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Abstract. The Laplace mechanism is the workhorse of differential privacy, applied to
many instances where numerical data is processed. However, the Laplace mechanism can
return semantically impossible values, such as negative counts, due to its infinite support.
There are two popular solutions to this: (i) bounding/capping the output values and (ii)
bounding the mechanism support. In this paper, we show that bounding the mechanism
support, while using the parameters of the standard Laplace mechanism, does not typically
preserve differential privacy. We also present a robust method to compute the optimal
mechanism parameters to achieve differential privacy in such a setting.

1. Introduction

Data privacy is an important factor that data owners must take into consideration when
collecting, storing, sharing and publishing user data. This extends to publishing statistics on
user data. In recent years, differential privacy has emerged as a popular privacy framework,
thanks to its robust mathematical privacy guarantees.

The Laplace mechanism is the workhorse of differential privacy, frequently utilised in
applications on numerical data. Its strength lies in its mathematical and computational
simplicity, in contrast to other mechanisms such as the exponential mechanism. In spite of
its popularity however, the Laplace mechanism lacks consistency in its outputs. Consider,
for example, adding noise from the Laplace mechanism to a count query; negative results
hold no meaning, yet are a valid output of the mechanism, occurring especially frequently
for low-numbered counts.
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l q u
0.0

0.2

0.4 Standard Laplace mechanism
Bounded Laplace mechanism

Figure 1. Comparison of the probability density functions (PDFs) of the
standard and bounded Laplace mechanisms for a given domain [l, u] ∈ R and
a mechanism input q ∈ [l, u].

Example 1.1. Suppose we are querying a census dataset and seeking to learn the number
of people born on Mars. Adding noise from a Laplace mechanism with variance 2

ε2
will

satisfy differential privacy. Although the real answer to the query is 0 (for now at least!), we
must introduce uncertainty to protect the privacy of future human Martians. Successive
outputs from the Laplace mechanism could be: −1.71, 2.31, −1.20, 0.652.

However bizarre the query, negative outputs are patently illogical and inconsistent. By
the symmetry of the Laplace distribution, on average 50% of the outputs will be negative.

Currently there are two solutions to this drawback, both involving the selection of an
appropriate output domain. The first solution, truncation, is to project values outside the
domain to the closest value within the domain (see Appendix A.2). The second solution,
bounding (shown in Figure 1), is to continue to sample independently from the mechanism
until a value within the domain is returned. We refer the reader to Liu (2016) for a study of
the statistical properties of the truncated and bounded Laplace mechanisms.

Example 1.2. Using the same set-up as Example 1.1, if the Laplace mechanism returns a
value −1.71, the truncation method projects the output to 0 (the lower bound of a count
query). If the bounding method is used, the value is simply re-sampled, meaning the second
value 2.31 is returned (an analyst may subsequently wish to round this to 2).

By design, the truncated Laplace mechanism has a (possibly large) non-zero probability
of returning values at the domain bounds. There are instances where this may be unsuitable
and/or undesirable, such as when the domain bounds coincide with singularities or other
qualitative changes in behaviour (e.g., bifurcation points). In such instances, using the
bounded Laplace mechanism may be more appropriate.

Example 1.3 (Truncation vs. bounding). The näıve Bayes classifier is a probabilistic
classifier that learns the means and variances of each feature (assumed independent) for
each label, allowing Bayes’ theorem to be applied to classify unseen examples. Differential
privacy can be achieved by adding appropriately-scaled noise to these means and variances
(Vaidya et al. (2013)). While the standard Laplace mechanism can be used to perturb the
means, a mechanism with bounded outputs is required to perturb each variance, as variance
must be non-negative.

In Figure 2 we evaluate the truncated and bounded Laplace mechanisms in perturbing
each feature’s variance, using the ε-differentially private bounded mechanism given in
Section 3.2. We ran experiments on the iris flower dataset (Anderson (1936); Fisher (1936)),
a dataset of 4 features, 3 labels and 150 observations. We split the privacy budget ε
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Figure 2. Comparison of accuracy versus ε for a differentially private näıve
Bayes classifier on the Iris dataset using the bounded and truncated Laplace
mechanisms for perturbation of each feature’s variance. For each ε, the
average accuracy over 100 simulations is shown.

evenly across each feature, and also across the perturbation of the mean and variance,
giving a budget of ε

8 for each perturbation. The standard Laplace mechanism was used to
perturb each feature’s mean, while each feature’s variance was perturbed by the bounded
and truncated Laplace mechanisms (with an output domain of [0, 1010]). We adopted an
80%/20% train/test split, and, for each value of ε, took the mean accuracy of 100 simulations.
The baseline (non-private) accuracy for the train/test split used in the simulations was 90%.

