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7. Appendix

Theorem 3.3. LocalAlg is (ε, δ)-differentially private.

Proof. We show this by proving that each iteration of the for loop in line 7 of LocalAlg
is (ε′, δ′)-differentially private, where ε′ = ε/mC and δ′ = δ/mC . Since there are at most mC

iterations of this loop for each client, composition of differentially private algorithms [17]
guarantees that LocalAlg ensures (ε, δ)-differential privacy for each client.

Denote each iteration of the for loop in line 7 of LocalAlg by L; it takes as input a
record 〈q, u〉 ∈ D, and returns a record, which we denote L(〈q, u〉). If q is not in HL or u
is not in HL[q], then they immediately get transformed into a default value (?) that is in
the head list. Since L outputs only values that exist in the head list, to confirm differential
privacy we need to prove that for any arbitrary neighboring datasets 〈q, u〉 and 〈q′, u′〉,
Pr
[
L(〈q, u〉) ∈ Y

]
≤ eε′ Pr

[
L(〈q′, u′〉) ∈ Y

]
+ δ′ holds for all sets of head list records Y .

Whenever k = 1 or kq = 1, the only query (or URL for a specific query) is ?, which will
be output with probability 1. Thus, differential privacy trivially holds, since the reported
values then do not rely on the client’s data. Thus, we’ll assume k ≥ 2 and kq ≥ 2. Note that
there is a single decision point where it is determined whether q will be reported truthfully
or not. Thus, we can split the privacy analysis into two parts: 1) Usage of the fC fraction of
the privacy budget to report a query, and 2) Usage of the remainder of the privacy budget
to report a URL (given the reported query). This decomposes a simultaneous two-item
(ε′, δ′) reporting problem into two single-item reporting problems with (ε′Q, δ

′
Q) and (ε′U , δ

′
U )

respectively, where ε′Q = fε′, δ′Q = fδ′, ε′U = (1− fC)ε′, and δ′U = (1− fC)δ′.

1. Privacy of query reporting: Consider the query-reporting case first. Overloading our
use of L, let L(q) be the portion of L that makes use of q. We first ensure that

Pr[L(q) = qHL] ≤ exp(ε′Q) Pr[L(q′) = qHL] +
δ′Q
2

(7.1)

holds for all q, q′, and qHL ∈ HL. This trivially holds when qHL = q = q′ or qHL 6∈ {q, q′}.
The remaining scenarios to consider are: 1) q 6= qHL, q

′ = qHL and 2) q = qHL, q
′ 6= qHL. By

the design of the algorithm, Pr[L(qHL) = qHL] = t and Pr[L(q̄HL) = qHL] = (1− t)( 1
k−1),

where q̄HL represents any query not equal to qHL. With t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′Q)+k−1 , it is simple

to verify that inequality (7.1) holds.
Consider an arbitrary set of head list queries Y .

Pr[L(q) ∈ Y ] =
∑

qHL∈Y

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}

Pr[L(q) = qHL] +
∑

qHL∈Y ∩{q,q′}

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}

Pr[L(q′) = qHL] +
∑

qHL∈Y ∩q,q′
Pr[L(q) = qHL] (7.2)

≤
∑

qHL∈Y \{q,q′}

Pr[L(q′) = qHL] +
∑

qHL∈Y ∩{q,q′}

(
eε
′
Q Pr[L(q′) = qHL] +

δ′Q
2

)
(7.3)

≤ eε
′
Q

∑
qHL∈Y

Pr[L(q′) = qHL] + 2 ·
δ′Q
2

= eε
′
Q Pr[L(q′) ∈ Y ] + δ′Q,
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Equality (7.2) stems from the fact that the probability of reporting a false query is independent
of the user’s true query. The inequality (7.3) is a direct application of inequality (7.1). Thus,
L is (ε′Q, δ

′
Q)-differentially private for query-reporting.

