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Abstract. We briefly report on a successful linear program reconstruction attack per-
formed on a production statistical queries system and using a real dataset. The attack
was deployed in test environment in the course of the Aircloak Challenge bug bounty
program and is based on the reconstruction algorithm of Dwork, McSherry, and Talwar.
We empirically evaluate the effectiveness of the algorithm and a related algorithm by Dinur
and Nissim with various dataset sizes, error rates, and numbers of queries in a Gaussian
noise setting.

Introduction

Responding to public and legislation pressures, companies are seeking practical and usable
technological solutions to their data privacy problems. Larger corporations often employ
Chief Privacy Officers and teams of privacy engineers to develop custom data privacy
solutions. Some of these companies, including Google, Apple, and Uber, are recently
experimenting with provable approaches to privacy using cryptography and differential
privacy, which—at their current stage of development—require significant research and
engineering efforts.

But not all companies have the means and technological sophistication to adopt this sort
of bespoke approach to privacy. This void is being filled by a growing industry of companies
selling off-the-shelf data privacy solutions, many of which aim to anonymize or de-identify
sensitive data. These companies often advertise their anonymization products as not only
preventing the disclosure of sensitive data but also ensuring compliance with relevant privacy
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laws, including HIPAA, FERPA, and GDPR.1 Lack of transparency surrounds some of these
technologies. Even when disclosed, the technical underpinnings of many privacy protection
claims are heuristic and hence hard to evaluate.

Heuristic approaches to data privacy are not typically ruled out by data privacy reg-
ulations. Furthermore, these regulations are not typically interpreted to require a strong
level of protection from data privacy technology. For example, the EU’s General Data
Protection Regulation limits its scope to those “means reasonably likely to be used” to
re-identify data [Eur16]. A report from the UK’s Information Commissioner’s Office in-
terprets similar language in earlier legislation as requiring protection against “motivated
intruders”; alas, these intruders are assumed to lack both “any prior knowledge” and “spe-
cialist expertise” [Off12]. This policy approach allows practitioners to argue that data
privacy technologies can be deployed even when they can be theoretically demonstrated to
be vulnerable to attacks, as purely theoretical attacks plausibly fall outside the scope of the
relevant regulations.

We believe that this is an unhealthy state of affairs. However, one can hope to affect
the legal interpretation of existing regulations by implementing theoretical attacks and
demonstrating their practicality. As a striking example, the decision to use differential
privacy for the 2020 Decennial Census in the US was largely motivated by the Census
Bureau’s realization that traditional statistical disclosure limitation techniques may be
vulnerable to practical reconstruction attacks [Abo18].

Reconstruction attacks. Academics have developed tools to reason formally about aspects
of data privacy. One of these tools is reconstruction attacks, presented by Dinur and Nissim
in 2003 [DN03]. They considered an adversary issuing count queries to a dataset x of n
entries and showed that if the queries are answered with accuracy o(

√
n) then after making

Õ(n) such queries the adversary can reconstruct, by solving a simple linear program, all but
a small fraction of the entries in x. This result was further generalized and strengthened
in [DMT07, DY08].

Reconstruction attacks have been mostly considered in the theoretical literature. They
provide limits on the functionality provided privacy preserving mechanisms under any
reasonable definition of privacy. Such analyses proved extremely useful in guiding the
development of a mathematically rigorous reasoning about privacy, and the introduction of
differential privacy in 2006 [DMNS06].

Reconstruction in practice. In this work, we apply a linear reconstruction attack on a
statistical query system in the wild. To the best of our knowledge, this is the first time
that such an attack has been successfully applied to reconstruct data from a commercially-
available statistical database system specifically designed to protect the privacy of the
underlying data.

We performed the attack on a production system called Diffix on a real dataset.2 The
attack was deployed in a test environment in the course of a bug bounty program by Aircloak,
the makers of Diffix. The goal of Diffix is to allow data analysts to perform an unlimited

1HIPAA is the US Health Insurance Portability and Accountability Act. FERPA is the US Family
Educational Rights and Privacy Act. The GDPR is the EU General Data Protection Regulation.

