
Journal of Privacy and Confidentiality
Vol. 9 (2) 2019 TPDP 2017

Submitted Aug 2, 2018
Published Sept 2019

BLENDER: ENABLING LOCAL SEARCH WITH

A HYBRID DIFFERENTIAL PRIVACY MODEL

BRENDAN AVENT*, ALEKSANDRA KOROLOVA*, DAVID ZEBER, TORGEIR HOVDEN,
AND BENJAMIN LIVSHITS

University of Southern California
e-mail address: bavent@usc.edu

University of Southern California
e-mail address: korolova@usc.edu

Mozilla
e-mail address: dzeber@mozilla.com

Mozilla
e-mail address: torgeir@eritreum.com

Imperial College London
e-mail address: livshits@ic.ac.uk

Abstract. We propose a hybrid model of differential privacy that considers a combination
of regular and opt-in users who desire the differential privacy guarantees of the local
privacy model and the trusted curator model, respectively. We demonstrate that within
this model, it is possible to design a new type of blended algorithm that improves the utility
of obtained data, while providing users with their desired privacy guarantees. We apply
this algorithm to the task of privately computing the head of the search log and show that
the blended approach provides significant improvements in the utility of the data compared
to related work. Specifically, on two large search click datasets, comprising 1.75 and 16 GB,
respectively, our approach attains NDCG values exceeding 95% across a range of privacy
budget values.

1. Introduction

Now more than ever organizations are confronted with the tension between collection and
sharing of mass-scale user data to fuel innovations and user’s privacy. Today, an organization
that needs user data to improve the quality of its service often has no choice but to perform
its own data collection. However, its users may not want to share their raw data with the
organization, especially if they consider it to be sensitive. Furthermore, by collecting this
user data, the organization assumes liability, as it may be leaked through security breaches,

Key words and phrases: differential privacy, local search, search log.
The preliminary version of this work appeared at the 26th USENIX Security Symposium in 2017 [6].

*Supported in part by NSF grant #1755992 and a gift from Mozilla.

www.journalprivacyconfidentiality.org
DOI:10.29012/jpc.680

c© B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits

Creative Commons (CC BY-NC-ND 4.0)

https://www.journalprivacyconfidentiality.org
https://doi.org/10.29012/jpc.680
https://creativecommons.org/licenses/by-nc-nd/4.0/

2 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

required to be shared through subpoenas, or indirectly leaked by the output of computations
done on the data. Thus, both organizations and users would benefit not only from strong,
rigorous privacy guarantees of the data sharing and use, but also from minimizing the
raw data collected by the organization to achieve their goal. Thus, data collection with
differential privacy in the local model is the best match for user expectations of privacy
and the guarantees an organization may want to provide. However, due to the amounts
of data required in order to achieve meaningful utility when ensuring privacy in the local
model, such collection is relevant only to the biggest organizations with massive user bases,
and the smaller ones get edged out. The goal of this work is to open possibilities for use of
differential privacy to include organizations with smaller user bases.

Local differential privacy: Over the last several years, we have seen some examples of the
local differential privacy (LDP) model beginning to be used for data collection in practice,
most notably in the context of the Chrome web browser [18] and Apple’s data collection [22].

In the LDP model, the data collector (such as Google or Apple) obtains aggregate data
statistics without observing the exact values of user’s private data. This is achieved by
applying a privacy-preserving perturbation to each user’s raw data before it leaves the user’s
device. This approach protects not only the individual users, but also the data collector
from risks such as data breaches.

Trusted curator model: An alternative model that has been most commonly used in the
academic literature on differential privacy to date is the trusted curator model, where a cura-
tor first collects each user’s private data and then produces and releases a privacy-preserving
version of the collected dataset. In this model, although users are guaranteed that the re-
leased dataset protects their privacy, they must be willing to share their private, unperturbed
data with the curator and trust that the curator properly performs a privacy-preserving
perturbation.

Hybrid model: The contribution of this paper stems from our observation that the two
models can co-exist. People’s attitudes toward privacy vary widely [3, 2, 12], and some users
may be comfortable with sharing their data with a trusted curator, while others may require
the privacy protections of the local model.

In industry practice, many companies already rely on a group of beta testers with
whom they have higher levels of mutual trust. It is not uncommon for such beta testers to
voluntarily opt-in to a less privacy-preserving model than that of an average end-user [32].
For example, Mozilla warns potential beta users of its Firefox browser that “Pre-release
versions automatically send Telemetry data to Mozilla to help us improve Firefox1”; Microsoft
states that “[Windows Insider Program] services may automatically collect and provide data
to Microsoft, which may include your personal information2”; Google has a similar provision
for the beta testers of the Canary build of the Chrome browser3.

For these users (referred to as the opt-in group), the trusted curator privacy model
is a natural match. For all other users (referred to as clients), the local privacy model is
appropriate. Our goal is to demonstrate that by separating the user pool into these two

1https://www.mozilla.org/en-US/privacy/firefox/
2https://insider.windows.com/en-us/program-agreement/
3https://www.chromium.org/getting-involved/dev-channel

https://www.mozilla.org/en-US/privacy/firefox/
https://insider.windows.com/en-us/program-agreement/
https://www.chromium.org/getting-involved/dev-channel

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 3

groups, according to their trust (or lack thereof) in the data aggregator, we can improve the
utility of the collected data while preserving privacy. We dub this new model the hybrid
differential privacy model.

Applications: We consider two specific applications in this paper to demonstrate the useful-
ness of the hybrid model: local search provided by a browser and search trend computation.

Local search revolves around the problem of how a browser maker can collect information
about users’ clicks as they interact with search engines4 in order to create the head of the
search logs, i.e., the collection of the most popular queries and their corresponding URLs, to
be made available to users locally (i.e., on their devices). Specifically, it involves computing
on query-URL pairs, where the URLs are those clicked as a result of submitting the query
and receiving a set of answers. With proper privacy measures in place, the head of the
search logs can then be deployed in the end-user browser to serve the most common queries
with a very low latency or in situations when the user is disconnected from the network.

Local search can also be thought of as a form of caching, where many queries are
answered in a manner that does not require a round trip to the server. Such local caching
of the most frequently posed search queries has a disproportionately positive impact on
the expected query latency [35, 7], as search engine queries follow a power-law distribution [8].

Search trend computation entails finding the most popular queries and sorting them in
order of popularity. An example of this is the Google trends service5, which has an up-to-date
list of trending topics and queries.

Utility challenges: Local search and search trend computation can be thought of as problems
in the category of heavy hitter discovery and estimation, which is a well-studied problem
in the context of information retrieval. Heavy hitter discovery is also one of the canonical
problems in privacy-preserving data analysis [11, 30]. Moreover, the recent work in the
LDP model is focused on precisely that problem [18, 34, 19] or very closely related ones of
histogram computations [10, 25]. However, current privacy-preserving approaches in the
local model lead to utility losses that are quite significant, to a point where the results are
no longer useful for local search. For instance, it is common to seek NDCG [23, 37] values
above 0.9 for the local search problem of finding the most popular queries; however, the
current best algorithm applied to this problem under the LDP model [34] is only able to
attain an NDCG value of 0.385 while ensuring LDP with an ε of 5 (see Section 4.3.2 for
further detail).

If privacy constraints make the utility too low compared to the original, the privacy-
preserving approach is at risk to not be adopted. This is especially true in the context of
search tasks, where users have been conditioned for years to expect high-quality results.

1.1. Contributions. Our work makes the following contributions:

• Introduces and utilizes a realistic, hybrid trust model, which removes the traditional
“all-or-nothing” trust assumption towards a central curator.

4A browser maker may choose to combine the results obtained from user interactions that stem from several
search engines depending on the context or surface results obtained from Baidu and not Bing depending on
the user’s current location.

5https://www.google.com/trends/

https://www.google.com/trends/

4 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

• Proposes Blender, an algorithm that takes advantage of the hybrid differential privacy
model for computing heavy hitters. Specifically, Blender utilizes data obtained from
the opt-in users in order to modify the privacy-preserving algorithm run for all other
users and then combines the data of opt-in and all other users in an informed way, in
order to improve the utility of the privacy-preserving computation.
• Performs a comprehensive utility evaluation of Blender on two large search click datasets,

comprising 1.75 and 16 GB for two applications: search trend computation and local
search. Demonstrates that Blender achieves high levels of utility (i.e., NDCG values in
excess of 95%) while maintaining differential privacy for reasonable privacy parameter
values.
• Provides the first empirical demonstration that hybrid trust models, such as those

combining data provided in the local model of differential privacy with data provided
in the trusted curator model, can lead to non-trivial improvements in utility. Thus,
it suggests the exploration of algorithms for such models as a promising direction for
increasing the feasibility of differential privacy’s deployment by both a wider range of
organizations as well as for a wider variety of applications.

2. Overview

We now discuss the curator models that will form the basis of our hybrid model in more
detail, provide a high-level overview of our proposed algorithm, Blender, that coordinates
the privatization, collection and aggregation of data in this model, and discuss some of the
specific choices we make in this algorithm. We use the application of enabling local search
based on user search histories while preserving differential privacy throughout; but, as will
become clear from the discussion, our approach can be applied to other frequency-based
discovery and estimation tasks.