As shown in Figure 2, bounding outperforms truncation over a large range of ε. This
can be attributed to the singularity produced in the Gaussian distribution at zero variance,
the lower bound of the output domain. Because of the singularity, which occurs especially
frequently for small ε, näıve Bayes is unable to classify correctly. We have observed
similar behaviour for synthetic datasets, leading us to conclude that this behaviour is
data-independent.

In this paper we show that the bounded Laplace mechanism does not typically satisfy
differential privacy when inheriting parameters from the standard Laplace mechanism
(Section 3). In fact, in almost all cases (except when the query sensitivity spans the domain,
∆Q = u− l), the variance of the Laplace distribution must be increased for the bounded
Laplace mechanism to satisfy the same differential privacy constraints. With a simple
algorithm, we also show how to calculate the optimal noise scale for the bounded Laplace
mechanism (Section 4).

Complete proofs to lemmas and theorems that are omitted in the main text are presented
in the Appendix, alongside other additional material.

2. Preliminaries

We first detail the notation to be used in this paper. Extended preliminaries are given in
Appendix A.1.
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We are interested in queries Q : Sn → D on databases d ∈ Sn of n rows mapping to a
finite domain D = [l, u] (l < u, both finite). The sensitivity of Q is defined in the usual way,
∆Q = maxd∼d′∈Sn |Q(d)−Q(d′)|, where d ∼ d′ ∈ Sn denotes two datasets d,d′ ∈ Sn that
differ in exactly one row.

In this paper we are only concerned with output perturbation mechanisms, so we need
only consider response mechanisms on the output domain of Q (i.e., a random variable
Yq : Ω → R for each q ∈ D). Given ε ≥ 0 and 0 ≤ δ ≤ 1, the mechanism {Yq | q ∈ D}
satisfies (ε,δ)-differential privacy when

P(Yq ∈ A) ≤ eεP(Yq′ ∈ A) + δ,

for all measurable A ⊆ R and whenever |q − q′| ≤ ∆Q.
We denote by Lap(µ, b) a Laplace distribution with mean µ and variance 2b2. The

standard Laplace mechanism is therefore given by

Yq = q + Lap(0, b) = Lap(q, b), (2.1)

and satisfies (ε,δ)-differential privacy when b ≥ ∆Q
ε−log(1−δ) (Holohan et al. (2015)).

3. Bounded Laplace Mechanism

Truncation and bounding are two common approaches to overcoming out-of-domain outputs
from the Laplace mechanism, as covered in Section 1. Details of the truncated Laplace
mechanism are given in Appendix A.2.

Another approach is to bound the support of the response mechanism, and then
sample directly from the output domain (e.g. by inverse transform sampling). This can
also be achieved through rejection sampling, by continually redrawing from the unbounded
distribution until an output falls within the domain. We will refer to this process as bounding,
as the immediate outputs of the mechanism are bounded by design.

Definition 3.1 (Bounded Laplace Mechanism). Given b > 0 and D ⊂ R, the bounded
Laplace mechanism Wq : Ω→ D, for each q ∈ D, is given by its probability density function
fWq :

fWq(x) =

{
0, if x /∈ D,
1
Cq

1
2be
− |x−q|

b , if x ∈ D,

where Cq =
∫
D

1
2be
− |x−q|

b dx is a normalisation factor.

Remark 1: It follows that P(Wq ∈ D) = 1, and, conversely, that P(Wq ∈ R \D) = 0.
Remark 2: Given A ⊆ R, P(Wq ∈ A) = 1

Cq
P(Yq ∈ A ∩D), where Yq is given in (2.1).