2By “Diffix” we refer to the system as described in [FEO+18] and which was available for the Aircloak bug
bounty program. To the best of the authors’ knowledge, this refers to the version now called “Diffix-Birch”.
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number of statistical queries on a sensitive database while protecting the underlying data and
while introducing only minimal error. It is advertised as an off-the-shelf, GDPR-compliant
privacy solution, and Aircloak reports that “CNIL, the French national data protection
authority, has already evaluated Diffix against the GDPR anonymity criteria, and have
stated that Aircloak delivers GDPR-level anonymity” [AIR18b].

As we show, by answering unlimited, highly accurate statistical queries Diffix is vulnerable
to linear reconstruction attacks.

1. Diffix

Diffix is a system that sits between a data analyst and a dataset. The data analyst issues
count queries using a restricted subset of SQL. For example,

SELECT count(*) FROM loans

WHERE status = ‘C’

AND client-id BETWEEN 2000 and 3000

Diffix executes a related query on the underlying dataset and then returns the answer to the
analyst’s query masked with additional error.

A primary focus of Diffix’s design is noise generation. The answer to every query is
masked with error generated by adding multiple samples from zero-mean Gaussian distribu-
tions and, depending on the data, rounding to the nearest integer. The standard deviation
of the error grows with the square root of the number of conditions in the SQL query. (The
above query has two conditions: status = ‘C’ and client-id BETWEEN 2000 and 3000.)
To generate this noise, samples from N(0, 1) are generated for every condition in the SQL
query, are added together with a baseline error, and are used to mask the final answer.

That the standard deviation scales with the square root of the number of conditions
was thought to prevent linear reconstruction attacks [FEO+18] (we explain that intuition
in Section 3). The precise structure of the noise—designed to thwart specific families of
attacks—is not otherwise relevant to this work. For instance, our attack ignores the fact
that queries with overlapping conditions have correlated noise. The text of the conditions
are used to seed the pseudo-random number generator used to sample the Gaussians, and
identical conditions yield identical seeds.

In addition to adding Gaussian noise, Diffix employs a number of heuristic techniques.
To protect against an attacker who may try to average noise out by issuing many logically
equivalent but syntactically distinct queries, Diffix restricts the use of certain SQL operators,
especially math operators. These restrictions ultimately dictated the peculiar form of our
attack queries. Other techniques include suppressing small counts, modifying extreme values,
and disallowing many SQL operators (e.g., OR).

In order to accelerate development and testing of our linear reconstruction attack, we
simulated Diffix’s noise addition and small-count suppression in MATLAB. The results in
Section 3 use real query responses from Diffix, while those in Section 4 use the simulation.

The Challenge. From December 2017 to May 2018, Aircloak ran “the first bounty program
for anonymized data re-identification,” offering prizes of up to $5,000 for successful attacks
[AIR18a]. We commend Aircloak for making Diffix available to privacy researchers and for
their support throughout this work.
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Aircloak granted researchers API access to 5 datasets through Diffix, along with docu-
mentation of Diffix’s design and implementation and complete versions of the datasets for
analysis. Researchers were allowed to use auxiliary information gleaned directly from the
datasets in order to carry out their attacks. Our target was a dataset of banking data from
the Czech Republic, originally released as part of a data challenge for the 3rd European
Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD ’99).3

Aircloak measured the success of an attack using an effectiveness parameter α and a
confidence improvement parameter κ. They have verified our attack to achieve the best
possible parameters. In a recent blog post, Aircloak reported that “Only two attack teams
formulated successful attacks. . . . Fixes for both attacks have been implemented” [AIR18c].
We have not examined whether the new restrictions on the query language introduced by
Aircloak counter linear reconstruction attacks.

2. Linear Reconstruction

Let x = (x1, . . . , xn) be a database of binary values xi ∈ {0, 1}. A subset-sum query identifies
a subset q of {1, . . . , n}, and the answer to the subset-sum query is q(x) =

∑
i∈q xi, an

integral number in the range 0 to n. Consider a mechanism M with access to the database
x which answers subset sum queries. In an attempt to protect the privacy of the underlying
data, the mechanism M may perturb its answers. Namely, given a query q, it returns an
answer aq which may differ from the exact answer q(x). We say that M has error E if for
all queries q,

aq = q(x) + eq where |eq| ≤ E.
Dinur and Nissim defined reconstruction attacks as those where an adversary A

with query access to M manages (with high probability) to learn an approximation
x̂ = (x̂1, . . . , x̂n) ∈ {0, 1}n for x within sublinear Hamming distance, i.e.,

|{i : x̂i 6= xi}| = o(n). (2.1)

They observed that with each query q made by an adversary A to the database x via
the mechanism M the adversary A obtains a linear threshold constraint on the unknown
(x1, . . . , xn), namely:

−E ≤
∑
i∈q

xi − aq ≤ E.