2.1. Differential Privacy and Curator Models. In the last decade, we have witnessed
scores of ad-hoc approaches that have turned out to be inadequate for protecting privacy.
The problem stems from the impossibility of foreseeing all attacks of adversaries capable
of utilizing outside knowledge. Differential privacy, which has become the gold standard
privacy guarantee in the academic literature, and is gaining traction in industry and
government [18, 22, 31], overcomes the prior issues by focusing on the privatization algorithm
applied to the data, requiring that it preserves privacy in a mathematically rigorous sense
under an assumption of an omnipotent adversary.

Most differentially private algorithms developed to date [16] operate in the trusted curator
model : all users’ private data is collected by the curator before privatization techniques are
applied to it. This means that although the privacy of the eventual result of the computation
is ensured, the curator gets to observe the users’ private data. However, as was most recently
argued by Apple [22], users may not trust the data collector with their data, and may prefer
privatization to occur before their data reaches the collector. This is known as the local
model, since privatization occurs locally.

Although it may seem counter-intuitive, it is possible to obtain useful insights even
when the data collector does not have access to the original data and receives only data
that has already been locally privatized. Suppose a data collector wants to determine the
proportion of the population that is HIV-positive. The local privatization algorithm works
as follows: each person contributing data secretly flips a biased coin. If the coin lands

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 5

heads, they report their true HIV status; otherwise, they report a status at random. This
algorithm, known as randomized response [40], guarantees each person plausible deniability
and is differentially private (with privacy parameters determined by the bias of the coin).
But since the randomness is incorporated into the algorithm in a precisely specified way, the
data collector is able to recover an estimate of the true proportion of HIV-positive people if
enough people contribute their locally privatized data.

Current differential privacy literature considers the trusted cura-
tor model and the local model entirely independently. Our goal is
to show that there is much to be gained by combining the two.

Formally, an algorithm A is (ε, δ)-differentially private [15] if and only if for all neigh-
boring databases D and D′ differing in precisely one user’s data, the following inequality is
satisfied for all possible sets of outputs Y ⊆ Range(A):

Pr[A(D) ∈ Y] ≤ eε Pr[A(D′) ∈ Y] + δ.

The definition of what it means for an algorithm to preserve differential privacy is the
same for both the trusted curator model and the local model. The only distinction is in
the timing of when the privacy perturbation needs to be applied – in the local model, the
data needs to undergo a privacy-preserving perturbation before it is sent to the aggregator,
whereas in the trusted curator model the aggregator may first collect all the data, and then
apply a privacy-preserving perturbation. The timing distinction leads to differences in what
is meant by “neighboring databases” in the definition and to differences in which algorithms
are analyzed. In the local model, D represents data of a single user and D′ represents data
of the same user, with possibly changed values. In the trusted curator model, D represents
data of all users and D′ represents data of all users, except one of the user’s values may
be altered. Concretely, for the case of collecting a single search record from each user, the
databases in the trusted curator model contain a collection of search records and differ in
the value of one record, while the databases in the local model contain one record each.

2.2. An Algorithm for the Hybrid Model. As discussed in Section 1, we consider two
groups of users: the opt-in group, who are comfortable with privacy as ensured by the trusted
curator model, and the clients, who desire the privacy guarantees of the local model. Our
proposed algorithm, Blender, coordinates the privatization, collection, and aggregation of
the data from the opt-in and the client users.

2.2.1. Outline of Our Approach. The core of our innovation is to take advantage of the
privatized information obtained from the opt-in group in order to create a more efficient (in
terms of utility) algorithm for data collection from the clients. Furthermore, the privatized
results obtained from the opt-in group and from the clients are then “blended” in a way
that takes into account the privatization algorithms used for each group, and thus, again,
achieving an improved utility over a less-informed combination of data from the two groups.

The problem of enabling local search using past search histories can be viewed as the
task of identifying the most frequent search records among the population of users, and
estimating their underlying probabilities (both in a differential privacy-preserving manner).
In this context, we call the data collected from the users search records, where each search

6 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

record is a pair of strings of the form 〈query, URL〉, representing a query that a user posed
followed by the URL that the user subsequently clicked. We denote by p〈q,u〉 the true
underlying probability of the search record 〈q, u〉 in the population. We assume that our
algorithm receives a sample of users from the population, each holding their own collection
of private data drawn independently and identically from the distribution over all records p.

Blender

local search datatrend data

privacy barrier

privacy barrier

frequency varianceheadlist

frequency variance

query/url
pairs

privacy barrier privacy barrier

query/url
pairs

query/url
pairs

privacy barrier

query/url
pairs

query/url
pairs

query/url
pairs

query/url
pairs

query/url
pairs

query/url
pairs

Figure 1. Architectural diagram of
Blender’s processing steps.

Its goal is to output an estimate p̂ of probabilities
of the most frequent search records, while preserv-
ing differential privacy (in the trusted curator model)
for the opt-in users and (in the local model) for the
clients.

Informal Overview of Blender: Figure 1 presents an
architectural diagram of Blender.

The core of our approach is in utilizing the
strengths of each of the models. Specifically, the head
list discovery portion of the task – that is, finding
the names of the most-frequent queries and URLs –
can be done much more effectively under the trusted
curator model than under the local model. Thus, we
assign most opt-in users to this task. With the domain
significantly narrowed, the remaining users are then
assigned to the frequency estimation portion of the
task, where the underlying frequencies of the queries
and URLs are estimated.

Blender serves as the trusted curator for the opt-
in group of users, and begins by aggregating data from
them. Using a portion of the data, it constructs a can-
didate “head list” of records in a differentially private
manner that approximates the most common search
records in the population. It additionally includes a
single “wildcard” record, 〈?, ?〉, which represents all
records in the population that weren’t previously in-
cluded in the candidate head list. It then uses the
remainder of the opt-in data to estimate the proba-
bility of each record in the candidate head list in a
differentially private manner, then (optionally) trims
the candidate head list down further creating the final
head list. This result of this component of the algo-
rithm is the privatized trimmed head list of search
records and their corresponding probability and vari-
ance estimates, which can be shared with each user in
the client group, as well as with the world.

Each member of the client group receives the head
list obtained from the opt-in group. Each client then
individually uses the head list to apply a differential
privacy-preserving perturbation to their data, subse-
quently reporting their perturbed results to Blender.

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 7

Blender then aggregates all the clients’ reports and, using a statistical denoising procedure,
estimates both the probability for each record in the head list as well as the variance of each
of the estimated probabilities based on the clients’ data.

Finally, for each record, Blender combines the record’s probability estimates obtained
from the two groups. It does so by taking a convex combination of the groups’ probability
estimates using their respective variance estimates. Blender outputs the obtained records
and their combined record estimates, which can then be used to drive local search, determine
trends, and more.

A Formal Overview of BLENDER: Figure 2 presents the precise algorithmic overview of
each step, including key parameters. Lines 1-3 of Blender describe the treatment of data
from opt-in users, line 4 – the treatment of clients, and line 5 – the process for combining
the probability estimates obtained from the two groups. The only distinction between opt-in
users and clients in terms of privacy guarantees provided is the curator model – trusted
curator and local model, respectively. Other than that, both types of users are assumed to
desire the same level of (ε, δ)-differential privacy.

We will detail our choices for the privatization sub-algorithms and discuss their privacy
properties next. A key feature of Blender, however, is that its privacy properties do not
depend on the specific choices of the sub-algorithms. That is, the post-processing property
of differential privacy [16] guarantees that as long as CreateHeadList, EstimateOptin-
Probabilities, and EstimateClientProbabilities each satisfy (ε, δ)-differential privacy
in its respective curator model, then so does Blender. This allows changing the sub-
algorithms if better versions (utility-wise or implementation-wise) are discovered in the
future. Among the parameters of Blender, the first four (the privacy parameters and the
sets of opt-in and client users) can be viewed as given externally, whereas the following
five (the number of records collected from each user and the distribution of the privacy
budget among the sub-algorithms’ sub-components) can be viewed as knobs the designer of
Blender is at liberty to tweak in order to improve the overall utility of Blender’s results.

2.2.2. Overview of Blender Sub-Algorithms. We now present the specific choices we made
for the sub-algorithms in Blender. Detailed technical discussions of their properties follow
in Section 3.

Algorithms for Head List Creation and Probability Estimation Based on Opt-in User

Data (Figures 3, 4): The opt-in users are partitioned into two sets – S, whose data will be
used for initial head list creation, and T , whose data will be used to estimate the probabilities
and variances of records from the formed initial head list.

The initial head list creation algorithm, described in Figure 3, constructs the list in a
differentially private manner using search record data from group S. The algorithm follows
the strategy introduced in [29] by aggregating the records of the opt-in users from S, and
including those records whose noisy count exceeds a threshold in the head list. The noise
to add to the true counts6 and the threshold are calibrated to ensure differential privacy,
using [28]. The goal of the algorithm is to approximate the true set of most frequently
searched and clicked search records as closely as possible, while ensuring differential privacy.

