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Abstract. We propose a generic mechanism to efficiently release differentially private
synthetic versions of high-dimensional datasets with high utility. The core technique in
our mechanism is the use of copulas, which are functions representing dependencies among
random variables with a multivariate distribution. Specifically, we use the Gaussian copula
to define dependencies of attributes in the input dataset, whose rows are modelled as
samples from an unknown multivariate distribution, and then sample synthetic records
through this copula. Despite the inherently numerical nature of Gaussian correlations we
construct a method that is applicable to both numerical and categorical attributes alike.
Our mechanism is efficient in that it only takes time proportional to the square of the
number of attributes in the dataset. We propose a differentially private way of constructing
the Gaussian copula without compromising computational efficiency. Through experiments
on three real-world datasets, we show that we can obtain highly accurate answers to the set
of all one-way marginal, and two-and three-way positive conjunction queries, with 99% of
the query answers having absolute (fractional) error rates between 0.01 to 3%. Furthermore,
for a majority of two-way and three-way queries, we outperform independent noise addition
through the well-known Laplace and Gaussian mechanisms. In terms of computational time
we demonstrate that our mechanism can output synthetic datasets in around 6 minutes 47
seconds on average with an input dataset of about 200 binary attributes and more than
32,000 rows, and about 2 hours 30 mins to execute a much larger dataset of about 700
binary attributes and more than 5 million rows. To further demonstrate scalability, we ran
the mechanism on larger (artificial) datasets with 1,000 and 2,000 binary attributes (and 5
million rows) obtaining synthetic outputs in approximately 6 and 19 hours, respectively.
These are highly feasible times for synthetic datasets, which are one-off releases.
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1. Introduction

There is an ever increasing demand to release and share datasets owing to its potential
benefits over controlled access. For instance, once data is released, data custodian(s) need
not worry about access controls and continual support. From a usability perspective, data
release is more convenient for users (expert analysts and novices alike) as compared to access
through a restricted interface. Despite its appeal, sharing datasets, especially when they
contain sensitive information about individuals, has privacy implications which have been
well documented. Current practice, therefore, suggests privacy-preserving release of datasets.
Ad hoc techniques such as de-identification, which mainly rely on properties of datasets
and assumptions on what background information is available, have failed to guarantee
privacy [Narayanan and Shmatikov, 2008, Ohm, 2009]. Part of the reason for the failure is
the lack of a robust definition of privacy underpinning these techniques.

This gave rise to the definition of differential privacy [Dwork et al., 2006b]. Differential
privacy ties the privacy property to the process or algorithm (instead of the dataset) and,
informally, requires that any output of the algorithm be almost equally likely even if
any individual’s data is added or removed from the dataset. A series of algorithms have
since been proposed to release differentially private datasets, often termed as synthetic
datasets. Simultaneously, there are results indicating that producing synthetic datasets
which accurately answer a large number of queries is computationally infeasible, i.e., taking
time exponential in the number of attributes (dimension of the dataset) [Ullman and Vadhan,
2011]. This is a serious roadblock as real-world datasets are often high-dimensional. However,
infeasibility results from Ullman and Vadhan [2011] and Ullman [2013] are generic, targeting
provable utility for any input data distribution. It may well be the case that a large number
of real-world datasets follow constrained distributions which would make it computationally
easier to output differentially private synthetic datasets that can accurately answer a larger
number of queries. Several recent works indicate the plausibility of this approach claiming
good utility in practice [Zhang et al., 2014, Li et al., 2014]. Ours is a continuation of this
line of work.

In this paper, we present a generic mechanism to efficiently generate differentially
private synthetic versions of high dimensional datasets with good utility. By efficiency, we
mean that our mechanism can output a synthetic dataset in time O(m2n), where m is
the total number of attributes in the dataset and n the total number of rows. Recall that
impossibility results [Ullman and Vadhan, 2011] suggest that algorithms for accurately
answering a large number of queries are (roughly) expected to run in time poly(2m, n). Thus,
our method is scalable for high dimensional datasets, i.e., having a large m. In terms of
utility, our generated synthetic dataset is designed to give well approximated answers to
all one-way marginal and two-way positive conjunction queries. One-way marginal queries
return the number of rows in the dataset exhibiting a given value x or its negation x (not x)
under any attribute X. Similarly, two-way positive conjunction queries return the number
of rows that exhibit any pair of values (x, y) under an attribute pair (X,Y ). This forms a
subset of all two-way margins; the full set also includes negations of values, e.g., rows that
satisfy (x, y).1

1The answers to all two-way marginals can also be obtained although accuracy degrades by a factor of
two as compared to the accuracy of answers to one-way marginals and two-way positive conjunctions. See
Section 3.3.1 for the reason behind this.
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While this may seem like a small subset of queries, there are results showing that even
algorithms that generate synthetic datasets to (accurately) answer all two-way marginal
queries are expected to be computationally inefficient [Ullman and Vadhan, 2011, Ullman,
2013]. Furthermore, we show that our mechanism provides good utility for other queries as
well by evaluating the answers to 3-way positive conjunction queries on the synthetic output.

The key to our method is the use of copulas [Nelsen, 2006] to generate synthetic datasets.
Informally, a copula is a function that maps the marginal distributions to the joint distribution
of a multivariate distribution, thus defining dependence among random variables. Modelling
the rows of the input dataset as samples of the (unknown) multivariate distribution, we can
use copulas to define dependence among attributes (modelled as univariate random variables),
and finally use it to sample rows from the target distribution and generate synthetic datasets.
Specifically, we use the Gaussian copula [Nelsen, 2006, p. 23], which defines the dependence
between one-way margins through a covariance matrix. The underlying assumption is that
the relationship between different attributes of the input dataset is completely characterised
by pairwise covariances. While this may not be true in practice, it still preserves the
correlation of highly correlated attributes in the synthetic output. Our main reason for
using the Gaussian copula is its efficiency, as its run-time is proportional to the square of
the number of attributes. We remark that our use of the Gaussian copula does not require
the data attributes to follow a Gaussian distribution. Only their dependencies are assumed
to be captured by the Gaussian copula.

Importantly, as claimed, our method is generic. This is important since an input
dataset is expected to be a mixture of numerical (ordinal) and categorical (non-ordinal)
attributes meaning that we cannot use a unified measure of correlation between attributes.
A common technique to work around this is to create an artificial order on the categorical
attributes [Iyengar, 2002]. However, as we show later, the resulting correlations are inherently
artificial and exhibit drastically different results if a new arbitrary order is induced. Our
approach is to convert the dataset into its binary format (see Section 2.2) and then use a
single correlation measure, Pearson’s product-moment correlation, for all binary attributes.
This eliminates the need for creating an artificial order on the categorical attributes. Our
method is thus more generic than another Copula-based method proposed by Li et al. [2014],
which only handles attributes with large (discrete) domains and induces artificial order on
categorical attributes.2

We experimentally evaluate our method on three real-world datasets: the publicly
available Adult dataset [Lichman, 2013] containing US census information, a subset of the
social security payments dataset provided to us by the Department of Social Services (DSS),
a department of the Government of Australia,3, and a hospital ratings dataset extracted
from a national patient survey in the United States, which we call the Hospital dataset. The
Adult dataset consists of 14 attributes (194 in binary) and more than 32,000 rows, the DSS
dataset has 27 attributes (674 in binary) and more than 5,000,000 rows, and the Hospital
dataset contains 9 attributes (1,201 in binary) and 10,000 rows. The generation of synthetic
datasets took around 6 minutes 47 seconds (on average) for the Adult dataset, around two
and a half hours on average for the DSS dataset, and 46 minutes on average for the Hospital
dataset. To further check the scalability of our method, we ran it on two artificial datasets
each with more than 5 million rows and 1,000 and 2,000 binary attributes, resulting in

2See Section 5 for a further discussion on the differences between the two works.
3https://www.dss.gov.au/.

https://www.dss.gov.au/
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run-times of approximately 6 and 19 hours, respectively. Since synthetic data release is a
one-off endeavour, these times are highly feasible. In terms of utility, we show that 99% of
the one-way marginal queries have an absolute error of less than 300 on Adult, around 400 for
DSS, and less than 150 for the Hospital dataset (cf. Table 2), where absolute error is defined
as the absolute difference between true and differentially private answers computed from
the synthetic dataset. In terms of two-way positive conjunction queries, we again see that
99% of the queries have an absolute error of less than 500 for Adult, less than 250 for DSS
and only around 15 for the Hospital dataset. Furthermore, for most of the two-way queries
we considerably outperform the Laplace [Dwork et al., 2006b] and Gaussian [Dwork et al.,
2006a] mechanisms which add independent Laplace and Gaussian noise, respectively, to each
of the query answers. Note that a further advantage of our method is that unlike these
two mechanisms, we generate a synthetic dataset. We further expand our utility analysis
to include three-way queries and show that our method again calibrates noise considerably
better than the aforementioned Laplace and Gaussian mechanisms with 99% of the queries
having absolute error of less than 400 for Adult, less than 200 for DSS, and only around
50 for the Hospital dataset. Our utility analysis is thorough; we factor in the possibility
that real-world datasets may have significantly high numbers of uncorrelated attributes
which implies that a synthetic data generation algorithm might produce accurate answers
by chance (for the case of two-way or higher order marginals). Thus we separate results
for highly correlated and uncorrelated attributes to show the accuracy of our mechanism.
Perhaps one drawback of our work is the lack of a theoretical accuracy bound; but this is in
line with many recent works [Zhang et al., 2014, Cormode et al., 2012, Li et al., 2014] which,
like us, promise utility in practice.

The rest of the paper is organized as follows. We give a brief background on differential
privacy and copulas in Section 2. We describe our mechanism in Section 3. Section 4
contains our experimental utility and performance analysis. In Section 5, we present a
detailed comparison between our work and the work most related to ours [Li et al., 2014].
We present related work in Section 6, and conclude in Section 7.

2. Background concepts

2.1. Notations. We denote the original dataset by D, which is modelled as a multiset of
n rows from the domain X = A1 × · · · × Am, where each Aj represents an attribute, for
a total of m attributes. We assume the number of rows n is publicly known. We denote
the set of all n-row databases as X n. Thus, D ∈ X n. The ith row of D is denoted as

(X
(i)
1 , X

(i)
2 , . . . , X

(i)
m ), where X

(i)
j ∈ Aj . In the sequel, where discussing a generic row, we will

drop the superscript for brevity. The notation R represents the real number line [−∞,∞],
and I denotes the interval of real numbers [0, 1]. The indicator function I{P} evaluates to 1
if the predicate P is true, and 0 otherwise.

2.2. Dummy Coding. A key feature of our method is to convert the original dataset into
its binary format through dummy coding, where each attribute value of Aj ∈ D is assigned
a new binary variable. For instance, consider the “country” attribute having attribute
values USA, France and Australia. Converted to binary we will have three columns (binary
attributes) one for each of the three values. For any row, a value of 1 corresponding to any
of these binary columns indicates that the individual is from that particular country. Thus,
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we have a total of d =
∑m

i=1 |Ai| binary attributes in the binary version DB of the dataset
D. In case of continuous valued attributes, this is done by first binning the values into
discrete bins. Thus for a continuous valued attribute A, |A| indicates the number of bins.

The ith row in DB is denoted as (X
(i)
1 , X

(i)
2 , . . . , X

(i)
d ). Note that while the mapping from D

to DB is unique, the converse is not always true.4 Note further that this way of representing
datasets is also known as histogram representation [Dwork and Roth, 2014, §2.3].

