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Abstract. Traditional approaches to differential privacy assume a fixed privacy require-
ment ε for a computation, and attempt to maximize the accuracy of the computation
subject to the privacy constraint. As differential privacy is increasingly deployed in practical
settings, it may often be that there is instead a fixed accuracy requirement for a given
computation and the data analyst would like to maximize the privacy of the computation
subject to the accuracy constraint. This raises the question of how to find and run a
maximally private empirical risk minimizer subject to a given accuracy requirement. We
propose a general “noise reduction” framework that can apply to a variety of private empir-
ical risk minimization (ERM) algorithms, using them to “search” the space of privacy levels
to find the empirically strongest one that meets the accuracy constraint, and incurring only
logarithmic overhead in the number of privacy levels searched. The privacy analysis of our
algorithm leads naturally to a version of differential privacy where the privacy parameters
are dependent on the data, which we term ex-post privacy, and which is related to the
recently introduced notion of privacy odometers. We also give an ex-post privacy analysis
of the classical AboveThreshold privacy tool, modifying it to allow for queries chosen
depending on the database. Finally, we apply our approach to two common objective
functions, regularized linear and logistic regression, and empirically compare our noise
reduction methods to (i) inverting the theoretical utility guarantees of standard private
ERM algorithms and (ii) a stronger, empirical baseline based on binary search.
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1. Introduction and Related Work

Differential Privacy (7; 8) enjoys over a decade of study as a theoretical construct, and a
much more recent set of large-scale practical deployments, including by Google (10) and
Apple (11). As the large theoretical literature is put into practice, we start to see disconnects
between assumptions implicit in the theory and the practical necessities of applications. In
this paper we focus our attention on one such assumption in the domain of private empirical
risk minimization (ERM): that the data analyst first chooses a privacy requirement, and
then attempts to obtain the best accuracy guarantee (or empirical performance) that she can,
given the chosen privacy constraint. Existing theory is tailored to this view: the data analyst
can pick her privacy parameter ε via some exogenous process, and either plug it into a “utility
theorem” to upper bound her accuracy loss, or simply deploy her algorithm and (privately)
evaluate its performance. There is a rich and substantial literature on private convex
ERM that takes this approach, weaving tight connections between standard mechanisms in
differential privacy and standard tools for empirical risk minimization. These methods for
private ERM include output and objective perturbation (5; 14; 18; 4), covariance perturbation
(19), the exponential mechanism (16; 2), and stochastic gradient descent (2; 21; 12; 6; 20).

While these existing algorithms take a privacy-first perspective, in practice, product
requirements may impose hard accuracy constraints, and privacy (while desirable) may not be
the over-riding concern. In such situations, things are reversed: the data analyst first fixes an
accuracy requirement, and then would like to find the smallest privacy parameter consistent
with the accuracy constraint. Here, we find a gap between theory and practice. The only
theoretically sound method available is to take a “utility theorem” for an existing private
ERM algorithm and solve for the smallest value of ε (the differential privacy parameter)—and
other parameter values that need to be set—consistent with her accuracy requirement, and
then run the private ERM algorithm with the resulting ε. But because utility theorems tend
to be worst-case bounds, this approach will generally be extremely conservative, leading to a
much larger value of ε (and hence a much larger leakage of information) than is necessary
for the problem at hand. Alternately, the analyst could attempt an empirical search for
the smallest value of ε consistent with her accuracy goals. However, because this search
is itself a data-dependent computation, it incurs the overhead of additional privacy loss.
Furthermore, it is not a priori clear how to undertake such a search with nontrivial privacy
guarantees for two reasons: first, the worst case could involve a very long search which
reveals a large amount of information, and second, the selected privacy parameter is now
itself a data-dependent quantity, and so it is not sensible to claim a “standard” guarantee of
differential privacy for any finite value of ε ex-ante.

In this paper, we provide a principled variant of this second approach, which attempts
to empirically find the smallest value of ε consistent with an accuracy requirement. We
give a meta-method that can be applied to several interesting classes of private learning
algorithms and introduces very little privacy overhead as a result of the privacy-parameter
search. Conceptually, our meta-method initially computes a very private hypothesis, and then
gradually subtracts noise (making the computation less and less private) until a sufficient level
of accuracy is achieved. One key technique that significantly reduces privacy loss over naive
search is the use of correlated noise generated by the method of (15), which formalizes the
conceptual idea of “subtracting” noise without incurring additional privacy overhead. In order
to select the most private of these queries that meets the accuracy requirement, we introduce
a natural modification of the now-classic AboveThreshold algorithm (8), which iteratively
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checks a sequence of queries on a dataset and privately releases the index of the first to
approximately exceed some fixed threshold. Its privacy cost increases only logarithmically
with the number of queries. We provide an analysis of AboveThreshold that holds even if
the queries themselves are the result of differentially private computations, showing that if
AboveThreshold terminates after t queries, one only pays the privacy costs of AboveThreshold
plus the privacy cost of revealing those first t private queries. When combined with the
above-mentioned correlated noise technique of (15), this gives an algorithm whose privacy
loss is equal to that of the final hypothesis output – the previous ones coming “for free” –
plus the privacy loss of AboveThreshold. Because the privacy guarantees achieved by this
approach are not fixed a priori, but rather are a function of the data, we introduce and apply
a new, corresponding privacy notion, which we term ex-post privacy, and which is closely
related to the recently introduced notion of “privacy odometers” (17).

In Section 4, we empirically evaluate our noise reduction meta-method, which applies to
any ERM technique which can be described as a post-processing of the Laplace mechanism.
This includes both direct applications of the Laplace mechanism, like output perturbation
(5); and more sophisticated methods like covariance perturbation (19), which perturbs the
covariance matrix of the data and then performs an optimization using the noisy data. Our
experiments concentrate on `2 regularized least-squares regression and `2 regularized logistic
regression, and we apply our noise reduction meta-method to both output perturbation
and covariance perturbation. Our empirical results show that the active, ex-post privacy
approach massively outperforms inverting the theory curve, and also improves on a baseline
“ε-doubling” approach.

2. Privacy Background and Tools

2.1. Differential Privacy and Ex-Post Privacy. Let X denote the data domain. We
call two datasets D,D′ ∈ X ∗ neighbors (written as D ∼ D′) if D can be derived from D′ by
replacing a single data point with some other element of X .

Definition 2.1 (Differential Privacy (7)). Fix ε ≥ 0. A randomized algorithm A : X ∗ → O
is ε-differentially private if for every pair of neighboring data sets D ∼ D′ ∈ X ∗, and for
every event S ⊆ O:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S].

We call exp(ε) the privacy risk factor.