As the output distribution is now a function of the query answer Q(d) = q, the
normalisation factor Cq is no longer constant across q ∈ D. It is therefore no longer
guaranteed that the mechanism Wq satisfies differential privacy using parameters from the
standard Laplace mechanism.
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3.1. Preliminary Results. We first establish an algebraic representation for Cq.

Lemma 3.2. For Cq as given in Definition 3.1, and for q ∈ D = [l, u],

Cq = 1− 1

2

(
e−

q−l
b + e−

u−q
b

)
.

We next consider the following lemma concerning Cq.

Lemma 3.3. Let Cq be given by Definition 3.1. Then,

max
q,q′∈D
|q′−q|≤∆Q

Cq′

Cq
e
|q′−q|
b =

Cl+∆Q

Cl
e

∆Q
b .

Proof. The following is an outline of the full proof given in Section A.3. By the symmetry of

Cq about u+l
2 , we can assume that q′ ≥ q. Showing that ∂

∂z

(
Cq+z
Cq

e
z
b

)
≥ 0 and ∂

∂q

(
Cq+z
Cq

e
z
b

)
≤

0 completes the proof.

This leads us to the following definition of ∆C(b) for later use.

Definition 3.4. Given Cq from Definition 3.1, and noting that Cq = Cq(b) is a function of
b, we define ∆C(b) as follows:

∆C(b) =
Cl+∆Q(b)

Cl(b)
.

3.2. Main Result. We now proceed to the main result of this paper, which defines the
scale parameter required for the bounded Laplace mechanism.

Theorem 3.5. Let Wq be the bounded Laplace mechanism given in Definition 3.1 and let
ε ≥ 0 and 0 ≤ δ ≤ 1 be given. Then {Wq | q ∈ D} satisfies (ε,δ)-differential privacy whenever

b ≥ ∆Q

ε− log ∆C(b)− log(1− δ) . (3.1)

Proof. The following is an outline of the full proof given in Section A.4. We are seeking to
show that

P(Wq ∈ A) ≤ eεP(Wq′ ∈ A) + δ,

for any measurable A ⊆ D and where q, q′ ∈ D, |q− q′| ≤ ∆Q. For this to hold it is sufficient

to show that 1 ≤ eε− |q
′−q|
b

Cd
Cq′

+ δ. Furthermore by Lemma 3.3, it is sufficient to show that

1 ≤ 1

∆C(b)
eε−

∆Q
b + δ,

which can be solved implicitly for b to complete the proof.
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0.0 0.2 0.4 0.6 0.8 1.0
∆Q

1.0

1.2

1.4

1.6

1.8

2.0
ε/

ε′
ε

0.01
0.1
1
10

10−2 10−1 100 101 102

ε

∆Q
0.01
0.1
0.5
0.9

Figure 3. Relationship of ε
ε′ to ∆Q and ε, where u− l = 1 and δ = 0 are fixed.

Discussion: To satisfy (ε,δ)-differential privacy using the bounded Laplace mechanism,
its variance will never be less than that of the standard Laplace mechanism (since ∆C(b) ≥ 1).
In the case of achieving ε-differential privacy (i.e. δ = 0), the underlying Laplace distribution
must be one which satisfies ε′-differential privacy, where ε′ = ε− log ∆C(b) (i.e. for a target
ε, we require an effective ε′). As shown in Figure 3, the impact on ε′ is most pronounced
when ∆Q and ε are small, and that 2ε′ = ε in the limiting case.

However, finding the optimal value for b is non-trivial since the relationship given in
Theorem 3.5 is implicitly defined. This problem is examined in Section 4. The simpler task
of determining a value of ε (or a relationship between ε and δ) for a given value of b can be
achieved with (3.1).

4. Calculating b

From the conclusion of Theorem 3.5, the following fixed point operator can be defined for b.

Definition 4.1 (Fixed Point Operator). Given ∆Q > 0, ε ≥ 0 and 0 ≤ δ ≤ 1, we define the
fixed point operator f : R>0 → R>0 by

f(b) =
∆Q

ε− log ∆C(b)− log(1− δ) . (4.1)

Any positive fixed point of f (i.e. b∗ = f(b∗) > 0) will act as a differentially private scale
parameter for the bounded Laplace mechanism. In advance of examining f , we first define

b0 =
∆Q

ε− log(1− δ) . (4.2)

Note that b0 determines the variance required for the standard Laplace mechanism to achieve
(ε,δ)-differential privacy.

