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Abstract. An overview of traditional types of data dissemination at statistical agencies
is provided including definitions of disclosure risks, the quantification of disclosure risk and
data utility and common statistical disclosure limitation (SDL) methods. However, with
technological advancements and the increasing push by governments for open and accessible
data, new forms of data dissemination are currently being explored. We focus on web-based
applications such as flexible table builders and remote analysis servers, synthetic data and
remote access. Many of these applications introduce new challenges for statistical agencies
as they are gradually relinquishing some of their control on what data is released. There is
now more recognition of the need for perturbative methods to protect the confidentiality
of data subjects. These new forms of data dissemination are changing the landscape of
how disclosure risks are conceptualized and the types of SDL methods that need to be
applied to protect the data. In particular, inferential disclosure is the main disclosure risk
of concern and encompasses the traditional types of disclosure risks based on identity and
attribute disclosures. These challenges have led to statisticians exploring the computer
science definition of differential privacy and privacy- by-design applications. We explore
how differential privacy can be a useful addition to the current SDL framework within
statistical agencies.
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1. INTRODUCTION 
 
For many decades, statistical 
disclosure limitation (SDL) has 
been an important area of research 
for statistical agencies, data 
archives and other organizations 
responsible for the release of 
statistical data. These agencies have 
a legal obligation to maintain the 
confidentiality of statistical entities 
and in many countries there are 
codes of practice that must be 
strictly adhered to. In addition, 
statistical agencies have a moral and 
ethical obligation towards 
respondents that participate in 
surveys and censuses through 
confidentiality pledges presented to 
them prior to their participation. 
The key objective is to ensure 
public trust in official statistics 
production and hence ensure high 
response rates.  
 
Traditionally, the types of data that 
are released by statistical agencies 
take the form of tabular data and 
microdata. Tabular data can contain 
frequency counts for whole 
populations such as from a census 
or register, weighted frequency 
counts from surveys and magnitude 
data containing totals and averages 
that are typically derived from 
business statistics. More recently, 
microdata from social surveys are 
also released usually through 
special license agreements or 
deposited into data archives where 
researchers can register and apply 
for access to data. Microdata from 
business surveys are generally not 
released because of their disclosive 
nature due to large sampling 
fractions including a ‘take-all’ 
strata and skewed distributions.  
 
Statistical agencies must assess the 
disclosure risk in statistical data and 
if required choose appropriate SDL 
methods to apply to the data. 

2 N. SHLOMO



 
 

Measuring disclosure risk involves assessing and evaluating numerically the risk of re-
identifying statistical units. SDL methods perturb, modify, or summarize the data in order to 
prevent re-identification by a potential attacker. Higher levels of protection through SDL 
methods however impact negatively on the quality of the data. The SDL decision framework 
involves finding the optimal balance between managing and minimizing disclosure risk to 
tolerable risk thresholds depending on how the data will be accessed and ensuring high utility 
and fit-for-purpose data.  
 
With technological advancements and the increasing push by governments for open and 
accessible data, new forms of data dissemination including web-based applications are 
currently being explored by statistical agencies and data archives. On the other hand, the 
digitalization of all aspects of society means that personal information is often easily obtainable 
from the internet and there are increasing disclosure risks. This has changed the landscape of 
how disclosure risks need to be defined and the types of SDL methods that should be applied 
to protect the data from disclosures.  
  
In Section 2 we first provide an overview of the SDL framework for traditional data 
dissemination of tabular data and microdata including the disclosure risks, approaches for 
confidentializing the data and disclosure risk and data utility measurement. In Section 3 we 
discuss the disclosure risk of inferential disclosure which encompasses traditional types of 
disclosure risks. Inferential disclosure risk is becoming more important as agencies are moving 
towards more flexible web-based modes of dissemination in the future. Section 4 then discusses 
new data dissemination strategies that are being applied or are under consideration by statistical 
agencies and how these generate new challenges on the measurement of disclosure risk and 
data utility. In particular, we examine whether the computer science standard of differential 
privacy can be integrated into the SDL framework to meet these challenges. We conclude in 
Section 5 with a discussion.  
 
 
2. TRADITIONAL SDL APPROACHES  
 
As mentioned in the introduction, traditional types of data releases are tabular data containing 
frequency counts, microdata from social surveys and magnitude tables. In this section, we 
present a brief overview of how disclosure risks are defined and measured, some common SDL 
methods that are applied and the measurement of data utility.  
 
2.1 TYPES OF DISCLOSURE RISKS   
 
For traditional types of data releases, the two main disclosure risks are identity disclosure where 
a data subject can be identified based on a set of quasi-identifying variables and attribute 
disclosure where new information can then be learnt. Attribute disclosure can also occur 
without an identity disclosure. For example, sensitive information about a group of individuals 
may be revealed which could cause harm.  
 
Identity disclosure for microdata from a social survey can arise if a data subject can be re-
identified based on the set of quasi-identifiers in the data, for example by linking the microdata 
to an external data source containing information about the population where the quasi-
identifiers are used as matching variables. The quasi-identifiers are typically visible and 
traceable categorical variables, such as sex, age, occupation, place of residence and marital 
status. When the quasi-identifiers are cross-classified, the cells formed by the cross-
classification may have very small counts including many cells that have a value of zero. Once 
a re-identification is made, attribute disclosure then arises from the remaining survey target 
variables in the microdata, such as information about health, income and expenditures. 