2. Privacy of URL reporting: With tq defined as tq =
exp(ε′U )+0.5δ′U (kq−1)

exp(ε′U )+kq−1
, an analogous

argument shows that the (ε′U , δ
′
U )-differential privacy constraints hold if the original q is

kept. On the other hand, if it is replaced with a random query, then they trivially hold
as the algorithm reports a random element in the URL list of the reported query, without
taking into consideration the client’s true URL u.

By composition [17], each of the at most mC iterations of L is (ε′Q+ε′U , δ
′
Q+δ′U ) = (ε′, δ′)-

differentially private.

Observation 3.4. p̂C gives the unbiased estimate of record and query probabilities under
EstimateClientProbabilities.

Proof. Reporting records is a two-stage process (first, decide which query to report, then
report a record); similarly, denoising is also done in two stages.
Denoising of query probability estimates: Let rC,q denote the probability that the algo-
rithm has received query q as a report, and let pq be the true probability of a user having
query q. We want to learn pq based on rC,q. By the design of our algorithm,

rC,q = t · pq +
∑
q′ 6=q

pq′(1− t)
1

k − 1

= t · pq +
1− t
k − 1

∑
q′ 6=q

pq′

= t · pq +
1− t
k − 1

(1− pq).

Solving for pq in terms of rC,q yields pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. Using the obtained data for the

query r̂C,q, we estimate pC,q as p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

.

Denoising of record probability estimates: Analogously, denote by rC,〈q,u〉 the probability
that the algorithm has received a record 〈q, u〉 as a report, and recall p〈q,u〉 is the record’s true

probability in the dataset. Then rC,〈q,u〉 = t ·tq ·p〈q,u〉+
(
t
1−tq
kq−1

)
(pq−p〈q,u〉)+

(
1−t
k−1 ·

1
kq

)
(1−pq),

recalling from the algorithm that kq is the number of URLs associated with query q and
tq is the probability of truthfully reporting u given that query q was reported. Solving for

p〈q,u〉 yields p〈q,u〉 =
rC,〈q,u〉−

(
t
1−tq
kq−1

pq+
(1−t)(1−pq)

(k−1)kq

)
t(tq−

1−tq
kq−1

)
.

Using the obtained data for the empirical report estimate r̂C,〈q,u〉 together with the

query estimate p̂C,q, we estimate p〈q,u〉 as p̂C,〈q,u〉 =
r̂C,〈q,u〉−

(
t
1−tq
kq−1

p̂C,q+
(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq−

1−tq
kq−1

)
.
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Theorem 3.5. If mO = 1 then the unbiased variance estimate for the opt-in group’s record

probabilities can be computed as: σ̂2O,〈q,u〉 = |DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT | + 2
(

bT
|DT |

)2)
.

Proof. Given the head list, the distribution of EstimateOptinProbabilities’ estimate
for a record 〈q, u〉 is given by rO,〈q,u〉 = p〈q,u〉 + Y

|DT | , where Y ∼ Laplace(bT ) with bT
being the scale parameter and recalling that |DT | is the total number of records from
the opt-in users used to estimate probabilities. The empirical estimator for rO,〈q,u〉 is

r̂O,〈q,u〉 = 1
|DT |

∑|DT |
j=1 Xj +Y , where Xj ∼ Bernoulli(p〈q,u〉) is the random variable indicating

whether report j was record 〈q, u〉.
The expectation of this estimator is given by E[r̂O,〈q,u〉] = p〈q,u〉. Thus, r̂O,〈q,u〉 is an

unbiased estimator for p〈q,u〉. We denote p̂O,〈q,u〉 = r̂O,〈q,u〉 to explicitly reference it as the
estimator of p〈q,u〉. The variance for this estimator is

σ2
O,〈q,u〉 = Var[p̂O,〈q,u〉] (7.4)

= Var
[ 1

|DT |
(|DT |∑
j=1

Xj + Y
)]

=
1

|DT |2
(

Var
[|DT |∑
j=1

Xj
]

+ Var [Y ]
)

(7.5)

=
1

|DT |2
(|DT |∑
j=1

Var [Xj ] + Var [Y ]
)

(7.6)

=
1

|DT |2
(
|DT | · p〈q,u〉(1− p〈q,u〉)

)
+ 2
( bT
|DT |

)2
=
p〈q,u〉(1− p〈q,u〉)

|DT |
+ 2
( bT
|DT |

)2
.