These linear constraints (plus the restriction of each xi to the range [0, 1]) form a linear
program, for which the underlying dataset x is a feasible solution.

Let E = o(
√
n) and consider the linear program consisting of the constraints obtained

by making Õ(n) randomly chosen queries. By solving this linear program and then rounding
the result to {0, 1} the adversary can reconstruct an approximation x̂ satisfying Eq. 2.1. In

other words, if M allows making Õ(n) arbitrary subset-sum queries, which it answers with
error E = o(

√
n), then M is susceptible to a reconstruction attack, and hence M does not

preserve privacy under any reasonable definition of privacy. This linear reconstruction attack
was further generalized and strengthened in a sequence of works [DMT07, DY08, KN13]. In
particular, Dwork McSherry and Talwar [DMT07] removed the requirement for all answers

3Dataset and description available at https://sorry.vse.cz/~berka/challenge/PAST/. See also https:

//aircloak.com/wp-content/uploads/Aircloak_Challenge.pdf.

https://sorry.vse.cz/~berka/challenge/PAST/
https://aircloak.com/wp-content/uploads/Aircloak_Challenge.pdf
https://aircloak.com/wp-content/uploads/Aircloak_Challenge.pdf
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of M to be within error E, and the attack we describe in this work is a simple variant of
their attack.

3. Implementing the Linear Reconstruction Attack

Setup. The attack targets a dataset x of size n database entries indexed by a set of unique
identifiers I. Each entry has an associated value of a Boolean target attribute, xi. Each
query q ⊆ [n] specifies a subset of entries, and the response aq = q(x) + eq is the sum of
true value q(x) =

∑
i∈q xi and an error term eq. The errors are sampled from a zero-mean

Gaussian distribution of standard deviation σ, then rounded to the nearest integer.
We implemented a linear reconstruction attack following the approach of [DMT07] to

find a candidate database x′ minimizing the total error. [DMT07] was designed for a setting
when some errors may be very significant, but typical errors are small. In contrast, the
linear program of [DN03] from the previous section is suitable when there is a bound on the
maximum error magnitude. Although we use the linear program of [DMT07], we deviate by
using subset queries. That work analyzes a number of other types of queries, including ±1
queries of the form q±(x) =

∑
i∈q xi −

∑
i 6∈q xi for subsets q ⊆ [n]. While these queries can

be implemented using subset queries,4 the standard deviation of the resulting noise would
be larger. In contrast, subset queries were directly implementable in Diffix with less noise
and proved effective. Section 4 reports on additional experiments testing the accuracy of
these three contrasting approaches in the face of Gaussian noise.

We solve the following linear program over n+m variables x′ = (x′i)i∈I and (e′q)q∈Q:

variables: x′ = (x′i)i∈I and (e′q)q∈Q
minimize:

∑
q∈Q |e′q|

subject to:
∀q ∈ Q, e′q = aq − q(x′)
∀i ∈ I, 0 ≤ x′i ≤ 1

There is a standard linearizing of the above nonlinear objective function by introducing m
additional variables. To compute the final output, we round the real-valued x′i to the nearest
value in {0, 1}.

The results described in this section are from a reanalysis of data gathered during the
Aircloak Challenge using the linear program described above. During the course of the
actual challenge, we used a slightly modified linear program as described in Appendix A.

Querying “random” subsets. The main hurdle in implementing the attack was specifying
queries for random subsets of the rows of the dataset.