We now present a number of lemmas concerning f , namely: (i) the value of f(b0); and
(ii) the monotonicity of f . Proofs are given in Appendices A.5 and A.6.

Lemma 4.2. f(b0) ≥ b0, and f(b0) = b0 if and only if ∆Q = u− l.
Lemma 4.3. f ′(b) ≤ 0 whenever b 6= 0, and f ′(b) = 0 if and only if ∆Q = u− l.

This leads us to the main result of this section, that f has a unique fixed point b∗.
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Figure 4. Outline of the fixed point approach of Algorithm 1 for finding
b∗ ∈ [b0, f(b0)].

Theorem 4.4 (Fixed Point). There exists a unique b∗ ∈ [b0, f(b0)] such that b∗ = f(b∗).

Proof. Since f(b0) ≥ b0 (Lemma 4.2), f ′ ≤ 0 (Lemma 4.3) and f(b) is continuous on
b ∈ [b0,∞) (since it is differentiable), it follows that f(b) has a unique fixed point b∗ ∈ [b0,∞),
where uniqueness follows from the monotonicity of f .

Since f ′ ≤ 0 and f(b0) ≥ b0, it follows that f(f(b0)) ≤ f(b0). We must therefore have
b∗ ∈ [b0, f(b0)].

It follows from Theorem 4.4 that the mechanism Wq from Definition 3.1 satisfies
differential privacy for b = b∗. Given that we have a bounded domain in which b∗ lies, and
since f is continuous, the bisection method gives robust convergence to b∗ within machine
precision, for any given ε ≥ 0, 0 ≤ δ ≤ 1, u > l and ∆Q ≤ u − l. A sample algorithm
for calculating b∗ is given in Algorithm 1, while Figure 4 gives a graphical outline of the
approach.

The following corollary to Theorem 4.4 shows that in the case of ∆Q = u− l (and only
in this case), differential privacy is achieved when using the scale parameter b0 from the
standard Laplace mechanism. Conversely, when ∆Q < u − l, we must have b∗ > b0, and
hence the bounded Laplace mechanism requires greater noise to achieve differential privacy
than the standard Laplace mechanism.

Corollary 4.5. b∗ = b0 if and only if ∆Q = u− l.
Proof. By Theorem 4.4, b∗ ∈ [b0, f(b0)]. However, by Lemma 4.2, f(b0) = b0 if and only if
∆Q = u− l, hence b∗ ∈ [b0, b0] and the result follows.

This final corollary confirms that any fixed point b∗ is the lower bound of all values b
that satisfy (ε,δ)-differential privacy, in line with (3.1).

Corollary 4.6. Let b∗ ∈ R>0 such that b∗ = f(b∗). Then, given any ξ > 0,

b∗ + ξ > f(b∗ + ξ).

Proof. By Theorem 4.4, such a fixed point b∗ exists. Furthermore, from Lemma 4.3 we have
f ′(b) < 0, hence

f(b∗ + ξ) < f(b∗) = b∗ < b∗ + ξ.
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Algorithm 1: A robust and precise method for finding b∗

input : Fixed point operator f (as given in (4.1)), b0 as given (4.2)
output : Fixed point b∗, where f(b∗)= b∗

left ← b0;

right ← f(b0);

intervalSize ← ( left + right )× 2;

while intervalSize > right − left do
intervalSize ← right − left;
b = left+right

2 ;

if f(b) ≥ b then
left ← b;

end

if f(b) ≤ b then
right ← b;

end

end

return b;

5. Related Work

In Liu (2016), the statistical properties of bounding and truncating the Laplace mechanism
were explored, without examining the differential privacy properties of the bounded Laplace
mechanism. The same author followed with a study on generalised Gaussian mechanisms
for differential privacy, Liu (2018). The results applied to the bounded Laplace mechanism
showed a doubling of the noise variance (ε = 2ε′) is required, an increase Figure 3 shows to
be excessive.