6Lap(b) refers to a random draw from the Laplace distribution with scale b.

8 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

Blender (ε, δ, O,C,mO,mC , fO, fC ,M)

Parameters

• ε, δ: the differential privacy parameters.
• O,C: the set of opt-in users and clients, respectively.
• mO,mC : the max number of records to collect from each opt-in / client user, respectively.
• fO: the fraction of the opt-in users to use in head list creation (the remainder are used to estimate

the record probabilities).
• fC : the fraction of the clients’ privacy budget to allocate to queries (as opposed to URLs).
• M : the maximum size of the finalized head list.

Variables

• HLS , HL: a map from each query to its corresponding set of URLs.
• p̂O, σ̂2

O, p̂C , σ̂
2
C : vectors indexed by records in HL (and, overloaded to be indexed by queries in HL

as well) containing the probability estimates and variance estimates for each record (and query).

Body
1: Arbitrarily partition O into S and T = O \ S, such that |S| = fO|O| and |T | = (1− fO)|O|.
2: let HLS = CreateHeadList(ε, δ, S,mO) be the initial head list of records computed based on

opt-in users’ data.
3: let 〈HL, p̂O, σ̂2

O〉 = EstimateOptinProbabilities(ε, δ, T,mO, HLS ,M) be the refined head list of
records, their estimated probabilities, and estimated variances based on opt-in users’ data.

4: let 〈p̂C , σ̂2
C〉 = EstimateClientProbabilities(ε, δ, C,mC , fC , HL) be the estimated record

probabilities and estimated variances based on client reports.
5: let p̂ = BlendProbabilities(p̂O, σ̂

2
O, p̂C , σ̂

2
C , HL) be the combined estimate of record probabilities.

6: return HL, p̂.

Figure 2. Blender, the server algorithm that coordinates the privatization, col-
lection, and aggregation of data from all users.

Our algorithm differs from previous work in two ways: 1) it replaces the collection
and thresholding of queries with the collection and thresholding of records (i.e., query -
URL pairs) and 2) its definition of neighboring databases is that of databases differing in
one user’s record values, rather than in the removal of one user’s data. These distinctions
necessitate the choice of mO = 1 as well as higher values for noise and threshold than in [28].

For those records included in the initial head list set, the algorithm described in Figure 4
uses the remaining opt-in users’ data (from set T) to differentially privately estimate each
record’s probability, denoted p̂O. The M most frequent records in p̂O are retained to form
the final head list. This algorithm is the standard Laplace mechanism from the differential
privacy literature [15], with scale of noise calibrated to our definition of neighboring datasets.
Our implementation ensures (ε, 0)-differential privacy, which is a more stringent privacy
guarantee than for any non-zero δ. We need to set mO = 1 for the privacy guarantees to
hold, because we treat data at the search record rather than query level.

Finally, the head list is passed to the client group, and the head list and its probability
and variance estimates are passed to the BlendProbabilities step of Blender.

The choice of how to split opt-in users into the sub-groups of S and T and the choice
of M are unrelated to privacy constraints, and can be chosen by Blender’s developer to
optimize utility goals, as will be discussed in Section 4.3.1.

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 9

CreateHeadList(ε, δ, S,mO)

Parameters

• ε, δ: the differential privacy parameters.
• S: a set of opt-in users.
• mO: the maximum number of records to collect from each opt-in user.

Body
1: let N(r,D) = number of times an arbitrary record r appears in the given dataset D.
2: for each user i ∈ S do
3: let DS,i be the database aggregating at most mO arbitrary records from i.

4: let DS be the concatenation of all DS,i databases.
5: let HLS be an empty map.
6: bS = 2mO

ε
.

7: τ = max{bs ·
(
ln(exp(ε

2
) +mO − 1)− ln(δ)

)
, 1}.

8: for each distinct 〈q, u〉 ∈ DS do
9: let Y be an independent draw from Lap(bS).

10: if N(〈q, u〉, DS) + Y > τ then
11: Add q to HLS if q 6∈ HLS .
12: Append u to HLS [q].

13: Add 〈?, ?〉 to HLS .
14: return HLS .

Figure 3. Algorithm for creating the head list from a portion opt-in users in a
privacy-preserving way.

Algorithms for client data collection (Figures 5, 6): Figure 5 defines the algorithm for the
client group. Here, records are no longer treated as a single entity, but rather in a two-stage
process: first privatizing the query, then privatizing the URL. This helps optimize utility
in the setting where the number of queries is significantly larger than the number of URLs
associated with each query. Privatization as achieved by following a generalization of the
randomized response mechanism introduced by [40], and utilizes the head list obtained from
the opt-in group in order to perform the privatization locally by each client. At its core, the
privatization is achieved by reporting the true record with a certain bounded probability,
and otherwise, randomizing the report among all the other records in the head list.

The fact that the head list (approximating the set of the most frequent records) is
available to each client plays a crucial role in improving the utility of the data produced by
this privatization algorithm compared to the previously known algorithms operating in the
local privacy model. This allows use of the entire privacy budget to report the true value,
rather than having to allocate some of it for estimating an analogue of the head list, as done
in [19, 34]. Another distinction from the standard randomized response mechanism is our
utilization of δ.

Note that the choices of mC and fC are not related to privacy constraints, and can be
chosen by Blender’s developer to optimize utility goals, as will be discussed in Section 4.3.1.

The local nature of the reporting, using a randomization procedure that can report
any record with some probability, induces a predictable bias to the distribution of reported
records. To account for this, a denoising procedure must be performed in order to compute
proper estimates.

10 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

EstimateOptinProbabilities(ε, δ, T,mO, HLS ,M)

Parameters

• ε, δ: the differential privacy parameters. In fact, this algorithm achieves (ε, 0)-differential privacy,
which is a stricter privacy guarantee than (ε, δ)-differential privacy, for all δ > 0.

• T : a set of opt-in users.
• mO: the maximum number of records to collect from each opt-in user.
• HLS : the initial head list of records whose probabilities are to be estimated.
• M : the maximum size of the finalized head list.

Body
1: let N(r,D) = number of times an arbitrary record r appears in the given dataset D.
2: for each user i ∈ T do
3: let DT,i be the database aggregating at most mO arbitrary records from i.

4: let DT be the concatenation of all DT,i databases.
5: Transform any record 〈q, u〉 ∈ DT that doesn’t appear in HLS into 〈?, ?〉.
6: let p̂O be a vector indexed by records in HLS containing the respective probability estimates.
7: let σ̂2

O be a vector indexed by records in HLS containing variance estimates of the respective
probability estimate.

8: Denote |DT | as the total number of records in DT .

9: let bT = 2mO
ε

.
10: for each 〈q, u〉 ∈ HLS do
11: let Y be an independent draw from Lap(bT).
12: p̂O,〈q,u〉 = 1

|DT |
(N(〈q, u〉, DT) + Y).

13: σ̂2
O,〈q,u〉 =

p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |−1
+

2b2T
|DT |·(|DT |−1)

.

14: let HL map the M queries with the highest estimated marginal probabilities (according to p̂O) to
their respective sets of URLs.

15: For the records not retained in HL, accumulate their estimated probabilities into p̂O,〈?,?〉 and

update σ̂2
O,〈?,?〉 as in line 13.

16: return HL, p̂O, σ̂
2
O.

Figure 4. Algorithm for privacy-preserving estimation of probabilities of records in
the head list from a portion of opt-in users.

These probability estimates, denoted p̂C , along with variance estimates are then passed
to the BlendProbabilities part of Blender. The technical discussion of the algorithm’s
privacy properties and variance estimate computations follow in Sections 3.2 and 3.3.

Algorithm for Blending (Figure 7): The blending portion of the algorithm combines the
estimates produced by the opt-in and client probability-estimation algorithms by taking into
account the sizes of the groups and the amount of noise each algorithm respectively added.
This produces a blended probability estimates p̂ which, in expectation, is more accurate than
either group produced individually. The procedure for blending is not subject to privacy con-
straints, as it operates on the data whose privacy has already been ensured by previous steps
of Blender. The motivation and technical discussion of this algorithm follows in Section 3.3.

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 11

EstimateClientProbabilities(ε, δ, C,mC , fC , HL)

Parameters

• ε, δ: the differential privacy parameters.
• C: the set of clients.
• mC : the number of records to collect from the client.
• fC : the fraction of the privacy budget to allocate to reporting queries.
• HL: a map from each query to its corresponding set of URLs.

Body
1: Append query q = ? to HL.
2: for each query q ∈ HL do
3: Append URL u = ? to HL[q].

4: for each client i ∈ C do
5: let DC,i = LocalAlg(ε, δ,mC , fC , HL) be the reports from i’s local execution of LocalAlg.

6: let DC be the concatenation of all reported client datasets, DC,i.
7: Denote |DC | as the total number of records in DC .
8: let variables ε′Q, ε

′
U , δ

′
Q, δ

′
U , k, t, kq, tq(∀q ∈ HL) be defined as in lines 2–4 of LocalAlg.

9: let r̂C , p̂C , σ̂
2
C be vectors indexed by records in HL (and overloading its use, also indexed by

queries).
10: for q ∈ HL do
11: let r̂C,q be the fraction of queries q in DC .

