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ABSTRACT. Traditional approaches to differential privacy assume a fixed privacy require-
ment € for a computation, and attempt to maximize the accuracy of the computation
subject to the privacy constraint. As differential privacy is increasingly deployed in practical
settings, it may often be that there is instead a fixed accuracy requirement for a given
computation and the data analyst would like to maximize the privacy of the computation
subject to the accuracy constraint. This raises the question of how to find and run a
maximally private empirical risk minimizer subject to a given accuracy requirement. We
propose a general “noise reduction” framework that can apply to a variety of private empir-
ical risk minimization (ERM) algorithms, using them to “search” the space of privacy levels
to find the empirically strongest one that meets the accuracy constraint, and incurring only
logarithmic overhead in the number of privacy levels searched. The privacy analysis of our
algorithm leads naturally to a version of differential privacy where the privacy parameters
are dependent on the data, which we term ez-post privacy, and which is related to the
recently introduced notion of privacy odometers. We also give an ez-post privacy analysis
of the classical AboveThreshold privacy tool, modifying it to allow for queries chosen
depending on the database. Finally, we apply our approach to two common objective
functions, regularized linear and logistic regression, and empirically compare our noise
reduction methods to (i) inverting the theoretical utility guarantees of standard private
ERM algorithms and (ii) a stronger, empirical baseline based on binary search.
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1. INTRODUCTION AND RELATED WORK

Differential Privacy (7; 8) enjoys over a decade of study as a theoretical construct, and a
much more recent set of large-scale practical deployments, including by Google (10) and
Apple (11). As the large theoretical literature is put into practice, we start to see disconnects
between assumptions implicit in the theory and the practical necessities of applications. In
this paper we focus our attention on one such assumption in the domain of private empirical
risk minimization (ERM): that the data analyst first chooses a privacy requirement, and
then attempts to obtain the best accuracy guarantee (or empirical performance) that she can,
given the chosen privacy constraint. Existing theory is tailored to this view: the data analyst
can pick her privacy parameter € via some exogenous process, and either plug it into a “utility
theorem” to upper bound her accuracy loss, or simply deploy her algorithm and (privately)
evaluate its performance. There is a rich and substantial literature on private convex
ERM that takes this approach, weaving tight connections between standard mechanisms in
differential privacy and standard tools for empirical risk minimization. These methods for
private ERM include output and objective perturbation (5; 14; 18; 4), covariance perturbation
(19), the exponential mechanism (16; 2), and stochastic gradient descent (2; 21; 12; 6; 20).

While these existing algorithms take a privacy-first perspective, in practice, product
requirements may impose hard accuracy constraints, and privacy (while desirable) may not be
the over-riding concern. In such situations, things are reversed: the data analyst first fixes an
accuracy requirement, and then would like to find the smallest privacy parameter consistent
with the accuracy constraint. Here, we find a gap between theory and practice. The only
theoretically sound method available is to take a “utility theorem” for an existing private
ERM algorithm and solve for the smallest value of € (the differential privacy parameter)—and
other parameter values that need to be set—consistent with her accuracy requirement, and
then run the private ERM algorithm with the resulting . But because utility theorems tend
to be worst-case bounds, this approach will generally be extremely conservative, leading to a
much larger value of € (and hence a much larger leakage of information) than is necessary
for the problem at hand. Alternately, the analyst could attempt an empirical search for
the smallest value of € consistent with her accuracy goals. However, because this search
is itself a data-dependent computation, it incurs the overhead of additional privacy loss.
Furthermore, it is not a priori clear how to undertake such a search with nontrivial privacy
guarantees for two reasons: first, the worst case could involve a very long search which
reveals a large amount of information, and second, the selected privacy parameter is now
itself a data-dependent quantity, and so it is not sensible to claim a “standard” guarantee of
differential privacy for any finite value of € ex-ante.