Researchers at Google have considered a different form of a bounded Laplace mechanism
in Geng et al. (2018) in order to achieve approximate (ε,δ)-differential privacy. The authors
were investigating their use of a bounded Laplace mechanism as an alternative to the Gaussian
mechanism, which relies on non-zero δ. Their solution was to bound the magnitude of noise
added to each query output (rather than bounding the domain of all noisy outputs), while
using the ‘probability of error’ δ to cover the non-overlapping output spaces of neighbouring
datasets. The bound on the noise added to each value is not chosen in advance by the user,
but instead is calculated as a function of ε and δ.

In Zhang et al. (2012), regression analysis under differential privacy was studied. The
authors looked to add noise (using the Laplace mechanism) to the coefficients of an objective
function to achieve differential privacy, but this can result in an unbounded objective function.
Their first approach at solving this was to re-run the differential privacy mechanism until
the result gives a solution to the optimisation problem. This approach has the effect of
doubling the noise variance (since ε = 2ε′), which our work has shown may be excessive.

A näıve Bayes machine learning classifier was described in Vaidya et al. (2013), which
achieves differential privacy by adding Laplace noise to the model parameters. For numerical
data, näıve Bayes calculates the mean and standard deviation of each feature in order to
classify unseen data. The authors propose re-sampling from the Laplace distribution to
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ensure the differentially private standard deviations are positive, without modifying the
variance of the Laplace distribution. By Theorem 4.4 and Corollary 4.5 we now know that
this approach does not satisfy differential privacy, since ∆Q < u− l in this case. We make
use of this work, with minor amendments to ensure differential privacy, in Example 1.3.

Consistency in differential privacy has also been studied previously. Examples include
achieving consistent releases of marginals, Barak et al. (2007), and histograms, Hay et al.
(2010). In Barak et al. (2007) the authors sought to release marginals consisting of non-
negative integers, with consistent sums across marginals. This was achieved using Fourier
transformations and linear programming. In Hay et al. (2010), the authors used constrained
inference to ensure consistency in histogram counts through post-processing. The consistency
of marginals was also studied in Zhang et al. (2018), for the case of local privacy.

6. Conclusion

In this paper, we have shown that the bounded Laplace mechanism does not typically
satisfy differential privacy when inheriting parameters from the standard Laplace mechanism
(Theorem 3.1). We have also presented details of calculating the required parameters for
the bounded Laplace mechanism to satisfy differential privacy (Algorithm 1). We showed
that only in the case of ∆Q = u− l can we use the same scale parameter from the standard
Laplace mechanism for the bounded mechanism to satisfy differential privacy (Corollary 4.5).

The results of this paper highlight the dangers of re-sampling from the Laplace mechanism
in applications of differential privacy to achieve valid/plausible outputs. Researchers may be
inadvertently violating differential privacy in doing so, or overcompensating by increasing
the privacy budget excessively. Our robust method of calculating the optimal noise variance
will allow privacy researchers and practitioners to deploy the bounded Laplace mechanism
with confidence and certainty.
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In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 01, WI-IAT ’13,
pages 571–576. IEEE Computer Society, 2013. ISBN 978-0-7695-5145-6. doi: 10.1109/
WI-IAT.2013.80. URL http://dx.doi.org/10.1109/WI-IAT.2013.80.

J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional mechanism: Regression
analysis under differential privacy. Proc. VLDB Endow., 5(11):1364–1375, July 2012.
ISSN 2150-8097. doi: 10.14778/2350229.2350253. URL http://dx.doi.org/10.14778/

2350229.2350253.
Z. Zhang, T. Wang, N. Li, S. He, and J. Chen. CALM: Consistent Adaptive Local Marginal

for marginal release under local differential privacy. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18, pages 212–229,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5693-0. doi: 10.1145/3243734.3243742.
URL http://doi.acm.org/10.1145/3243734.3243742.

http://dx.doi.org/10.1109/WI-IAT.2013.80
http://dx.doi.org/10.14778/2350229.2350253
http://dx.doi.org/10.14778/2350229.2350253
http://doi.acm.org/10.1145/3243734.3243742


THE BOUNDED LAPLACE MECHANISM IN DIFFERENTIAL PRIVACY 11

Appendix

A.1. Extended Preliminaries. We begin with a database d ∈ Sn, where S is the domain
of each row of the dataset. A query is a map Q : Sn → D, where D = [l, u] ⊂ R is a finite
interval on the real line (l < u, both finite). Given a probability space (Ω,F ,P), we denote
a response mechanism by XQ,d : Ω→ R for each d ∈ Sn. XQ,d is a random variable taking
the query Q and the database d as inputs, and produces a randomised output in R.