2.3. Overview of Differential Privacy. Two databasesD,D′ ∈ X n are called neighboring
databases, denoted D ∼ D′, if they differ in only one row.

Definition 1 (Differential privacy [Dwork et al., 2006b, Dwork and Roth, 2014]). A random-
ized algorithm (mechanism) M : X n → R is (ε, δ)-differentially private if for every S ⊆ R,
and for all neighbouring databases D,D′ ∈ X n, the following holds

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ.

If δ = 0, then M is ε-differentially private.

The mechanism M might also take some auxiliary inputs such as a query or a set of
queries (to be defined shortly). The parameter δ is required to be a negligible function of
n [Dwork and Roth, 2014, §2.3, p. 18], [Vadhan, 2017, §1.6, p. 9].5 The parameter ε on the
other hand should be small but not arbitrarily small. We may think of ε ≤ 0.01, ε ≤ 0.1 or
ε ≤ 1 [Dwork et al., 2011, §1], [Dwork and Roth, 2014, §3.5.2, p. 52]. An important property
of differential privacy is that it composes [Dwork and Roth, 2014].

Theorem 1 (Basic composition). If M1, . . . ,Mk are each (ε, δ)-differentially private then
M = (M1, . . . ,Mk) is (kε, kδ)-differentially private.

The above is sometimes referred to as (basic) sequential composition, as opposed to
parallel composition, defined next.

Theorem 2 (Parallel composition [McSherry, 2009]). Let Mi each provide (ε, δ)-differential
privacy. Let Xi be arbitrary disjoint subsets of the domain X . The sequence of Mi(D ∩ Xi)
provides (ε, δ)-differential privacy, where D ∈ X n.

A more advanced form of composition, which we shall use in this paper, only depletes
the “privacy budget” by a factor of ≈

√
k. See Dwork and Roth [2014][§3.5.2] for a precise

definition of adaptive composition.

Theorem 3 ((Advanced) adaptive composition [Dwork et al., 2010, Dwork and Roth, 2014,
Gaboardi et al., 2014]). Let M1, . . . ,Mk be a sequence of mechanisms where each can take
as input the output of a previous mechanism, and let each be ε′-differentially private. Then
M(D) = (M1(D), . . . ,Mk(D) is ε-differentially private for ε = kε′, and (ε, δ)-differentially
private for

ε =

√
2k ln

1

δ
ε′ + kε′(eε

′ − 1),

for any δ ∈ (0, 1). Furthermore, if the mechanisms Mi are each (ε′, δ′) differentially private,
then M is (ε, kδ′ + δ) differentially private with the same ε as above.

4For instance, in DB, we may have two binary attributes set to 1, which correspond to two different values
of the same attribute in the original dataset D, e.g., USA and France.

5A function f in n is negligible, if for all c ∈ N, there exists an n0 ∈ N such that for all n ≥ n0, it holds
that f(n) < n−c.
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Another key feature of differential privacy is that it is immune to post-processing.

Theorem 4 (Post-processing [Dwork and Roth, 2014]). IfM : X n → R is (ε, δ)-differentially
private and f : R → R′ is any randomized function, then f ◦ M : X n → R′ is (ε, δ)-
differentially private.

A query is defined as a function q : X n → R.

Definition 2 (Counting queries and point functions). A counting query is specified by a
predicate q : X → {0, 1} and extended to datasets D ∈ X n by summing up the predicate on
all n rows of the dataset as

q(D) =
∑
x∈D

q(x).

A point function [Vadhan, 2017] is the sum of the predicate qy : X → {0, 1}, which evaluates
to 1 if the row is equal to the point y ∈ X and 0 otherwise, over the dataset D. Note that
computing all point functions, i.e., answering the query qy(D) for all y ∈ X , amounts to
computing the histogram of the dataset D.

Definition 3 (Global sensitivity [Dwork and Roth, 2014, Vadhan, 2017]). The global
sensitivity of a counting query q : X n → N is

∆q = max
D,D′∈Xn

D∼D′

|q(D)− q(D′)|.

Definition 4 ((α, β)-utility). The mechanism M is said to be (α, β)-useful for the query
class Q if for any q ∈ Q,

P [util(M(q,D), q(D)) ≤ α] ≥ 1− β,
where the probability is over the coin tosses of M, and util is a given metric for utility.

The Laplace mechanism is employed as a building block in our algorithm to generate
the synthetic dataset.

Definition 5 (Laplace mechanism [Dwork et al., 2006b]). The Laplace distribution with
mean 0 and scale b has the probability density function

Lap(x | b) =
1

2b
e−
|x|
b .

We shall remove the argument x, and simply denote the above by Lap(b). Let q : X n → R
be a query. The mechanism

MLap(q,D, ε) = q(D) + Y

where Y is drawn from the distribution Lap (∆q/ε) is known as the Laplace mechanism.
The Laplace mechanism is ε-differentially private[Dwork et al., 2006b],[Dwork and Roth,
2014][§3.3]. Furthermore, with probability at least 1− β [Dwork and Roth, 2014][§3.3]

max
q∈Q
|q(D)−MLap(q,D, ε)| ≤ ∆q

ε
ln

(
1

β

)
.
= α,

where β ∈ (0, 1]. If q is a counting query, then ∆q = 1, and the error α is

α =
1

ε
ln

(
1

β

)
with probability at least 1− β.
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The advanced composition theorem (Theorem 3) allows us to set an ε and δ, giving
us a budget ε′ for each of the k mechanisms used in the composition. We can then
use k applications of the Laplace mechanism: MLap(q,D, ε′) resulting in (ε, δ)-differential
privacy. Alternatively, we can use k applications of the Gaussian mechanism to achieve
(ε, δ)-differential privacy. Abusing notation for k ≥ 1, let q : X n → Nk now denote a sequence
of counting queries. Then q(D) denotes the tuple obtained after applying each of the k
counting queries on the database D.

Definition 6 (Global l2 sensitivity [Dwork and Roth, 2014]). The global l2 sensitivity of a
sequence of k ≥ 1 counting queries q : X n → Nk is

∆2q = max
D,D′∈Xn

D∼D′

||q(D)− q(D′)||2.

Definition 7 (Gaussian mechanism [Dwork et al., 2006a] [Dwork and Roth, 2014](§3.5.3)).
The Gaussian mechanism with scale σ adds zero-mean Gaussian noise with variance σ2,
denoted N (0, σ2), to each of the k ≥ 1 counting queries in q. Let ε ∈ (0, 1) be arbitrary.
The Gaussian mechanism with scale

σ >
∆2q

ε

√
2 ln

(
5

4δ

)
(2.1)

is (ε, δ)-differentially private.

2.4. Overview of Copulas. For illustration, we assume the bivariate case, i.e., we have
only two variables (attributes) X1 and X2. Let F1 and F2 be their margins, i.e., cumulative
distribution functions (CDFs), and let H be their joint distribution function. Then, according
to Sklar’s theorem [Sklar, 1959, Nelsen, 2006], there exists a copula C such that for all
X1, X2 ∈ R,

H(X1, X2) = C(F1(X1), F2(X2)),

which is unique if F1 and F2 are continuous; otherwise it is uniquely determined on Ran(F1)×
Ran(F2), where Ran(·) denotes range. In other words, there is a function that maps the
joint distribution function to each pair of values of its margins. This function is called a
copula. Since our treatment is on binary variables X ∈ {0, 1}, the corresponding margins
are defined over X ∈ R as

F (X) =


0, X ∈ [−∞, 0)

a, X ∈ [0, 1)

1, X ∈ [1,∞]

where, a ∈ I. The above satisfies the definition of a distribution function [Nelsen, 2006, §2.3].
This allows us to define the quasi-inverse of F , denoted F−1, (tailored to our case) as

F−1(t) =

{
0, t ∈ [0, a]

1, t ∈ (a, 1]

Now, using the quasi-inverses, we see that

C(u, v) = H(F−11 (u), F−12 (v)),
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where u, v ∈ I. If an analytical form of the joint distribution function is known, the copula
can be constructed from the expressions of F−11 and F−12 (provided they exist). This then
allows us to generate random samples of X1 and X2 by first sampling a uniform u ∈ I, and
then extracting v from the conditional distribution. Using the inverses we can extract the
pair X1, X2. See Nelsen [2006][§2.9] for more details. However, in our case, and in general
for real-world datasets, we seldom have an analytical expression for H, which could allow us
to construct C. There are two approaches to circumvent this, which rely on obtaining an
empirical estimate of H from DB.

• The first approach relies on constructing a discrete equivalent of an empirical copula [Nelsen,
2006, §5.6, p. 219], using the empirical H obtained from the dataset DB. However, doing
this in a differentially private manner requires computing answers to the set of all point
functions (Definition 2) of the original dataset [Vadhan, 2017], which amounts to finding
the histogram of DB. Unfortunately, for high dimensional datasets, existing efficient
approaches of differentially private histogram release [Vadhan, 2017] would release a
private dataset that discards most rows of the original dataset. This is due to the fact that
high dimensional datasets are expected to have high number of rows with low multiplicity.
• The other approach, and indeed the one taken by us, is using some existing copula and

adjusting its parameters according to the dataset DB. For this paper we choose the
Gaussian copula, i.e., the copula

C(u, v) = Φr(Φ
−1(u),Φ−1(v)),

where Φ is the standard univariate normal distribution, r is the Pearson correlation
coefficient and Φr is the standard bivariate normal distribution with correlation coefficient
r. We can then replace the Φ’s with the given marginals F and G resulting in a distribution
which is not standard bivariate, if F and G are not standard normal themselves. The
underlying assumption in this approach is that the given distribution H is completely
characterised by the margins and the correlation. This in general may not be true of all
distributions H. However, in practice, this can potentially provide good estimates of one
way margins and a subset of the two way margins as discussed earlier. Another advantage
of this approach is computational efficiency: the run time is polynomial in m (the number
of attributes) and n (the number or rows).

While our introduction to copulas has focused on two variables, this can be extended to
multiple variables [Sklar, 1959].

3. Proposed Mechanism

Our method has three main steps as shown in Figure 1: data pre-processing, differentially
private statistics, and copula construction. Among these, only the second step involves
privacy treatment. The last step preserves privacy due to the post-processing property of
differential privacy (Theorem 4). The first step, if not undertaken carefully, may result in
privacy violations, as we shall discuss shortly. We shall elaborate each step in the following.

3.1. Data Pre-processing.
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Figure 1: Flowchart of our method.

3.1.1. Binning of Continuous and Ordinal Data. Since we will convert the original data into
its binary format we need to ensure that the resulting expansion, i.e., d =

∑m
i=1 |Ai|, does

not become prohibitively large. This will in general be the case with continuous attributes or
discrete valued attributes with large domains. To overcome this, we bin these attributes into
discrete intervals. However, care must be taken to ensure that the resulting binning is done
independent of the input dataset D to avoid privacy violations. For instance, data-specific
binning could introduce a bin due to an outlier which would reveal the presence and absence
of that particular individual, violating differential privacy. We, therefore, assume that this
binning is done only through what is publicly known about each attribute. For instance,
when binning the year of birth into bins of 10 years, we assume that most individuals in
the dataset have an age less than 120 (without checking this in the dataset). This of course
depends on the nature of the attributes. While binning can be done in a differentially
private manner, we use a simpler approach as this is not the main theme of our paper. We
also note that data binning as a pre-processing step is almost always adopted in related
work [Gaboardi et al., 2014].