It is possible to design computations that do not satisfy the differential privacy definition,
but whose outputs are private to an extent that can be quantified after the computation
halts. For example, consider an experiment that repeatedly runs an ε′-differentially private
algorithm, until a stopping condition defined by the output of the algorithm itself is met.
This experiment does not satisfy ε-differential privacy for any fixed value of ε, since there is
no fixed maximum number of rounds for which the experiment will run (for a fixed number
of rounds, a simple composition theorem, Theorem 2.5, shows that the ε-guarantees in a
sequence of computations “add up.”) However, if ex-post we see that the experiment has
stopped after k rounds, the data can in some sense be assured an “ex-post privacy loss” of
only kε′. Rogers et al. (17) initiated the study of privacy odometers, which formalize this idea.
They study privacy composition when the data analyst can choose the privacy parameters of
subsequent computations as a function of the outcomes of previous computations.
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We apply a related idea here, for a different purpose. Our goal is to design one-shot
algorithms that always achieve a target accuracy but that may have variable privacy levels
depending on their input.

Definition 2.2. Given a randomized algorithm A : X ∗ → O, define the ex-post privacy loss1

of A on outcome o to be

Loss(o) = max
D,D′:D∼D′

log
Pr [A(D) = o]

Pr [A(D′) = o]
.

We refer to exp (Loss(o)) as the ex-post privacy risk factor.

Definition 2.3 (Ex-Post Differential Privacy). Let E : O → (R≥0 ∪ {∞}) be a function on
the outcome space of algorithm A : X ∗ → O. Given an outcome o = A(D), we say that A
satisfies E(o)-ex-post differential privacy if for all o ∈ O, Loss(o) ≤ E(o).

Note that if E(o) ≤ ε for all o, A is ε-differentially private. Ex-post differential privacy
has the same semantics as differential privacy, once the output of the mechanism is known:
it bounds the log-likelihood ratio of the dataset being D vs. D′, which controls how an
adversary with an arbitrary prior on the two cases can update her posterior.

2.2. Differential Privacy Tools. Differentially private computations enjoy two nice prop-
erties:

Theorem 2.4 Post Processing (7). Let A : X ∗ → O be any ε-differentially private algorithm,
and let f : O → O′ be any function. Then the algorithm f ◦A : X ∗ → O′ is also ε-differentially
private.

Post-processing implies that, for example, every decision process based on the output of
a differentially private algorithm is also differentially private.

Theorem 2.5 Composition (7). Let A1 : X ∗ → O, A2 : X ∗ → O′ be algorithms that are ε1-
and ε2-differentially private, respectively. Then the algorithm A : X ∗ → O ×O′ defined as
A(x) = (A1(x), A2(x)) is (ε1 + ε2)-differentially private.

The composition theorem holds even if the composition is adaptive—-see (9) for details.
The Laplace mechanism. The most basic subroutine we will use is the Laplace

mechanism. The Laplace Distribution centered at 0 with scale b is the distribution with
probability density function Lap (z|b) = 1

2be
− |z|

b . We say X ∼ Lap (b) when X has Laplace
distribution with scale b. Let f : X ∗ → Rd be an arbitrary d-dimensional function. The `1
sensitivity of f is defined to be ∆1(f) = maxD∼D′ ‖f(D)− f(D′)‖1. The Laplace mechanism
with parameter ε simply adds noise drawn independently from Lap

(
∆1(f)
ε

)
to each coordinate

of f(x).

Theorem 2.6 (7). The Laplace mechanism is ε-differentially private.

Gradual private release. Koufogiannis et al. (15) study how to gradually release
private data using the Laplace mechanism with an increasing sequence of ε values, with a
privacy cost scaling only with the privacy of the marginal distribution on the least private
release, rather than the sum of the privacy costs of independent releases. For intuition, the

1If A’s output is from a continuous distribution rather than discrete, we abuse notation and write
Pr[A(D) = o] to mean the probability density at output o.
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algorithm can be pictured as a continuous random walk starting at some private data v with
the property that the marginal distribution at each point in time is Laplace centered at v,
with variance increasing over time. Releasing the value of the random walk at a fixed point
in time gives a certain output distribution, for example, v̂, with a certain privacy guarantee
ε. To produce v̂′ whose ex-ante distribution has higher variance (is more private), one can
simply “fast forward” the random walk from a starting point of v̂ to reach v̂′; to produce
a less private v̂′, one can “rewind.” The total privacy cost is max{ε, ε′} because, given the
“least private” point (say v̂), all “more private” points can be derived as post-processings
given by taking a random walk of a certain length starting at v̂. Note that were the Laplace
random variables used for each release independent, the composition theorem would require
summing the ε values of all releases.

In our private algorithms, we will use their noise reduction mechanism as a building
block to generate a list of private hypotheses θ1, . . . , θT with gradually increasing ε values.
Importantly, releasing any prefix (θ1, . . . , θt) only incurs the privacy loss in θt. More formally:

Algorithm 1 Noise Reduction (15): NR(v,∆, {εt})
Input: private vector v, sensitivity parameter ∆, list ε1 < ε2 < · · · < εT
Set v̂T := v + Lap (∆/εT )
for t = T − 1, T − 2, . . . , 1 do

With probability
(

εt
εt+1

)2
: set v̂t := v̂t+1

Else: set v̂t := v̂t+1 + Lap (∆/εt)

Return v̂1, . . . , v̂T

Theorem 2.7 (15). Let f have `1 sensitivity ∆ and let v̂1, . . . , v̂T be the output of Algorithm
1 on v = f(D), ∆, and the increasing list ε1, . . . , εT . Then for any t, the algorithm which
outputs the prefix (v̂1, . . . , v̂t) is εt-differentially private.

2.3. AboveThreshold with Private Queries. Our high-level approach to our eventual
ERM problem will be as follows: Generate a sequence of hypotheses θ1, . . . , θT , each with
increasing accuracy and decreasing privacy; then test their accuracy levels sequentially,
outputting the first one whose accuracy is “good enough.” The classical AboveThreshold
algorithm (8) takes in a dataset and a sequence of queries and privately outputs the index of
the first query to exceed a given threshold (with some error due to noise). We would like to
use AboveThreshold to perform these accuracy checks, but there is an important obstacle: for
us, the “queries” themselves depend on the private data.2 A standard composition analysis
would involve first privately publishing all the queries, then running AboveThreshold on
these queries (which are now public). Intuitively, though, it would be much better to generate
and publish the queries one at a time, until AboveThreshold halts, at which point one would
not publish any more queries. The problem with analyzing this approach is that, a-priori,

2In fact, there are many applications beyond our own in which the sequence of queries input to AboveThresh-
old might be the result of some private prior computation on the data, and where we would like to release
both the stopping index of AboveThreshold and the “query object.” (In our case, the query objects will be
parameterized by learned hypotheses θ1, . . . , θT .)
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we do not know when AboveThreshold will terminate; to address this, we analyze the ex-post
privacy guarantee of the algorithm.3

Algorithm 2 InteractiveAboveThreshold: IAT(D, ε,W,∆,M)

Input: Dataset D, privacy loss ε, threshold W , `1 sensitivity ∆, algorithm M
Let Ŵ = W + Lap

(
2∆
ε

)
for each query t = 1, . . . , T do

Query ft ←M(D)t
if ft(D) + Lap

(
4∆
ε

)
≥ Ŵ : then Output (t, ft); Halt.