Definition A.1 (Differential Privacy). Given a query Q : Sn → D, ε ≥ 0 and 0 ≤ δ ≤ 1, a
response mechanism {XQ,d|d ∈ Sn} satisfies (ε,δ)-differential privacy if

P(XQ,d ∈ A) ≤ eεP(XQ,d′ ∈ A) + δ,

for all d ∼ d′ ∈ Sn, and all measurable A ⊆ R, and where d ∼ d′ ∈ Sn denotes that the
databases d,d′ ∈ Sn differ in exactly one row (i.e. ∃!j ∈ [n] : dj 6= d′j).

When δ = 0 we say {XQ,d} satisfies ε-differential privacy.

Throughout this paper, we assume that ε and δ are not simultaneously zero, i.e. eε

1−δ > 1.
In this paper we focus on output perturbation response mechanisms, where the raw query

answer is randomised. Using the notation introduced above, we are interested in mechanisms
of the form

XQ,d(ω) = YQ(d)(ω),

where Yq : Ω→ R is defined for each q ∈ D (producing a randomised output for each possible
query answer q).

The Laplace mechanism was first proposed in Dwork et al. (2006) to achieve privacy
using additive noise. We first define the sensitivity of Q, ∆Q ∈ R≥0, given by

∆Q = max
d∼d′∈Sn

|Q(d)−Q(d′)|. (A.1)

Note that 0 ≤ ∆Q ≤ u − l. The following is a form of the Laplace mechanism which is
applicable to (ε,δ)-differential privacy (Holohan et al., 2015, Example 5).

Definition A.2 (Laplace Mechanism). The Laplace distribution with mean µ and variance
2b2, Lap(µ, b), has a PDF fLap(µ,b) : R→ R≥0 given by

fLap(µ,b)(x) =
1

2b
e−
|x−µ|
b .

The response mechanism {Yq | q ∈ D} (where q = Q(d) ∈ D is the raw query answer) given
by

Yq(ω) = q + Lap(0, b) = Lap(q, b) (A.2)

is known as the Laplace mechanism, and satisfies (ε,δ)-differential privacy when

b ≥ ∆Q

ε− log(1− δ) .

Remark: Whenever b > 0, P(Yq ∈ R \D) > 0, i.e. some outputs will lie outside D.
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A.2. Truncated Laplace mechanism. Truncation is one option available to ensure the
output of a response mechanism falls within a required domain. This involves a deterministic
mapping to the upper/lower bounds of the output domain, if the value falls outside the
domain.

Definition A.3 (Truncated Laplace Mechanism). Given a Laplace mechanism Yq : Ω→ R
given in (A.2), the truncated Laplace mechanism is given by Zq(ω) = trunc(Yq(ω)), where
trunc : R→ D is defined as

trunc(r) =


r, if r ∈ D,
l, if r < l,

u if r > u.

(A.3)

The truncated Laplace mechanism trivially satisfies differential privacy, as it is a
deterministic post-processing of a differentially private output.

A.3. Proof of Lemma 3.3. In order to prove Lemma 3.3, we must first consider the
following lemmas concerning Cq.

Lemma A.4. Let q ∈ D and b > 0, and let Cq be given by Definition 3.1. Then
∂
∂z

(
Cq+z
Cq

e
z
b

)
≥ 0, whenever q + z ≤ u.

Proof. We first note that

∂

∂z
Cq+z =

1

2b

(
e−

q+z−l
b − e−u−q−zb

)
.

We then see that
∂

∂z

(
Cq+z
Cq

e
z
b

)
=

1

Cq

1

b

(
1− e−u−q−zb

)
e
z
b .

Since b > 0 by assumption, it follows that ∂
∂z

(
Cq+z
Cq

e
z
b

)
≥ 0 if and only if q + z ≤ u.