STATISTICAL DISCLOSURE LIMITATION 3



 
 

Therefore, for microdata arising from social surveys, the SDL methods are typically about 
reducing the risk of re-identification in order to avoid attribute disclosure. 
 
Identity disclosure for tabular data containing whole population counts can occur if there are 
singleton cells in the table. Attribute disclosure comes from the marginal cells of the table. If 
there is a singleton on the margin of the table then that implies that a re-identification can be 
made on less variables defining the table and new information is learnt. In fact, it is the zero 
cells that cause attribute disclosure in frequency tables and this occurs when a row/column have 
all zero cell values except for one non-zero cell. Even if the marginal total has a large number 
but the given row/column contain only one non-zero cell value, this leads to group attribute 
disclosure. As mentioned, group attribute disclosure may cause harm and is avoided by 
statistical agencies.  
 
2.2.  MICRODATA FROM SOCIAL SURVEYS 
 
Traditional methods of protecting microdata from social surveys include both ‘safe data’ and 
‘safe access’ approaches. In terms of ‘safe data’, survey microdata is generally protected by 
coarsening the quasi-identifiers, deleting sensitive variables, such as low-level geographies, and 
top-coding sensitive variables such as the size of the household, income and expenditures. Since 
social surveys typically have very small sample fractions, statistical agencies generally assume 
that a potential attacker would not have response knowledge, meaning that the attacker would 
not know if an individual is included in the survey microdata or not. Sampling therefore 
provides an inherent level of protection and is considered an SDL method in itself. In terms of 
‘safe access’, the survey microdata is generally released into data archives or under special 
licenses so that users need to undergo an application process and state the purpose of their 
request prior to obtaining access to the data.  
 
Perturbative SDL methods might also be applied on the quasi-identifiers. In record swapping, 
variables(s), such as the geographic location, will be swapped between a select number of pairs 
of records having similar characteristics. Post-randomization (PRAM) introduces 
misclassification in the quasi-identifiers through a probability mechanism and the result of a 
random draw (Gouweleeuw, et al. 1998). Other perturbative SDL methods may be applied to 
the sensitive variables to reduce the risk of attribute disclosure, for example rounding or adding 
random noise to an income variable.  
 
One of the first approaches to quantify disclosure risk in survey microdata was by record 
linkage (distance-based or probabilistic) where the confidentialized data was matched back to 
the original data based on the set of quasi-identifiers. The number of correct matches formed 
the basis for the quantification of the risk of re-identification. This approach however did not 
account for the protection afforded by the sampling. Bethlehem, et al. (1990) was among the 
first to describe a probabilistic modelling framework for estimating the risk of re-identification. 
The risk measures are based on the notion of population uniqueness on the cells defined by the 
cross-classification of the quasi-identifiers.  
 
Denoting 𝐹" the population size in cell  of a table defined by quasi-identifying variables 
having K cells and 𝑓" the sample size and ∑ 𝐹"%

"&' = 𝑁 and ∑ 𝑓"%
"&' = 𝑛, the set of sample 

uniques, is defined as: 𝑆𝑈 = {𝑘: 𝑓" = 1}. The sample uniques are potential high-risk records 
since they may be population uniques. Individual per-record risk measures in the form of a 
probability of re-identification are estimated. These per-record risk measures are then 
aggregated to obtain global risk measures as follows (where I is the indicator function):   
1. Number of sample uniques that are population uniques: 

 𝜏' = ∑ 𝐼(𝑓" = 1, 𝐹" = 1)"     

k
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2.  Expected number of correct matches for sample uniques (i.e., a matching probability)  
𝜏7 = ∑ 𝐼(𝑓" = 1) '

89"  .  
The individual risk measure for 𝜏7, for example, is 1/𝐹" the match probability in cell k of a 
sample unique to the population.   
 
When the population is unknown, Skinner and Holmes (1998) and Elamir and Skinner (2006) 
propose using a Poisson Distribution to estimate the disclosure risk measures with log-linear 
modelling to estimate  population parameters inferred from the observed sample counts. 
Skinner and Shlomo (2008) developed goodness of fit criteria for determining the optimal log-
linear model which produces unbiased estimates of the disclosure risk measures. Shlomo and 
Skinner (2010) adapt the estimation of risk measures to take into account measurement and 
perturbation errors. An extension of the probabilistic modelling by Reiter (2005a) accounted 
for the probability of re-identification weighted by suppositions on attacker knowledge 
regarding the methods of perturbation. More recently, Manrique-Vallier and Reiter (2012) used 
mixed membership models to estimate the probability of re-identification. 
 
Utility measures for assessing the impact of the SDL methods on the quality of the data and 
whether the data remain fit-for-purpose are largely subjective and depend on the usage of the 
data. They include:  
• Distance metrics between key parameters or distributions calculated from the original and 

confidentialized microdata using for example, a relative distance, the Hellinger’s Distance 
or the Kullback-Leibler divergence. These metrics identify any bias that may have been 
introduced due to the SDL methods.   