The attacks in [DN03] and [DMT07] make use of queries which are random subsets
of [n]. The most straightforward way to specify subsets q ⊆ [n] in a SQL query is to use
|q| = Θ(n) conditions, one for each i ∈ q. If q is selected at random, it is impossible to do
significantly better because q is not compressible. But recall that Diffix determines the error
magnitude per query depending on the description of the query. The standard deviation
hence grows with the square root of the number of conditions. For a random subset q,

4q±(x) = q(x)− qc(x).
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the noise hence grows as
√
n, too large for linear program reconstruction to work. Thus,

[FEO+18] argued that Diffix thwarts linear program reconstruction.
To reconstruct the dataset, we needed to find a way to specify a random—or “random

enough”—subset of the data using as few conditions as possible. Our approach, ad hoc yet
ultimately effective, was to use the unique user identifier i as the source of “randomness.”

Each query was specified by a prime p, an offset j, an exponent e ∈ {0.5, 0.6, . . . , 1.9}\{1},
and a test φ ∈ {φ2, φ5}. The query q = (φ, p, j, e) is the set {i ∈ [n] : φ(i; p, j, e) = 1}, where

φ2(i; p, j, e) = 1 iff the jth digit in the decimal representation of (p · i)e is even, and

φ5(i; p, j, e) = 1 iff the jth digit in the decimal representation of (p · i)e is less than 5.

For example, the following query corresponds to p = 2, j = 2, e = 0.7 and φ5. To implement
φ2 replace each 100 with 500.

SELECT count(clientId) FROM loans

WHERE floor(100 * ((clientId * 2)∧0.7) + 0.5)

hide= floor(100 * ((clientId * 2)∧0.7))

The exact form of the query depended on the various syntactic restrictions included in Diffix.
By modifying the ranges of p and j, we were able to tune the total number of queries. We
restricted p to the first 25 primes and j ∈ [5], resulting in a total of 3500 queries.

Results. Our target was the loans table in the banking dataset, consisting of real data of
827 loans from a bank in the Czech Republic. The rows are indexed by the clientId attribute,
a unique number between 2 and 13971. Each row has an associated loanStatus attribute, a
letter from ‘A’ to ‘D’.

Our goal was to determine which loans had loanStatus = ‘C’, given only knowledge of
the clientIds. In order to minimize the total number of queries, we restricted our attention
to the subset of clientIds in the range [2000, 3000], which contained 73 entries. Ultimately,
our queries were of the form:

SELECT count(clientId) FROM loans

WHERE floor(100 * ((clientId * 2)∧0.7) + 0.5)

hide= floor(100 * ((clientId * 2)∧0.7))
AND clientId BETWEEN 2000 and 3000

AND loanStatus = ‘C’

The Diffix API reported it added error of standard deviation 4 to the output of these queries.
We applied the same attack on different ranges of clientIds with 110, 130, and 142 entries
(and in the last case, targeting the loanStatus value ’A’). In each case, we performed 3500
queries.

The linear program reconstructed the data for all four clientId ranges perfectly.

Discussion. Can Diffix be adapted to prevent linear program reconstruction? If enough
counting queries over subsets of a dataset are answered with error bounded by o(

√
n), then the

linear program from [DN03, DMT07] reconstructs all but a small fraction of the underlying
dataset. Diffix could of course prevent the attack by increasing the magnitude of the noise or
limiting the number of queries an analyst can make. However, [FEO+18] describes Diffix as
“minimiz[ing] the amount of noise needed to strongly protect the anonymity of individuals in
the database, and eliminat[ing] the need for the budget that is found in systems based on
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differential privacy.” Modifying Diffix in this way would be a change to the basic goals of
the system. Instead, Aircloak has chosen to further restrict the types of queries an analyst
can make. Though we have not examined the changes introduced by Aircloak to counter our
attack, it is our understanding that newer versions of Diffix would not answer the specific
queries used by our attack.

4. Simulated Experiments

The above attack leaves a number of unanswered questions. How does the effectiveness
of the attack vary with the magnitude of the Gaussian error, the number of queries, the
database size, or the reconstruction algorithm? Is prior knowledge of the clientIds necessary?

We explore these questions using a simulation of Diffix’s noisy statistical query mechanism.
The simulated mechanism answers count queries with zero-mean, normally-distributed noise
with standard deviation σ (and rounds to the nearest integer). It also suppresses low
counts in the same way as the Diffix system, though that was only be relevant for the first
experiment. All experiments described below were implemented in MATLAB on a personal
laptop, and all linear programs were solved in less than 4 seconds.