Equality 7.5 comes from the independence between Y and all Xj . Equality 7.6 relies on an
assumption of independence between Xj , Xk for all j 6= k (i.e., the iid assumption discussed
prior to the theorem statements).

To compute this variance, we need to use the data in place of the unknown p〈q,u〉. Using

p̂O,〈q,u〉 directly in place of p〈q,u〉 requires a |DT |
|DT |−1 factor correction (known as “Bessel’s

correction11”) to generate an unbiased estimate. Thus, the variance of each opt-in record

probability estimate is: σ̂2O,〈q,u〉 = |DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT | + 2
(

bT
|DT |

)2)
.

Theorem 3.6. If mC = 1 then the unbiased variance estimate for the client group’s record
probabilities can be computed as:

σ̂2
C,〈q,u〉 =

|DC |
t2
(
tq − 1−tq

kq−1

)2
(|DC | − 1)

·

( r̂C,〈q,u〉(1− r̂C,〈q,u〉)
|DC |

+
( 1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ̂2
C,q + 2

( 1− t
(k − 1)kq

− t
1− tq
kq − 1

) r̂C,〈q,u〉(1− r̂C,q)
|DC |(t− 1−t

k−1
)

)
.

11https://en.wikipedia.org/wiki/Bessel’s_correction

https://en.wikipedia.org/wiki/Bessel's_correction
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Proof. We’ll first derive the variance estimate for the client group’s query probabilities, then
move on to the variance estimate for their record probabilities.

From the proof of Observation 3.4, the distribution of the reported query q from the
client algorithm is given by rC,q = t · pq + 1−t

k−1(1− pq), and so the true probability of query

q is distributed as pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. The empirical estimator for pq is p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

, where

r̂C,q is the empirical estimator of rC,q defined explicitly as r̂C,q = 1
|DC |

∑|DC |
j=1 Xj , where

Xj ∼ Bernoulli(rC,q) is the random variable indicating whether report j was query q and
recalling that |DC | is the total number of records from the client users.

The variance of r̂C,q is

Var[r̂C,q] = Var
[ 1

|DC |

|DC |∑
j=1

Xj
]

=
( 1

|DC |

)2 |DC |∑
j=1

Var [Xj ] (7.7)

=
( 1

|DC |
)2(|DC | · rC,q(1− rC,q)) (7.8)

=
rC,q(1− rC,q)
|DC |

,

where equality 7.7 relies on an assumption of independence between Xj , Xk for all j 6= k
(i.e., the iid assumption discussed prior to the theorem statements).

Then, the variance of p̂C,q is

σ2
C,q = Var[p̂C,q] = Var

[ r̂C,q − 1−t
k−1

t− 1−t
k−1

]
=

rC,q(1− rC,q)
|DC |

(
t− 1−t

k−1

)2 .
To compute this variance, we need to use the data in place of the unknown rC,q. Using

r̂C,q directly in place of rC,q requires including Bessel’s |DC |
|DC |−1 factor correction to yield

an unbiased estimate. Thus, the variance of the query probability estimates by the client

algorithm is: σ̂2C,q =

(
1

t− 1−t
k−1

)2
r̂C,q(1−r̂C,q)
|DC |−1 .

Now, we’ll derive the variance estimate for the record probabilities. For a given query q
and corresponding URL u in head list, denote Xq

i as the indicator random variable that is

1 if user i reported query q and 0 otherwise, and similarly denote X
〈q,u〉
i as the indicator

random variable that is 1 if user i reported query q and URL u and 0 otherwise. Note that

Xq
i ∼ Bern(rC,q) and X

〈q,u〉
i ∼ Bern(rC,〈q,u〉). The covariance between these two random

variables is given by

Cov[Xq
i , X

〈q,u〉
i ] = E[Xq

iX
〈q,u〉
i ]− E[Xq

i ]E[X
〈q,u〉
i ] = rC,〈q,u〉 − rC,〈q,u〉rC,q = rC,〈q,u〉(1− rC,q).
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Also note that due to the iid assumption, for any other user j, we have Cov(Xq
i , X

〈q,u〉
j ) = 0.