Output (T , ⊥).

Let us say that an algorithm M(D) = (f1, . . . , fT ) is (ε1, . . . , εT )-prefix-private if for
each t, the function that runsM(D) and outputs just the prefix (f1, . . . , ft) is εt-differentially
private.

Lemma 2.8. Let M : X ∗ → (X ∗ → O)T be a (ε1, . . . , εT )-prefix private algorithm that
returns T queries, and let each query output by M have `1 sensitivity at most ∆. Then
Algorithm 2 run on D, εA, W , ∆, and M is E-ex-post differentially private for E((t, ·)) =
εA + εt for any t ∈ [T ].

The proof, which is a variant on the proof of privacy for AboveThreshold (8), appears in
the appendix, along with an accuracy theorem for IAT.

3. Noise-Reduction with Private ERM

In this section, we provide a general private ERM framework that allows us to approach the
best privacy guarantee achievable on the data given a target excess risk goal. Throughout the
section, we consider an input datasetD that consists of n row vectorsX1, X2, . . . , Xn ∈ Rp and
a column y ∈ Rn. We will assume that each ‖Xi‖1 ≤ 1 and |yi| ≤ 1. Let di = (Xi, yi) ∈ Rp+1

be the i-th data record. Let ` be a loss function such that for any hypothesis θ and any
data point (Xi, yi) the loss is `(θ, (Xi, yi)). Given an input dataset D and a regularization
parameter λ, the goal is to minimize the following regularized empirical loss function over
some feasible set C:

L(θ,D) =
1

n

n∑
i=1

`(θ, (Xi, yi)) +
λ

2
‖θ‖22.

Let θ∗ = argminθ∈C `(θ,D). Given a target accuracy parameter α, we wish to privately
compute a θp that satisfies L(θp, D) ≤ L(θ∗, D) +α, while achieving the best ex-post privacy
guarantee. For simplicity, we will sometimes write L(θ) for L(θ,D).

One simple baseline approach is a “doubling method”: Start with a small ε value, run an
ε-differentially private algorithm to compute a hypothesis θ and use the Laplace mechanism
to estimate the excess risk of θ; if the excess risk is lower than the target, output θ; otherwise
double the value of ε and repeat the same process. (See the appendix for details.) As a result,
we pay for privacy loss for every hypothesis we compute and every excess risk we estimate.

In comparison, our meta-method provides a more cost-effective way to select the privacy
level. The algorithm takes a more refined set of privacy levels ε1 < . . . < εT as input and

3This result does not follow from a straightforward application of privacy odometers from (17), because
the privacy analysis of algorithms like the noise reduction technique is not compositional.
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generates a sequence of hypotheses θ1, . . . , θT such that the generation of each θt is εt-private.
Then it releases the hypotheses θt in order, halting as soon as a released hypothesis meets
the accuracy goal. Importantly, there are two key components that reduce the privacy loss
in our method:
(1) We use Algorithm 1, the “noise reduction” method of (15), for generating the sequence of

hypotheses: we first compute a very private and noisy θ1, and then obtain the subsequent
hypotheses by gradually “de-noising” θ1. As a result, any prefix (θ1, . . . , θk) incurs a
privacy loss of only εk (as opposed to (ε1 + . . .+ εk) if the hypotheses were independent).

(2) When evaluating the excess risk of each hypothesis, we use Algorithm 2, Interactive-
AboveThreshold, to determine if its excess risk exceeds the target threshold. This incurs
substantially less privacy loss than independently evaluating the excess risk of each
hypothesis using the Laplace mechanism (and hence allows us to search a finer grid of
values).
For the rest of this section, we will instantiate our method concretely for two ERM

problems: ridge regression and logistic regression. In particular, our noise-reduction method
is based on two private ERM algorithms: the recently introduced covariance perturbation
technique (19) and the output perturbation method (5).

3.1. Covariance Perturbation for Ridge Regression. In ridge regression, we consider
the squared loss function: `((Xi, yi), θ) = 1

2(yi − 〈θ,Xi〉)2, and hence empirical loss over the
data set is defined as

L(θ,D) =
1

2n
‖y −Xθ‖22 +

λ‖θ‖22
2

,

where X denotes the (n × p) matrix with row vectors X1, . . . , Xn and y = (y1, . . . , yn).
Since the optimal solution for the unconstrained problem has `2 norm no more than

√
1/λ

(see the appendix for a proof), we will focus on optimizing θ over the constrained set
C = {a ∈ Rp | ‖a‖2 ≤

√
1/λ}, which will be useful for bounding the `1 sensitivity of the

empirical loss.
Before we formally introduce the covariance perturbation algorithm due to (19), observe

that the optimal solution θ∗ can be computed as

θ∗ = argmin
θ∈C

L(θ,D) = argmin
θ∈C

(θᵀ(XᵀX)θ − 2〈Xᵀy, θ〉)
2n

+
λ‖θ‖22

2
.

In other words, θ∗ only depends on the private data through Xᵀy and XᵀX. To compute a
private hypothesis, the covariance perturbation method simply adds Laplace noise to each
entry of Xᵀy and XᵀX (the covariance matrix), and solves the optimization based on the
noisy matrix and vector. The formal description of the algorithm and its guarantee are
in Theorem 3.1. Our analysis differs from the one in (19) in that their paper considers the
“local privacy” setting, and also adds Gaussian noise whereas we use Laplace. The proof is
deferred to the appendix.

Theorem 3.1 . Fix any ε > 0. For any input data set D, consider the mechanismM that
computes

θp = argmin
θ∈C

1

2n
(θᵀ(XᵀX +B)θ − 2〈Xᵀy + b, θ〉) +

λ‖θ‖22
2

,
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where B ∈ Rp×p and b ∈ Rp×1 are random Laplace matrices such that each entry of B and b
is drawn from Lap (4/ε). ThenM satisfies ε-differential privacy and the output θp satisfies

E
B,b

[L(θp)− L(θ∗)] ≤
4
√

2(2
√
p/λ+ p/λ)

nε
.