Removing auxiliary information. One drawback of our original attack on Diffix was the
need for complete knowledge of the clientIds as a prerequisite to performing the attack. Our
first experiment sought to infer these clientIds. First, we identified a range of 100 possible
clientIds that had a large number of present clientIds (relative to the other possible ranges).
We want a large number of present clientIds to minimize the effect of Diffix’s low-count
suppression. We settled on the range [2500, 2600] with 12 clientIds. While we identified this
range using exact counts, we believe such a range could be found by querying Diffix itself.5

We simulated responses to 3500 queries of the following form:

SELECT count(clientId) FROM loans

WHERE floor(100 * ((clientId * 2)∧0.7) + 0.5)

hide= floor(100 * ((clientId * 2)∧0.7))
AND clientId BETWEEN 2500 and 2600

The [DMT07] linear program was used to infer which clientIds are present in the range.
There was 1 false negative among the 12 present clientIds and 0 false positives among the 88
absent clientIds.

How accuracy varies with size, queries, and error. The accuracy of the linear recon-
struction attack depends on the size of the dataset, the magnitude of the error, and the
number of queries. When implementing our attack on Diffix, we used many more queries
than seemed necessary for the level of noise used. The next experiment illustrates how the
accuracy of [DMT07] varies with each of these parameters against a system using Gaussian
noise to answer count queries.

The results are summarized in Figure 1. The plots display the average accuracy over 10
simulated runs of our [DMT07] reconstruction algorithm as the error magnitude, database
size, and number of queries were varied. Each run resampled the Gaussian noise while the

5E.g., by issuing the query SELECT count(*) FROM loans WHERE clientid BETWEEN a and b to approx-
imate the number of present clientIds in the range {a, . . . , b}.
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underlying dataset remained fixed. It is interesting to observe that the size of the dataset
does not seem to significantly affect the effectiveness of reconstruction.

As described in Section 3, the analysis in [DMT07] applies to ±1 queries but not to
subset queries. To compare the effectiveness of these two query types, we ran the same
simulations using ±1 queries. The results are summarized in Figure 2. The plots are nearly
indistinguishable from the corresponding plots in Figure 1.
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(a) Noise standard deviation varied from 1 to
8, in increments of 1, with 2550 queries. For
n = 100, the mean accuracy falls below 0.99 at
σ = 5 and below 0.95 at σ = 7.

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Number of Queries

A
cc

ur
ac

y

Database Size, n

50 75 100 125 150

(b) The number of queries varied from 50 to
2950, in increments of 100, with noise magni-
tude σ = 4. For n = 100, the mean accuracy
surpasses 0.95 at 1150 queries and surpasses
0.99 at 2050 queries.

Figure 1. Reconstruction accuracy as a function of the (1a) noise magnitude
and (1b) number of queries, for various database sizes. The data is averaged
over 10 trials of the [DMT07] linear program using subset queries.

Comparing [DN03] and [DMT07]. The original linear reconstruction attack for noisy
statistical queries comes from [DN03]. In contrast to [DMT07], [DN03] makes the additional
assumption that each error eq is bounded by a maximum error E . In our experiments, we
write E = Bσ, where B is the error bound multiplier and σ is the standard deviation of the
Gaussian errors. The [DN03] linear program reflects the bounded-error assumption with an
additional constraint and uses a trivial objective function.

variables: x′ = (x′i)i∈I and (e′q)q∈Q
minimize: 0
subject to:

∀q ∈ Q, e′q = aq − q(x′)
e′q ≤ Bσ

∀i ∈ I, 0 ≤ x′i ≤ 1
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(a) Noise standard deviation varied from 1 to
8, in increments of 1, with 2550 queries. For
n = 100, the mean accuracy falls below 0.99 at
σ = 5 and below 0.95 at σ = 8.
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(b) The number of queries varied from 50 to
2950, in increments of 100, with noise magni-
tude σ = 4. For n = 100, the mean accuracy
surpasses 0.95 at 1050 queries and surpasses
0.99 at 2050 queries.