• A file level utility measure developed in Karr et al. (2006) and Woo et al. (2009) is a 
statistic based on a propensity score. Stacking the original and confidentialized microdata 
and defining an indicator of 1 for the confidentialized microdata and 0 for the original 
microdata, a propensity score is estimated using a logistic regression model. The test 
statistic is then '

;
∑ (𝜌=> − 0.5)7;
>&' where N is the size of the combined dataset. Snoke et 

al. (2018) provides a standardized version of the test statistic to facilitate testing and 
comparison of SDL approaches.  

• Potential impact on statistical inference when using the confidentialized microdata 
compared to the original microdata through an evaluation of the differences in the variance 
of key parameter estimates, for example, the overlap of confidence intervals on means and 
regression parameters. In addition, it is important to understand if there is an impact on 
hypothesis testing and therefore useful utility measures include differences in test statistics 
such as the Chi-squared test statistic, rank correlations, R2 and deviance for statistical 
modelling.  
 

2.3 FREQUENCY TABLES FOR WHOLE POPULATION COUNTS 
 
We focus on frequency tables for whole population data, such as censuses and registers, since 
frequency tables containing weighted survey counts have little need for SDL methods and in 
fact, small survey counts in tables are often suppressed due to their low quality. There is 
generally strict control on what census/register based tables can be released due to the need to 
avoid sparse tables, differencing and linking tables. Statistical agencies devote much time and 
resources to the design of these tables with respect to the selection of variables and their 
categories defining the tables. The hard-copy frequency tables are generally made available on 
statistical agencies’ websites and there may be specialized software available that can trawl and 
extract parts of the tables. Any special requests for tabulations from whole population counts 
are assessed against previous tabular releases.  
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There are two types of SDL methods for tabular data containing whole population counts: pre-
tabular and post-tabular and combinations of both. Pre-tabular SDL methods are implemented 
on the microdata prior to the compilation of the tables. The United States and United Kingdom 
censuses use record swapping defined in Section 2.2 on their census microdata prior to 
tabulation. Post-tabular SDL methods are implemented on the cell values of the tables after 
they are generated and typically take the form of rounding or perturbing the cell values. The 
aim is to introduce ambiguity in the zero cell values of the tables so that it will not be known 
whether an observed zero in a table is a structural zero or a random zero. Random rounding 
rounds the value of each cell according to a probability mechanism and internal cells and 
marginal cells are rounded separately resulting in rows/columns of the tables that may not be 
additive. Controlled rounding ensures that the sum of rounded internal cells equal the rounded 
marginal total which is a desired property by users of the data. However, controlled rounding 
is too limiting for the large scale production of census/ register-based tables.  
  
A more general case of random rounding is random cell perturbation based on a probability 
transition matrix which was first carried out at the Australian Bureau of Statistics (ABS) and 
described in Fraser and Wooton (2005). The approach is similar to PRAM described in Section 
2.1 but in this case it is the values of the cells that are perturbed (or not perturbed) depending 
on the outcome of a random draw.  
 
A probability transition matrix  is defined where:   

𝑝>D = 𝑃(𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑	𝑐𝑜𝑢𝑛𝑡 = 𝑗|𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑐𝑜𝑢𝑛𝑡 = 𝑖) 
 
Shlomo and Young (2008) modified the method to preserve additivity in the tables (in 
expectation) by transformation of the probability transition matrix so that the frequencies of the 
cell values are preserved in the perturbed table. Let t be the vector containing the frequency 
counts of the original cell values: 0,1,2,3, etc. We place the condition of invariance on the 
probability transition matrix P such that tP = t and the released table is a moment estimator 
of the original table.  
 
Since the tabular data are based on whole population counts, disclosure risk measurement is 
straight-forward and there are general ‘rules-of-thumb’ that are followed: avoiding tables that 
are sparse having many small cell counts  and ensuring that the row/columns do not contain 
only one or two non-zero cell counts. Since tables are released as hard-copy tables, disclosure 
by differencing and linking tables is generally not a problem since these are controlled by 
design.   
 
Degenerate distributions in tables where rows/columns are mainly zero with few non-zero cells 
can be identified through disclosure risk measures grounded in Information Theory and 
developed in Antal, et al. (2014). The measures are based on the entropy and assign a value 
between 0 and 1 for the level of risk caused by degenerate distributions. In Antal, et al. (2015), 
the risk measures are expanded  to account for the application of SDL methods through the 
conditional entropy which represents the amount of information needed to recover the original 
table given that we observe the confidentialized table.  
 
To assess the impact on data utility for frequency tables of whole population counts, we can 
use similar utility measures as described for microdata in Section 2.2 since many of the 
measures for microdata are based on examining frequency distributions in the original data 
versus the confidentialized data. For example, the utility measures based on distance metrics 
between original and perturbed cell values in a table are relevant. In particular, the Hellinger’s 
Distance is an often used utility measure as it allows for cell values that may contain a zero and 
in addition places more emphasis on small counts compared to the large counts. The impact on 
Chi-square testing for statistical associations between variables defining the table is also 

P
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relevant. The aim is to ensure that the power of such tests is not impacted by the perturbation 
and there is no change in statistical inference.  
 