3.1.2. Binary Representation. In order to use the Gaussian copula, we need to determine
correlations between attributes via some fixed correlation coefficient ; which is a numeric
measure. We use the Pearson product moment correlation coefficient for this purpose. This
means that in order to measure correlations, either the attribute values in the dataset need
to be real valued or have to be mapped to a real number. These mapped values then
follow their order in the set of real numbers. If an attribute is ordinal, e.g., age or salary,
a natural order exists. However, categorical attributes do not have a natural order, e.g.,
gender. One way to solve this conundrum is to induce an artificial order among the values
of the categorical attribute, e.g., through a hierarchical tree [Iyengar, 2002]. However, this
ordering is inherently artificial and any change in order results in a markedly different
correlation. An illustration of this fact is shown in Appendix A (we also briefly discuss
this in Section 5.1).6 Our approach instead is to work on the binary version of the dataset
obtained via dummy coding, as explained in Section 2.2. Pairwise correlations now amount
to finding Pearson correlation between pairs of binary variables. This way of interpreting

6There are other correlation measures that can be used for categorical attributes, e.g., Cramér’s V [Cramér,
2016]. However, we need a unified approach that is applicable to all attributes alike.
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data makes no distinction between ordinal and categorical variables by not assigning any
order to the latter.

3.2. Differentially Private Statistics. For the differentially private statistics we can
either use the Laplace mechanism (Definition 5) or the Gaussian mechanism (Definition 7).
We will use the Laplace mechanism as the “default” and show how the Gaussian mechanism
can be used in place of Laplace.

3.2.1. Privately Computing One-Way Margins. The first ingredient in our method is the
one-way margins, i.e., marginal CDFs, of the attributes Xi, for i ∈ {1, 2, . . . , d}. We denote

these margins by F̂i (x), where x ∈ {0, 1}. Since each Xi is binary, these margins can be
calculated as

F̂i (0) =

∑n
k=1 I{X

(k)
i = 0}

n
, F̂i (1) = 1

To make F̂i (x) differentially private, we add Laplace noise to the counts n̂0i =
∑n

k=1 I{X
(k)
i =

0} and n̂1i=
∑n

k=1 I{X
(k)
i = 1} to obtain F̃i (x), which is summarized in Algorithm 1. If the

differentially private sum is negative, we fix it to 0. Note that this utilizes the post-processing
property (cf. Theorem 4) and hence maintains privacy. The reason we add noise to both n̂0i
and n̂1i instead of just adding noise to n̂0i is to avoid the noisy n̂0i exceeding n.7

ALGORITHM 1: Obtaining Differentially Private Marginals F̃i (x)

(1) For the ith attribute, count the numbers of events Xi = 0 and Xi = 1 as

n̂0i =

n∑
k=1

I
{
X

(k)
i = 0

}
, n̂1i =

n∑
k=1

I
{
X

(k)
i = 1

}
(2) Add Laplace noise to n̂0i and n̂1i , and obtain the noisy counts as

ñ0i = n̂0i + Lap

(
2

ε′i

)
, ñ1i = n̂1i + Lap

(
2

ε′i

)
where ε′i is the privacy budget associated with computing the ith margin.

(3) Obtain F̃i (x) as

F̃i (0) =
ñ0i

ñ0i + ñ1i
, F̃i (1) = 1

Algorithm 1 is (ε′i, 0)-differentially private due to differential privacy of the Laplace
mechanism and the fact that the algorithm is essentially computing the histogram associated
with attribute Xi [Dwork and Roth, 2014, §3.3, p. 33]. Importantly, the privacy budget ε′i
is impacted only by the number of attributes m in the original dataset D and not by the
number of binary attributes d in the binary version DB. This is shown by the following
lemma.

Lemma 1. Fix an attribute A in D, and let X1, . . . , X|A| denote the binary attributes
constructed from A. Then if the computation of each marginal Xj, j ∈ [|A|], is (ε′i, 0)-
differentially private, the computation of the marginal A is (ε′i, 0)-differentially private.

7Alternatively, we could obtain n̂1
i as n− n̂0

i , since n is considered public, and project it within [0, n] if it
falls outside.
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Proof. See Appendix B.

Using the Gaussian Mechanism. To obtain the Gaussian equivalent of Algorithm 1 we
simply replace Laplace noise with Gaussian noise N (0, σ′2), where σ′ is any σ satisfying
Eq. 2.1. Notice that since the query function is essentially a histogram function, its global l2
sensitivity (Definition 6) is

√
2. Likewise, following Lemma 1, the global l2 sensitivity of the

query over the attribute A in D remains
√

2, and hence we can use Gaussian noise of the
same scale added to all binary attributes constructed from A. The resultant algorithm is
(ε, δ)-differentially private.

3.2.2. Privately Computing Correlations. The other requirement of our method is the
computation of pairwise correlations given by

r̂i,j =
E {XiXj} − µiµj√

var (Xi) var (Xj)
, i, j ∈ {1, 2, . . . , d}. (3.1)

To obtain the differentially private version of r̂i,j , denoted r̃i,j , one way is to compute r̂i,j
directly from DB and then add Laplace noise scaled to the sensitivity of r̂. However, as
we show in Appendix C, the empirical correlation coefficient from binary attributes has
high global sensitivity, which would result in highly noisy r̃i,j . The other approach is to
compute each of the terms in Eq. 3.1 in a differentially private manner and then obtain r̃i,j .
Notice that for binary attribute Xi, its mean µi is given by n̂1i /n. This can be obtained
differentially privately as

µ̃i = 1− F̃i (0) = 1− ñ0i
ñ0i + ñ1i

,

which we have already computed. Likewise, the variance v̂ar(Xi) is given by µ̂i(1 − µ̂i),
whose differentially private analogue, i.e., ṽar(Xi), can again be obtained from the above.
Thus, the only new computation is the computation of E {XiXj}, which for binary attributes

is equivalent to computing 1
n

∑n
k=1 I{(X

(k)
i = 1) ∧ (X

(k)
j = 1)}. Algorithm 2 computes this

privately using the Laplace mechanism.

ALGORITHM 2: Obtaining Differentially Private Two-Way Positive Conjunctions Ẽ {XiXj}

(1) For the ith and jth attributes (1 ≤ i < j ≤ d), and for a, b ∈ {0, 1}, count the number of events
(Xi, Xj) = (a, b) as

n̂abi,j =

n∑
k=1

I
{

(X
(k)
i = a) ∩ (X

(k)
j = b)

}
(3.2)

(2) Add Laplace noise onto n̂abi,j for a, b ∈ {0, 1} and obtain the noisy count as

ñabi,j = n̂abi,j + Lap

(
2

ε′′i,j

)
, (3.3)

where ε′′i,j is the privacy budget associated with computing the (i, j)th two-way marginal.

(3) Obtain Ẽ {XiXj} as

Ẽ {XiXj} =
ñabi,j∑

a,b∈{0,1} ñ
ab
i,j

. (3.4)
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Algorithm 2 is (ε′′i,j , 0)-differentially private due to the differential privacy of the Laplace
mechanism and the fact that the algorithm is essentially computing the histogram associated
with attribute pairs (Xi, Xj) [Dwork and Roth, 2014, §3.3, p. 33]. Once again, the privacy
budget ε′′i,j is impacted only by the number of pairs of attributes

(
m
2

)
in the original dataset

D and not by the number of pairs of binary attributes
(
d
2

)
in the binary version DB. This is

presented in the following lemma, whose proof is similar to that of Lemma 1, and hence
omitted for brevity.

Lemma 2. Fix two attributes Ai and Aj, i 6= j, in D. Let Xi,1, . . . , Xi,|Ai| and Xj,1, . . . , Xj,|Aj |
denote the binary attributes constructed from Ai and Aj, respectively. Then, if the com-
putation of each of the two-way marginals (Xi,k, Xj,k′), k ∈ [|Ai|], k′ ∈ [|Aj |], is (ε′′i,j , 0)-

differentially private, the computation of all two-way marginals of Ai and Aj is (ε′′i,j , 0)-
differentially private.

The differentially private correlation coefficients r̃i,j thus obtained can be readily used
to construct the differentially private correlation matrix

R̃ =


r̃1,1 r̃1,2 · · · r̃1,d
r̃2,1 r̃2,2 · · · r̃2,d

...
...

. . .
...

r̃d,1 r̃d,2 · · · r̃d,d

 . (3.5)

Notice that the above algorithm computes the correlations in time O(d2n). This can be
prohibitive if d is large, i.e., if each of the m (original) attributes have large domains. An
alternative algorithm to compute the two-way positive conjunctions that takes time only
O(m2n) is shown in Appendix D.

Using the Gaussian Mechanism. To obtain the Gaussian mechanism equivalent of Algorithm 2
we once again replace Laplace noise with Gaussian noise N (0, σ′′2), where σ′′ is any σ
satisfying Eq. 2.1. The global l2 sensitivity is again

√
2, and following Lemma 2, the global

l2 sensitivity of the query over any attribute pair (Ai, Aj) in D remains
√

2, and hence we
can use Gaussian noise of the same scale added to all pairs of binary attributes constructed
from (Ai, Aj). The resulting algorithm is (ε, δ)-differentially private.

3.3. Copula Construction. For this section, we do not need access to the database any
more. Hence, any processing done preserves the previous privacy budget due to closure
under post-processing (Theorem 4).

3.3.1. Obtaining Gaussian Correlation from the Correlation Matrix. Our aim is to sample
standard normal Gaussian variables Yi’s corresponding to the attributes X̃i’s

8 where the
correlations among Yi’s, given by the correlation matrix P, are mapped to the correlations
among the Xi’s, given by the (already computed) correlation matrix R̃. A sample from the

Gaussian variable Yi is transformed backed to X̃i as

X̃i = F̃−1i (Φ (Yi)) . (3.6)

Obviously, if the attributes X̃i are independent, then Yi are also independent. However, in
practice X̃i’s are correlated, which is characterized by R̃ in our case. Hence, the question

8i.e., the synthetic versions of the Xi’s.
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becomes: How to choose a correlation matrix P for Yi’s, so that X̃i’s have the target
correlation relationship defined by R̃?

From Eq. 3.1 and its perturbation through r̃i,j , we can obtain

E
{
X̃iX̃j

}
= r̃i,j

√
var
(
X̃i

)
var
(
X̃j

)
+ µ̃iµ̃j , (3.7)

On the other hand, from Eq. 3.6, we can get

E
{
X̃iX̃j

}
= E

{
F̃−1i (Φ (Yi)) F̃

−1
j (Φ (Yj))

}
=

∫ +∞

−∞

∫ +∞

−∞
F̃−1i (Φ (yi)) F̃

−1
j (Φ (yj)) Φi,j (yi, yj) dyidyj , (3.8)

where Φi,j (yi, yj) denotes the standard bivariate probability density function (PDF) of the
correlated standard normal random variables Yi and Yj , given by

Φi,j (yi, yj) =
1

2π
√

1− ρ2i,j
exp

−y2i + y2j − 2ρi,jyiyj

2
(

1− ρ2i,j
)

 . (3.9)

Here ρi,j is the Pearson correlation coefficient, which for the standard normal variables Yi
and Yj is given by E {YiYj}. Our task is to find the value of ρi,j such that Eq. 3.7 and Eq. 3.8
are equal. In other words, Eqs. 3.7 and 3.8 define the relationship between r̃i,j and ρi,j .
Notice that by construction, in general, we do not have ρi,j = r̃i,j . We can obtain ρi,j by
means of a standard bisection search (e.g., see Nelson [2015][p. 148]). The two-fold integral
in Eq. 3.8 with respect to yi and yj , is evaluated numerically in the bisection search. In more
detail, dyi and dyj are set to a small value of 0.01, and the lower and upper limits of the
integral are set to -10 and 10, respectively. Such lower and upper limits make the numerical
results sufficiently accurate since Φi,j (yi, yj) is the standard bivariate PDF of two correlated
normal random variables (and hence have negligibly small probability mass beyond the
limits of integration). With each such ρi,j , we can construct the matrix P corresponding to

R̃.