Thus, we have the covariance between our empirical query and record estimates as

Cov[r̂q, r̂〈q,u〉] = Cov

 1

|DC |
∑
i∈DC

Xq
i ,

1

|DC |
∑
i∈DC

X
〈q,u〉
i


=

1

|DC |2
Cov

 ∑
i∈DC

Xq
i ,
∑
i∈DC

X
〈q,u〉
i


=

1

|DC |2
∑

i,j∈DC

Cov[Xq
i , X

〈q,u〉
j ]

=
1

|DC |2
∑
i∈DC

Cov[Xq
i , X

〈q,u〉
i ]

=
rC,〈q,u〉(1− rC,q)

|DC |
.

Utilizing this covariance expression, we can now compute the desired variance estimate
as:

σ2
C,〈q,u〉 = Var[p̂C,〈q,u〉]

= Var

 r̂C,〈q,u〉 − (t 1−tqkq−1
p̂C,q +

(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq − 1−tq

kq−1
)


=

1

t2(tq − 1−tq
kq−1

)2
Var

[
r̂C,〈q,u〉 −

(
t

1− tq
kq − 1

p̂C,q +
(1− t)(1− p̂C,q)

(k − 1)kq

)]

=
1

t2(tq − 1−tq
kq−1

)2
Var

[
r̂C,〈q,u〉 − p̂C,q

( 1− t
(k − 1)kq

− t 1− tq
kq − 1

)]
=

1

t2(tq − 1−tq
kq−1

)2
·

(
Var

[
r̂C,〈q,u〉

]
+
( 1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
Var [p̂C,q] + 2

( 1− t
(k − 1)kq

− t 1− tq
kq − 1

)
Cov[p̂C,q, r̂C,〈q,u〉]

)
=

1

t2(tq − 1−tq
kq−1

)2
·

(
rC,〈q,u〉(1− rC,〈q,u〉)

|DC |
+
( 1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ2
C,q + 2

( 1− t
(k − 1)kq

− t 1− tq
kq − 1

) 1

t− 1−t
k−1

Cov[r̂C,q, r̂C,〈q,u〉]

)

=
1

t2(tq − 1−tq
kq−1

)2
·

(
rC,〈q,u〉(1− rC,〈q,u〉)

|DC |
+
( 1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ2
C,q + 2

( 1− t
(k − 1)kq

− t 1− tq
kq − 1

) 1

t− 1−t
k−1

rC,〈q,u〉(1− rC,q)
|DC |

)
.

Using our already-computed estimates r̂C,q, r̂C,〈q,u〉, and σ̂2C,〈q,u〉 (in place of rC,q, rC,〈q,u〉,

and σ2C,〈q,u〉 respectively) and applying Bessel’s correction, we obtain the stated result.
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Theorem 3.7. If σ̂2O,〈q,u〉 and σ̂2C,〈q,u〉 are sample variances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respectively,

and the blended estimate is the convex combination p̂〈q,u〉 = w〈q,u〉·p̂O,〈q,u〉+(1−w〈q,u〉)·p̂C,〈q,u〉,

then the sample variance optimal weighting is given by w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

.

Proof. With the record probability and variance estimates for each group fully computed,
the blended estimate of p〈q,u〉 is given by p̂〈q,u〉 = w〈q,u〉 · p̂O,〈q,u〉 + (1− w〈q,u〉) · p̂C,〈q,u〉. The

sample variance of p̂〈q,u〉 is given by σ̂2〈q,u〉 = w2
〈q,u〉 · σ̂

2
O,〈q,u〉+(1−w〈q,u〉)2 · σ̂2C,〈q,u〉. Minimizing

σ̂2〈q,u〉 with respect to w〈q,u〉 yields the stated result.
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