2. 4  MAGNITUDE TABLES FROM BUSINESS STATISTICS 
  
Magnitude tables are defined as tables where the cells contain sums or averages of a continuous 
variable such as total turnover, profits or revenue and the table is defined by quasi-identifying 
variables, such as region and economic activity. Potential attackers to this type of statistical 
data are other businesses that may be interested in learning sensitive commercial information 
about their competitors. Therefore, we assume that attackers are competing businesses in a cell 
of the table and that the identity of other businesses in the cell is known. In addition, we assume 
that the attackers also know the ranking of the businesses with respect to their size. The main 
concern is therefore one of attribute disclosure.  
 
Disclosure risk measures are known as sensitivity measures and are based on whether a 
contributor in the cell of a table can learn the values of the target variable for the other 
contributors in the cell with sufficient precision. Since business surveys have large sampling 
fractions and in particular take-all strata for large businesses, we do not account for any 
protection afforded by sampling.  
 
In the general framework, a table is defined by cross-classification of categorical variables. Let 
X denote a generic cell, N(X) denote the number of contributors in the cell and 𝑥> denote the 
value of the target variable for contributor i. We define the total in cell X as 𝑇(𝑋) = ∑𝑥>. 
Assume 𝑥> > 0 for all 𝑖 = 1,… ,𝑁(𝑋) and that the observations can be ordered so that: 
𝑥' ≥ 𝑥7 ≥ ⋯ ≥ 𝑥;(^) > 0. Assuming that an attacker is a contributor in the same cell, we wish 
to avoid the attacker from being able to disclose an 𝑥>  value for other i. One sensitivity 
measure is the dominance rule: the (n, p) dominance rule classifies a cell as disclosive if 𝑥' +
⋯+ 𝑥` ≥

a
'bb

𝑇(𝑋). This rule assumes that n businesses in a cell, say 2 businesses, can form a 
coalition to disclose a value for the third business in a cell. In addition, any cell having a small 
number of contributors, for example 3 contributors, is deemed disclosive. Another sensitivity 
measure is the p% rule. The most precise estimate by the second largest contributor for the 
value of the largest contributor in a cell is: 𝑥=' = 𝑇(𝑋) − 𝑥7. The percent error is: 100 × (𝑥=' −
𝑥')/	𝑥' = 100 × (𝑇(𝑋) − 𝑥' − 𝑥7)/	𝑥'. In the p% rule, the cell is disclosive if 100 × (𝑇(𝑋) −
𝑥' − 𝑥7)/	x' ≤ p. It has been established that if the parameters of the sensitivity measures are 
known to attackers, such as the p or n, they can be used to disclose sensitive information and 
hence the parameters are not released.  
 
To protect magnitude tables containing business statistics, table design and cell suppression are 
generally used. Based on the sensitivity measures, disclosive cells are suppressed. These are 
called primary suppressions. Then, other cells need to be suppressed to ensure that the primary 
suppressions are not revealed through the marginal totals. These are called secondary 
suppressions. For a 2 by 2 table for example, at least 2 cells in a row and column, i.e. the 
vertices of a rectangle, need to be suppressed to ensure that the primary suppressions are safe 
and cannot be recalculated. To optimize secondary cell suppressions mathematical linear 
programming is used, for example in Tau-Argus (Salazar-Gonzalez et al., 2005) where an 
objective function ∑𝐶(𝑋) is minimized. For C(X)=1 we minimize the total number of cells 
suppressed, for C(X)=N(X) we minimize the number of contributors suppressed and for 
C(X)=T(X) we minimise the total value of the target variable suppressed. The solution of the 
linear programming can be heavy (NP hard) so simplified and alternative solutions may be 
used. The constraints of the mathematical linear programming are the preservation of margins 
and ensuring non-negative values in the table. For more information on sensitivity measures 
and optimal cell suppression,  see Willenborg and De Waal (2001), Duncan, et al. (2011) and 
Hundepool, et al. (2012).  
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2.5 RISK-UTILITY MAP 
 
The disclosure risk and utility measures can be used to produce a disclosure risk-data utility 
confidentiality map (Duncan, et al. 2001). We conceptualize the map in Figure 1.  

 
Figure 1: Conceptualized Disclosure Risk-Data Utility Confidentiality Map 
 
In the lower left hand quadrant of the map in Figure 1, we have low disclosure risk and low 
utility. In fact, not releasing data at all will have no utility although some disclosure risk remains 
as information about the disclosive nature of the data is leaked by not allowing its release. In 
the upper right hand quadrant of the map in Figure 1, we have high disclosure risk and high 
utility. We can see that the original data is above a maximal tolerable risk threshold determined 
by the statistical agency and hence SDL methods need to be applied. Thus SDL is an iterative 
process, where different SDL methods are applied with different parameterizations, the 
disclosure risk and data utility are quantified and mapped on to the Disclosure Risk-Data utility 
confidentiality map. The SDL method that is below the risk threshold and having the highest 
utility is selected. Note that the data points form a frontier on the map which allows the selection 
of the optimal SDL method.  
 
