy noise variance is even smaller than for
teenage birth rates. For a few variables, such as the incarceration rate for white men, the
privacy noise variance share is significantly higher, but it is still always smaller than the
noise due to sampling error.

Of course, noise infusion would have larger effects on reliability in any given application
with a lower value of ε, and even with the same value of ε, it could have larger effects in
other applications. Nevertheless, the Opportunity Atlas demonstrates that one can achieve
substantial gains in terms of bias and privacy protection while incurring only small losses in
statistical precision using our method, especially by optimizing the estimators one uses as
discussed at the end of Section 3.

5. Conclusion

Building on ideas from the differential privacy literature, this paper has developed a practical
noise-infusion method for reducing the privacy loss from disclosing statistics based on
confidential data. The method outperforms existing, widely-used methods of disclosure
limitation both in terms of privacy loss and statistical bias. Importantly, it can be easily
applied to virtually any statistic of interest to social scientists. For example, consider
difference-in-differences or regression discontinuity estimators. Even if there is only one
quasi-experiment (e.g., a single policy change in a given area), one can construct “placebo”
estimates by pretending that a similar change occurred in other cells of the data and
computing the maximum observed sensitivity of the estimator across all cells.

In future work, it would be useful to develop metrics for privacy loss for algorithms
in which a single statistic (e.g., sensitivity) is disclosed based on a large sample (e.g., at
the state or national level). Here, we argued on an intuitive basis that the release of such
statistics has small privacy costs, but formalizing this idea – perhaps by placing restrictions
on distributions or the set of estimators – could provide a way to offer formal privacy
guarantees. More broadly, developing differential privacy techniques that can be applied to
many estimators – as we have done here – without requiring users to develop new algorithms
for each application may help increase the use of such methods in social science.
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Appendix A. Implementation Guide

This guide provides step-by-step instructions for implementing our algorithm to release
statistics constructed from a confidential database. It also provides some suggestions to
simplify computation and minimize the amount of noise that has to be infused to achieve
a given level of privacy protection. Illustrative Stata code that implements the five steps
below in the context of a regression estimate is available here.

Step 0. Estimate the statistic θ you are interested in releasing – e.g., a coefficient from a
regression or a parameter from another statistical model – in the confidential data.

a. All variables must be bounded for the algorithm below to work (i.e., yield finite
estimates of sensitivity). If you are working with unbounded variables, bottom- and top-code
them before proceeding (but do so in a way that does not depend on the particular realized
values in any given sample).

b. Consider alternative estimators that reduce the influence of outliers and will thereby
reduce the amount of noise you need to add to meet a given privacy threshold. For example,
in the context of regression, winsorizing variables at the 5th and 95th percentiles can reduce
the influence of outliers without significantly affecting estimates of the parameters of interest.
Estimators such as median regression may also be less sensitive to outliers (Dwork and Lei
2009).

c. It may be useful to implement Steps 1-4 below with alternative estimators to calculate
the amount of noise that must be added to the estimates using a given estimator. Then
choose the estimator (e.g., the winsorization threshold) that minimizes noise while yielding
suitable estimates for your application.
Implement the following five steps to add noise to the estimates and release them publicly:

Step 1. Calculate local sensitivity LSθ,g for the scalar statistic θg in each cell g of your
data, defined as the largest absolute change in θ from adding or removing a single observation
d:

LSθ,g = maxd∈Dg |θ±d − θ|,
where θ±d is the estimate obtained when adding or removing observation d from the dataset
Dg in cell g.

a. Local sensitivity can be calculated using grid search and other standard optimization
techniques; for well-behaved relationships, adding points to the corners of the dataspace
Dg will typically be sufficient to calculate local sensitivity. For example, in a univariate
regression where both the dependent and independent variables are bounded between 0 and
1, adding the points (0, 1), (1, 0), (0, 0), and (1, 1) is typically adequate to calculate local
sensitivity, although users should use finer grid searches or other numerical optimization
methods to confirm the accuracy of any particular approach.

b. In high-dimensional dataspaces (e.g., multivariable regression with many regressors),
removing points is more computationally tractable than adding new points, since the number
of potential points that can be added grows exponentially with the number of variables. In
such cases, it may be convenient to consider only removals, perhaps after establishing that
estimates of local sensitivity are similar whether or not one allows for the addition of points
in a subset of cells. Examining only removals is most likely to be adequate for privacy when
one uses estimators that are not sensitive to outliers (e.g., through winsorization).

http://www.opportunityinsights.org
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c. If you are interested in reporting a statistic from a single cell (e.g., a treatment effect
estimate you have constructed for a specific subgroup or geographic unit), find other similar
units in your dataset and treat them as distinct cells. Then replicate your estimator in each
of those cells, assigning “placebo” treatment variables that have the same structure as the
actual treatment if necessary, to obtain estimates of local sensitivity across several analogous
cells.