In this paper, we provide a principled variant of this second approach, which attempts
to empirically find the smallest value of & consistent with an accuracy requirement. We
give a meta-method that can be applied to several interesting classes of private learning
algorithms and introduces very little privacy overhead as a result of the privacy-parameter
search. Conceptually, our meta-method initially computes a very private hypothesis, and then
gradually subtracts noise (making the computation less and less private) until a sufficient level
of accuracy is achieved. One key technique that significantly reduces privacy loss over naive
search is the use of correlated noise generated by the method of (15), which formalizes the
conceptual idea of “subtracting” noise without incurring additional privacy overhead. In order
to select the most private of these queries that meets the accuracy requirement, we introduce
a natural modification of the now-classic AboveThreshold algorithm (8), which iteratively
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checks a sequence of queries on a dataset and privately releases the index of the first to
approximately exceed some fixed threshold. Its privacy cost increases only logarithmically
with the number of queries. We provide an analysis of AboveThreshold that holds even if
the queries themselves are the result of differentially private computations, showing that if
AboveThreshold terminates after ¢ queries, one only pays the privacy costs of AboveThreshold
plus the privacy cost of revealing those first ¢ private queries. When combined with the
above-mentioned correlated noise technique of (15), this gives an algorithm whose privacy
loss is equal to that of the final hypothesis output — the previous ones coming “for free” —
plus the privacy loss of AboveThreshold. Because the privacy guarantees achieved by this
approach are not fixed a priori, but rather are a function of the data, we introduce and apply
a new, corresponding privacy notion, which we term ex-post privacy, and which is closely
related to the recently introduced notion of “privacy odometers” (17).

In Section 4, we empirically evaluate our noise reduction meta-method, which applies to
any ERM technique which can be described as a post-processing of the Laplace mechanism.
This includes both direct applications of the Laplace mechanism, like output perturbation
(5); and more sophisticated methods like covariance perturbation (19), which perturbs the
covariance matrix of the data and then performs an optimization using the noisy data. Our
experiments concentrate on {2 regularized least-squares regression and f5 regularized logistic
regression, and we apply our noise reduction meta-method to both output perturbation
and covariance perturbation. Our empirical results show that the active, ex-post privacy
approach massively outperforms inverting the theory curve, and also improves on a baseline
“e-doubling” approach.

2. PRIVACY BACKGROUND AND TOOLS

2.1. Differential Privacy and Ex-Post Privacy. Let X denote the data domain. We
call two datasets D, D" € X* neighbors (written as D ~ D’) if D can be derived from D’ by
replacing a single data point with some other element of X.

Definition 2.1 (Differential Privacy (7)). Fix € > 0. A randomized algorithm A : X* — O
is e-differentially private if for every pair of neighboring data sets D ~ D’ € X*, and for
every event S C O:

Pr[A(D) € S] < exp(e) Pr[A(D') € S].
We call exp(e) the privacy risk factor.

It is possible to design computations that do not satisfy the differential privacy definition,
but whose outputs are private to an extent that can be quantified after the computation
halts. For example, consider an experiment that repeatedly runs an &’-differentially private
algorithm, until a stopping condition defined by the output of the algorithm itself is met.
This experiment does not satisfy e-differential privacy for any fixed value of ¢, since there is
no fixed maximum number of rounds for which the experiment will run (for a fixed number
of rounds, a simple composition theorem, Theorem 2.5, shows that the e-guarantees in a
sequence of computations “add up.”) However, if ex-post we see that the experiment has
stopped after k rounds, the data can in some sense be assured an “ex-post privacy loss” of
only ke’. Rogers et al. (17) initiated the study of privacy odometers, which formalize this idea.
They study privacy composition when the data analyst can choose the privacy parameters of
subsequent computations as a function of the outcomes of previous computations.
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We apply a related idea here, for a different purpose. Our goal is to design one-shot
algorithms that always achieve a target accuracy but that may have variable privacy levels
depending on their input.