Remark. Notice that the choice of ρi,j ensures that the resulting sampled Gaussian variables

have the property that when transformed back to X̃i and X̃j , we get E
{
X̃iX̃j

}
≈ E {XiXj},

where the latter is the input expectation. For binary attributes, recall that E {XiXj} =
1
n

∑n
k=1 I

{
(X

(k)
i = 1) ∩ (X

(k)
j = 1)

}
. Thus the method ensures that the “11”’s are well

approximated to the input distribution. However, the correlation coefficient, and the
distribution of 01’s, 10’s and 00’s might not be the same as the original dataset. This
is evident from Eq. 3.7. However, since the remaining quantities in Eq. 3.7 depend on
the one-way margins, maintaining a good approximation to margins would imply that the
distribution of 01’s, 00’s and 10’s would also be well approximated. However, error in one
or both of the margins would propagate to the error in the 01’s, 10’s and 00’s. Thus, on
average we would expect 01’s, 10’s and 00’s to have twice the error than the 11’s (since they
can be obtained via the 11’s and the one-way marginals). It is due to this reason that we
target positive two-way conjunctions for utility.
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ALGORITHM 3: Algorithm to Obtain the Nearest Correlation Matrix (P)

(1) Initialization: 4S0 ← 0,Y0 ← P, k ← 1.
(2) While k < iters, where iters is the maximum of iterations

(a) Rk = Yk−1 −4Sk−1
(b) Projection of Rk to a positive semidefinite matrix: Xk ← VTdiag (max {Λ,0}) V, where V

and Λ contain the eigenvectors and the eigenvalues of Rk, respectively, and diag (·)
transforms a vector into a diagonal matrix.

(c) 4Sk ← Xk −Rk

(d) Projection of Xk to a unit-diagonal matrix: Yk ← unitdiag (Xk), where unitdiag(·) fixes
the diagonal of the input matrix to ones.

(e) k ← k + 1.
(3) Output: P′ ← Yk.

3.3.2. Generating Records Following a Multivariate Normal Distribution. Since each Yi
follows the standard normal distribution and the correlation among Yi’s is characterized by
P, we can generate records by sampling from the resulting multivariate normal distribution.
However, the matrix P obtained through this process should have two important properties
for this method to work:

(1) P should be a correlation matrix, i.e., P should be a symmetric positive semidefinite
matrix with unit diagonals [Higham, 2002].

(2) P should be positive definite9 to have a unique Cholesky decomposition defined as
P = LTL where L is a lower triangular matrix with positive diagonal entries [Golub
and Van Loan, 2013, p. 187].

To ensure Property 1, we use the algorithm from Higham [2002][§3.2], denoted nearest
correlation matrix (NCM), to obtain the matrix P′ as

P′ = NCM (P) , (3.10)

Furthermore, to satisfy Property 2, i.e., positive definiteness, we force the zero eigenvalues
of P′ to small positive values. For completeness, we describe the simplified skeleton of the
algorithm from Higham [2002] in Algorithm 3. The algorithm searches for a correlation
matrix that is closest to P in a weighted Frobenius norm. The output is asymptotically
guaranteed to output the nearest correlation matrix to the input matrix [Higham, 2002].
For details see Higham [2002][§3.2, p. 11]. The overall complexity of the procedure is O(dω),
where ω < 2.38 is the coefficient in the cost of multiplying two d × d matrices [Bardet
et al., 2003]. Note that matrix multiplication is highly optimized in modern day computing
languages.

Finally, we generate records from a multivariate normal distribution using the well
known method described in Algorithm 4. The rationale of invoking Cholesky decomposition
is to ensure that

E
{
YTY

}
= E

{
LTZTZL

}
= LTE

{
ZTZ

}
L = LTL = P′,

where we have used the fact that E
{
ZTZ

}
= I because each record in Z follows i.i.d.

multivariate normal distribution. The output dataset D′B is the final synthetic dataset.

9Note that while a positive definite matrix implies a positive semidefinite matrix, the former is not a
requirement for a matrix to be a correlation matrix. Hence we state this property separately.
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ALGORITHM 4: Generating Records Following a Multivariate Normal Distribution

(1) Generate n records, with the attributes in each record following i.i.d. standard normal
distribution, i.e.,

Z =
[
Z(1) Z(2) · · · Z(n)

]T
where Z(k) is given by

[
Z

(k)
1 Z

(k)
2 · · · Z

(k)
d

]T
and Z

(k)
i ’s are i.i.d. standard normal random

variables.
(2) Compute Y as Y = ZL where LTL = P′ and L is obtained by the Cholesky decomposition as

L = chol (P′).

(3) From the matrix Y =
[
Y (1) Y (2) · · · Y (n)

]T
, map every element Y

(k)
i in each record Y (k) to

X̃
(k)
i using Eq. 3.6, where i ∈ {1, 2, . . . , d}.

(4) Output the mapped data as D′B.

3.4. Privacy of the Scheme. We first assume that the Laplace mechanism is used in
Algorithms 1 and 2. Let m′ = m +

(
m
2

)
, where m is the number of attributes in D. Let

ε < 1, say ε = 0.99. Fix a δ. We set each of the ε′i’s and ε′′i,j ’s for i, j ∈ [m] to ε′, where ε′

is such that it gives us the target ε through Theorem 3 by setting k = m′. According to
the advanced composition theorem (Theorem 3), since each of our m′ mechanisms are (ε′, 0)
differentially private, the overall construction is (ε, δ)-differentially private. Privacy budget
consumed over each of the m′ mechanisms is roughly 1√

m′
. Note that all the algorithms

in Section 3.3 do not require access to the original dataset and therefore privacy is not
impacted due to the post-processing property (see Theorem 4).

For the Gaussian mechanism variants of Algorithms 1 and 2, we again let m′ = m+
(
m
2

)
,

where m is the number of attributes in D. We fix an ε < 1, say ε = 0.99, and a δ. Then
the sequence of m′ histogram queries have l2 sensitivity of

√
2m′. Putting these values in

Eq. 2.1 gives us the scale of the Gaussian mechanism, i.e., σ. Thus, adding N (0, σ2) noise
in each invocation of the Gaussian mechanism satisfies (ε, δ)-differential privacy overall. As
in the case of the Laplace mechanism, the remaining steps are merely post-processing. Note
that we do not need to apply the advanced composition theorem in the case of Gaussian
mechanism, as the guarantee is readily in terms of (ε, δ)-differential privacy.

We note that instead of (ε, δ)-differential privacy, we can also use the Gaussian mechanism
under the notions of concentrated differential privacy (CDP) [Dwork and Rothblum, 2016]
or zero-concentrated differential privacy (zCDP) [Bun and Steinke, 2016] which would result
in further improvement in utility [Dwork and Rothblum, 2016]. Any utility gain will also
be reflected in the sythetic dataset obtained via our copula construction. We continue
with (ε, δ)-differential privacy, since we show relative gain in utility over independent noise
addition.

4. Experimental Evaluation and Utility Analysis

4.1. Query Class and Error Metrics. As mentioned in Section 1 and explained in
Section 3.3.1, our focus is on all one-way marginal and two-way positive conjunction queries.
In addition, we will also evaluate the performance of our method on the set of three-way
positive conjunction queries to demonstrate that our method can also give well approximated
answers to other types of queries. Thus, we use the following query class to evaluate our
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method, Q := Q1∪Q2∪Q3. Here, Q1 is the set of one-way marginal counting queries, which
consists of queries q specified as

q(i,DB) =
n∑
k=1

I{X(k)
i = b}

where i ∈ [d] and b ∈ {0, 1}. The class Q2 is the set of positive two-way conjunctions and
consists of queries q specified as

q(i, j,DB) =
n∑
k=1

I{(X(k)
i = 1) ∩ (X

(k)
j = 1)}

where i, j ∈ [d], j 6= i. We define Q12 = Q1∪Q2. The class Q3 is the set of positive three-way
conjunctions, and is defined analogously. Note that only those queries are included in Q2 and
Q3 whose corresponding binary columns are from distinct original columns in D. Answers
to queries which evaluate at least two binary columns from the same original column in D
can be trivially fixed to zero; as these are “structural zeroes.” We assume this to be true for
queries in the two aforementioned query sets from here onwards. Our error metric of choice
is the absolute error, which for a query q ∈ Q is defined as

|q(DB)− q(D′B)|
We have preferred this error metric over relative error (which scales the answers based on
the original answer), since it makes it easier to compare results across different datasets and
query types. For instance, in the case of relative error, a scaling factor is normally introduced,
which is either a constant or a percentage of the number of rows in the dataset [Xiao et al.,
2011, Li et al., 2014]. The scaling factor is employed to not penalize queries with extremely
small answers. However, the instantiation of the scaling factor is mostly a heuristic choice.

For each of the datasets (described next), we shall evaluate the differences in answers to
queries from Q in the remainder of this section. We shall be reporting (α, β)-utility in the
following way. We first sort the query answers in ascending order of error. We then fix a
value of β, and report the maximum error and average error from the first 1− β fraction of
queries. We shall use values of β = 0.05, 0.01 and 0. The errors returned then correspond to
95%, 99% and 100% (overall error) of the queries, respectively.

4.2. Datasets and Parameters. We used three real-world datasets to evaluate our method.
All three datasets contained a mixture of ordinal (both discrete and continuous) and
categorical attributes. We selected these three datasets as they each present characteristics
that we believe are shared by many other real-life datasets, thus supporting the claim that
our method can be generalised to a large number of existing datasets. These datasets are as
follows.

(1) Adult Dataset: This is a publicly available dataset which is an extract from the 1994
US census information [Lichman, 2013]. There are 14 attributes in total which after
pre-processing result in 194 binary attributes. There a total of 32,560 rows in this
dataset (each belonging to an individual). These attributes are mostly about weakly
correlated demographic information, with a combination of ordinal (e.g. year of birth)
and categorical (e.g country of birth) attributes. We believe that a large set of real-
life datasets being harvested and analysed in several sectors share these attribute
characteristics (e.g., census data in other countries, tax or social services data, social
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networks data). Moreover, this specific Adult dataset is also commonly employed in
the performance evaluations of several studies on differentially private data releases [Li
et al., 2014, Gaboardi et al., 2014]. Thus, using this dataset allows easy benchmarking
of our own method against other published studies.

(2) DSS Dataset: This dataset is a subset of a dataset obtained from the Department
of Social Services (DSS), a department of the Government of Australia. The dataset
contains transactions of social security payments. The subset contains 27 attributes,
which result in 674 binary attributes. There are 5,240,260 rows in this dataset. Compared
to the Adult set, it contains a higher number (i.e., 27) of mostly categorical attributes
(i.e. the specific characteristics of a single transaction). Again we believe that a large
body of existing real-life datasets are of similar transactional nature (e.g. financial
transactions, consumer profiles, healthcare services), with high dimension (e.g., above
20). These types of datasets also present subsets of highly correlated attributes (e.g.
prices of good/services are related to their types or defining attributes), compared to
demographic datasets.