 
 
3. INFERENTIAL DISCLOSURE RISK AND DIFFERENTIAL PRIVACY 
  
In Section 2, we reviewed the traditional SDL framework for microdata and tabular data. 
Disclosure risks were defined as identity and attribute disclosures. However, these types of 
disclosure risks are essentially components of a more general disclosure risk and that is 
inferential disclosure. Inferential disclosure risk is defined as the ability to learn new attributes 
with a high degree of confidence. For example, a regression model with a very high predictive 
power may cause inferential disclosure. Even if an individual is not in the dataset, there would 
still be disclosure which may cause harm to the individual. Another example of inferential 
disclosure is disclosure by differencing where census tables can be manipulated, linked and 
differenced and cause disclosures of sensitive information. In this case, even large cell counts 
can be disclosive.  
 
Statistical agencies protect data releases from inferential disclosure by keeping strict control on 
the data that is released. For example, census tables are  vetted to ensure that no two tables 
can be differenced and thus produce a disclosive table of small counts. Microdata is generally 
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licensed and placed in data archives where it requires lengthy application procedures to obtain 
access to the data.  
  
As statistical agencies are considering more dynamic approaches for releasing statistical data 
and relinquishing some of their control on statistical outputs, the methods described in Section 
2 for reducing the risk of identity and attribute disclosures are not effective in handling 
inferential disclosure. In fact, most of the SDL approaches in Section 2 fail if the standard is 
provable defence against inferential disclosure.  
 
This has led to statisticians exploring the potential of differential privacy for confidentializing 
statistical data in the framework of SDL. Differential privacy was developed by computer 
scientists as a standard for a perturbation mechanism for protecting outputs in a remote query-
based system with the aim to specifically protect against inferential disclosure. See Dinur and 
Nissim (2003), Dwork, et al. (2006) and an overview book by Dwork and Roth (2014) for more 
details on differential privacy.  
 
In differential privacy, a ‘worst case’ scenario is allowed for, in which the potential attacker 
has complete information about all the units in the database except for one unit of interest. The 
definition of a perturbation mechanism M  satisfies ε-differential privacy if for all queries on 
neighbouring databases 𝑎, 𝑎′𝜖𝐴  differing by one individual and for all possible outcomes 
defined as subsets 𝑆𝜖𝑅𝑎𝑛𝑔𝑒(𝑀)  we have:  
   𝑃(𝑀(𝑎) ∈ 𝑆) ≤ 𝑒n	𝑃(𝑀(𝑎′) ∈ 𝑆) (1) 
 
This means that observing a perturbed output S, little can be learnt (up to a degree of 𝑒n ) and 
the attacker is unable to decipher whether the output was generated from database 𝑎 or 𝑎′. In 
other words, the ratio o(p(q)rs)

o(p(qt)rs)
 is bounded and the probability in the denominator cannot be 

zero. The solution to guarantee differential privacy in the computer science literature is by 
adding noise/perturbation to the outputs of the queries under specific parameterizations and 
typically the noise is generated from the Laplace Distribution.   
 
Shlomo and Skinner (2012) discuss differential privacy with respect to sampling and 
perturbation according to the SDL methods that were presented in Section 2. They found that 
sampling and other non-probabilistic forms of SDL methods are not differentially private since 
in these cases the denominator in the ratio based on two neighbouring datasets could take on a 
value of zero. However, for the kinds of large populations of individuals upon which social 
surveys are based, this failure of an unbounded ratio may occur with only a negligible 
probability. This leads to the definition of -  differential privacy:  
       𝑃(𝑀(𝑎) ∈ 𝑆) ≤ 𝑒n	𝑃(𝑀(𝑎t) ∈ 𝑆) + 𝛿 (2) 
 
where 𝛿 is a small probability of an unbounded ratio. This relaxation of - differential 
privacy allows for more utility under the probability mechanism M.  
 
  
4. NEW DISSEMINATION STRATEGIES 
 
In Section 2, we focused on traditional types of statistical data that are disseminated by 
statistical agencies: tabular data and microdata. However, with increasing demand for more 
open and accessible statistical data, statistical agencies are now considering alternative and 
more flexible dissemination strategies including web-based applications. In this section, we 
examine some of these strategies and how differential privacy can be embedded in current SDL 
practices through more rigorous and well defined perturbation mechanisms with privacy 
guarantees.  

),( de
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4.1 WEB-BASED APPLICATIONS 
 
In recent years, there are two types of web-based dissemination applications that are being 
considered or are under development within statistical agencies: flexible table generators and 
remote analysis servers.  
 
4.1.1. FLEXIBLE TABLE GENERATING SERVERS 
 
Driven by demand from policy makers and researchers for specialized and tailored tables from 
statistical data, particularly census data, some statistical agencies are developing or considering 
online flexible table generating servers that allow users to define and generate their own tables. 
A good example is the Australian Bureau of Statistics (ABS) TableBuilder for disseminating 
census tables.   
 
In flexible table generating, users access the servers via the internet and define their own table 
of interest from a set of pre-defined variables and categories typically from drop down lists. 
The generated table undergoes a series of ad-hoc SDL checks and if it passes the criteria, it is 
downloaded onto the user’s PC without the need for human intervention. The  SDL checks 
can easily be programmed within the system to determine whether tables can be released to the 
user. These SDL checks may include for example limiting the number of dimensions in the 
table, minimum population and sparsity thresholds, ensuring consistent and nested categories 
of variables to avoid disclosure by differencing. If the requested table does not meet the criteria, 
it is not released through the server and the user is advised to redesign the table.  
 