12: p̂C,q =
r̂C,q−

1−t
k−1

t− 1−t
k−1

13: σ̂2
C,q = 1(

t− 1−t
k−1

)2 r̂C,q(1−r̂C,q)

|DC |−1

14: for u ∈ HL[q] do
15: let r̂C,〈q,u〉 be the fraction of records which are 〈q, u〉 in DC .
16:

pC,〈q,u〉 =
r̂C,〈q,u〉 −

(
t
1−tq
kq−1

p̂C,q + 1−t
k−1

1
kq

(1− p̂C,q)
)

t(tq − 1−tq
kq−1

)

17:

σ̂2
C,〈q,u〉 =

|DC |
t2
(
tq − 1−tq

kq−1

)2
(|DC | − 1)

·

(r̂C,〈q,u〉(1− r̂C,〈q,u〉)
|DC |

+
(1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ̂2
C,q + 2

(1− t
(k − 1)kq

− t
1− tq
kq − 1

)(r̂C,〈q,u〉(1− r̂C,q)
|DC |(t− 1−t

k−1
)

))
18: return p̂C , σ̂

2
C .

Figure 5. Algorithm for estimating probabilities of records in the head list from
the locally privatized reports of the client users.

3. Technical Details

We now present further technical details related to the instantiations of the sub-algorithms
for Blender, such as privacy proofs and the motivation for BlendProbabilities.

12 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

LocalAlg(ε, δ,mC , fC , HL)

Parameters

• ε, δ: the differential privacy parameters.
• mC : the number of records to collect from the client.
• fC : the fraction of the privacy budget to allocate to reporting queries.
• HL: the head list, represented as a map keyed by queries {q1, . . . , qk, ?}. The value for each q ∈ HL

is defined as HL[q] = {u1, . . . , ul, ?}, representing all URLs in the head list associated with q.

Body
1: let DC,i be the database aggregating at most mC records from current client i.
2: ε′ = ε/mC , and δ′ = δ/mC .
3: ε′Q = fCε

′, ε′U = ε′ − ε′Q and δ′Q = fCδ
′, δ′U = δ′ − δ′Q.

4: k = |HL|, and t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′
Q
)+k−1

.

5: for each q ∈ HL do:

6: kq = |HL[q]|, and tq =
exp(ε′U)+(δ′U/2)(kq−1)

exp(ε′
U
)+kq−1

.

7: for each 〈q, u〉 ∈ DC,i do
8: if q 6∈ HL then
9: Set q = ?.

10: if u 6∈ HL[q] then
11: Set u = ?.
12: With probability (1− t),
13: let q′ be a unif. random query from HL \ q.
14: let u′ be a unif. random URL from HL[q′].
15: report 〈q′, u′〉.
16: continue
17: With probability (1− tq),
18: let u′ be a unif. random URL from HL[q] \ u.
19: report 〈q, u′〉.
20: continue
21: report 〈q, u〉.

Figure 6. Algorithm executed by each client for privately reporting their records.

3.1. Opt-in Data Algorithms. Differential privacy of the algorithms handling opt-in
client data follows directly from previous work.

Theorem 3.1 . ([28]) CreateHeadList guarantees (ε, δ)-differential privacy if mO =
1, ε > ln(2), and τ ≥ 1.

Theorem 3.2 . ([15]) EstimateOptinProbabilities guarantees (ε, 0)-differential privacy
if mO = 1.

3.2. Client Data Algorithms. LocalAlg is responsible for the privacy-preserving per-
turbation of each client’s data before it gets sent to the server and EstimateClientProba-
bilities is responsible for aggregating the received privatized data into a meaningful statistic.
We prove the privacy and explain the logic behind the aggregation procedure next.

Theorem 3.3 . LocalAlg is (ε, δ)-differentially private.

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 13

BlendProbabilities(p̂O, σ̂
2
O, p̂C , σ̂

2
C , HL)

Parameters

• p̂O, p̂C : the probability estimates from the opt-in and client algorithms.
• σ̂O, σ̂C : the variance estimates from the opt-in and client algorithms.
• HL: the head list of records.

Body
1: let p̂ be a vector indexed by records in HL.
2: for 〈q, u〉 ∈ HL do

3: w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

.

4: p̂〈q,u〉 = w〈q,u〉 · p̂O,〈q,u〉 + (1− w〈q,u〉) · p̂C,〈q,u〉.
5: Optional: Project p̂ onto probability simplex (e.g., see [39]).
6: return p̂.

Figure 7. Algorithm for combining record probability estimates from opt-in and
client estimates.

Proof. See Appendix.

The reports aggregated by the client algorithm form an empirical distribution over the
records (and queries). This distribution is biased in an explicit way, as described by the
reporting process, creating a significantly flatter distribution relative to the true underlying
distribution. Since the noise addition process is known, the bias is also known, and can
be used to “unflatten” the distribution as a post-processing step to obtain a more useful,
unbiased estimate of the record distribution. We refer to this as “denoising” the reported
empirical distribution r̂C to obtain the final estimate from the client algorithm, p̂C .

Observation 3.4 . p̂C gives the unbiased estimate of record and query probabilities under
EstimateClientProbabilities.

Proof. See Appendix.

3.3. Blending. The opt-in algorithm and client algorithm both output independent esti-
mates p̂O and p̂C of the record distribution p. The question we address now is how to best
combine these estimates using the information available.

A standard way to measure the quality of an estimate is by its variance. Although
it may seem natural to choose the estimate with lower variance as the final estimate p̂,
it is possible to achieve a better estimate by jointly utilizing the information provided by
both algorithms. This is because the errors in these estimates come from different sources.
The error in the estimates obtained from the opt-in algorithm is due to the addition of
Laplace noise, whereas the error in the estimates obtained from the client algorithm is due
to randomizing the true record over the set of records in the head list. Thus, our goal is to
determine the variances of the estimates obtained from the two algorithms and use these
variances to blend the estimates in the best way.

14 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

More formally, for each record 〈q, u〉 let σ2O,〈q,u〉 and σ2C,〈q,u〉 be the variances of the opt-in

and client algorithms estimates of p̂O,〈q,u〉 and p̂C,〈q,u〉 respectively. Since these variances
depend on the underlying distribution, which is unknown a priori, we will compute sample
variances σ̂2O,〈q,u〉 and σ̂2O,〈q,u〉 instead. For each record 〈q, u〉, we will weight the estimate from

the opt-algorithm by w〈q,u〉 and the estimate from the client algorithm by (1−w〈q,u〉), where
w〈q,u〉 is defined as in line 3 of BlendProbabilities. The optional step of projecting the
blended estimates (e.g., as in [39]) ensures that the estimates sum to 1 and are non-negative.

Theorem 3.5 presents our computation of the sample variance of EstimateOptin-
Probabilities, Theorem 3.6 presents our computation of the sample variance of Esti-
mateClientProbabilities, and Theorem 3.7 motivates the weighting scheme used in
BlendProbabilities.

For the variance derivations, we make an explicit assumption that each piece of reported
data is drawn independently and identically from the same underlying distribution. This is
reasonable when comparing data across users. By setting mO = mC = 1, we remove the need
to assume iid data within each user’s own data, while simplifying our variance computations.
We show in Section 4 that Blender achieves high utility even when mO = mC = 1.

Theorem 3.5 . If mO = 1 then the unbiased variance estimate for the opt-in group’s record

probabilities can be computed as: σ̂2O,〈q,u〉 = |DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT | + 2
(

bT
|DT |

)2)
.

Proof. See Appendix.

Note that in line 15 of EstimateOptinProbabilities, the use of this sample variance
expression in re-computing σ̂2O,〈?,?〉 is not statistically valid, so our computation of p̂O,〈?,?〉
and p̂〈?,?〉 is sub-optimal. Despite that, our overall utility, which does not include ?, is good
(see Section 4).

Theorem 3.6 . If mC = 1 then the unbiased variance estimate for the client group’s record
probabilities can be computed as:

σ̂2
C,〈q,u〉 =

|DC |
t2
(
tq − 1−tq

kq−1

)2
(|DC | − 1)

·

(r̂C,〈q,u〉(1− r̂C,〈q,u〉)
|DC |

+
(1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ̂2
C,q + 2

(1− t
(k − 1)kq

− t
1− tq
kq − 1

) r̂C,〈q,u〉(1− r̂C,q)
|DC |(t− 1−t

k−1
)

)
.

Proof. See Appendix.

Theorem 3.7 . If σ̂2O,〈q,u〉 and σ̂2C,〈q,u〉 are sample variances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respec-

tively, and the blended estimate is the convex combination p̂〈q,u〉 = w〈q,u〉 ·p̂O,〈q,u〉+(1−w〈q,u〉)·

p̂C,〈q,u〉, then the sample variance optimal weighting is given by w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

.

Proof. See Appendix.

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 15

3.4. Discussion. We have intentionally used (slight modifications) of existing algorithms
for Blender’s sub-algorithms in order to demonstrate the power of the blended approach
within the hybrid privacy model. However, it is conceivable (see Section 5) that the sub-
algorithms themselves can be improved, yielding further improvements in the utility achieved
by Blender.