In our algorithm CovNR, we will apply the noise reduction method, Algorithm 1, to
produce a sequence of noisy versions of the private data (XᵀX,Xᵀy): (Z1, z1), . . . , (ZT , zT ),
one for each privacy level. Then for each (Zt, zt), we will compute the private hypothesis by
solving the noisy version of the optimization problem in Equation (3.1). The full description
of our algorithm CovNR is in Algorithm 3, and satisfies the following guarantee:

Algorithm 3 Covariance Perturbation with Noise-Reduction: CovNR(D, {ε1, . . . , εT }, α, γ)

Input: private data set D = (X, y), accuracy parameter α, privacy levels ε1 < ε2 < . . . <
εT , and failure probability γ
Instantiate InteractiveAboveThreshold: A = IAT(D, ε0,−α/2,∆, ·) with ε0 =

16∆(log(2T/γ))/α and ∆ = (
√

1/λ+ 1)2/(n)

Let C = {a ∈ Rp | ‖a‖2 ≤
√

1/λ} and θ∗ = argminθ∈C L(θ)
Compute noisy data:

{Zt} = NR((XᵀX), 2, {ε1/2, . . . , εT /2}), {zt} = NR((XᵀY ), 2, {ε1/2, . . . , εT /2})
for t = 1, . . . , T : do

θt = argmin
θ∈C

1

2n

(
θᵀZtθ − 2〈zt, θ〉

)
+
λ‖θ‖22

2
(3.1)

Let f t(D) = L(θ∗, D)− L(θt, D); Query A with query f t to check accuracy
if A returns (t, f t) then Output (t, θt)

Output: (⊥, θ∗)

Theorem 3.2 . The instantiation of CovNR(D, {ε1, . . . , εT }, α, γ) outputs a hypothesis θp
that with probability 1− γ satisfies L(θp)−L(θ∗) ≤ α. Moreover, it is E-ex-post differentially
private, where the privacy loss function E : (([T ] ∪ {⊥})× Rp)→ (R≥0 ∪ {∞}) is defined as
E((k, ·)) = ε0 + εk for any k 6=⊥, E((⊥, ·)) =∞, and

ε0 =
16(
√

1/λ+ 1)2 log(2T/γ)

nα
is the privacy loss incurred by IAT.

3.2. Output Perturbation for Logistic Regression. Next, we show how to combine the
output perturbation method with noise reduction for the ridge regression problem.4 In this
setting, the input data consists of n labeled examples (X1, y1), . . . , (Xn, yn), such that for
each i, Xi ∈ Rp, ‖Xi‖1 ≤ 1, and yi ∈ {−1, 1}. The goal is to train a linear classifier given

4We study the ridge regression problem for concreteness. Our method works for any ERM problem with
strongly convex loss functions.
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by a weight vector θ for the examples from the two classes. We consider the logistic loss
function: `(θ, (Xi, yi)) = log(1 + exp(−yiθᵀXi)), and the empirical loss is

L(θ,D) =
1

n

n∑
i=1

log(1 + exp(−yiθᵀXi)) +
λ‖θ‖22

2
.

The output perturbation method simply adds Laplace noise to perturb each coordinate
of the optimal solution θ∗. The following is the formal guarantee of output perturbation.
Our analysis deviates slightly from the one in (5) since we are adding Laplace noise (see the
appendix).

Theorem 3.3 . Fix any ε > 0. Let r =
2
√
p

nλε . For any input dataset D, consider the
mechanism that first computes θ∗ = argminθ∈Rp L(θ), then outputs θp = θ∗ + b, where b is
a random vector with its entries drawn i.i.d. from Lap (r). ThenM satisfies ε-differential
privacy, and θp has excess risk

E
b

[L(θp)− L(θ∗)] ≤ 2
√

2p

nλε
+

4p2

n2λε2
.

Given the output perturbation method, we can simply apply the noise reduction method
NR to the optimal hypothesis θ∗ to generate a sequence of noisy hypotheses. We will again
use InteractiveAboveThreshold to check the excess risk of the hypotheses. The full algorithm
OutputNR follows the same structure in Algorithm 3, and we defer the formal description
to the appendix.

Theorem 3.4 . The instantiation of OutputNR(D, ε0, {ε1, . . . , εT }, α, γ) is E-ex-post dif-
ferentially private and outputs a hypothesis θp that with probability 1− γ satisfies L(θp)−
L(θ∗) ≤ α, where the privacy loss function E : (([T ] ∪ {⊥})× Rp)→ (R≥0 ∪ {∞}) is defined
as E((k, ·)) = ε0 + εk for any k 6=⊥, E((⊥, ·)) =∞, and

ε0 ≤
32 log(2T/γ)

√
2 log 2/λ

nα
is the privacy loss incurred by IAT.

Proof sketch of Theorems 3.2 and 3.4. The accuracy guarantees for both algorithms follow
from an accuracy guarantee of the IAT algorithm (a variant on the standard AboveThreshold
bound) and the fact that we output θ∗ if IAT identifies no accurate hypothesis. For the
privacy guarantee, first note that any prefix of the noisy hypotheses θ1, . . . , θt satisfies εt-
differential privacy because of our instantiation of the Laplace mechanism (see the appendix
for the `1 sensitivity analysis) and noise-reduction method NR. Then the ex-post privacy
guarantee directly follows Lemma 2.8.

4. Experiments

To evaluate the methods described above, we conducted empirical evaluations in two settings.
We used ridge regression to predict (log) popularity of posts on Twitter in the dataset of
(1), with p = 77 features and subsampled to n =100,000 data points. Logistic regression
was applied to classifying network events as innocent or malicious in the KDD-99 Cup
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dataset (13), with 38 features and subsampled to 100,000 points. Details of parameters and
methods appear in the appendix.5

In each case, we tested the algorithm’s average ex-post privacy loss for a range of input
accuracy goals α, fixing a modest failure probability γ = 0.1 (and we observed that excess
risks were concentrated well below α/2, suggesting a pessimistic analysis). The results show
our meta-method gives a large improvement over the “theory” approach of simply inverting
utility theorems for private ERM algorithms. (In fact, the utility theorem for the popular
private stochastic gradient descent algorithm does not even give meaningful guarantees for
the ranges of parameters tested; one would need an order of magnitude more data points, and
even then the privacy losses are enormous, perhaps due to loose constants in the analysis.)

To gauge the more modest improvement over DoublingMethod, note that the variation
in the privacy risk factor eε can still be very large; for instance, in the ridge regression setting
of α = 0.05, Noise Reduction has eε ≈ 10.0 while DoublingMethod has eε ≈ 495; at
α = 0.075, the privacy risk factors are 4.65 and 56.6 respectively.

Interestingly, for our meta-method, the contribution to privacy loss from “testing” hy-
potheses (the InteractiveAboveThreshold technique) was significantly larger than that from
“generating” them (NoiseReduction). One place where the InteractiveAboveThreshold anal-
ysis is loose is in using a theoretical bound on the maximum norm of any hypothesis to
compute the sensitivity of queries. The actual norms of hypotheses tested was significantly
lower which, if taken as guidance to the practitioner in advance, would drastically improve
the privacy guarantee of both adaptive methods.

5. Future Directions

Throughout this paper, we focus on ε-differential privacy, instead of the weaker (ε, δ)-
(approximate) differential privacy. Part of the reason is that an analogue of Lemma 2.8
does not seem to hold for (ε, δ)-differentially private queries without further assumptions,
as the necessity to union-bound over the δ “failure probability” that the privacy loss is
bounded for each query can erase the ex-post gains. We leave obtaining similar results for
approximate differential privacy as an open problem. More generally, we wish to extend our
ex-post privacy framework to approximate differential privacy, or to the stronger notion of
concentrated differential privacy (3). Such results will allow us to obtain ex-post privacy
guarantees for a much broader class of algorithms.