Lemma A.5. Let q ∈ D and z ≥ 0, and let Cq be given by Definition 3.1. Then
∂
∂q

(
Cq+z
Cq

e
z
b

)
≤ 0.

Proof. We first note that

∂

∂q
Cq+z =

1

2b

(
e−

q+z−l
b − e−u−q−zb

)
.

We then find

∂

∂q

(
Cq+z
Cq

e
z
b

)
=

e
z
b

Cq
2

(
Cq

∂

∂q
Cq+z − Cq+z

∂

∂q
Cq

)
=

e
z
b

2bCq
2

(
e−

q−l
b

(
e−

z
b − 1

)
+ e−

u−q
b

(
1− e zb

)
+ e−

u−l−z
b − e−u−l+zb

)

=
e
z
b

((
e−

z
b − 1

)(
e
u−q
b − 1

)
+
(

1− e zb
)(

e
q−l
b − 1

))
2b e

u−l
b Cq

2
.

Since b > 0, it’s clear that the denominator is positive. Furthermore, since q ∈ D, it

follows that e
u−q
b , e

q−l
b > 1. Also, since z ≥ 0 by assumption, we have e−

z
b < 1 and e

z
b > 1.

Hence, ∂
∂q

(
Cq+z
Cq

e
z
b

)
≤ 0, as required.
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Using Lemmas A.4 and A.5, we can now prove Lemma 3.3.

Proof (Lemma 3.3). Since Cq is symmetric about u+l
2 , we have Cq = Cu+l−q. By letting

q0 = u+ l− q and q′0 = u+ l− q′, then,
Cq′
Cq
e
|q′−q|
b =

Cq′0
Cq0

e
|q′0−q0|

b , and q′ > q if q′0 < q0. Hence,

without loss of generality we can assume that q′ ≥ q, so we are examining

max
q,q′∈D

0≤q′−q≤∆Q

Cq′

Cq
e
q′−q
b .

Equivalently, since q′ ≥ q, we can consider max q∈D
0≤z≤∆Q

Cq+z
Cq

e
z
b .

By Lemma A.5, ∂
∂q

(
Cq+z
Cq

e
z
b

)
≤ 0, hence the maximum is attained at the smallest

possible q, i.e.

max
q∈D

0≤z≤∆Q

Cq+z
Cq

e
z
b = max

0≤z≤∆Q

Cl+z
Cl

e
z
b .

Similarly, by Lemma A.4, ∂
∂z

(
Cq+z
Cq

e
z
b

)
≥ 0, hence the maximum is attained at the

largest possible z, giving max q∈D
0≤z≤∆Q

Cq+z
Cq

e
z
b =

Cl+∆Q

Cl
e

∆Q
b , as required.

A.4. Proof of Theorem 3.5.

Proof (Theorem 3.5). We follow a similar method of proof as used in Example 5 of Holohan
et al. (2015).

Given A ⊆ D, and noting that P(Wq ∈ A) = 1
Cq

P(Yq ∈ A), where Yq is given by (2.1),

we are seeking to show that

1

Cq
P(Yq ∈ A) ≤ eε 1

Cq′
P(Yq′ ∈ A) + δ,

for any measurable A ⊆ D and where q, q′ ∈ D and |q − q′| ≤ ∆Q. Given that P(Yq ∈ A) =∫
A
e−
|x−q|
b

2b dx, we have,

1

Cq

∫
A

e−
|x−q|
b

2b
dx ≤ eε 1

Cq′

∫
A

e−
|x−q′|
b

2b
dx+ δ.

Using the triangle inequality, we see that |x−q′| ≤ |x−q|+|q′−q|, so it is sufficient to show
that
1
Cq

∫
A
e−
|x−q|
b

2b dx ≤ eε− |q
′−q|
b

1
Cq′

∫
A
e−
|x−q|
b

2b dx+ δ, or equivalently,

1 ≤ eε−
|q−q′|
b

Cq
Cq′

+
Cq∫

A
e−
|x−q|
b

2b dx

δ.