Operating in the hybrid model is most beneficial utility-wise if the opt-in user records
and client user records come from the same distribution – i.e., the two groups have fairly
similar observed search behavior. If that is not the case, the differential privacy guarantees
still hold, but the accuracy of Blender’s estimates may decrease.

4. Experimental Evaluation

4.1. Utility Metrics. One pitfall in much of the research in the area of differential privacy is
an insufficient emphasis on the utility loss due to privacy constraints. We designed Blender
with an eye toward preserving the utility of the eventual results in the two applications we
explore in this paper: trend computation and local search, as described in Section 1. We use
two domain-specific utility metrics to assess the loss of utility, the L1 metric and NDCG.

L1: L1 is the Manhattan distance between the estimate and actual probability vectors, in
other words, L1 =

∑
i |p̂i − pi|. The smaller the L1, the better.

NDCG: NDCG is a standard measure of search quality [23, 37] that takes into account
the order of queries by performing discounting. In particular, most popular queries at the
head of the search have a higher weight, whereas the relative significance of the less popular
queries is reduced. The relevance, or gain, of an item at position i in the ranked list is
measured using a graded relevance score defined as rel i = ni∑

j nj
, where nj is the number of

occurrences of the item in position j in the given dataset. The closer i’s estimated rank is
to its true rank, the larger the gain. For a head of k top elements, the estimated rank list is

computed as DCGk =
∑k

i=1
2reli−1
log2(i+1) .

Here, the discounting happens because of the log2(i) factor that diminishes the effect of
later queries. This value is normalized by the Ideal DCG (IDCGk), in which the estimated
and the actual ranking are exactly the same, to obtain a value that ranges between 0 and 1.

Since we operate on records rather than just queries, we utilize a generalization of
the traditional NDCG score. Here, we compute the NDCG of each query’s URL list,

NDCGq, as specified above, and then compute the DCG of the queries as DCGQk =∑k
i=1

2reli−1
log2(i+1) ·NDCG

i.

The final NDCG computation is then DCGQk normalized by the analogous Ideal DCG

(IDCGQk). In a way, our computation considers an NDCG of NDCGs, which makes it even
harder for us to maintain consistently high NDCG values when compared to the query-only
case. This formulation takes the ranking and frequencies from the dataset into account, not
the actual score that our algorithm outputs. Since changes to the score may not result in
ranking changes, L1 is an even less forgiving measure than NDCG.

16 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

Since the purpose of Blender is to estimate probabilities of the top records, we discard
the artificially added ? queries and URLs and rescale reli prior to L1 and NDCG computa-
tions. However, since we use the method of [39] in BlendProbabilities, the probability
estimates involving ? have a minor implicit effect on the L1 and NDCG scores.

4.2. Experimental Setup. For our experiments, we use the AOL search logs, released
in 2006 and the Yandex search dataset7, released in 2013. Figure 8 describes their character-
istics.

AOL Yandex

Dataset on disk 1.75 GB 16 GB
Unique queries 4,811,646 13,171,961
Unique clients 519,371 4,970,073
Unique URLs 1,620,064 12,702,350

Figure 8. Dataset statistics.

Data analysis: To familiarize the reader with the approach we used for assessing result
quality, Figure 9 shows the top-10 most frequent queries in the AOL dataset, with the
estimates given by the different “ingredients” of Blender.

The table is sorted by column 2, which contains the non-private, empirical probabilities
from the AOL dataset with 1 random record sampled from each user. Column 3 contains
the final query probability estimates outputted by Blender. Each algorithm computes
probability estimates over the records in the head list; to obtain query probability estimates
from these, we simply aggregate the probabilities associated with each URL for a given query
(columns 4 and 6). The sample variance of these aggregated probabilities, used for blending,
is näıvely computed as in Theorem 3.5. Column 5 is the EstimateClientProbabilities’
estimate of the query probabilities, since it directly computes these values. While column 6
is not used for blending in trend computation (where only query probability estimates are
produced), columns 4, 5, and 6 are used by the full Blender algorithm when it comes
to blending entire records. Regressions, i.e., estimates that appear out of order relative to
column 2, are shown in red.

The biggest takeaway is that the numbers in columns 2 and 3 are similar to each other,
with Blender’s usage resulting in only one regression.

Blender compensates for the weaknesses of both the opt-in and the client estimates.
Specifically, despite the opt-in group having several regressions in this particular instance,
combining the opt-in and client-data compensates for that, resulting in only one regression.

4.3. Experimental Results. We formulate questions for our evaluation as follows: how
are Blender’s parameters chosen (Section 4.3.1), how does Blender perform compared to
alternatives (Section 4.3.2), and how robust are our findings (Section 4.3.3)?

7https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data

https://www.kaggle.com/c/yandex-personalized-web-search-challenge/data

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 17

AOL Blender Opt-in Client Client
Query dataset estimate estimate estimate estimate

prob p̂q
∑

u p̂O,〈q,u〉 p̂C,q
∑

u p̂C,〈q,u〉

? 0.9121 0.9144 0.9148 0.9143 0.9143
google 0.0211 0.0211 0.0220 0.0210 0.0210
yahoo 0.0067 0.0081 0.0061 0.0088 0.0088
google.com 0.0066 0.0075 0.0083 0.0073 0.0073
myspace.com 0.0055 0.0046 0.0034 0.0052 0.0052
mapquest 0.0055 0.0062 0.0051 0.0066 0.0066
yahoo.com 0.0048 0.0047 0.0057 0.0043 0.0043
www.google.com 0.0044 0.0038 0.0043 0.0035 0.0035
myspace 0.0034 0.0030 0.0031 0.0030 0.0030
ebay 0.0030 0.0030 0.0030 0.0029 0.0029

Figure 9. Comparison of probability estimates for top-10 most popular AOL queries.
Parameter choices are shown in Figure 11 (except with ε = 3 used here).

4.3.1. Algorithmic and Parameter Choices. Blender has a handful of parameters, some of
which can be viewed as given externally (by the laws of nature, so to speak), and others
whose choice is purely up to the entity deploying Blender. We now describe and, whenever
possible, motivate, our choices for these.

Privacy parameters, ε and δ: We view ε and δ as privacy parameters given to us ex-
ternally (e.g., by what is a common practice for differentially private algorithms in the
industry [36, 5, 18]). We use a δ that is larger for the AOL dataset than for the Yandex
dataset to reflect that the Yandex dataset contains data of more users. We use the same ε
and δ values for the opt-in and client users. From a behavioral perspective, this reduces a
user’s opt-in decision down to one purely of trust towards the curator.

Opt-in and client group sizes, |O| and |C|: The relative sizes of opt-in group and client
group, |O| and |C|, respectively, can be viewed as exogenous variables which are dictated
by the trust that users place in the search engine8. We choose 5% for AOL and 3% for
Yandex for the fraction of opt-in users because they seem reasonable while still allowing us
to effectively demonstrate the utility benefits of Blender.

The number of records to collect from each opt-in user, mO = 1: This is a choice ne-
cessitated by the privacy constraints of the CreateHeadList algorithm.The choices for
remaining parameters: mC , fC , fO,M are driven purely by utility considerations.

The number of records to collect from each client, mC = 1: Across a range of experimental
values, collecting 1 record per user always yielded greatest utility, justifying this parameter
choice. Two factors account for this: 1) the privacy budget must be split across a client’s

8In the future, as differential privacy gains widespread adoption, it is conceivable that the values of the
privacy parameters may affect their relative sizes; for example, the smaller the ε, the more users are willing
to “opt-in”. However, this relationship is out of the scope of this work.

18 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.55 0.65 0.75 0.85 0.95

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Client budget split fraction

Blended Client Opt-in

(a) L1

0.85, 0.990157725

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

0.55 0.65 0.75 0.85 0.95

N
D

C
G

Client budget split fraction

Blended Client Opt-in

(b) NDCG

Figure 10. Comparing AOL dataset results across a range of budget splits for
client, opt-in, and blended results.

reports, and 2) the accuracy of our algorithm relies on uncorrelated reports, an assumption
which likely does not hold in practice within a given user’s set of records.

How to split the privacy budget between query and URL reporting for clients, fC =

0.85: Figure 10 shows the effects of the budget split on both the L1 and NDCG metrics.
Unsurprisingly, Figure 10a shows that the larger the fraction of client algorithm’s budget
dedicated to query estimation as opposed to URL estimation, the better the L1 score for
the client and Blender results. The NDCG metric in Figure 10b shows a trade-off that
emerges as we assign more budget to the queries, de-emphasizing the URLs. The client
algorithm NDCG value peaks at a budget split of 0.85; choosing a split above this point
induces a significant drop in the blended NDCG values. Note that the grey opt-in line in
Figure 10b is constant, as the opt-in group is not affected by the budget split.