For flexible table generating, the server has to quantify the disclosure risk in the original table, 
apply an SDL method and then reassess the disclosure risk. Obviously, the disclosure risk will 
depend on whether the underlying data is a whole population (census) and the zeros are real 
zeros, or the data are from a survey and the zeros may be random zeros. After the table is 
protected, the server should also calculate the impact on data utility by comparing the perturbed 
table to the original table. Measures based on Information Theory described in Section 2.3 can 
be used to assess disclosure risk and data utility in a flexible table generating server since they 
can be calculated on-the-fly.   
 
Whilst the online flexible table generators have the same types of disclosure risks described in 
Section 2.3, the disclosure risks based on disclosure by differencing and disclosure by linking 
tables which form the basis for inferential disclosure need to be considered since there are no 
interventions or manual checks on what tables are produced or how many times tables are 
generated. Therefore, for online flexible generating servers, the statistical community has 
recognized the need for post-tabular perturbative methods on the generated tables to protect 
against disclosures (Shlomo, et al. 2015) and hence have explored the differential privacy 
standard.  
 
The ABS approach of the table builder which uses the probability transition matrix P to perturb 
discrete cell counts as described in Section 2.3 has the potential of transforming into a 
differential privacy perturbation mechanism under certain restrictions.  One characteristic of 
the ABS table builder is that for any cell that is generated from their census microdata, the 
perturbation of the cell value will always be the same. Fraser and Wooton (2005) describe the 
‘same cell-same perturbation’ approach where each individual in the microdata is assigned a 
random number. Any time individuals are aggregated to form a cell in a table, their random 
numbers are also aggregated and this becomes the seed for the perturbation. Therefore, the same 
cell will always have the same perturbation. This reduces the chance of identifying the true cell 
value through multiple requests of the table and averaging out the perturbations.  

10 N. SHLOMO



 
 

 
According to this setting, all possible tables and all possible cells that can be generated in the 
flexible table generating server are essentially known in advance and hence can be protected 
under a given privacy budget 𝜀 in (1). This is known as a non-interactive mechanism in the 
theory of differential privacy and any post-processing of a differentially private output will still 
be differentially private.  
 
Rinott et al. (2018) propose using a differentially private exponential mechanism (McSherry, 
et al. 2007) based on a utility function: 𝑢(𝑎, 𝑏) described as follows:  
 
Given a list of all possible cells 𝑘 = 1,… , 𝐾 : 𝑎 = (𝑎', … , 𝑎%)𝜖𝐴	  choose output 𝑏 =
(𝑏', … , 𝑏%)𝜖𝐵 with probability proportional to 

 exp z
{
|}(q,~)

∆} Ä (3) 
 
where ε is the privacy budget and the scale is defined as: ∆u = max

~∈Ñ
max
q,qt∈Ö

|𝑢(𝑎, 𝑏) −

𝑢(𝑎t, 𝑏)|where 𝑎 and 𝑎’ are neighboring databases that differ by removing one individual. 
∆u is also known as the sensitivity in the differential privacy mechanism. The utility function 
is defined through a loss function: 𝑢(𝑎, 𝑏) = −𝑙' = ∑ |𝑎"%

"&' − 𝑏"|	. Under this definition, for 
a list of internal cells where an individual appears only once, the sensitivity ∆𝑢 would be 1. If 
marginal totals are also included and an individual appears several times in the list then ∆𝑢 
will increase. This mechanism is essentially a discretized Laplace distribution and is optimal 
for the case of perturbing count data with respect to preserving utility.  
 
Furthermore, bounding the perturbations such that |𝑎" − 𝑏"| ≤ 𝑚 for all k leads to (𝜀, 𝛿)- 
differential privacy where 𝛿 is the probability in (2) at the cap m. Other implications under 
differential privacy for an online flexible table generating server compared to SDL methods are 
(1) zero cell values (unless they are true structural zeroes) must be perturbed; (2) the 
perturbation may cause negative values in the generated tables and in these cases, the perturbed 
cell value can be returned as a zero; (3) to preserve additivity, the margins can be perturbed 
separately (albeit with a larger ∆𝑢) and iterative proportional fitting can be carried out so that 
the sum of the perturbed internal cells equal the perturbed margins as this will not affect the 
differential privacy guarantee.  
 
The notion of ‘same cell-same perturbation’ as described above which informs the seed for 
perturbation and underpins the definition of the non-interactive mechanism and a fixed privacy 
budget, fails in differential privacy where it is assumed that the attacker knows the entire 
database except for one target individual. In that case, the attacker can generate the same table 
on neighboring databases 𝑎 and 𝑎’ resulting in only one cell being changed and hence learn 
in which cell the individual belongs. Therefore the seed for perturbation will need to also 
account for the domain total of the table and this implies a privacy loss due to some lack of 
consistencies, i.e. same cells in tables with the same domain total will have the same 
perturbation but may change their perturbation across tables with different domain totals. More 
research is needed on the quantification of the privacy loss in this case.  
 