Figure 2. Reconstruction accuracy as a function of the (2a) noise magnitude
and (2b) number of queries, for various database sizes. The data is averaged
over 10 trials of the [DMT07] linear program using ±1 queries.

Our final experiment illustrates how the accuracy of the above [DN03]-based linear
program varies as a function of the error magnitude, number of queries, and the error bound
multiplier. The results are summarized in Figure 3. The plots display the average accuracy
over 10 simulated runs of our [DN03] reconstruction algorithm as the parameters were varied.
Each run resampled the Gaussian noise while the underlying dataset remained fixed.

Observe that as the error bound multiplier B increases, the accuracy of reconstruction
degrades. Because the linear program terminates once any feasible point is found, it is not
surprising that expanding the set of feasible points (by increasing B) hurts accuracy.

Note however that the pattern extends to B = 3. One would expect a few queries (in
expectation about 4.6 queries per 2550 for σ = 4) to have rounded error greater than 3σ.
Nevertheless, in each of the 240 trials run with B = 3 and at least 2550 queries, a feasible
solution was found. In contrast, for B = 2.5 and σ = 4 half of all executions with 1850
queries were infeasible (dropping to ≥ 90% infeasible at 2250 or more queries).
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(a) Noise standard deviation varied from 1 to
8, in increments of 1, with 2550 queries and
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(b) The number of queries varied from 50 to
2950, in increments of 100, with noise magnitude
σ = 4 and dataset size n = 100.

Figure 3. Accuracy as a function of the (3a) noise magnitude and (3b)
number of queries, for various values of the DiNi multiplier B. The data is
averaged over 10 trials using a dataset of size n = 100.
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Appendix A. Additional Information on the Aircloak Challenge Attack

The results described in Section 3 are from a reanalysis of data gathered during the Aircloak
Challenge. During the course of the Aircloak Challenge, we used a modified version of
the [DMT07] linear program. For transparency, this section describes the modified linear
program and its effectiveness.

The only difference between the linear program originally used and the one described in
Section 3 is the addition of constraints upper bounding the magnitude of any error term.

variables: x′ = (x′i)i∈I and (e′q)q∈Q
minimize:

∑
q∈Q |e′q|

subject to:
∀q ∈ Q, e′q = aq − q(x′)

e′q ≤ 5σ
∀i ∈ I, 0 ≤ x′i ≤ 1

where σ = 4 is the standard deviation of the true error distribution. Note that if the true
errors were distributed according to N(0, σ) and rounded to the nearest integer, an error of
magnitude greater than 5σ would be expected once in every 1.7 million queries.

We first implemented the linear reconstruction solver using data from the clientId range
[2000, 3000], for which it achieved perfect reconstruction. Together with researchers at the
Max Planck Institute for Software Systems, we verified the attack on three additional ranges
of clientIds containing 110, 130, and 142 clientIds. The results are summarized in Table 1. In
two of the three ranges, the attack again inferred whether each loanStatus was ‘C’ with high
accuracy (1 and .9538). We were surprised, therefore when the final validation (this time
targeting loanStatus ‘A’ rather than ‘C’) achieved accuracy of only 75.4%. Our confusion
compounded when the accuracy degraded after increasing the number of queries, suggesting
that we were not accounting for some source of error.

After further investigation, we realized that performing the queries for clientIds in
[10000, 12000] required more numerical precision than seemed to be supported by Diffix.
The larger clientId values in this range and the larger constants required to answer additional
queries introduced errors that had not affected our earlier tests. Ultimately, high accuracy
was recovered by ignoring the results from queries with larger values of e (which require
greater precision), but making no other changes to the linear program solver.

clientIds Range Number of entries (n) Number of queries Target status Accuracy

2000-3000 73 3500 ‘C’ 1
3000-5000 110 3500 ‘C’ 1
5000-7000 130 3500 ‘C’ .9538

10000-12000 142 3500 ‘A’ .7535
10000-12000 142 2000, e ≤ 1.4 ‘A’ 1
10000-12000 142 1000, e ≤ 0.8 ‘A’ .9930

Table 1. Summary of reconstruction tests performed against Diffix using
the modified [DMT07] linear program. The queries in the final two resulted
from restricting the exponent e to the indicated range.
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