Definition 2.2. Given a randomized algorithm A : X* — O, define the ez-post privacy loss"
of A on outcome o to be

B Pr[A(D) = o]
Loss(o) = D,[r)l'l:%)iD/ log PrA(D) =o'

We refer to exp (Loss(0)) as the ex-post privacy risk factor.

Definition 2.3 (Ex-Post Differential Privacy). Let £ : O — (R>o U {oo}) be a function on
the outcome space of algorithm A : X* — O. Given an outcome o = A(D), we say that 4
satisfies €(0)-ex-post differential privacy if for all o € O, Loss(o) < £(0).

Note that if £(0) < € for all o, A is e-differentially private. Ex-post differential privacy
has the same semantics as differential privacy, once the output of the mechanism is known:
it bounds the log-likelihood ratio of the dataset being D vs. D’, which controls how an
adversary with an arbitrary prior on the two cases can update her posterior.

2.2. Differential Privacy Tools. Differentially private computations enjoy two nice prop-
erties:

Theorem 2.4 Post Processing (7). Let A : X* — O be any e-differentially private algorithm,
and let f : O — O be any function. Then the algorithm foA : X* — O is also e-differentially
private.

Post-processing implies that, for example, every decision process based on the output of
a differentially private algorithm is also differentially private.

Theorem 2.5 Composition (7). Let Ay : X* — O, Ay : X* — O’ be algorithms that are &1-
and eo-differentially private, respectively. Then the algorithm A : X* — O x O defined as
A(z) = (A1(x), Ag(x)) is (1 + e2)-differentially private.

The composition theorem holds even if the composition is adaptive—-see (9) for details.
The Laplace mechanism. The most basic subroutine we will use is the Laplace
mechanism. The Laplace Distribution centered at 0 with scale b is the distribution with

2]

probability density function Lap (z]b) = %6_7. We say X ~ Lap (b) when X has Laplace
distribution with scale b. Let f: X* — R? be an arbitrary d-dimensional function. The ¢;

sensitivity of f is defined to be A1(f) = maxpp ||f(D) — f(D’)||1. The Laplace mechanism

with parameter € simply adds noise drawn independently from Lap (%(f)) to each coordinate

of f(x).
Theorem 2.6 (7). The Laplace mechanism is e-differentially private.

Gradual private release. Koufogiannis et al. (15) study how to gradually release
private data using the Laplace mechanism with an increasing sequence of ¢ values, with a
privacy cost scaling only with the privacy of the marginal distribution on the least private
release, rather than the sum of the privacy costs of independent releases. For intuition, the

f A’s output is from a continuous distribution rather than discrete, we abuse notation and write
Pr[A(D) = o] to mean the probability density at output o.
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algorithm can be pictured as a continuous random walk starting at some private data v with
the property that the marginal distribution at each point in time is Laplace centered at v,
with variance increasing over time. Releasing the value of the random walk at a fixed point
in time gives a certain output distribution, for example, v, with a certain privacy guarantee
e. To produce 9" whose ez-ante distribution has higher variance (is more private), one can
simply “fast forward” the random walk from a starting point of ¥ to reach 9’; to produce
a less private ¢, one can “rewind.” The total privacy cost is max{e, &’} because, given the
“least private” point (say 0), all “more private” points can be derived as post-processings
given by taking a random walk of a certain length starting at ©. Note that were the Laplace
random variables used for each release independent, the composition theorem would require
summing the e values of all releases.

In our private algorithms, we will use their noise reduction mechanism as a building
block to generate a list of private hypotheses 6',...,67 with gradually increasing ¢ values.
Importantly, releasing any prefix (6!, ..., 0%) only incurs the privacy loss in 6¢. More formally:

Algorithm 1 Noise Reduction (15): NR(v, A, {e})

Input: private vector v, sensitivity parameter A, list 61 < g9 < -+ < ep
Set 07 := v + Lap (A/er)
fort=T-1,T—-2,...,1do

2
With probability ( =t ) : set Dy 1= Pran

Et+1

Else: set 0; := 041 + Lap (A/ey)

Return 04,...,07

Theorem 2.7 (15). Let f have {1 sensitivity A and let Uy, ..., 0p be the output of Algorithm
1 onv= f(D), A, and the increasing list €1,...,ep. Then for any t, the algorithm which
outputs the prefix (01,...,0;) is -differentially private.