Acknowledgment

The authors wish to acknowledge fruitful discussions with A and B.

References

[1] The AMA Team at Laboratoire d’Informatique de Grenoble. Buzz prediction in on-
line social media, 2017. URL: http://ama.liglab.fr/resourcestools/datasets/
buzz-prediction-in-social-media/.

[2] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empirical risk minimiza-
tion, revisited. CoRR, abs/1405.7085, 2014. URL: http://arxiv.org/abs/1405.7085.

5 A full implementation of our algorithms appears at https://github.com/steven7woo/
Accuracy-First-Differential-Privacy and (22).

http://ama.liglab.fr/resourcestools/datasets/buzz-prediction-in-social-media/
http://ama.liglab.fr/resourcestools/datasets/buzz-prediction-in-social-media/
http://arxiv.org/abs/1405.7085
https://github.com/steven7woo/Accuracy-First-Differential-Privacy
https://github.com/steven7woo/Accuracy-First-Differential-Privacy


ACCURACY FIRST 11

0.00 0.05 0.10 0.15 0.20

Input α (excess error guarantee)

0

5

10

15

20

e
x
-p

o
st

 p
ri

v
a
cy

 l
o
ss

 ε

Comparison to theory approach

CovarPert theory

OutputPert theory

NoiseReduction

(a) Linear (ridge) regression,
vs theory approach.

0.00 0.05 0.10 0.15 0.20

Input α (excess error guarantee)

0

2

4

6

8

10

12

14

e
x
-p

o
st

 p
ri

v
a
cy

 l
o
ss

 ε

Comparison to theory approach

OutputPert theory

NoiseReduction

(b) Regularized logistic regression,
vs theory approach.

0.00 0.05 0.10 0.15 0.20

Input α (excess error guarantee)

0

2

4

6

8

10

e
x
-p

o
st

 p
ri

v
a
cy

 l
o
ss

 ε

Comparison to Doubling

Doubling

NoiseReduction

(c) Linear (ridge) regression,
vs DoublingMethod.

0.00 0.05 0.10 0.15 0.20

Input α (excess error guarantee)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
e
x
-p

o
st

 p
ri

v
a
cy

 l
o
ss

 ε
Comparison to Doubling

Doubling

NoiseReduction

(d) Regularized logistic regression,
vs DoublingMethod.
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Appendix A. Missing Details and Proofs

A.1. AboveThreshold.

Proof of Lemma 2.8. Let D,D′ be neighboring databases. We will instead analyze the
algorithm that outputs the entire prefix f1, . . . , ft when stopping at time t. Because IAT is
a post-processing of this algorithm, and privacy can only be improved under post-processing,
this suffices to prove the theorem. We wish to show for all outcomes o = (t, f1, . . . , ft):

Pr [IAT(D) = (t, f1, f2, . . . , ft)] ≤ eεA+εt Pr
[
IAT(D′) = (t, f1, f2, . . . , ft)

]
.

We have directly from the privacy guarantee of InteractiveAboveThreshold that for every
fixed sequence of queries f1, . . . , ft:

Pr [IAT(D) = t | f1, . . . , ft] ≤ eεA Pr
[
IAT(D′) = t | f1, . . . , ft

]
(A.1)

because the guarantee of InteractiveAboveThreshold is quantified over all data-independent
sequences of queries f1, . . . , fT , and by definition of the algorithm, the probability of stopping
at time t is independent of the identity of any query f ′t for t′ > t.

Now we can write:

Pr [IAT(D) = t, f1, . . . ft] = Pr [IAT(D) = t | f1, . . . ft] Pr [M(D) = f1, . . . ft] .

By assumption, M is prefix-private, in particular, for fixed t and any f1, . . . , ft:

Pr [M(D) = f1, . . . ft] ≤ eεt Pr
[
M(D′) = f1, . . . ft

]
Thus,

Pr [IAT(D) = t, f1, . . . ft]

Pr [IAT(D′) = t, f1, . . . ft]
=

Pr [IAT(D) = t | f1, . . . ft]

Pr [IAT(D′) = t|f1, . . . , ft]

Pr [M(D) = f1, . . . ft]

Pr [M(D′) = f1, . . . ft]

≤ eεA · eεt = eεA+εt ,

as desired.

We also include the following utility theorem. We say that an instantiation of Interac-
tiveAboveThreshold is (α, β) accurate with respect to a threshold W and stream of queries
f1, . . . fT if except with probability at most γ, the algorithm outputs a query ft only if
ft(D) ≥W − α.

Theorem A.1 . For any sequence of 1-sensitive queries f1, . . . , fT such InteractiveAboveThresh-
old is (α, β)-accurate for

α =
8∆(log(T ) + log(2/γ))

ε
.

A.2. Doubling Method. We now formally describe the DoublingMethod discussed in
Section 1 and Section 3, and give a formal ex-post privacy analysis. Let θ∗ = argminθ∈Rp L(θ).
DoublingMethod accepts a list of privacy levels ε1 < ε2 < . . . < εT , where εi = 2εi−1. We
show in Claim B.1 that 2 is the optimal factor to scale ε by. It also takes in a failure probability
γ, and a black-box private ERM mechanism M that has the following guarantee: Fixing
a dataset D, M takes as input D and a privacy level εi, and generates an εi-differentially
private hypothesis θi, such that the query f i(D) = L(D, θ∗)− L(D, θi) has `1 sensitivity at
most ∆.
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Algorithm 4 Doubling Method: DoublingMethod(D, {ε1, . . . , εT },M, α, γ)

Input: private dataset D, accuracy α, failure probability γ, mechanism M

for each t = 1, . . . , T do
Generate θt ←M(D)t
Let f t(D) = L(D, θ∗)− L(D, θt)

Generate wt ∼ Lap
(

α
2 log(T

γ
)

)
if f t(D) + wt ≥ −α/2: then Output (t, f t); Halt.

Output T + 1, θ∗.

Theorem A.2 . For k ≤ T , define the privacy loss function E(k, θk) = 2k∆ log(T/γ)
α + (2k −

1)ε1, andE(T + 1, θ∗) =∞. Then DoublingMethod is E-ex-post differentially private, and
is 1− γ accurate.

Proof. Since if the algorithm reaches step T + 1 it outputs the true minimizer which has
error 0 < α, it could only fail to output a hypothesis with error less than α if it stops at
i ≤ T . DoublingMethod only stops early if the noisy query is greater than −α/2; or
f i(D) + wi ≥ −α/2. But f i(D) ≤ −α, which forces wi ≥ α/2. By properties of the Laplace

distribution, Pr [wi ≥ α/2] = 1
2exp(−α2

2 log( T
2γ

)

α ) = γ/T . Hence by union bound over T the
total failure probability is at most γ.