In Figure 2, we show the utility of differential privacy through an examination of the Cramer’s 
V statistic (a normalized Chi-square statistic) in the top row and an 𝑙' distance metric on the 
bottom row for a census table derived from the United Kingdom 2001 census spanned by 5 year 
age-groups and occupation classes for a specific area where the population is European born. 
We include different specifications of 𝜀 on the x-axis. We also add in a discretized Gaussian 
exponential mechanism for comparison in the right panel where:  𝑢(𝑎, 𝑏) = −𝑙7 =
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∑ (𝑎" − 𝑏")7%
"&' 					 (the perturbation cap m under the Gaussian exponential mechanism varied 
slightly to ensure the same values of 𝛿 as the discretized Laplace exponential mechanism).  
 
  

 
Figure 2: Values of Cramer’s V and 𝒍𝟏 loss function over 100 perturbation repetitions 
for each ε for a UK 2001 Census table  
 
As can be seen in Figure 2, the discretized Laplace perturbations outperformed the Gaussian 
perturbations with a lower loss function and a more accurate Cramer’s V statistic for all levels 
of 𝜀. For values of 𝜀 greater than 1, the utility is not severely impacted under the Laplace 
perturbations. Since differential privacy is a cryptographic approach and hence the probability 
mechanism for the perturbation is not secret and can be released, users are able to account for 
perturbation error in their statistical analysis. Rinott, et al. (2018) demonstrate how to use the 
parameters of the differential privacy mechanism to account for the perturbation in Chi-square 
testing for goodness of fit and independence.  
  
Shlomo et al. (2018) compared two standard SDL methods with differential privacy  for a 
flexible table builder containing survey weighted counts. They showed that for the case of 
internal cells of tables and relatively large sample counts there was less perturbation required 
under differential privacy and higher utility compared to the SDL approaches. Other examples 
of perturbing counts in frequency tables in the computer science literature are Barak, et al. 
(2007), Yaroslavtsev, et al. (2013) and Qardaji, et al. (2014).  
 
It is now being recognized that the differential privacy approach for protecting frequency tables 
can be a viable technique in the SDL framework at statistical agencies. Open questions remain 
and are subject to future research. Whilst the use of the non-interactive differential privacy 
mechanism will avoid depleting a privacy budget under multiple generation of tables, how to 
set this budget and determine the sensitivity of the mechanism given the large scale 
dissemination of tables containing  internal and marginal cells need careful consideration. In 
addition, policy makers need to understand the consequences of the privacy parameters 𝜀 and 
𝛿 and this work is ongoing.  
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4.1.2. REMOTE ANALYSIS SERVERS  
 
A remote analysis server is an online system which accepts a query from the researcher, runs it 
within a secure environment on the underlying data and returns a confidentialized output 
without the need for human intervention to manually check the outputs for disclosure risks. 
Similar to flexible table generating servers, the queries are submitted through a remote interface 
and researchers do not have direct access to the data. The queries may include exploratory 
analysis, measures of association, regression models and statistical testing. The queries can be 
run on the original data or confidentialized data and may be restricted and audited depending 
on the level of required protection. O’Keefe and Good (2008) describe regression modeling via 
a remote analysis server.  
 
O’Keefe and Shlomo (2012) compared outputs based on original data and two SDL approaches: 
outputs from confidentialized microdata (where outliers were removed, additive noise added to 
the continuous variables and coarsening of the geography variable) and confidentialized outputs 
obtained from the original data via a remote analysis server. As an example, Figure 3 shows 
what residual plots would look like in a remote analysis server through a series of sequential 
box plots and a smoothed Normal QQ plot.   
 
   

 
Figure 3: Confidential Residual plot from a regression analysis in a remote analysis server  
  
  
Under the confidentialized output approach in a remote analysis server, no single observations 
can be learnt and hence there are no maximum, minimum values or percentiles in the outputs. 
However, one can argue that there is more utility in the confidentialized output approach since 
distributions are not distorted due to the removal of outliers and other perturbation methods as 
would be the case when confidentializing the microdata.  
 
Moreover, differential privacy can be applied to the underlying algorithms underpinning the 
remote analysis server to ensure a privacy-by-design approach. For example, a remote analysis 
server typically uses a robustified regression model in order to down-weight any outliers in the 
data. Alternatively, one might consider the approach proposed by Chipperfield and O’Keefe 
(2014) where a small unit-level noise is added to the estimating equations for the coefficients 
of the regression model. In addition, Laplace noise can be added to summary statistics in an 
exploratory analysis and this can be carried out consistently similar to the non-interactive 
mechanism approach proposed for flexible table builders so that the privacy budget will not be 
exhausted. These areas for implementation of differential privacy have yet to be explored.  
 
4.2  SAFE DATA ENCLAVES AND REMOTE ACCESS 
 
To meet increasing demands for high resolution data, many statistical agencies and data 
archives have set up data enclaves on their premises where approved researchers can go onsite 
and gain access to confidential statistical data. The secure servers within the enclave have no 
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connection to printers or the internet and only authorized researchers are allowed to access 
them. To minimize disclosure risk, no data can be removed from the enclave and researchers 
undergo specialized training to understand the confidentiality guidelines. Researchers are 
generally provided with standard software within the system, such as STATA, SAS and R, but 
any specialized software would not be available. All information flow is controlled and 
monitored. Any outputs to be taken out of the data enclave are dropped in a folder and manually 
checked by experienced confidentiality officers for disclosure risks. Examples of disclosure 
risks in outputs are small cell counts in tables, residual plots from regression models which may 
highlight outliers and Kernel density estimation with small band-widths.  
 