(3) Hospital Dataset: This dataset is a subset of the hospital ratings dataset extracted
from a national patient survey in the US.10 The dataset is among many other datasets
gathered by the Centers for Medicare & Medicaid Services (CMS), a federal agency in the
US. We argue that this dataset is representative of many existing survey-type datasets,
such as customer feedback, marketing questionnaires, or employee consultations. For
this case, we further extracted 9 highly correlated attributes (resulting in 1,201 binary
attributes) and 10,000 rows, as we wanted to illustrate the utility performance of our
scheme on preserving such highly related information. This property is common in
surveys, as they often have clusters of related questions, with often related answers.

Parameter Values. We set δ = 2−30, following a similar value used in Gaboardi et al. [2016][§3,
p. 5]. This is well below n−1 for the three datasets, where n is the number of rows. We
set the same privacy budget, ε′, to compute each of the m one-way marginals and

(
m
2

)
two-way positive conjunctions. For the Adult, DSS and Hospital datasets we have m = 14,
m = 27 and m = 9, respectively. We search for an ε′ for these datasets by setting δ = 2−30

and k = m +
(
m
2

)
in Theorem 3 which gives an overall ε of just under 1. The resulting

computation gives us ε′ = 0.014782 for Adult, ε′ = 0.007791 for DSS, and ε′ = 0.022579 for
the Hospital dataset. For the Gaussian variant, we choose ε just under 1, e.g., ε = 0.99, and
δ = 2−30. Together with ∆2q =

√
2k (see Section 3.4) this gives us the scale of the Gaussian

mechanism σ via Eq. 2.1 for each of the three datasets.

4.3. Artifacts of the Synthetic Dataset. Since the dataset is in binary format (Sec-
tion 3.1), we may have two binary attributes corresponding to the same original attribute set
to 1. For instance, the gender attribute may have both binary attributes (male and female)
set to 1. Since the conversion of the dataset into its binary format is public information, it is
understood that two-way queries on different values of the same attributes have an answer of
0. We assume that the analyst is aware of this. We note that this is also true of differentially
private mechanisms that release synthetic datasets in the histogram representation [Gaboardi
et al., 2014, Hardt et al., 2012].

10See https://data.medicare.gov/Hospital-Compare/Patient-survey-HCAHPS-Hospital/dgck-syfz.

https://data.medicare.gov/Hospital-Compare/Patient-survey-HCAHPS-Hospital/dgck-syfz
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Output Mechanism
Differential

Synthetic
Privacy

cop Gaussian copula with original correlation matrix 7 3
cop-ID Gaussian copula with identity correlation matrix 7 3

cop-1 Gaussian copula with correlation matrix of all 1’s 7 3
no-cor Answers generated assuming no correlation 7 7

Lap Laplace mechanism 3 7
Gauss Gaussian mechanism 3 7

dpc-Lap Gaussian copula with DP correlation matrix via Laplace noise 3 3
dpc-Gauss Gaussian copula with DP correlation matrix via Gaussian noise 3 3

Table 1: Notation used for outputs from different mechanisms. DP stands for differential
privacy. Note that not all of them are synthetic datasets or differentially private.

4.4. Experimental Analysis. To evaluate our method, we generate multiple synthetic
datasets from each of the three datasets. We will first evaluate the synthetic dataset
generated through the Gaussian copula (with no differential privacy) for each of the three
datasets. This will be followed by the evaluation of the Laplace and Gaussian noise-based
differentially private versions of the synthetic dataset against the baselines which are the
application of the Laplace and Gaussian mechanisms on the set of queries Q. Note that
these do not result in a synthetic dataset. For readability, we use abbreviations for the
different outputs. These are shown in Table 1.

4.4.1. Error due to Gaussian Copula without Differential Privacy. We first isolate and
quantify query errors from a synthetic dataset obtained directly through the Gaussian
copula, i.e., without any differentially private noise added to the one-way marginals and the
correlation matrix (see Figure 1). Since generating synthetic datasets through the copula
is an inherently random process, this itself may be a source of error. We denote such a
dataset by “cop.” Thus, Adult cop, DSS cop and Hospital cop are the “cop” versions of the
corresponding datasets. We restrict ourselves to the query set Q12 and compare error from
cop against three other outputs:

cop-ID: A synthetic dataset obtained by replacing the correlation matrix P′ (Eq. 3.10) with the
identity matrix. Evaluating against this dataset will show whether cop performs better
than a trivial mechanism which assumes all binary attributes to be uncorrelated. Note
that this mainly effects answers to Q2, and not the one-way marginals Q1.

cop-1: Another synthetic dataset obtained by replacing the correlation matrix P′ with the matrix
1 of all ones. This serves as the other extreme where all attributes are assumed to be
positively correlated. Once again, this is to compare answers from Q2.

no-cor: For the query class Q2, we obtain a set of random answers which are computed by simply
multiplying the means µ1 and µ2 of two binary attributes. This is the same as simulating
two-way positive conjunctions of uncorrelated attributes. This should have an error
distribution similar to the answers on Q2 obtained from cop-ID.

Results. Figure 2 shows the CDF of the absolute error on the query set Q12 from different
outputs from the three datasets. Looking first at the results on Q1 (top row in the figure), we
see that for all three datasets, cop has low absolute error, yielding (α, β)-utility of (149, 0.01)
for Adult, (170, 0.01) for DSS and (28, 0.01) for the Hospital dataset in terms of max-absolute
error. The datasets cop-ID and cop-1 exhibit similar utility for all three datasets. This is
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not surprising since Q1 contains one-way marginals, whose accuracy is more impacted by
the inverse transforms (Eq. 3.6) rather than the correlation matrix. Answers on Q2 are more
intriguing (bottom row of Figure 2). First note that the utility from cop is once again good
for all three input datasets with 99% of the queries having a maximum absolute error of
353 for Adult, 83 for DSS and 6 for the Hospital dataset. The cop-1 outputs have poorer
utility. However, interestingly, cop-ID and no-cor outputs yield utility very similar to cop.
We discuss this in more detail next.
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(e) Set Q2 (two-way conjunctions)
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(f) Set Q2 (two-way conjunctions)

Figure 2: Relative error over Q12 on synthetic versions of the Adult, DSS and Hospital
datasets (without differential privacy).

Separating Low and High Correlations. There are two possible reasons why cop-ID and
no-cor outputs perform close to cop outputs on the set Q2: (a) our method does not perform
better than random (when it comes to Q2), or (b) uncorrelated attributes dominate the
dataset thus overwhelming the distribution of errors. The second reason is also evidenced
by the fact that the cop-1 dataset, using a correlation matrix of all ones, performs worse
than the other three outputs, indicating that highly correlated attributes are rare in the
three datasets.

To further ascertain which of the two reasons is true, we separate the error results on
the set Q2 into two parts: a set of (binary) attribute pairs having high correlations (positive
or negative), and another with low correlations. If our method performs better than random,
we would expect the error from cop to be lower on the first set when compared to cop-ID
and no-cor, while at least comparable to the two on the second set. We use the Hospital
dataset for this analysis as it was the dataset with the most highly correlated attributes.
There are a total of 626,491 pairs of binary attributes (as mentioned before, we ignore binary
attribute pairs that correspond to different attribute values on the same attribute in the
original dataset). Out of these, only 3,355 have an (absolute) Pearson correlation coefficient
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|r| ≥ 0.5. Thus, an overwhelming 99.46% of pairs have |r| < 0.5. This shows that the dataset
does indeed contain a high number of low-correlated attributes, which partially explains
similar error profile of cop, cop-ID and no-cor.

Figure 3 shows this breakdown. The error on the set with |r| < 0.5 is very similar for
cop, cop-ID and no-cor (Figure 3(a)). Looking at Figure 3(b), for the set with |r| ≥ 0.5,
on the other hand, we note that cop outperforms both cop-ID and no-cor. Also note that
cop-1 is similar in performance to our method. This is understandable since cop-1 uses a
correlation matrix with all ones, and hence is expected to perform well on highly correlated
pairs. This indicates that our method outperforms cop-ID and no-cor. We conclude that
the apparent similarity between cop, cop-ID and no-cor on the set Q2 is due to an artefact
of some real-world datasets which may have a high number of uncorrelated attributes; when
the results are analyzed separately, our method is superior. We remark that we arrived at
the same conclusion for the Adult and DSS datasets, but omit the results due to repetition.
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Figure 3: Absolute error over Q2 on synthetic versions of the Hospital dataset (without dif-
ferential privacy) for different values of the absolute Pearson correlation coefficient
|r| between pairs of attributes.

4.4.2. Error due to Differentially Private Gaussian Copula. Having established that the
error due to Gaussian copula is small, we now turn to the complete version of our method,
i.e., with differential privacy. For this section, we are interested in five outputs: (a) cop,
i.e., the synthetic dataset via our Gaussian copula method without differential privacy,
(b) dpc-Lap, i.e., the synthetic dataset obtained through our Laplace mechanism based
differentially private Gaussian copula method, (c) Lap, i.e., a set of answers obtained by
adding independent Laplace noise to the answers to the queries in Q12, (d) dpc-Gauss,
i.e., the synthetic dataset obtained through our Gaussian mechanism based differentially
private Gaussian copula method, and (e) Gauss, i.e., a set of answers obtained by adding
independent Gaussian noise to the answers to the queries in Q12. Note that Lap and Gauss
are not synthetic datasets. We set the same ε′ for Lap, as we did for dpc-Lap, and the same
ε and δ for Gauss as we did for dpc-Gauss.

Results. Figure 4 shows the absolute error CDF on the query set Q12 for cop, dpc-Lap, Lap,
dpc-Gauss and Gauss versions constructed from the three datasets. For the set Q1 (top row
in figure), we can see that cop outperforms dpc-Lap, Lap, dpc-Gauss and Gauss. This is due
to the fact that for privacy, a higher amount of noise is required. Crucially, our method does
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not introduce further error over the Laplace and Gaussian mechanisms, as is indicated by
the similarity of the curves corresponding to dpc-Lap and Lap, and dpc-Gauss and Gauss.
Interestingly, the results for Q2 show that both dpc versions outperform independent Laplace
and Gaussian noises (bottom row of Figure 4). While the errors from the dpc versions
are still higher than cop, they are closer to it than the error due to Lap and Gauss. This
indicates that for the majority of the queries, our method applies less noise than Lap and/or
Gauss.

However, in some cases, for a small percentage of queries Lap/Gauss adds less noise than
our mechanism. This is clear from Table 2, where we show the maximum and average error11

from 95%, 99% and 100% percent of the queries from Q12 across dpc-Lap, Lap, dpc-Gauss
and Gauss versions of the Adult, DSS and Hospital datasets. The error profiles of both dpc
versions and Lap/Gauss variants are similar for the query set Q1. For the set Q2, we can see
that Lap/Gauss only outperforms our method for the Adult and DSS datasets if we consider
the maximum absolute error across all queries. On the other hand our method outperforms
Lap/Gauss if we consider 95% and 99% of queries. Thus, for less than 1% of queries, the
dpc versions of Adult and DSS exhibits less utility than Lap/Gauss.
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Figure 4: Absolute error over Q12 of one-way marginals (set Q1) and two-way positive
conjunctions (set Q2) on synthetic versions of the Adult (left), DSS (middle) and
Hospital (right) datasets with and without differential privacy.