By the assumption, generating the kth private hypothesis incurs privacy loss ε1 ∗ 2k−1.
By the Laplace mechanism, evaluating the error of the sensitivity ∆ query f i is 2∆ log(T/γ)

α -
differentially private. Theorem 3.6 in (17) then says that the ex-post privacy loss of outputting
k ≤ T is

∑k
i=1[ε1 ∗ 2k−1 + 2∆ log(T/γ)

α ] = 2k∆ log(T/γ)
α + (2k − 1)ε1, as desired.

Remark A.3. In practice, the private empirical risk minimization mechanism M may not
always output a hypothesis that leads to queries with uniformly bounded `1 sensitivity. In this
case, a projection that scales down, the hypothesis norm can be applied prior to evaluating
the private query error. For a discussion of scaling the norm down refer to the experiments
section of the appendix.

A.3. Ridge Regression. In this subsection, we let `(θ, (Xi, yi)) = 1
2(yi− 〈θ,Xi〉)2, and the

empirical loss over the data set is defined as

L(D, θ) =
1

2n
‖y −Xθ‖22 +

λ‖θ‖22
2

,

where X denotes the (n× p) matrix with row vectors X1, . . . , Xn and y = (y1, . . . , yn). We
assume that for each i, ‖Xi‖1 ≤ 1 and |yi| ≤ 1. For simplicity, we will sometimes write L(θ)
for L(D, θ).

First, we show that the unconstrained optimal solution in ridge regression has bounded
norm.

Lemma A.4. Let θ∗ = argminθ∈Rd L(θ). Then ||θ∗||2 ≤ 1√
λ
.
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Proof. For any θ ∈ Rp, L(θ∗) ≤ L(θ). In particular for θ = 0,

L(θ∗) ≤ L(0) =
n∑
i=1

1

2n
`((Xi, yi), 0) ≤ 1

2
.

Note that for any θ, `((Xi, yi), θ) ≥ 0, so this means L(θ∗) ≥ λ
2 ||θ

∗||22, which forces λ
2 ||θ

∗||22 ≤
1
2 , and so ||θ∗||2 ≤ 1√

λ
as desired.

The following claim provides a bound on the sensitivity for the excess risk, which are
the queries we send to InteractiveAboveThreshold.

Claim A.5. Let C be a bounded convex set in Rp with ‖C‖2 ≤M . Let D and D′ be a pair
of adjacent datasets, and let θ∗ = argminθ∈C L(θ,D) and θ• = argminθ∈C L(θ,D′). Then for
any θ ∈ C,

|(L(θ,D)− L(θ∗, D))− (L(θ,D′)− L(θ•, D′))| ≤ (M + 1)2

n
.

The following lemma provides a bound on the `1 sensitivity for the matrix XᵀX and
vector Xᵀy.

Lemma A.6. Fix any i ∈ [n]. Let X and Z be two n × p matrices such that for all rows
j 6= i, Xj = Zj. Let y, y′ ∈ Rn such that yj = y′j for all j 6= i. Then

‖XᵀX − ZᵀZ‖1 ≤ 2 and ‖Xᵀy − Zᵀy′‖1 ≤ 2,

as long as ‖Xi‖, ‖Zi‖, |yi|, |y′i| ≤ 1.

Proof. We can write

‖XᵀX − ZᵀZ‖1 = ‖
∑
j

(
Xᵀ
jXj − Zᵀ

j Zj

)
‖1

= ‖Xᵀ
i Xi − Zᵀ

i Z‖1
≤ ‖Xᵀ

i Xi‖1 + ‖Zᵀ
i Zi‖1

= ‖Xi‖21 + ‖Zi‖21 ≤ 2.

Similarly,

‖Xᵀy − Zᵀy′‖1 = ‖
∑
j

(
yjXj − y′jZj

)
‖1

= ‖yiXi − y′iZi‖1
= ‖yiXi‖1 + ‖y′iZi‖1
= ‖Xi‖1 + ‖Zi‖1 ≤ 2.

This completes the proof.
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Before we proceed to give a formal proof for Theorem 3.1, we will also give the following
basic fact about Laplace random vectors.

Claim A.7. Let ν = (ν1, . . . , νk) ∈ Rk such that each νi is an independent random variable
drawn from the Laplace distribution Lap (r). Then E [‖ν‖2] ≤

√
2kr.

Proof. By Jensen’s inequality,

E [‖ν‖2] = E

√∑
i

ν2
i

 ≤
√√√√E

[∑
i

ν2
i

]
.

Note that by linearity of expectation and the variance of the Laplace distribution

E

[∑
i

ν2
i

]
=
∑
i

E
[
ν2
i

]
=
∑
i

2r2 = 2kr2.

Therefore, we have E [‖ν‖2] ≤
√

2kr.

Proof of Theorem 3.1. In the algorithm, we compute Z = XᵀX +B and z = Xᵀy+ b, where
the entries of B and b are drawn i.i.d. from Lap (4/ε). Note that the output θp is simply
a post-processing of the noisy matrix Z and vector z. Furthermore, by Lemma A.6, the
joint vector (Z, z) is has sensitivity bounded by 4 with respect to `1 norm. Therefore, the
mechanism satisfies ε-differential privacy by the privacy guarantee of the Laplace mechanism.

Let M =
√

1/λ and Lp(θ) = 1
2n (−2〈z, θ〉) + 1

2n(θᵀZθ) +
λ‖θ‖22

2 . Observe that θp =
argminθ∈C Lp(θ). Our goal is to bound L(θp)− L(θ∗), which can be written as follows

L(θp)− L(θ∗) = L(θp)− Lp(θp) + Lp(θp)− Lp(θ∗) + Lp(θ
∗)− L(θ∗)

≤ L(θp)− Lp(θp) + Lp(θ
∗)− L(θ∗)

=
1

2n

(
2〈b, θp〉 − θᵀpBθp

)
− 1

2n
(2〈b, θ∗〉 − (θ∗)ᵀBθ∗)

Moreover, 〈b, θp〉 ≤ ‖b‖2‖θp‖2 ≤M‖b‖2 and

−θᵀpBθp = −
∑

(s,t)∈[p]2

Bst(θp)s(θp)t

≤

∑
(s,t)

B2
st

1/2(∑
s,t

(θp)
2
s(θp)

2
t

)1/2

= ‖B‖F

(∑
s

(θp)
2
s

)2
1/2

≤ ‖B‖FM2
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By Claim A.7, we also have E [‖B‖F ] ≤ 4
√

2p/ε and E [‖b‖2] ≤ 4
√

2p/ε. Finally,

E [L(θp)− L(θ∗)] ≤ E
[

1

2n

(
2〈b, θp〉 − θᵀpBθp

)
− 1

2n
(2〈b, θ∗〉 − (θ∗)ᵀBθ∗)

]
= E

[
2〈b, θp〉 − θᵀpBθp

2n

]
≤

E [2M‖b‖2] + E
[
M2‖B‖F

]
2n

≤
4
√

2(2
√
pM + pM2)

nε
which recovers our stated bound.