What fraction of opt-in data to use for creating the headlist, fO = 0.95: We choose
fO = 0.95 because our goal is to build a large candidate head list, and unless we allocate
most of the opt-in user data to building such a head list (algorithm CreateHeadList), our
subsequent results may be accurate but apply only to a small number of records, whereas in
order to speak of an effective local search application in practice we need to amass a headlist
of at least double or triple digits in size. Even without looking at experimental data, this
choice makes sense: our opt-in group size is small relative to our client group size, and it is
difficult to generate a head list in the local privacy model – so it makes sense to utilize most
of the opt-in group’s data for the task that is most difficult in the local model.

What should be the final size of the set for which we provide probability estimates, M :

The choice of M is influenced by competing considerations. The larger the head list for
which we provide the probability estimates, the more effective the local search application
(subject to those probability estimates being accurate). However, as desired head list size
increases, the accuracy of our estimates drops (most notably due to client data privatization).
We want to strike a balance that allows us to get a sensibly large record set with reasonably
accurate probability estimates for it. We choose M = 50 and M = 500 for the AOL and

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 19

Parameter AOL Yandex
ε 4 4
δ 10−5 10−7

|O|
|O|+|C| 5% 3%

mO 1 1
mC 1 1
fO 0.95 0.95
fC 0.85 0.85
M 50 500

Figure 11. Default parameters used in experiments.

Yandex datasets, to reflect their differing sizes. Subsequently, we use the parameters shown
in Figure 11, unless explicitly stated.

4.3.2. Utility Comparison to Alternatives. The closest related work is a recent paper by
Qin et. al. [34] in which they provide a utility evaluation of their state-of-the-art algorithm
on the AOL dataset for the headlist size of 10. Given the NDCG data that they make
available in the paper, we perform a direct comparison with Blender across ε values. We
plot the outcome of the comparison in Figure 12, which shows the NDCG values achieved
by Blender and by Qin et. al. [34] for ε values between 1–5. Across the entire range of the
privacy parameter, our NDCG values are above 95%, whereas the reported NDCG values
for Qin et. al. are in the 30% range, at best. We believe that given the intense focus on
search optimization in the field of information retrieval, NDCG values as low as those of
Qin et. al. are generally unusable. Overall, Blender significantly outperforms what we
believe to be the closest related research project.

Qin et. al. and this work use different scoring functions. Qin et. al. use a relevance score
based purely on the rank of queries in the original AOL dataset; this results in penalizing

0.974 0.980 0.984 0.987 0.990

0.175

0.295
0.315

0.360
0.385

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

N
D
C
G

epsilon

Blender CCS'16

Figure 12. Comparing to the results in the CCS’16 paper by Qin et. al. across a
range of ε values; head list size=10.

20 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016
1

.0
%

1
.5

%

2
.0

%

2
.5

%

3
.0

%

3
.5

%

4
.0

%

4
.5

%

5
.0

%

5
.5

%

6
.0

%

6
.5

%

7
.0

%

7
.5

%

8
.0

%

8
.5

%

9
.0

%

9
.5

%

1
0

.0
%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

10 25 50

(a) AOL

0

0.01

0.02

0.03

0.04

0.05

0.06

1
.0

%

1
.5

%

2
.0

%

2
.5

%

3
.0

%

3
.5

%

4
.0

%

4
.5

%

5
.0

%

5
.5

%

6
.0

%

6
.5

%

7
.0

%

7
.5

%

8
.0

%

8
.5

%

9
.0

%

9
.5

%

1
0

.0
%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

10 25 50 100 500

(b) Yandex

Figure 13. L1 as a function of the opt-in percentage.

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

epsilon

10 25 50

(a) AOL

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

1 2 3 4 5 6

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

epsilon

10 50 100 500

(b) Yandex

Figure 14. L1 statistics for AOL and Yandex datasets for various head list sizes
and a range of ε values.

misranked queries regardless of their underlying probabilities. Blender’s relevance scoring
only relies on the underlying probabilities, so misranked items with similar underlying
probabilities only have a small negative impact on the overall NDCG score; we believe this
choice is justified. While it yields increased NDCG scores, Blender operates on records
(rather than queries, as Qin et. al. does). Because of this, the “NDCG of NDCGs” score used
to evaluate Blender (Section 4.1) is a strictly less forgiving metric than the traditional
NDCG score. Thus, although simultaneously compensating for both differences would yield
the ideal comparison, the comparison in Figure 12 is reasonable.

4.3.3. Robustness. We now discuss how the size of the opt-in group and the choice of the ε
privacy parameter affect Blender’s utility.

Evaluation of trend computation: Figure 139 shows the L1 values as a function of the
opt-in percentage ranging between 1% and 10%. We believe that requiring opt-in percentages

9Portions of lines do not appear on figures if the desired head list size was not reached (e.g., in Figure 13a,
the line representing results for a head list of size 50 does not begin until 5% because a head list of size 50
could not be generated with a lower opt-in percentage).

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 21

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1
1

.0
%

1
.5

%

2
.0

%

2
.5

%

3
.0

%

3
.5

%

4
.0

%

4
.5

%

5
.0

%

5
.5

%

6
.0

%

6
.5

%

7
.0

%

7
.5

%

8
.0

%

8
.5

%

9
.0

%

9
.5

%

1
0

.0
%

N
D

C
G

Percentage of users that opt-in

10 25 50

(a) AOL

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1
.0

%

1
.5

%

2
.0

%

2
.5

%

3
.0

%

3
.5

%

4
.0

%

4
.5

%

5
.0

%

5
.5

%

6
.0

%

6
.5

%

7
.0

%

7
.5

%

8
.0

%

8
.5

%

9
.0

%

9
.5

%

1
0

.0
%

N
D

C
G

Percentage of users that opt-in

10 25 50 100 500

(b) Yandex

Figure 15. NDCG as a function of the opt-in percentage.

in excess of 10% is likely to put undue strain on the system in terms of recruitment; simply
put, finding enough opt-in users may provide difficult or impossible in the long run. We
see slight differences in the two datasets and across the various head list sizes. Some of the
differences might be due to the fact that given the relatively small size of the AOL dataset,
we need to consider higher opt-in percentages to get reasonably sized head lists and L1
values. In fact, when we increase the opt-in percentage to 10% for the AOL dataset, we
see a slight decline in L1 values for the largest head list size similar to what is observed in
Figure 13b for the Yandex dataset. If our goal is to have head lists of 500+, we see that
with the larger Yandex dataset, an opt-in percentage as small as 3% is sufficient. The main
take-away from this is that when the opt-in group is large enough to attain the desired head
list size, the trend computation results generally will be high quality in terms of the L1
values.

Figure 14 shows the L1 values as a function of ε, ranging from 1 to 6. For both datasets,
we see a steady decline in the L1 metric, despite aggregating L1 values over longer estimate
vectors. With more data in the Yandex dataset, we are able to hit small values of L1 (under
0.1) with ε ≥ 1.

Evaluation of local search computation: Figure 15 shows the NDCG measurements as
a function of the opt-in percentage ranging between 1% and 10%. The results are quite
encouraging; for the smaller AOL dataset, we need to have an opt-in level of ≈5% to achieve
an NDCG level in excess of 95%, which we regard as acceptable. However, for the larger
Yandex dataset, we hit that NDCG level even sooner: for an opt-in group composing 1% of
the users, the NDCG level is above 95% for all but the largest head list size.

Figure 16 shows how the NDCG values vary across the two datasets, AOL and Yandex,
for a range of head list sizes and ε values. We see a clear trend toward higher NDCG values
for Yandex, which is not surprising given the sheer volume of data. For the Yandex dataset,
we can keep ε as low as 1 and still achieve NDCG values of 95% and above for all but the
two largest head list sizes. For those, we must increase ε in order to generate larger head
lists from the opt-in users.

Each group’s effect on the blended result: While these blended results demonstrate the
algorithms’s high-utility capability, one central question remains: to what extent are each

22 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

N
D
C
G

epsilon

10 25 50

(a) AOL

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

N
D
C
G

epsilon

10 50 100 500

(b) Yandex

Figure 16. NDCG statistics for AOL and Yandex datasets for various head list
sizes and a range of ε values.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1
.0

%

1
.5

%

2
.0

%

2
.5

%

3
.0

%

3
.5

%

4
.0

%

4
.5

%

5
.0

%

5
.5

%

6
.0

%

6
.5

%

7
.0

%

7
.5

%

8
.0

%

8
.5

%

9
.0

%

9
.5

%

1
0

.0
%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

Blended Client Opt-in

(a) L1 results over opt-in range

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1
.0

%

1
.5

%

2
.0

%

2
.5

%

3
.0

%

3
.5

%

4
.0

%

4
.5

%

5
.0

%

5
.5

%

6
.0

%

6
.5

%

7
.0

%

7
.5

%

8
.0

%

8
.5

%

9
.0

%

9
.5

%

1
0

.0
%

N
D

C
G

Percentage of users that opt-in

Blended Client Opt-in

(b) NDCG results over opt-in range

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

epsilon

Blended Client Opt-in

(c) L1 results over ε range

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1 2 3 4 5 6

N
D
C
G

epsilon

Blended Client Opt-in

(d) NDCG results over ε range

Figure 17. L1 and NDCG statistics broken out between the different groups’ results
on the Yandex dataset with head list size 100 across a range of opt-in percentages
((a) and (b), with ε = 4) and a range of ε values ((c) and (d), with 3% opt-in).

group’s estimates contributing to the final blended result? Specifically, does the small number
of samples with low noise from the opt-in group dominate the large number of samples with
high noise from the client group, or vice-versa?