Since A ⊆ D and given the definition of Cq in Definition 3.1, it follows that Cq ≥∫
A
e−
|x−q|
b

2b dx, hence it is sufficient to show that 1 ≤ eε− |q
′−q|
b

Cd
Cq′

+ δ.
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By Lemma 3.3, ∆C(b) e
∆Q
b ≥ Cq′

Cq
e
|q′−q|
b when |q′−q| ≤ ∆Q, or equivalently 1

∆C(b)e
−∆Q

b ≤
Cq
Cq′
e−
|q′−q|
b , so it is sufficient to show that

1 ≤ 1

∆C(b)
eε−

∆Q
b + δ. (A.4)

Solving (A.4) implicitly for b completes the proof.

A.5. Proof of Lemma 4.2.

Proof (Lemma 4.2). We first note that f(b) > 0 if and only if ε− log ∆C(b)− log(1− δ) > 0,
or equivalently, if ∆C(b) < eε

1−δ . We assume that eε

1−δ > 1 (i.e. that ε and δ are not

simultaneously zero).

Given b0 = ∆Q
ε−log(1−δ) , we see that

∆C(b0) =
2− e−ε+log(1−δ) − e−

(
u−l
∆Q
−1

)
(ε−log(1−δ))

1− e−
u−l
∆Q

(ε−log(1−δ))

=
2− 1−δ

eε −
(

eε

1−δ

)1−u−l
∆Q

1−
(

eε

1−δ

)−u−l
∆Q

=
2
(

eε

1−δ

)
− 1−

(
eε

1−δ

)2−u−l
∆Q

eε

1−δ −
(

eε

1−δ

)1−u−l
∆Q

. (A.5)

For simplicity, we relabel (A.5) by setting α = eε

1−δ and β = u−l
∆Q , giving

∆C(b0) =
2α− 1− α2−β

α− α1−β .

We note that α > 1 and β ≥ 1.
Since max

(
2α− α2

)
= 1 and the maximum occurs at α = 1, it follows that 2α−α2 < 1

when α > 1. We can then make the following series of deductions:

2α− α2 < 1,

2α− 1 < α2,

2α− 1− α2−β < α2 − α2−β ,

2α− 1− α2−β

α− α1−β < α.

Hence,

∆C(b0) < α =
eε

1− δ ,
and it follows that f(b0) > 0.
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We can also show that ∆C(b0) ≥ 1 through the following series of deductions:

α1−β ≤ 1, (A.6)

α1−β(α− 1) ≤ α− 1,

0 ≤ α− α1−β ≤ 2α− 1− α2−β ,

2α− 1− α2−β

α− α1−β ≥ 1.

Hence, log ∆C(b0) ≥ 0. It then follows that

∆Q

ε− log ∆C(b0)− log(1− δ) ≥
∆Q

ε− log(1− δ) ,

and that f(b0) ≥ b0. Furthermore, from (A.6), f(b0) = b0 if and only if ∆Q = u− l.

A.6. Proof of Lemma 4.3.

Proof (Lemma 4.3). From (4.1), we have

f ′(b) =
f(b)2

∆Q∆C(b)

∂∆C(b)

∂b
,

hence f ′ ≤ 0 if and only if ∂∆C(b)
∂b ≤ 0. From the definition of ∆C(b), after some simplification

we have

∂∆C(b)

∂b
= −

(
1

2bCl(b)

)2(
∆Q

(
e−

∆Q
b + e−

2(u−l)−∆Q
b

)
+ e−

u−l
b (u− l −∆Q)

(
e

∆Q
b + e−

∆Q
b

)
− 2(u− l)e−u−lb

)
≤ −

(
1

2bCl(b)

)2(
∆Q

(
e−

∆Q
b + e−

2(u−l)−∆Q
b

)
− 2∆Qe−

u−l
b

)
(A.7)

= −
(

1

2bCl(b)

)2

∆Qe−
∆Q
b

(
1− e−u−l−∆Q

b

)2

≤ 0,

where (A.7) follows since ea + e−a ≥ 2 for all a ∈ R. Note that we have ∂∆C(b)
∂b = 0 if and

only if ∆Q = u− l. Also note that this result holds for all b 6= 0, and therefore for all b ≥ b0.
We therefore conclude that f ′(b) ≤ 0 for all b ≥ b0, and furthermore that f ′(b) = 0 if

and only if ∆Q = u− l.
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