Next, we will also provide a theoretical result for applying output perturbation (with
Laplace noise) to the ridge regression problem. This will provides us the “theory curve” for
output perturbation in ridge regression plot of Figure 1a.

First, the following sensitivity bound on the optimal solution for L follows directly from
the strong convexity of L.

Lemma A.8. Let C be a bounded convex set in Rp with ‖C‖2 ≤M . Let D and D′ be a pair
of neighboring datasets, and let θ∗ = argminθ∈C L(θ,D) and θ• = argminθ∈C L(θ,D′). Then

‖θ∗ − θ•‖1 ≤ (M + 1)
√

p
nλ .

Theorem A.9 . Let ε > 0 and C be a bounded convex set with ‖C‖2 ≤
√

1/λ. Let
r = (

√
1/λ+ 1)

√
p/(nλ)/ε. Consider the following mechanismM that for any input dataset

D first computes the optimal solution θ∗ = argminθ∈C L(θ), and then outputs θp = θ∗ + b,
where b is a random vector with its entries drawn i.i.d. from Lap (r). Then M satisfies
ε-differential privacy, and θp satisfies

E
b

[L(θp)− L(θ∗)] ≤=

(
1

n
+ λ

)
(
√

1/λ+ 1)2p2

nλε2
.

Proof. The privacy guarantee follows directly from the use of Laplace mechanism and the `1
sensitivity bound in Lemma A.8.

For each data point di = (Xi, yi), we have

(yi − 〈θp, Xi〉)2 − (yi − 〈θ∗, Xi〉)2 = (〈θp, Xi〉)2 − (〈θ∗, Xi〉)2 − 2〈b,Xi〉
= bᵀ(Xᵀ

i Xi)b+ (θ∗)ᵀ(Xᵀ
i Xi)b+ bᵀ(Xᵀ

i Xi)θ
∗ − 2〈b,Xi〉

Since each entry in b has mean 0, we can simplify the expectation as

E
[
(yi − 〈θp, Xi〉)2 − (yi − 〈θ∗, Xi〉)2

]
= E [bᵀ(Xᵀ

i Xi)b]

= E
[
(〈b,Xi〉)2

]
≤ E

[
‖b‖22‖Xi‖22

]
= E

[
‖b‖22

]
E
[
‖Xi‖22

]
≤ E

[
‖b‖22

]
≤ 2pr2



ACCURACY FIRST 19

In the following, let M =
√

1/λ. We can then bound

‖θp‖22 − ‖θ∗‖22 =
∑
s∈[p]

[
(θs + bs)

2 − θ2
s

]
=
∑
s∈[p]

[
2θsbs + b2s

]
,

Again, since each bs is drawn from Lap (r), we get

E
[
‖θp‖22 − ‖θ∗‖22

]
= E

[∑
s

b2s

]
=
∑
s

E
[
b2s
]

= 2pr2.

To put all the pieces together and plugging in the value of r, we get

E
b

[L(θp)− L(θ∗)] ≤
(

1

2n
+
λ

2

)
2pr2

=

(
1

n
+ λ

)
(M + 1)2p2

nλε2

which recovers our stated bound.

A.4. Logistic Regression. In this subsection, the input data D consists of n labelled
examples (X1, y1), . . . , (Xn, yn), such that for each i, xi ∈ Rp, ‖xi‖1 ≤ 1, and yi ∈ {−1, 1}.

We consider the logistic loss function: `(θ, (Xi, yi)) = log(1 + exp(−yiθᵀXi)), and our
empirical loss is defined as

L(θ,D) =
1

n

n∑
i=1

log(1 + exp(−yiθᵀXi)) +
λ‖θ‖22

2
.

In output perturbation, the noise needs to scale with the `1-sensitivity of the optimal
solution, which is given by the following lemma.

Lemma A.10. Let D and D′ be a pair of neighboring datasets. Let θ = argminw∈Rp L(w,D)

and θ′ = argminw′∈Rp L(w′, D′). Then ‖θ − θ′‖1 ≤
2
√
p

nλ .

Proof of Lemma A.10. By Corollary 8 of (5), we can bound

‖θ − θ′‖2 ≤
2

nλ

By the fact that ‖a‖1 ≤
√
p‖a‖2 for any a ∈ Rp, we recover the stated result.
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We will show that the optimal solution for the unconstrained problem has `2 norm no
more than

√
2 log 2/λ.

Claim A.11. The (unconstrained) optimal solution θ∗ has norm ‖θ∗‖2 ≤
√

2 log 2
λ .

Proof. Note that the weight vector θ = ~0 has loss log 2. Therefore, L(θ∗) ≤ log 2. Since the
logistic loss is positive, we know that the regularization term

λ

2
‖θ∗‖22 ≤ log 2.

It follows that ‖θ∗‖2 ≤
√

2 log 2
λ .

We will focus on generating hypotheses θ within the set C = {a ∈ Rp | ‖a‖2 ≤√
2 log 2/λ}. Then we can bound the `1 sensitivity of the excess risk using the following

result.

Claim A.12. Let D and D′ be a pair of neighboring datasets. Then for any θ ∈ Rp such
that ‖θ‖2 ≤M ,

|L(θ,D)− L(θ,D′)| ≤ 2

n
log

(
1 + exp(M)

1 + exp(−M)

)
The following fact is useful for our utility analysis for the output perturbation method.

Claim A.13. Fix any data point (x, y) such that ‖x‖1 ≤ 1 and y ∈ {−1, 1}. The logistic
loss function `(θ, (x, y)) is a 1-Lipschitz function in θ.

Proof of Theorem 3.3. The privacy guarantee follows directly from the use of Laplace mech-
anism and the `1-sensitivity bound in Lemma A.10. Since the logistic loss function is
1-Lipschitz. For any (x, y) in our domain,

|`(θ∗, (x, y))− `(θp, (x, y))| ≤ ‖θ∗ − θp‖2 = ‖b‖2.
Furthermore,

‖θp‖22 − ‖θ∗‖22 = ‖θ∗ + b‖22 − ‖θ∗‖22 = 2〈b, θ∗〉+ ‖b‖22
By Claim A.7 and the property of the Laplace distribution, we know that

E [‖b‖2] ≤
√

2pr and E
[
‖b‖22

]
= 2pr2.