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 23

For a head list size 100 on the Yandex dataset, Figure 17 examines this question for a
range of opt-in percentages and ε values. These graphs show a complex relationship between
the two groups’ utility with regards to the final blended result. In all cases, the blended
result is better than the worse of either the opt-in or client results. With regards to L1
distance, the blended result is better than both groups’ individual results when varying either
the opt-in user percentage or the ε value.

When increasing the opt-in user percentage, the two group’s results behave as expected:
the opt-in group’s results improve as it gains more users, and the client group’s results
gradually deteriorate as it loses users. Interestingly, Figures 17a and b show that the
L1 distance of the client group’s query results deteriorate quite slowly as their group size
decreases, whereas their NDCG results deteriorate more quickly. To understand this behavior,
observe that there are significantly fewer queries (what the query estimate L1 distance is
measuring) than there are query-URL pairs (what the NDCG is measuring). Also note that
the utility of the randomized response component of the local algorithm degrades as the set
of items under consideration increases. These two facts in combination explain the difference
in the deterioration rates of the client group’s utility between Figure 17a and b.

For the blended result, the NDCG values mainly track the opt-in group’s NDCG values
even in the case where the client result is clearly better (from 1% up to 3%); this would
support the idea that the opt-in results may be dominating the client results when it comes
to the blending process. However, this trend doesn’t appear to hold when increasing the ε,
as the blended results rapidly improve with the client results, while the opt-in results remain
relatively flat. Interestingly, as ε is increased, the opt-in group’s L1 results remain relatively
constant and its NDCG results only slightly improve. This is caused by the large amount
of noise that is inherent in the opt-in group due to its relatively small size; i.e., a 3% sized
opt-in group induces a certain level of sampling error such that the noise introduced for
privacy is negligible by comparison.

The takeaway is that there is no single clear-cut group that dominates in its contribution
to the final blended result; in fact, both groups appear to contribute across the ranges of
parameters considered.

When the opt-in group is tiny: In the real-world, it may be the case that a 5% or even
a 3% sized opt-in group is still too large to be considered feasible. As mentioned in the
evaluation of trend computation, the utility results are generally good conditioned on the
desired head list size being achieved. When the opt-in group becomes too small, it becomes
a significantly greater challenge to achieve these large head list sizes. For the head list
sizes that we can achieve at smaller opt-in percentages, what are the utility results we can
expect? Figure 18 shows the performance on the Yandex dataset targeting smaller head
list sizes across opt-in group sizes ranging from 0.1% up to 1%. These results confirm our
previous conclusion that once a head list size can be attained, getting high utility probability
estimates for the records is a significantly easier challenge.

At these tiny opt-in percentages, with 95% of the opt-in group being assigned to head
list creation, only 0.005% to 0.05% of the users are estimating the probabilities under
the trusted curator model. We must ask: in this setting, to what extent are the users
contributing to the high-utility blended results? Figure 19 shows the L1 and NDCG values
for the opt-in group, client group, and final blended results across these tiny opt-in sizes
for a head list of size 10 on the Yandex dataset. As suspected, the estimates from the

24 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

10 25 50

(a) L1 results

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

N
D

C
G

Percentage of users that opt-in

10 25 50

(b) NDCG results

Figure 18. L1 and NDCG statistics for the Yandex dataset for various head list
sizes across a range of tiny opt-in percentages.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

Q
u

er
y

es
ti

m
at

e
L1

 d
is

ta
n

ce

Percentage of users that opt-in

Blended Client Opt-in

(a) L1 results

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%

N
D

C
G

Percentage of users that opt-in

Blended Client Opt-in

(b) NDCG results

Figure 19. L1 and NDCG statistics broken out per group for the Yandex dataset
for head list size 10 and a range of tiny opt-in percentages.

opt-in group have much lower utility relative to the client group. The blending proce-
dure is able to automatically take advantage of the high variance results of the opt-in
group (stemming from the tiny number of samples used by this group in estimating the
probabilities) and weigh the blending much more heavily towards the client group’s estimates.

5. Related Work

Algorithms for the trusted curator model: Researchers have developed numerous privacy-
preserving algorithms operating in the trusted curator model that result in useful data for a
variety of applications. Specifically, the works of [29, 21, 28] pioneered the study of search
log data release with differential privacy guarantees; the works of [30] and [11] proposed
approaches for privacy-preserving frequent item identification, and so on.

Algorithms for the local model: Although some progress has been made in developing
privacy-preserving algorithms operating in the local model [40, 14, 18, 10], the utility of

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 25

the resulting data is limited [19, 25]. Furthermore, it is known that for fixed desired differ-
ential privacy parameters, the elimination of the trusted data collector comes at the cost
of diminished utility [26, 27]. Very recently, much attention has been given to the heavy
hitters problem in the local differential privacy setting both from a theoretical and an applied
perspective [38, 9, 24]. Since Blender came prior to these recent works, we did not compare
our results against theirs10.

Our contribution: Our work significantly improves upon the known results by developing
application-specific local model algorithms that work in combination with trusted curator
model algorithms. Specifically, our insight of providing all users with differential privacy
guarantees, but achieving it differently depending on whether or not they trust the data
curator, enables an efficient privacy-preserving head list construction. The subsequent usage
of this head list in the algorithm operating in the local model helps overcome one of the main
challenges to utility of privacy-preserving local algorithms [19]. As discussed in Section 4.3.2,
we significantly outperform previous work of [34] on metrics of utility in the search context.

6. Conclusions

We proposed a hybrid differential privacy model, which permits a mixture of trust models.
In this work, we considered a mix of two primary models studied by the differential privacy
community, which differ only in their trust towards the curator: the local model and the
trusted curator model. Using local search as a motivating application, we developed and
tested an algorithm which demonstrates that operating in the hybrid model enables signifi-
cant improvements in terms of utility compared to previously known approaches. Thus, we
showed that developing algorithms for hybrid models holds promise for decreasing the gap
between theory and practicality of differential privacy.

Future work: The primary direction for future work is to better understand the power of the
hybrid model. Specifically, what application areas and algorithms can most effectively utilize
data submitted in a mixture of trust models, what utility improvements can such algorithms
bring, and how do they depend on the underlying data or user group sizes. Recent work
by [13] has begun to study this question for the problem of mean estimation. Works by [33]
and [20] show that there is much to be gained by combining trusted curator data with public
data, giving another example of a hybrid model that holds promise. A related sub-question
is understanding the role that interaction between users contributing data in the local model
and in the trusted curator model can play in improving utility.

Another important direction for future work is to address the assumption in current
work that user data comes from the same distribution regardless of their trust model, which
may not hold in practice. As a start, one can differentially privately evaluate whether
the distributions are different using a small sample of records from both groups using the
techniques of [1, 4]. When and how should the differences between groups be taken into
account is an open question.

10We note that the new algorithms proposed could be directly applied as the local group’s sub-algorithm
to improve the utility of Blender.

26 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

Finally, optimizing the sub-algorithms used by Blender (see Section 3.4) and providing
a priori estimates of its utility under specific assumptions is a promising direction for
advancing the deployment of differentially private algorithms in the hybrid model.

References

[1] J. Acharya, Z. Sun, and H. Zhang. Differentially private testing of identity and closeness
of discrete distributions. In Advances in Neural Information Processing Systems, pages
6878–6891, 2018.

[2] A. Acquisti, L. Brandimarte, and G. Loewenstein. Privacy and human behavior in the
age of information. Science, 347(6221):509–514, 2015.

[3] A. Acquisti and J. Grossklags. Privacy and rationality in individual decision making.
IEEE Security and Privacy (S&P), 2(2005):24–30, 2005.

[4] M. Aliakbarpour, I. Diakonikolas, and R. Rubinfeld. Differentially private identity and
closeness testing of discrete distributions. In Proceedings of the International Conference
on Machine Learning (ICML), 2018.

[5] Apple. Learning with privacy at scale. volume 1. Apple Machine
Learning Journal, 2017. https://machinelearning.apple.com/2017/12/06/

learning-with-privacy-at-scale.html.
[6] B. Avent, A. Korolova, D. Zeber, T. Hovden, and B. Livshits. BLENDER: Enabling local

search with a hybrid differential privacy model. In 26th USENIX Security Symposium
(USENIX Security 17), pages 747–764, Vancouver, BC, 2017. USENIX Association.

[7] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri.
The impact of caching on search engines. In ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 183–190, 2007.

[8] R. Baeza-Yates, A. Gionis, F. P. Junqueira, V. Murdock, V. Plachouras, and F. Silvestri.
Design trade-offs for search engine caching. ACM Transactions on the Web, 2(4):20,
2008.

[9] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta. Practical locally private heavy
hitters. In Advances in Neural Information Processing Systems, pages 2288–2296, 2017.

[10] R. Bassily and A. Smith. Local, private, efficient protocols for succinct histograms. In
Proceedings of the Symposium on Theory of Computing (STOC), pages 127–135, 2015.