4.4.3. Results on Three-Way Conjunctions. Even though our method is expected to perform
best on the query set Q12, we show that the method performs well on other types of queries
as well. For this, we use the set of three-way positive conjunction queries as an example,

11Rounded to the nearest integer.
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Mechanism
Adult DSS Hospital

95% 99% 100% 95% 99% 100% 95% 99% 100%
ave max ave max ave max ave max ave max ave max ave max ave max ave max

dpc-Lap (one-way) 92 389 107 482 106 773 151 657 175 982 185 1267 53 208 61 302 65 622
Lap (one-way) 85 353 99 505 105 741 149 621 172 963 182 1287 52 199 61 299 61 887

dpc-Gauss (one-way) 75 203 84 278 85 336 142 349 161 410 167 528 50 101 66 144 74 220
Gauss (one-way) 70 177 80 235 81 319 138 344 155 407 162 472 48 98 65 144 71 212

dpc-Lap (two-way) 21 189 31 523 39 4788 9 112 17 429 26 5744 1 5 1 24 1 836
Lap (two-way) 60 321 74 539 80 1246 101 599 127 999 138 2947 33 201 41 336 44 1119

dpc-Gauss (two-way) 12 133 20 471 30 5822 4 68 9 232 13 3594 1 3 1 15 1 1048
Gauss (two-way) 35 158 40 214 42 349 58 294 69 414 70 795 18 100 23 140 24 287

dpc-Lap (three-way) 12 120 20 408 28 6148 9 98 16 372 36 9238 1 3 3 55 3 616
Lap (three-way) 102 589 128 1000 139 2746 268 1649 341 2798 373 10360 45 281 57 475 63 1679

dpc-Gauss (three-way) 10 95 16 371 24 7244 5 56 9 190 13 7429 1 2 3 55 3 639
Gauss (three-way) 65 292 76 408 80 722 168 821 200 1157 211 2372 27 138 33 196 35 358

Table 2: Absolute error α of the dpc and Lap/Gauss mechanisms on the three datasets. The
columns show average and maximum values of α for 95%, 99% and 100% of the
queries (corresponding to β = 0.05, 0.01 and 0.00, respectively). indicates our
method significantly outperforms Lap/Gauss; indicates Lap/Gauss significantly
outperforms our method; significance is defined as an error ratio of approximately
2 or more.

i.e., Q3. We compare the error against the answers returned from (independent) Laplace
mechanism by choosing an appropriate value of ε′ for each query in Q3 according to the
advanced composition theorem (see Section 4.2), such that overall ε is just under 1 for
queries in the set Q3 only. Likewise, for the Gaussian mechanism we fix ε = 0.99, and δ as
before, and choose the l2 sensitivity according to the number of queries in Q3, giving us the
scale of the Gaussian mechanism via Eq. 2.1. Note that for these experiments, both Laplace
and Gaussian mechanisms do not compute answers to Q12, and hence we do not waste the
privacy budget on these queries. The results are shown in Figure 5. Once again our method
outperforms the Laplace and Gaussian mechanisms for the majority of the queries in Q3

for all three datasets. Looking closely, we see from Table 2, that Lap actually performs
better than dpc-Lap in terms of maximum absolute error for 1% of the queries in the Adult
dataset. However, for majority of the queries, > 99%, dpc-Lap method performs better.
In fact, dpc-Lap outperforms Lap in terms of the 95% and 99% error profiles for all three
datasets. For the DSS dataset the maximum error from dpc-Lap over all queries is similar
to Lap, whereas for the Hospital dataset we again outperform Lap. A similar trend can be
seen between the Gauss and dpc-Gauss versions.

High Count Three-Way Positive Conjunctions. The above analysis on three-way counts is
perhaps biased in favour of our approach, since most three-way counts are low. To analyze
that our method still performs better than Lap and Gauss, we isolated those queries in Q3

whose original answers are 100 or more. Note that there is nothing specific about 100, and
the analysis yields similar results for limits of 500, 1000, etc. We chose the DSS dataset for
this analysis, as it had the highest number of queries in Q3 with answers larger than 100
(more than 178,000 queries). Table 3 shows the breakdown of the error for the Lap/Gauss
and dpc variants in a manner similar to Table 2. As we can see, the trend from the latter
table is more or less retained, with the dpc variants outperforming Lap/Gauss for 95% and
99% of the queries, and performing slightly worse at the 100% mark in terms of maximum
error.



DIFFERENTIALLY PRIVATE RELEASE OF DATASETS USING GAUSSIAN COPULA 23

Mechanism
95% 99% 100%

ave max ave max ave max

dpc-Lap 139 682 175 1906 204 9238
Lap 410 1714 479 2836 510 7708

dpc-Gauss 68 281 80 548 89 7429
Gauss 280 863 309 1180 320 2198

Table 3: Absolute error α of the dpc-Lap, Lap, dpc-Gauss and Gauss mechanisms on the DSS
datasets on the query set Q3 with original counts ≥ 100. The columns show average
and maximum values of α for 95%, 99% and 100% of the queries (corresponding
to β = 0.05, 0.01 and 0.00, respectively). indicates our method significantly
outperforms Lap/Gauss; indicates Lap/Gauss significantly outperforms our
method; significance is defined as an error ratio of approximately 2 or more.

4.4.4. Laplace versus Gauss. From Table 2, it is clear that for all query sets Q1, Q2 and Q3,
the Gaussian mechanism has lower average and maximum error than the Laplace mechanism
which is consistent with what is known about the two mechanisms under (ε, δ)-differential
privacy, i.e., the noise through the Gaussian mechanism is more concentrated. As a result
the Gaussian variant of our method performs better than the Laplace variant in almost
all cases considered in Table 2. This suggests that much tighter analysis of the Gaussian
mechanism using the notion of concentrated differential privacy, rather than (ε, δ)-differential
privacy, would yield even better results through our method.
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Figure 5: CDFs of the absolute error from our method against the Laplace and Gaussian
mechanisms on the set Q3 of three-way positive conjunctions on the three datasets.

4.4.5. Effect of the Privacy Parameter. To show the effect of ε on utility, we vary it from
0.25 to 5 and report the error on the set Q12. For this, we use the dpc-Lap mechanism and
only use the Adult dataset as the effect is similar on the other two datasets. Figure 6 shows
the CDF of the absolute error against different values of ε. Notice that this is the overall
privacy budget. With ε = 0.25 we have average and maximum absolute errors of 357 and
3419, respectively, for the set Q1, and 68 and 6421, respectively, for the set Q2. With ε = 5,
the average and maximum absolute errora are much lower at 41 and 179, respectively, for
Q1, and 27 and 5882, respectively, for the set Q2. As expected, the error profiles gradually
improve as we move from ε = 0.25 to ε = 5. ”Compared to the set Q1, the error profiles are
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more similar for the set Q2. As discussed in Section 4.4.1, since the majority of attributes
are uncorrelated, this implies that our method maintains that aspect by not adding too
much noise on the set Q2.
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Figure 6: Absolute error on the set Q12 against different values of ε on the Adult dataset
using the dpc-Lap variant.

4.4.6. Computational Time and Parallelism. One of the motivations for using the proposed
approach is its computational feasibility when the input data is high dimensional. We first
note that our method is highly parallelizable. In particular, the computation of one-way and
two-way positive conjunctions can be done in parallel. For the one-way marginals, parallel
computation is straightforward. For the two-way conjunctions, we take the ith attribute
(in the original dataset) and compute its conjunction with all attributes numbered i + 1
to m attributes, for all i ∈ [1,m − 1], assigning a separate process for each i. Obviously,
the number of combinations for the first attribute is the highest, and becomes progressively
less for latter attributes. Likewise, we also parallelize the computation of

(
d
2

)
− d Gaussian

correlations ρi,j which uses a bisection search. While other components of our method can
also be executed in parallel, e.g., generating synthetic records through the copula, we do not
do so as these processes did not consume much computational time.

To generate the synthetic datasets we used a single-CPU Intel Xeon E5-2660 2.6GHz
server with 10 cores and 128GB memory. Our implementation was done in Python.12 We
parallelized part of our mechanism, as described above. The average run-times (over 10 runs)
for the three datasets Adult, DSS and Hospital, are shown in Table 4. Obviously, the run-
time is a function of the parameters m (number of original attributes), d (number of binary
attributes) and n (the number rows in the dataset). Asymptotically, the run-time of our
method is O(m2n+ d2.38). The DSS dataset takes the longest time, which is understandable
since it is about 3 times bigger in terms of the number of binary attributes and has 150 times
more rows than the Adult dataset. If the number of rows is not large, then the run-time is
not severely impacted by an increase in the number of binary attributes, as is indicated by
the run-times of the Hospital dataset. To further assess the scalability of our algorithm, we
constructed two artificial datasets Art1 and Art2 with 1,000 and 2,000 binary attributes,

12https://www.python.org/

https://www.python.org/
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Mechanism Rows
Attributes

Ave. Time Runs
Original Binary

Adult 32,560 14 194 6 min 47 sec (±32 secs) 10
DSS 5,240,260 27 674 2 h 30 min (±15 mins) 10

Hospital 10,000 9 1,201 46 min 21 sec (±11 mins) 10
Art1 5,240,260 1,000 1,000 5 h 43 min (±4 mins) 2
Art2 5,240,260 2,000 2,000 18 h 32 min (±12 mins) 2

Table 4: Run-time.

respectively. Both had the same number of rows as the DSS dataset. The run times of these
two datasets are shown under Art1 and Art2 in Table 4. By far, Art2 is the largest dataset,
and even with this dataset we can generate a private synthetic dataset via our method in
around 19 hours. We stress that since privacy-preserving synthetic datasets need only be
produced once, these times are practical. Thus, our method can output a privacy-preserving
synthetic datasets of high dimensional datasets in reasonable time.

5. Comparison with DPCopula

The closest work to ours is that of Li et al. [2014], who propose DPCopula. DPCopula also
uses the Gaussian copula to generate differentially private synthetic datasets. However, we
claim that our method is more general and efficient due to four major differences between
our work and theirs. This section details these differences, which are on the treatment of
categorical attributes, small domain attributes, correlation matrix, and positive definite
matrix. To further support our claim, we also implemented the Kendall version of DPCopula
(i.e., one of the two equivalent versions discussed in Li et al. [2014]) and experimentally
compared DPCopula-Kendall against our own method, using the Adult dataset. This
comparison showed that our method yields higher utility for the Q1 and Q2 set of queries.

5.1. Categorical Attributes. DPCopula imposes an order on the values of any categorical
(nominal) attributes in the input data set. However, we argue that this order is inherently
artificial and arbitrary: different choices of order for categorical attributes produce different
pair-wise correlations between them. This in turn affects the accuracy of two-way conjunctions
computed on data generated through the Gaussian copula using these pair-wise correlations.
A simple example illustrates our point. Consider a database having two attributes X
(“country of birth”) and Y (“marital status”) with possible values (English, Chinese,
French) and (Married, Divorced, Widowed), respectively. For the sake of simplicity, assume
that the dataset consists of 400 records with 100 pairs of (English, Married), 200 pairs of
Chinese, Divorced) and 100 pairs of (French, Widowed). To calculate Pearson correlation
between X and Y , let us fix the numerical map (English, Chinese, French)→ (1, 2, 3) on
attribute X. Consider first the numerical map (Married, Divorced, Widowed)→ (1, 2, 3) on
attribute Y . The Pearson correlation between X and Y in this case is exactly 1. However,
notice that there is no logical reason to choose any of the two maps. If we change the second
map to the (equally valid) map (Married, Divorced, Widowed) → (3, 1, 2), the resulting
correlation becomes ≈ −0.457. If we use the resulting correlations to generate synthetic
outputs via the Gaussian copula, we obtain drastically different results on the two-way
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counts. A simple program in R results13 in the two-way counts #(English, Married) = 112,
#(Chinese, Divorced) = 193, and #(French, Widowed) = 95 for the first map. The second
map results in the counts #(English, Married) = 47, #(Chinese, Divorced) = 35 and
#(French, Widowed) = 46, from the synthetic output. This simple example illustrates the
impact of an arbitrary order on correlations between categorical attributes in the original
data set. While the first ordering gives good results, the second ordering gives noticeably
bad results. The reason why the first ordering gives good results is mainly an artefact of the
simplicity of illustration. With more attributes, where multiple inter-attribute correlations
need to be determined, a utility maximizing ordering across all categorical attributes may
not be straightforward. Appendix A gives a more analytical treatment on the impact of
changing orders (maps) on the correlation. As opposed to DPCopula, our proposed method
(Section 3) does not rely on arbitrary orders for nominal attributes. Thus our method is
capable of producing synthetic datasets with pair-wise attribute correlations that are closer
to the ones in the original dataset. This claim is further supported by the experimental
comparison between DPCopula and our method in Section 5.5 (to follow).