It follows that

E
b

[L(θp)− L(θ∗)] ≤ E
b

[‖b‖2] +
λ

2
E
[
‖b‖22

]
≤
√

2pr + pλr2 =
2
√

2pr

nλε
+

4p2

n2λε2
,

which recovers the stated bound.
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Algorithm 5 Output Perturbation with Noise-Reduction:
OutputNR(D, {ε1, . . . , εT }, α, γ)

Input: private data set D = (X, y), accuracy parameter α, privacy levels ε1 < ε2 < . . . <
εT , and failure probability γ
Let M =

√
2 log 2/λ

Instantiate Interactive AboveThreshold: A = (D, ε0, α/2, 2 log (1 + exp(M))/(1 + exp(−M))/(n), ·)with
ε0 = 16∆(log(2T/γ))/α and ∆ = 2 log (1 + exp(M))/(1 + exp(−M))/(n)

Let C = {a ∈ Rp | ‖a‖2 ≤
√

1/λ} and θ∗ = argminθ∈Rp L(θ)

Generate hypotheses: {θt} = NR(θ∗,
2
√
p

nλ , {ε1, . . . , εT })
for t = 1, . . . , T : do

if ‖θt‖2 ≤M then Set θt = M(θt/‖θt‖2)

Let f t(D) = L(D, θ∗)− L(D, θt)
Query A with f t
if yes then Output (t, θt)

Output: (⊥, θ∗)

We include the full details of OutputNR in Algorithm 5.

Appendix B. Experiments

B.1. Parameters and data. For simplicity and to avoid over-fitting, we fixed the following
parameters for both experiments:
• n =100,000 (number of data points)
• λ = 0.005 (regularization parameter)
• γ = 0.10 (requested failure probability)
• ε1 = 4E, where E is the inversion of the theory guarantee for the underlying algorithm.
For example in the logistic regression setting where the algorithm is Output Perturbation,
E is the value such that setting ε = E guarantees expected excess risk of at most α.
• εT = 1.0/n.
• α = 0.005, 0.010, 0.015, . . . , 0.200 (requested excess error bound).
For NoiseReduction, we choose T = 1000 (maximum number of iterations) and set εt = ε1r

t

for the appropriate r, i.e. r =
(
εT
ε1

)1/T
.

For the Doubling method, T is equal to the number of doubling steps until εt exceeds
εT , i.e. T = dlog2(ε1/εT )e.

Features, labels, and transformations. The Twitter dataset has p = 77 features (dimension
of each x), relating to measurements of activity relating to a posting; the label y is a
measurement of the “buzz” or success of the posting. Because general experience suggests
that such numbers likely follow a heavy-tailed distribution, we transformed the labels by
y 7→ log(1 + y) and set the taks of predicting the transformed label.

The KDD-99 Cup dataset has p = 38 features relating to attributes of a network
connection such as duration of connection, number of bytes sent in each direction, binary
attributes, etc. The goal is to classify connections as innocent or malicious, with malicious
connections broken down into further subcategories. We transformed three attributes
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containing likely heavy-tailed data (the first three mentioned above) by xi 7→ log(1 + xi),
dropped three columns containing textual categorical data, and transformed the labels into 1
for any kind of malicious connection and 0 for an innocent one. (The feature length p = 38
is after dropping the text columns.)

For both datasets, we transformed the data by renormalizing to maximum L1-norm 1.
That is, we computed M = maxi ‖xi‖1, and transformed each xi 7→ xi/M . In the case of
the Twitter dataset, we did the same (separately) for the y labels. This is not a private
operation (unlike the previous ones) on the data, as it depends precisely on the maximum
norm. We do not consider the problem of privately ensuring bounded-norm data, as it is
orthogonal to the questions we study.

The code for the experiments is implemented in python3 using the numpy and scikit-learn
libraries.

B.2. Additional results. Figure 2 plots the empirical accuracies of the output hypotheses,
to ensure that the algorithms are achieving their theoretical guarantees. In fact, they do
significantly better, which is reasonable considering the private testing methodology: set a
threshold significantly below the goal α, add independent noise to each query, and accept
only if the query plus noise is smaller than the threshold. Combined with the requirement to
use tail bounds, the accuracies tend to be significantly smaller than α and with significantly
higher probability than 1− γ. (Recall: this is not necessarily a good thing, as it probably
costs a significant amount of extra privacy.)

Figure 3 shows the breakdown in privacy losses between the “privacy test” and the
“hypothesis generator”. In the case of NoiseReduction, these are AboveThreshold’s εA and
the εt of the private method, Covariance Perturbation or Output Perturbation. In the
case of Doubling, these are the accrued ε due to tests at each step and due to Covariance
Perturbation or Output Perturbation for outputting the hypotheses.

This shows the majority of the privacy loss is due to testing for privacy levels. One reason
why might be that the cost of privacy tests depends heavily on certain constants, such as the
norm of the hypothesis being tested. This norm is upper-bounded by a theoretical maximum
which is used, but a smaller maximum would allow for significantly higher computed privacy
levels for the same algorithm. In other words, the analysis might be loose compared to an
analysis that knows the norms of the hypotheses, although this is a private quantity. Figure
4 supports the conclusion that generally, the theoretical maximum was very pessimistic in
our cases. Note that a tenfold reduction in norm gives a tenfold reduction in privacy level for
logistic regression, where sensitivity is linear in maximum norm; and a hundred-fold reduction
for ridge regression.

B.3. Supporting theory.

Claim B.1. For the “doubling method”, the factor 2 increase in ε at each time step gives the
optimal worst case ex post privacy loss guarantee.

Proof. In a given setting, suppose ε∗ is the “final” level of privacy at which the algorithm
would halt. With a factor 1/r increase for r < 1, the final loss may be as large as ε∗/r. The
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(a) Linear (ridge) regression.
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(b) Regularized logistic regression.
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(c) Linear (ridge) regression.
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(d) Regularized logistic regression.

Figure 2. Empirical accuracies. The dashed line shows the requested
accuracy level, while the others plot the actual accuracy achieved. Due
most likely due to a pessimistic analysis and the need to set a small testing
threshold, accuracies are significantly better than requested for both methods.

total loss is the sum of that loss and all previous losses, i.e. if t steps were taken:

(ε∗/r) + r · (ε∗/r) + · · ·+ rt−1 · (ε∗/r) = (ε∗/r)

t−1∑
j=0

rj

→ (ε∗/r)

∞∑
j=0

rj

=
ε∗

r(1− r)
≥ 4ε∗.
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(a) Linear (ridge) regression.
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(b) Regularized logistic regression.

Figure 3. Privacy breakdowns. Shows the amount of empirical privacy
loss due to computing the hypotheses themselves and the losses due to testing
their accuracies.
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(a) Linear (ridge) regression.
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(b) Regularized logistic regression.

Figure 4. L2 norms of final hypotheses. Shows the average L2 norm of
the output θ̂ for each method, versus the theoretical maximum of 1/

√
λ in

the case of ridge regression and
√

2 log(2)/λ in the case of regularized logistic
regression.

The final inequality implies that setting r = 0.5 and (1/r) = 2 is optimal. The asymptotic
→ is justified by noting that the starting ε1 may be chosen arbitrarily small, so there exist
parameters that exceed the value of that summation for any finite t; and the summation
limits to 1

1−r as t→∞.
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