2.3. AboveThreshold with Private Queries. Our high-level approach to our eventual
ERM problem will be as follows: Generate a sequence of hypotheses 61, ..., 607, each with
increasing accuracy and decreasing privacy; then test their accuracy levels sequentially,
outputting the first one whose accuracy is “good enough.” The classical AboveThreshold
algorithm (8) takes in a dataset and a sequence of queries and privately outputs the index of
the first query to exceed a given threshold (with some error due to noise). We would like to
use AboveThreshold to perform these accuracy checks, but there is an important obstacle: for
us, the “queries” themselves depend on the private data.? A standard composition analysis
would involve first privately publishing all the queries, then running AboveThreshold on
these queries (which are now public). Intuitively, though, it would be much better to generate
and publish the queries one at a time, until AboveThreshold halts, at which point one would
not publish any more queries. The problem with analyzing this approach is that, a-priort,

2In fact, there are many applications beyond our own in which the sequence of queries input to AboveThresh-
old might be the result of some private prior computation on the data, and where we would like to release
both the stopping index of AboveThreshold and the “query object.” (In our case, the query objects will be
parameterized by learned hypotheses 01, ...,07.)
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we do not know when AboveThreshold will terminate; to address this, we analyze the ex-post
privacy guarantee of the algorithm.?

Algorithm 2 InteractiveAboveThreshold: IAT(D,e, W, A, M)
Input: Dataset D, privacy loss €, threshold W, ¢1 sensitivity A, algorithm M
Let W =W + Lap (%)
for each queryt=1,...,7T do
Query fy « M(D),
if fi(D) + Lap (%) > W: then Output (¢, f;); Halt.
Output (T, L).

Let us say that an algorithm M (D) = (f1,..., fr) is (e1,...,er)-prefix-private if for
each ¢, the function that runs M (D) and outputs just the prefix (f1,..., f) is e;-differentially
private.

Lemma 2.8. Let M : X* — (X* — O)T be a (¢1,...,e7)-prefiz private algorithm that
returns T queries, and let each query output by M have {1 sensitivity at most A. Then
Algorithm 2 run on D, eq, W, A, and M is E-ex-post differentially private for E((t,-)) =
e+ et for any t € [T].

The proof, which is a variant on the proof of privacy for AboveThreshold (8), appears in
the appendix, along with an accuracy theorem for IAT.

3. NOISE-REDUCTION WITH PRIVATE ERM

In this section, we provide a general private ERM framework that allows us to approach the
best privacy guarantee achievable on the data given a target excess risk goal. Throughout the
section, we consider an input dataset D that consists of n row vectors X1, Xo,...,X,, € RP and
a column y € R"™. We will assume that each || X;|[; < 1 and |y;| < 1. Let d; = (X;,y;) € RPT!
be the i-th data record. Let £ be a loss function such that for any hypothesis 8 and any
data point (X;,y;) the loss is £(6, (X;,y;)). Given an input dataset D and a regularization
parameter A, the goal is to minimize the following regularized empirical loss function over
some feasible set C:

1 ¢ A
L(6,D) =~ > 00, (X)) + 5\\9’@-
=1

Let 0* = argming. £(6, D). Given a target accuracy parameter «, we wish to privately
compute a 6, that satisfies L(6,, D) < L(6*, D) + «, while achieving the best ex-post privacy
guarantee. For simplicity, we will sometimes write L(6) for L(6, D).

One simple baseline approach is a “doubling method”: Start with a small € value, run an
e-differentially private algorithm to compute a hypothesis # and use the Laplace mechanism
to estimate the excess risk of 6; if the excess risk is lower than the target, output 6; otherwise
double the value of € and repeat the same process. (See the appendix for details.) As a result,
we pay for privacy loss for every hypothesis we compute and every excess risk we estimate.