5.2. Small Domain Attributes. DPCopula is designed only for attributes with large
domains, i.e., attributes which have at least 10 different values [Li et al., 2014, §4.4]. For
small domain (including binary attributes) a method called DPHybrid is proposed [Li
et al., 2014] which partitions the data into smaller datasets (one per attribute value in
the small domain attributes) and then generates separate synthetic datasets per partition
using Gaussian copulas, before eventually combining them. First, if the dataset has only
small domain attributes then DPCopula or its hybrid variant cannot be used. Secondly,
depending on the number of small domain attributes DPHybrid can become computationally
infeasible, i.e., taking time exponential in the number of small domain attributes. For
instance, in our DSS dataset, we have a total of 10 small domain attributes (having number
of values less than 10) totalling approximately 218 partitions (product of attribute values).
Thus, the time to produce the combined synthetic dataset is 218 times the time to produce
individual synthetic datasets via the Gaussian copula for each partition; which itself takes
time O(m′2n), where m′ is the number of large domain attributes (17 in the DSS dataset).
This amounts to roughly 250 time to generate a synthetic dataset from the DSS dataset.
With more small domain attributes, this is bound to increase.

5.3. Correlation Matrix. A third major difference between our work and DPCopula is in
the process to generate the differentially private correlation matrix, i.e., P′ in Eq. 3.10. There
are two methods described by Li et al. [2014] to generate the counterpart to P′. The first
method uses Kendall’s rank correlation coefficient τ [Kendall, 1938] to measure correlations
between attributes in the original dataset and then uses the relation E(τ) = 2

π sin ρ to
obtain the correlation coefficient ρ between the corresponding normal random variables. A
differentially private variant is constructed by showing that τ has low global sensitivity [Li
et al., 2014]. We first note that the relation E(τ) = 2

π sin ρ is proven for continuous random
variables [Xu et al., 2013, §3.2],[Esscher, 1924]. This is one reason why DPCopula is targeted
for continuous data or at least large domain discrete attributes (approximated as continuous
attributes). Secondly Kendall’s rank correlation coefficient, as the name suggests, assumes
an order between attributes; once again, as argued before, for categorical attributes this

13This is done using the rCopula function from the copula package for R Hofert et al. [2017].
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means that an artificial order needs to be induced which is not reflective of the correlations.
Since we convert data into a binary format, there is no meaningful rank between two
binary variables that could be used to compute Kendall’s τ coefficient. Furthermore, the
conversion τ = 2

π sin ρ would not apply as well. The second method used by DPCopula is a
maximum likelihood estimation method to compute ρ using a known “sample-and-aggregate”
method [Nissim et al., 2007, Dwork and Smith, 2010]. This method involves partitioning
the dataset into n/l partitions and then adding Laplace noise of scale 2

(
m
2

)
/lε to each of the(

m
2

)
pairs of attributes. Since our data is in binary format, we would need to add noise of

scale 2
(
d
2

)
/lε. If we do not want the noise to overwhelm the calculation of ρ, we need l to

be at least
(
d
2

)
. Unfortunately, this means that we would have the partitions of size much

smaller than
√
n for all three datasets considered in this paper, which is needed for a good

approximation of ρ’s [Dwork and Smith, 2010, §3.1.2, p. 145]. We therefore use a different
method for constructing the differentially private correlation matrix by adding noise to the
margins before obtaining Pearson product-moment correlations and then using a bisection
search to convert to the corresponding correlations for Gaussian variables.

5.4. Positive Definite Matrix. To be able to use the Cholesky decomposition (cf. Sec-
tion 3.3.2), DPCopula uses a heuristic method to obtain a positive definite matrix with
unitary diagonals [Rousseeuw and Molenberghs, 1993, Li et al., 2014]. This procedure first
finds the eigen decomposition of the matrix P, i.e., the matrix of Gaussian correlations from
the differentially private correlation matrix of input data (see Section 3.3.1). It then fixes
the negative eigenvalues to a small value or the absolute value, and finally normalizes the
resulting matrix to turn it into a correlation matrix. This indeed returns a valid correlation
matrix. However, this heuristic method does not guarantee that its result is the nearest
correlation matrix to the input matrix P. In contrast, our own method is using the algorithm
from Higham [2002], to obtain a positive definite matrix with unitary diagonals. This algo-
rithm guarantees that the resulting matrix is the nearest correlation matrix to the input
matrix, as defined by a given matrix norm. Having the nearest possible positive definite
correlation matrix as the input in the next stage of the Copula-based data generation allows
for higher utility synthetic datasets, as shown in the following experimental comparison.

5.5. Experimental Comparison. As mentioned earlier, we implemented the Kendall
version of DPCopula in Python.14 We decided to implement the Kendall variant, as it is the
one that Li et al. [2014] used to compare against other private synthetic data generation
methods. We performed a series of experiments to compare the Kendall variant of DPCopula,
henceforth called “Li-Kendall,” to our own method “dpc-Lap”, i.e., the variant that uses
Laplace noise. For brevity, only the results using the Adult dataset are presented here,
as using the DSS and Hospital datasets yielded similar results. Furthermore, since the
mechanisms in [Li et al., 2014] are pure differentially private, i.e., with δ = 0, we also use
δ = 0 for dpc-Lap.

We used the same value of ε for both methods. For dpc-Lap, we used ε′ = ε/m′ privacy
budget per invocation of the Laplace mechanism, where m′ = m+

(
m
2

)
. This breakdown is

over the query set Q12 over which we chose to evaluate the two mechanisms. In the case
of Li-Kendall, ε is further split into two components ε1 and ε2 [Li et al., 2014]. The first

14Our implementation is available for peer-review at: https://github.com/thierryr/dpcopula_kendall.

https://github.com/thierryr/dpcopula_kendall
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Figure 7: CDFs of the absolute error from our method (dpc) against the Li-Kendall mecha-
nism from Li et al. [2014] on the set Q1 of one-way marginals for the Adult dataset
and different values of ε.

is consumed on computing the one-way marginals, and the second is used to generate the
correlation matrix. Following Li et al. [2014], we let k = ε1/ε2 denote the ratio of the budget
splits, and use the same value of k = 8 as used in their own experimental evaluations. We
execute both Li-Kendall and dpc-Lap four times each on the Adult dataset, resulting in
4 different synthetic outputs each. Furthermore, for each run of the Li-Kendall method,
we purposely used a different random order for the values of any categorical (nominal)
attributes in the Adult dataset. Indeed, as described in Section 5.1, the Li-Kendall method
imposes an arbitrary order for such attributes, which affects subsequently computed attribute
correlations. Next, we executed the full set of queries Q1 and Q2 on each resulting datasets
for each of the two methods. Finally, we computed the absolute error for each of these
query results against the same query executed on the original Adult dataset. This series of
experiments were then repeated for three different values of ε ∈ {0.5, 1.0, 5.0}.

Figure 7 shows the empirical cumulative distribution of the absolute error for the Q1

queries (computed as described above). On these graphs, each point is the average over the
4 different trials for each method, and the error bars represent the standard deviation over
these same trials. Figure 7 shows that dpc-Lap outperforms the Li-Kendall method in terms
of absolute errors on the set Q1 of one-way marginal for ε = 5. Our dpc method outperforms
Li-Kendall in about 17% and 20% of the queries for ε = 0.5 and ε = 1, respectively, while
still being extremely close to Li-Kendall for all the remaining 80% when ε = 1.

Similarly, Figure 8 shows the empirical cumulative distribution of the absolute error for
the Q2 queries, again as average and standard deviation over all the trials. This figure shows
that our dpc method consistently outperforms the Li-Kendall method in terms of absolute
errors on the set Q2 of two-way positive conjunctions, for all used values of ε. Table 5 also
provides the detailed error profiles in terms of average and maximum absolute errors of 90%,
95%, 99% and 100% of the queries for both our dpc and the Li-Kendall methods. These are
averaged our 4 runs as explained before. As we can see, in the majority of cases our method
significantly outperforms Li-Kendall, where the latter has more than twice the error. This
demonstrates experimentally that our dpc method produces differentially private synthetic
datasets which have closer pair-wise attribute correlations to the original input dataset, than
the ones produced by the Kendall variant of DPCopula.

The better performance of our dpc method over the Kendall-based DPCopula is due to
the differences in both methods, which were highlighted earlier in Section 5.1 through to
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Figure 8: CDFs of the absolute error from our method (dpc) against the Li-Kendall mecha-
nism from Li et al. [2014] on the set Q2 of two-way positive conjunctions for the
Adult dataset and different values of ε.

ε Query Set Mechanism
90% 95% 99% 100%

ave max ave max ave max ave max

0.5
Q1

dpc-Lap 256 552 276 706 297 857 303 920
Li-Kendall 147 2370 373 6812 1044 29918 1349 30874

Q2
dpc-Lap 23 160 33 285 48 629 59 6334

Li-Kendall 16 186 33 581 93 4156 192 28385

1.0
Q1

dpc-Lap 132 285 142 339 153 463 156 477
Li-Kendall 131 2328 357 6809 1028 29935 1334 30926

Q2
dpc-Lap 14 103 21 185 31 472 42 6249

Li-Kendall 15 180 31 573 92 4144 190 28394

5.0
Q1

dpc-Lap 38 80 41 94 44 147 45 156
Li-Kendall 118 2360 345 6813 1018 30001 1325 30897

Q2
dpc-Lap 7 53 11 110 18 429 28 5703

Li-Kendall 14 173 30 554 90 4151 189 28519

Table 5: Average absolute error α of our method (dpc-Lap) versus Li-Kendall from Li
et al. [2014] on the Adult on the query set Q12. The columns show average and
maximum values of α for 90%, 95%, 99% and 100% of the queries (corresponding
to β = 0.10, 0.05, 0.01 and 0.00, respectively). indicates our method significantly
outperforms Li-Kendall; significance is defined as an error ratio of approximately 2
or more.

Section 5.4. Indeed, as our method does not impose arbitrary order to categorical attributes,
and at the same time computes a positive definite matrix closer to the original correlation
matrix, then the final pair-wise correlations in the resulting synthetic dataset are indeed
more similar to the original dataset.

6. Other Related Works

In line with the theme of the paper, we restrict our review of related work to proposals for
generating differentially private synthetic datasets. We divide this into two main categories.
The first consists of mechanisms that provide provable utility guarantees. The second is a
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class of algorithms that claims high utility in practice possibly relying on assumptions on
the distribution of the input dataset, which we call heuristic approaches. Our method lies in
this class. We review the two classes in order.