The disadvantage of the data enclave is the need to travel, sometimes long distances, to access 
confidential data. In recent years, some agencies have implemented remote access by extending 
the concept of the data enclave to a ‘virtual’ data enclave. These ‘virtual’ data enclaves can be 
set up at other government agencies, universities and even on a researcher’s own laptop. Trusted 
approved users log on to secure servers via VPN connections to access the confidential data. 
All activity is logged and audited at the keystroke level and outputs are reviewed remotely by 
confidentiality officers before being sent back to the researchers via a secure file transfer 
protocol site. The technology also allows users within the same research group to interact with 
one another while working on the same dataset. An example of this technology is the Inter-
university Consortium for Political and Social Research (ICPSR) housed at the University of 
Michigan. The ICPSR maintains access to data archives of social science data for research and 
operates both a physical on-site data enclave and a ‘virtual’ data enclave.  
 
4.3. SYNTHETIC DATA  
 
In recent years, there have been initiatives to produce synthetic microdata as public-use files 
which preserve some of the statistical properties of the original microdata. This allows freely 
available open data which can be used by researchers to plan their research questions and data 
analysis and prepare their code as well as for teaching purposes. The data elements are replaced 
with synthetic values generated from an appropriate probability model. The model is fit to the 
original data to produce synthetic populations through a posterior predictive distribution similar 
to the theory of multiple imputation. Several samples are drawn from the population to take 
into account the uncertainty of the model and to obtain proper variance estimates. See 
Raghunathan, Reiter and Rubin (2003) and Reiter (2005b) and references therein for more 
details of generating synthetic data. The synthetic data can be implemented on parts of data so 
that a mixture of real and synthetic data is released (Little and Liu, 2003) although this means 
that a thorough disclosure risk assessment is needed prior to releasing such data. In practice it 
is very difficult to capture all conditional relationships between variables and within sub-
populations. If models used in a statistical analysis are sub-models of the model used to generate 
data, then the analysis of multiple synthetic samples should give valid inferences.  
 
Synthetic values have also been proposed for magnitude tables arising from business statistics 
as described in Section 2.4. The traditional method of cell suppression in magnitude tables leads 
to a loss of information and there have been more recent initiatives to provide synthetic values 
for the suppressed cells. Controlled tabular adjustment (CTA) carries out cell suppression and 
replaces the suppressed cells with synthetic values that guarantee some statistical properties as 
well as the marginal totals (Dandekar and Cox, 2002).  
 
The subject of using differential privacy in the production of synthetic data is still undergoing 
research. One early application which generated synthetic data using a differential privacy 
mechanism embedded in the Bayesian Multinomial- Dirichlet model is the US Census Bureau 
‘On the Map’ available at: http://onthemap.ces.census.gov/. It is a web-based mapping and 
reporting application that shows where workers are employed and where they live according to 
the Origin-Destination Employment Statistics. More information is given in Abowd and 
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Vilhuber (2008). However, this application was limited in that the dataset only contained a set 
of counts. More research is needed on whether synthetic data can be generated from microdata 
containing many different types of variables. Some avenues to explore are to add the 
differentially private noise in the Bayesian predictive modelling (similar to ‘On the Map’) or to 
use a sequential regression modelling approach for generating synthetic data (See Ragunathan, 
et al. 2001 and Van Buuren, 2007) and adding differential private noise to the estimating 
equations in each iteration. The US Census Bureau is currently exploring reproducing census 
microdata from many tables that have been protected under the differential privacy mechanism. 
As mentioned, differentially private synthetic data is still an open area of research.  
 
 
5. DISCUSSION    
  
In recent years, statistical agencies and data archives have been restricting access to statistical 
data due to their inability to cope with the large demand for data whilst ensuring the 
confidentiality of statistical units. However, with government initiatives for more open and 
accessible data, statistical agencies are exploring alternative means for disseminating statistical 
data which allows for more use of the internet. Given the rising concerns of inferential 
disclosure under these new dissemination strategies, this has led to fruitful collaborations 
between statisticians and computer scientists and initial research on whether the formal ‘by-
design’ privacy guarantee of differential privacy can be embedded in the SDL framework.  
 
The SDL framework for protecting against identity and attribute disclosures is still very much 
relevant at statistical agencies since it is part of the legal and ethical framework underpinning 
the dissemination of traditional types of statistical data and there is no move to stop current 
dissemination practices. However, when considering more flexible dissemination via the 
internet, it is necessary for statistical agencies to move towards perturbation as a viable way of 
protecting the confidentiality of data subjects. Additive noise perturbation under differential 
privacy within the SDL framework is still in the beginning stages of research. For count data, 
it has been shown to have good utility. Perturbative methods, however come at a cost in that 
researchers will have to cope with the perturbation when carrying out statistical analysis which 
may require more training. Clearly, the fact that the parameters of the differential privacy 
mechanism are not secret and can be used to correct statistical analysis of perturbed data 
provides a large incentive for introducing differential privacy into the SDL framework.   
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