In comparison, our meta-method provides a more cost-effective way to select the privacy
level. The algorithm takes a more refined set of privacy levels €1 < ... < ep as input and

3This result does not follow from a straightforward application of privacy odometers from (17), because
the privacy analysis of algorithms like the noise reduction technique is not compositional.
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generates a sequence of hypotheses ', ..., 67 such that the generation of each @' is e;-private.
Then it releases the hypotheses 6! in order, halting as soon as a released hypothesis meets
the accuracy goal. Importantly, there are two key components that reduce the privacy loss
in our method:

(1) We use Algorithm 1, the “noise reduction” method of (15), for generating the sequence of
hypotheses: we first compute a very private and noisy 0!, and then obtain the subsequent
hypotheses by gradually “de-noising” 6'. As a result, any prefix (9',...,6%) incurs a
privacy loss of only £ (as opposed to (1 + ...+ ¢) if the hypotheses were independent).

(2) When evaluating the excess risk of each hypothesis, we use Algorithm 2, Interactive-
AboveThreshold, to determine if its excess risk exceeds the target threshold. This incurs
substantially less privacy loss than independently evaluating the excess risk of each
hypothesis using the Laplace mechanism (and hence allows us to search a finer grid of
values).

For the rest of this section, we will instantiate our method concretely for two ERM
problems: ridge regression and logistic regression. In particular, our noise-reduction method
is based on two private ERM algorithms: the recently introduced covariance perturbation
technique (19) and the output perturbation method (5).

3.1. Covariance Perturbation for Ridge Regression. In ridge regression, we consider
the squared loss function: ¢((X;,y;),0) = 1(y; — (0, X;))?, and hence empirical loss over the
data set is defined as

1 Alol3
L(0,D) = - X0|3 2
(6,D) = 5 |ly — X0J3 + 212,
where X denotes the (n x p) matrix with row vectors Xi,...,X, and y = (y1,...,Yn)-

Since the optimal solution for the unconstrained problem has ¢ norm no more than y/1/\
(see the appendix for a proof), we will focus on optimizing 6 over the constrained set
C ={a € RP||al|l2 < /1/A}, which will be useful for bounding the ¢; sensitivity of the
empirical loss.

Before we formally introduce the covariance perturbation algorithm due to (19), observe
that the optimal solution #* can be computed as

2
0* = argmin L(0, D) = argmin (6T(XTX)6 — 2 XTy, 6)) + )\HQHQ.
feC eC 2n 2
In other words, 8* only depends on the private data through X7y and XTX. To compute a
private hypothesis, the covariance perturbation method simply adds Laplace noise to each
entry of XTy and XTX (the covariance matrix), and solves the optimization based on the
noisy matrix and vector. The formal description of the algorithm and its guarantee are
in Theorem 3.1. Our analysis differs from the one in (19) in that their paper considers the
“local privacy” setting, and also adds Gaussian noise whereas we use Laplace. The proof is
deferred to the appendix.

Theorem 3.1 . Fiz any € > 0. For any input data set D, consider the mechanism M that
computes

1 2
0, = argmin —— (07(XTX + B)9 — 2(XTy + b,0)) + U2
peC n 2
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where B € RP*P and b € RP*! are random Laplace matrices such that each entry of B and b
is drawn from Lap (4/€). Then M satisfies e-differential privacy and the output 0, satisfies

E [L(6,) — L(0")] < Y2QVPA+R/N

B,b ne

In our algorithm COVNR, we will apply the noise reduction method, Algorithm 1, to
produce a sequence of noisy versions of the private data (XTX, XTy): (Z%,2Y),...,(Z7,27),
one for each privacy level. Then for each (Z¢, 2), we will compute the private hypothesis by
solving the noisy version of the optimization problem in Equation (3.1). The full description
of our algorithm COVNR is in Algorithm 3, and satisfies the following guarantee:

Algorithm 3 Covariance Perturbation with Noise-Reduction: COvNR(D, {e1,...,er}, a,7)

Input: private data set D = (X, y), accuracy parameter «, privacy levels £1 < g9 < ... <
er, and failure probability
Instantiate InteractiveAboveThreshold: A = TAT(D,eq,—a/2,A,:) with g =

16A(log(2T/7))/c and A = (1/1/X +1)?/(n)

Let C = {a € R? | ||a|l2 < \/1/A} and 0* = argming - L(0)

Compute noisy data:

{Z'} = NR((XTX),2,{e1/2,...,er/2}),  {z'} = NR((XTY),2,{e1/2,...,e7/2})
fort=1,...,7: do

1 2
= argnin - (07270 - 2(:,y) + 01

3.1
gec  2n 2 (3.1)

Let fi{(D) = L(0*, D) — L(#, D); Query A with query f! to check accuracy
if A returns (¢, f!) then Output (¢, ")
Output: (L,6%)

Theorem 3.2 . The instantiation of COVNR(D, {e1,...,er}, a,y) outputs a hypothesis 6,
that with probability 1 — v satisfies L(0,) — L(6*) < a.. Moreover, it is £-ex-post differentially
private, where the privacy loss function E: (([T]U{L}) x RP) = (R>o U {o0}) is defined as
E((k,-)) =eo+ek forany k #L, E((L,)) = o0, and

L 16(/I/A + 17 1og(2T /)

no

is the privacy loss incurred by IAT.

3.2. Output Perturbation for Logistic Regression. Next, we show how to combine the
output perturbation method with noise reduction for the ridge regression problem.* In this
setting, the input data consists of n labeled examples (X1,41),. .., (Xn,yn), such that for
each i, X; € RP, || X;|l1 <1, and y; € {—1,1}. The goal is to train a linear classifier given

hWe study the ridge regression problem for concreteness. Our method works for any ERM problem with
strongly convex loss functions.
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by a weight vector 8 for the examples from the two classes. We consider the logistic loss
function: £(0, (X;,v:)) = log(1 + exp(—v:07X;)), and the empirical loss is

NUH

1 n
L(6,D) = - Zlog(l + exp(—yi07X;)) + 5

i=1
The output perturbation method simply adds Laplace noise to perturb each coordinate
of the optimal solution #*. The following is the formal guarantee of output perturbation.
Our analysis deviates slightly from the one in (5) since we are adding Laplace noise (see the
appendix).

Theorem 3.3 . Fiz any ¢ > 0. Let r = %f. For any input dataset D, consider the

mechanism that first computes 8* = argmingcgy L(6), then outputs 6, = 0* + b, where b is
a random vector with its entries drawn i.i.d. from Lap (r). Then M satisfies e-differential
privacy, and 8, has excess risk

2V2p  4p?

IE:[L(QP) - L] = nxe  n2Xe?’

Given the output perturbation method, we can simply apply the noise reduction method
NR to the optimal hypothesis 8* to generate a sequence of noisy hypotheses. We will again
use InteractiveAboveThreshold to check the excess risk of the hypotheses. The full algorithm
OuTpPUTNR follows the same structure in Algorithm 3, and we defer the formal description
to the appendix.

Theorem 3.4 . The instantiation of OUTPUTNR(D, €9, {€1,...,e7}, a, ) is E-ex-post dif-
ferentially private and outputs a hypothesis 0, that with probability 1 — v satisfies L(6),) —
L(6*) < «, where the privacy loss function £: (([T]U{L}) x RP) = (R>g U {o0}) is defined
as E((k,-)) = eo + ek for any k #L, E((L,-)) = o0, and

< 321og(2T/v)+/210g2/A
€0 <

no

is the privacy loss incurred by TAT.