One way to release a synthetic dataset is to add (independent) Laplace noise to all
point functions (Definition 2) from the input domain X [Dwork et al., 2006b, Dwork and
Roth, 2014]. The resulting dataset gives good answers to point functions but lower order
margins are noisier. However, the main problem with this approach is that its runtime is
O(|X |) which is exponential in the number of attributes; hence, its inapplicability to high
dimensional datasets. The stability-based histogram algorithm [Bun et al., 2016, Balcer
and Vadhan, 2018, Vadhan, 2017] runs in time only O(log |X |) by using the notion of local
sensitivity and relying on approximate differential privacy. However, for high dimensional
datasets it is likely that the output synthetic datasets will only contain a fraction of the
original point functions (Definition 2), due to a high percentage of rows being unique or
having low multiplicity in a high dimensional dataset.

For a more general class of counting queries, i.e., not necessarily point functions, the
BLR algorithm [Blum et al., 2008] and the MWEM algorithm [Hardt et al., 2012] allow

answers to exponentially many queries with noise per query proportional to n2/3 and n1/2,
respectively (n being the number of rows). However, these algorithms are not efficient
as both require time polynomial in |X |. This makes these algorithms inefficient for high
dimensional datasets. The drawback of exponential runtime (in the number of attributes) is
also present in the mechanism from Dwork et al. [2009], the median mechanism from Roth
and Roughgarden [2010], and the matrix mechanism from Li et al. [2010] to name a few. For
instance, Privlet [Xiao et al., 2011], which can be categorised as an instance of the matrix
mechanism, is designed to answer range queries by first creating a full contingency table
(frequency matrix) of the input datasets. This is obviously exponential in the number of
attributes of the dataset.

Computational inefficiency is not surprising since any synthetic data generation mecha-
nism that answers an arbitrary number of counting queries, or even the set of all two-way
marginals, is expected to run in exponential time under the hardness assumption of some
well known cryptographic primitives [Ullman and Vadhan, 2011, Ullman, 2013]. However,
algorithms that run in exponential-time in theory, might still be efficient in practice. The
DualQuery algorithm [Gaboardi et al., 2014] is one such algorithm, which approximates a

set of given counting queries, say three-way marginals, to within n2/3 (absolute) error. The
algorithm requires solving an optimization problem, which is hard in theory but solvable in
practice for large parameters using standard optimization software. Likewise, the MWEM
algorithm can run in reasonable time for a large number of attributes (up to 77 binary
attributes) in practice [Hardt et al., 2012]. Both approaches suggest further improvement in
run-time using heuristics.

This leads us to the heuristic approaches for synthetic data release. Unlike the above
mentioned class of algorithms, this class does not provide a provable utility guarantee and is
often accompanied with some heuristic assumption on the input data distribution; crucially,
for utility guarantees and not for privacy. As long as the heuristics hold true, the algorithm is
expected to produce a synthetic dataset with good utility. The private spatial decomposition
technique from Cormode et al. [2012] decomposes the input dataset into a hierarchical tree
and then answers range queries over this structure. The technique is relevant to spatial
data, and does not seem generic enough to consider categorical variables. As we discussed
earlier, this requires fixing an artificial order on categorical variables which can be completely
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arbitrary. PrivBayes is another algorithm [Zhang et al., 2014] which constructs a Bayesian
network of an input dataset. The Bayesian network maintains attribute correlations and
approximates the data distribution as a set of low dimensional marginals. Efficiency is
guaranteed so long as the degree of the network is low, where degree is roughly defined as
the maximum number of attributes a given attribute depends on in the Bayesian network.
The obvious assumption is that most correlations in the input datasets are of low degree.
DiffGen [Mohammed et al., 2011] proposes a generalization based approach for releasing
data where a hierarchical tree is first constructed and a table corresponding to a given
generalization level (in the tree) is released where the generalization level itself is decided by
maximising utility through the exponential mechanism McSherry and Talwar [2007]. This
implies that the level of generalization of the output data is randomized, thus resulting in
different utility on each invocation. This can be a drawback from a usability point-of-view if
two datasets on the same domain but, say, different time periods are to be released, each
resulting in a different level of generalization. The algorithm also runs in time exponential
in the number of attributes.

7. Conclusion

We have presented a generic mechanism to efficiently output differentially private synthetic
datasets with high utility using the concept of Gaussian copulas. Our method is generic;
while Gaussian copulas are mostly used to generate (non-private) synthetic datasets for
numerical attributes, our methods is applicable to both numerical and categorical attributes
alike. The proposed mechanism is efficient as it takes time polynomial in the number of
attributes, in contrast to exponential time required by many differentially private synthetic
data generation algorithms, which makes our algorithm suitable for high-dimensional datasets.
Through experiments on three real-world datasets, we have shown that our mechanism
provides high utility, matching and even surpassing the utility provided by independent
noise through the Laplace and Gaussian mechanisms, and by another existing copula-
based mechanism. A shortcoming of our work is the lack of a provable utility guarantee.
Nonetheless, we have provided significant experimental evidence of utility. A future direction
is to provide theoretical guarantees of utility, perhaps by assuming certain characteristics
of the distribution of the input dataset which may make the analysis tractable. A further
interesting direction is to assess if other copulas found in literature could also be used to
efficiently generate synthetic datasets with high utility.
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Appendix A. Artificial Order Disrupts Pearson Correlation

Consider two categorical attributes taking n values each over a database of size n. Let
us assign the sequential order 1, . . . , n to the n values of the first attribute (say based on
lexicographical order). Let us define another order on the second attribute in which the
order of the first λn values are reversed. The remaining n− λn values retain the sequential
order, where λ ∈ [0, 1]. For instance, {3, 2, 1, 4, 5} is the order on the second attribute with
λ = 0.6, i.e., the first 3 values have a reverse order. Note that the mean µ is the same
for both orders, given by µ = n+1

2 . Let rλ be the correlation coefficient between the two
attributes, and let yi denote the ith value in the second attribute. Then

rλ =

∑n
i=1(i− µ)(yi − µ)√∑n

i=1(i− µ)2
∑n

i=1(yi − µ)2
. (A.1)

Now consider the denominator in the above. After simplification, we get

den =

√√√√ n∑
i=1

(i− µ)2
n∑
i=1

(yi − µ)2

=

√√√√ n∑
i=1

(i− µ)2
n∑
i=1

(i− µ)2

=
n(n+ 1)(n− 1)

12
. (A.2)

Consider now the numerator, which after simplification gives

num =
n∑
i=1

iyi −
n(n+ 1)2

4
. (A.3)

Now let r0 be the correlation when the two attributes have the same order, i.e., λ = 0. We
are interested in finding r0 − rλ as a function of λ, where different values of λ indicate the
level of change in the order. Using the fact that yi = i, when λ = 0, through Eqs. A.2
and A.3 we obtain

r0 − rλ =
1

den
·
n∑
i=1

(yi − i)i

=
1

den
·
λn∑
i=1

(λn− i+ 1− i)i

=
1

den

(
(λn+ 1)

(
λn∑
i=1

i

)
− 2

(
λn∑
i=1

i2

))

=
1

den

λn(λn+ 1)(λn− 1)

6

=
12

n(n+ 1)(n− 1)

λn(λn+ 1)(λn− 1)

6

= 2λ3
(

1− λ−1 − 1

n+ 1

)(
1− λ−1 − 1

n− 1

)
, (A.4)
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where λ 6= 0 in the last equality. Thus, for instance if λ = 0.5, we get r0 − r0.5 ≈ 1
4 . And

when λ = 1, i.e., complete reversal of order, we get the difference as 2. Since r0 = 1, this
means that r1 = −1, a complete reversal in correlation.

Appendix B. Proof of Lemma 1

Note that conversion of A into Xj ’s creates |A| distinct partitions of the domain X . From
the parallel composition theorem, i.e., Theorem 2, since each marginal is computed with
(ε′i, 0)-differential privacy, the overall differential privacy guarantee remains (ε′i, 0).

Another way of looking at this is as follows. Suppose, instead of converting A into
binary attributes, we compute its marginal distribution directly from the histogram of the
values A takes, where each histogram bin corresponds to the number of occurrences of a
unique value of attribute A. Since each row of D can only be in one of the bins, the private
version of the histogram can be obtained by adding Laplace noise of scale 2/ε′i to each
count, and then publishing the counts. The resulting mechanism remains (ε′i, 0)-differentially
private [Dwork and Roth, 2014, §3.3, p. 33]. Now, we can convert A to binary attributes
and deduce the marginals of these binary attributes from the histogram counts. This does
not further impact privacy, as it is simply post-processing (See Theorem 4).

Appendix C. Pearson Correlation over Binary Attributes has High Global
Sensitivity

Consider an n-row binary database D1 having two attributes X and Y with only the first
entry in each attribute set to 1 and the rest to 0, i.e., X1 = Y1 = 1 and Xi = Yi = 0 for
all i ∈ {2, . . . , n}. Consider the neighbouring database D2 which is the same as D1 except
that X2 = 1. Let r1 be the correlation coefficient between x and y in D1, and let r2 be
its counterpart in D2. We will show that r1 − r2 is large, meaning that the correlation
coefficient has high global sensitivity and any noise scaled to the sensitivity of the correlation
coefficient will overwhelm the accuracy of the results. Let X and Y denote the mean of the
attributes X and Y , respectively. We have

r1 =

∑n
i=1XiYi − nX · Y√∑n

i=1X
2
i − nX

2
√∑n

i=1 Y
2
i − nY

2

=
1− n · 1n

1
n√

1− n · 1
n2

√
1− n · 1

n2

=

√
1− 1

n
. (C.1)

Similarly,

r2 =
1− 2

n√
2− 4

n

√
1− 1

n

=

√
1− 2

n√
1− 1

n

× 1√
2
. (C.2)
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From Eqs. C.1 and C.2, with large enough n, we get

r1 − r2 ≈ 1− 1√
2
≈ 0.29

Thus, the global sensitivity of the Pearson product moment correlation for binary attributes
is at least 0.29. Adding Laplace noise scaled to this will substantially alter the correlation
between attributes and hence the corresponding counts.

Appendix D. Computing Two Way Margins in O(m2n) time

A straightforward way to compute all two-way margins over the binary dataset is as follows:
for each pair of binary attributes (B1, B2) scan the dataset of n rows and record the number
of times each possible value (b1, b2) occurs, where b1, b2 ∈ {0, 1}. However, this takes time
proportional to O(d2n), which can be prohibitive if d is large. We will show a method below
that requires time only O(m2n + d2). Recall that m is the number of attributes in the
original dataset D, and d in its binary expansion DB.

First we compute one-way margins for an attribute A by scanning the database and
creating a new hash entry for any new entry a ∈ A and updating its count in the hash
table, all in O(n) time. We then go through each element a in the hash table for A, letting
b = bin(a) be its binary representation, and creating the corresponding binary version of
the hash entry histB(b). This can be done in O(dn) time.

Now for each possible pairs of attributes A1, A2 in the database D, we initialise another
hash table: “hist.” If we see a new pair of values (a1, a2), we create the entry hist(a1, a2)
and set it to 1. Otherwise we increment the counter. Now for each existing value (a1, a2),
we set b1 = bin(a1) and b2 = bin(a2). Let b1b2, b1b2, b1b2 and b1b2 denote the number of
occurrences of (1, 1), (1, 0), (0, 1) and (0, 0), respectively. Then, these can be computed as

b1b2 = hist(a1, a2),

b1b2 = histB(b1)− hist(a1, a2),

b1b2 = histB(b2)− hist(a1, a2),

b1b2 = n− b1b2 − b1b2 − b1b2.

It is easy to see that the above can be computed in O(m2n+ d2) time.
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