Step 2. Compute the maximum observed sensitivity envelope scaling parameter
χ:

χ = maxg [Ng × LSθ,g] ,
where Ng is the number of observations (e.g., individuals) used to estimate the statistic θ in
cell g.

a. Compute χ by taking the maximum across cells at a sufficiently high level of
aggregation that your data provider considers the privacy risks from releasing the exact
value of χ to be negligible (e.g., the state or national level).

Step 3. Determine the privacy parameter ε for your release using one of the following
methods:

a. Follow established guidelines on ε from your data provider.
b. Choose ε by plotting the social gain from greater accuracy vs. ε and choosing a value

of ε that you and the data provider agree optimizes this tradeoff (Abowd and Schmutte
2019). If there is no clear loss function or decision problem, two practical definitions of the
social gain from accuracy are the mean squared error (MSE) or the classification error in
the noise-infused statistic relative to the truth. The MSE can be computed by calculating

the error (θ̃g−θg)2 based on the estimate constructed in step 4 below and averaging over
several draws of the noise distribution. Classification error is the probability that the true

value of θg falls below a certain threshold conditional on the noise-infused value θ̃g falling
above that threshold. For example, one might calculate the probability that θg falls outside

the top 10% of the distribution of {θg} conditional on observing θ̃g in the top 10% of the

distribution of
{
θ̃g

}
.

Step 4. Add random noise proportional to maximum observed sensitivity χ and the
privacy parameter ε to each statistic:

θ̃g = θg +
√

2
χ

εNg
ω,

where ω is a random variable with mean 0 and standard deviation 1.
a. The distribution of ω can be chosen depending upon the application and the

requirements of the data provider. If the statistics will be used for downstream analysis, it is
convenient to add N(0, 1) noise so that the total noise variance remains normally distributed.
If not, using a LaPlace distribution L(0, 1√

2
) conforms more precisely to the desired privacy

loss limit at all points in the distribution, with the differences largest in the tails of the
distribution.

b. To report standard errors, first estimate the standard error (SE) of the estimate
including the noise added to protect privacy:
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SE(θ̃g) =

√
SE (θg)

2 + 2

(
χ

εNg

)2

.

Then apply the same procedure as above to construct public, privacy-protected estimates

S̃E(θ̃g) of the standard errors themselves, treating SE(θ̃g) like the statistics θg above.
c. Construct noise-infused estimates of the count of observations in each cell as follows,

using the same definition of ω as in Step 4a:

Ñg = Ng +
√

2
ω

ε
.

d. To quantify the amount of noise added, compute the standard deviation of the noise
distribution in your cell of interest,

√
2 χ
εNg

, or the share of the variance in your cell-specific

estimates that is due to noise, 2E[( χ
εNg

)2]/V ar(θ̃g), where the expectation is taken over the

cells in the dataset.

Step 5. Release the noise-infused statistics
{
θ̃g

}
and {S̃E(θ̃g)}, counts

{
Ñg

}
, and

parameters that control the amount of noise added (ε and χ) for the groups of interest
publicly.

Questions? Email info@opportunityinsights.org
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2. Additional Figures

Appendix Figure 1: Calculation of Global Sensitivity

Notes: This figure shows how we calculate global sensitivity in a hypothetical cell (Census tract)
with 20 individuals. As in Figure 1, the figure presents a scatter plot of children’s income ranks
in adulthood vs. their parents’ income rank. However, rather than using empirically observed
values, we choose a set of data points that make the sensitivity of the regression estimates to
the addition of a single point very large, which occurs as the variance of the dots on the x-axis
becomes small. In this case, adding a single point at (0,1) changes the estimated slope of the
regression line (and the corresponding predicted values) substantially, showing why the global
sensitivity of OLS regression estimates can be arbitrarily large.
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Appendix Figure 2: Teenage Birth Rates vs. Counts, by Census Tract
A. Teenage Birth Rates for Black Women vs. Number of Black Women with Teenage Births in Tract

B. Teenage Birth Rates for Black Women vs. Number of Black Women in Tract

Notes: This figure presents binned scatter plots of tract-level teenage birth rates for black women
raised in families at the 25th percentile vs. two measures of tract-specific counts. Panel A plots
teenage birth rates for black women vs. the number of black women from low-income families
who have teenage births in the tract, computed as the product of the predicted teenage birth rate
for black women with parents at the 25th percentile of the income distribution, the total count
of black women in the sample, and the fraction of black women with parents with below-median
income. (i.e., the numerator of the teenage birth rate). Panel B plots teenage birth rates for black
women vs. the total number of black women from below-median-income families in the tract (i.e.,
the denominator of the teenage birth rate). The binned scatter plots are constructed by binning
tracts into twenty equal-sized bins based on the x-axis variable and plotting the means of the x
and y variables within each bin.
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