Proof sketch of Theorems 3.2 and 3.4. The accuracy guarantees for both algorithms follow
from an accuracy guarantee of the TAT algorithm (a variant on the standard AboveThreshold
bound) and the fact that we output 6* if IAT identifies no accurate hypothesis. For the
privacy guarantee, first note that any prefix of the noisy hypotheses 6', ..., 6" satisfies ;-
differential privacy because of our instantiation of the Laplace mechanism (see the appendix
for the ¢; sensitivity analysis) and noise-reduction method NR. Then the ex-post privacy
guarantee directly follows Lemma 2.8. ]

4. EXPERIMENTS

To evaluate the methods described above, we conducted empirical evaluations in two settings.
We used ridge regression to predict (log) popularity of posts on Twitter in the dataset of
(1), with p = 77 features and subsampled to n =100,000 data points. Logistic regression
was applied to classifying network events as innocent or malicious in the KDD-99 Cup
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dataset (13), with 38 features and subsampled to 100,000 points. Details of parameters and
methods appear in the appendix.”

In each case, we tested the algorithm’s average ex-post privacy loss for a range of input
accuracy goals «, fixing a modest failure probability v = 0.1 (and we observed that excess
risks were concentrated well below a//2, suggesting a pessimistic analysis). The results show
our meta-method gives a large improvement over the “theory” approach of simply inverting
utility theorems for private ERM algorithms. (In fact, the utility theorem for the popular
private stochastic gradient descent algorithm does not even give meaningful guarantees for
the ranges of parameters tested; one would need an order of magnitude more data points, and
even then the privacy losses are enormous, perhaps due to loose constants in the analysis.)

To gauge the more modest improvement over DOUBLINGMETHOD, note that the variation
in the privacy risk factor e® can still be very large; for instance, in the ridge regression setting
of a = 0.05, Noise Reduction has e® ~ 10.0 while DOUBLINGMETHOD has e® ~ 495; at
a = 0.075, the privacy risk factors are 4.65 and 56.6 respectively.

Interestingly, for our meta-method, the contribution to privacy loss from “testing” hy-
potheses (the InteractiveAboveThreshold technique) was significantly larger than that from
“generating” them (NoiseReduction). One place where the InteractiveAboveThreshold anal-
ysis is loose is in using a theoretical bound on the maximum norm of any hypothesis to
compute the sensitivity of queries. The actual norms of hypotheses tested was significantly
lower which, if taken as guidance to the practitioner in advance, would drastically improve
the privacy guarantee of both adaptive methods.

5. FUTURE DIRECTIONS

Throughout this paper, we focus on e-differential privacy, instead of the weaker (e,9)-
(approximate) differential privacy. Part of the reason is that an analogue of Lemma 2.8
does not seem to hold for (e, )-differentially private queries without further assumptions,
as the necessity to union-bound over the § “failure probability” that the privacy loss is
bounded for each query can erase the ex-post gains. We leave obtaining similar results for
approximate differential privacy as an open problem. More generally, we wish to extend our
ex-post privacy framework to approximate differential privacy, or to the stronger notion of
concentrated differential privacy (3). Such results will allow us to obtain ex-post privacy
guarantees for a much broader class of algorithms.
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FIGURE 1. Ex-post privacy loss. (1a) and (1c), left, represent ridge regres-
sion on the Twitter dataset, where Noise Reduction and DOUBLINGMETHOD
both use Covariance Perturbation. (1b) and (1d), right, represent logistic
regression on the KDD-99 Cup dataset, where both Noise Reduction and
DOUBLINGMETHOD use Output Perturbation. The top plots compare Noise
Reduction to the “theory approach” running the algorithm once using the
value of € that guarantees the desired expected error via a utility theorem.
The bottom compares to the DOUBLINGMETHOD baseline. Note the top plots
are generous to the theory approach: the theory curves promise only expected
error, whereas Noise Reduction promises a high probability guarantee. Each
point is an average of 80 trials (Twitter dataset) or 40 trials (KDD-99 dataset).
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