[11] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent patterns in
sensitive data. In Proceedings of the International Conference on Knowledge Discovery
and Data Mining (KDD), pages 503–512, 2010.

[12] T. Dienlin and S. Trepte. Is the privacy paradox a relic of the past? an in-depth analysis
of privacy attitudes and privacy behaviors. European Journal of Social Psychology,
45(3):285–297, 2015.

[13] Y. Dubey and A. Korolova. The power of the hybrid model for mean estimation.
Privacy in Machine Learning Workshop @NeurIPS, arXiv preprint arXiv:1811.12040,
2018. https://arxiv.org/abs/1811.12040.

[14] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax
rates. In Symposium on Foundations of Computer Science (FOCS), pages 429–438,
2013.

[15] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography Conference (TCC), pages 265–284,
2006.

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://arxiv.org/abs/1811.12040

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 27

[16] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

[17] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential privacy. In
Symposium on Foundations of Computer Science (FOCS), pages 51–60, 2010.

[18] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized aggregatable privacy-
preserving ordinal response. In Proceedings of the Conference on Computer and Com-
munications Security (CCS), pages 1054–1067, 2014.

[19] G. Fanti, V. Pihur, and Ú. Erlingsson. Building a RAPPOR with the unknown: Privacy-
preserving learning of associations and data dictionaries. Proceedings on Privacy
Enhancing Technologies (PETS), 2016(3):41–61, 2016.

[20] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta. Privacy amplification by iteration.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 521–532. IEEE, 2018.

[21] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke. Publishing search
logs–a comparative study of privacy guarantees. IEEE Transactions on Knowledge and
Data Engineering, 24(3):520, 2012.

[22] A. Greenberg. Apple’s differential privacy is about collecting your data – but not your
data. In Wired, June 13, 2016.

[23] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[24] J. Jia and N. Z. Gong. Calibrate: Frequency estimation and heavy hitter identifica-
tion with local differential privacy via incorporating prior knowledge. arXiv preprint
arXiv:1812.02055, 2018.

[25] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution estimation under local
privacy. In Proceedings of the International Conference on Machine Learning (ICML),
pages 2436–2444, 2016.

[26] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local differential privacy.
In Advances in Neural Information Processing Systems (NIPS), pages 2879–2887, 2014.

[27] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith. What
can we learn privately? In 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 531–540, 2008.

[28] A. Korolova. Protecting Privacy when Mining and Sharing User Data. PhD thesis,
Stanford University, 2012.

[29] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas. Releasing search queries and
clicks privately. In Proceedings of the International Conference on World Wide Web
(WWW), pages 171–180, 2009.

[30] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: frequent itemset mining with differential
privacy. Proceedings of the VLDB Endowment, 5(11):1340–1351, 2012.

[31] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. Privacy: Theory
meets practice on the map. In Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering (ICDE), pages 277–286, 2008.

[32] C. Merriman. Microsoft reminds privacy-concerned Windows 10 beta testers that they’re
volunteers. In The Inquirer, http: // www. theinquirer. net/ 2374302 , Oct 7, 2014.

[33] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

http://www.theinquirer.net/2374302

28 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

[34] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter estimation over
set-valued data with local differential privacy. In Proceedings of the Conference on
Computer and Communications Security (CCS), pages 192–203, 2016.

[35] F. Silvestri. Mining query logs: Turning search usage data into knowledge. Foundations
and Trends in Information Retrieval, 4(1–2):1–174, 2010.

[36] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang. Privacy loss in Apple’s imple-
mentation of differential privacy on MacOS 10.12. arXiv preprint arXiv:1709.02753,
2017. https://arxiv.org/abs/1709.02753.

[37] H. Valizadegan, R. Jin, R. Zhang, and J. Mao. Learning to rank by optimizing NDCG
measure. In Advances in Neural Information Processing Systems, pages 1883–1891,
2009.

[38] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for
frequency estimation. In 26th USENIX Security Symposium (USENIX Security), pages
729–745. USENIX Association, 2017.

[39] W. Wang and M. A. Carreira-Perpinán. Projection onto the probability simplex: An effi-
cient algorithm with a simple proof, and an application. arXiv preprint arXiv:1309.1541,
2013.

[40] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

7. Appendix

Theorem 3.3 . LocalAlg is (ε, δ)-differentially private.

Proof. We show this by proving that each iteration of the for loop in line 7 of LocalAlg
is (ε′, δ′)-differentially private, where ε′ = ε/mC and δ′ = δ/mC . Since there are at most mC

iterations of this loop for each client, composition of differentially private algorithms [17]
guarantees that LocalAlg ensures (ε, δ)-differential privacy for each client.

Denote each iteration of the for loop in line 7 of LocalAlg by L; it takes as input a
record 〈q, u〉 ∈ D, and returns a record, which we denote L(〈q, u〉). If q is not in HL or u
is not in HL[q], then they immediately get transformed into a default value (?) that is in
the head list. Since L outputs only values that exist in the head list, to confirm differential
privacy we need to prove that for any arbitrary neighboring datasets 〈q, u〉 and 〈q′, u′〉,
Pr
[
L(〈q, u〉) ∈ Y

]
≤ eε′ Pr

[
L(〈q′, u′〉) ∈ Y

]
+ δ′ holds for all sets of head list records Y .

Whenever k = 1 or kq = 1, the only query (or URL for a specific query) is ?, which will
be output with probability 1. Thus, differential privacy trivially holds, since the reported
values then do not rely on the client’s data. Thus, we’ll assume k ≥ 2 and kq ≥ 2. Note that
there is a single decision point where it is determined whether q will be reported truthfully
or not. Thus, we can split the privacy analysis into two parts: 1) Usage of the fC fraction of
the privacy budget to report a query, and 2) Usage of the remainder of the privacy budget
to report a URL (given the reported query). This decomposes a simultaneous two-item
(ε′, δ′) reporting problem into two single-item reporting problems with (ε′Q, δ

′
Q) and (ε′U , δ

′
U)

respectively, where ε′Q = fε′, δ′Q = fδ′, ε′U = (1− fC)ε′, and δ′U = (1− fC)δ′.

1. Privacy of query reporting: Consider the query-reporting case first. Overloading our
use of L, let L(q) be the portion of L that makes use of q. We first ensure that

Pr[L(q) = qHL] ≤ exp(ε′Q) Pr[L(q′) = qHL] +
δ′Q
2

(7.1)

https://arxiv.org/abs/1709.02753

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 29

holds for all q, q′, and qHL ∈ HL. This trivially holds when qHL = q = q′ or qHL 6∈ {q, q′}.
The remaining scenarios to consider are: 1) q 6= qHL, q

′ = qHL and 2) q = qHL, q
′ 6= qHL. By

the design of the algorithm, Pr[L(qHL) = qHL] = t and Pr[L(q̄HL) = qHL] = (1− t)(1
k−1),

where q̄HL represents any query not equal to qHL. With t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′Q)+k−1 , it is simple

to verify that inequality (7.1) holds.
Consider an arbitrary set of head list queries Y .

Pr[L(q) ∈ Y] =
∑

qHL∈Y

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}

Pr[L(q) = qHL] +
∑

qHL∈Y ∩{q,q′}

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}

Pr[L(q′) = qHL] +
∑

qHL∈Y ∩q,q′
Pr[L(q) = qHL] (7.2)

≤
∑

qHL∈Y \{q,q′}

Pr[L(q′) = qHL] +
∑

qHL∈Y ∩{q,q′}

(
eε
′
Q Pr[L(q′) = qHL] +

δ′Q
2

)
(7.3)

≤ eε
′
Q

∑
qHL∈Y

Pr[L(q′) = qHL] + 2 ·
δ′Q
2

= eε
′
Q Pr[L(q′) ∈ Y] + δ′Q,

Equality (7.2) stems from the fact that the probability of reporting a false query is independent
of the user’s true query. The inequality (7.3) is a direct application of inequality (7.1). Thus,
L is (ε′Q, δ

′
Q)-differentially private for query-reporting.

2. Privacy of URL reporting: With tq defined as tq =
exp(ε′U)+0.5δ′U (kq−1)

exp(ε′U)+kq−1
, an analogous

argument shows that the (ε′U , δ
′
U)-differential privacy constraints hold if the original q is

kept. On the other hand, if it is replaced with a random query, then they trivially hold
as the algorithm reports a random element in the URL list of the reported query, without
taking into consideration the client’s true URL u.

By composition [17], each of the at most mC iterations of L is (ε′Q+ε′U , δ
′
Q+δ′U) = (ε′, δ′)-

differentially private.

Observation 3.4 . p̂C gives the unbiased estimate of record and query probabilities under
EstimateClientProbabilities.

Proof. Reporting records is a two-stage process (first, decide which query to report, then
report a record); similarly, denoising is also done in two stages.
Denoising of query probability estimates: Let rC,q denote the probability that the algo-
rithm has received query q as a report, and let pq be the true probability of a user having
query q. We want to learn pq based on rC,q. By the design of our algorithm,

rC,q = t · pq +
∑
q′ 6=q

pq′(1− t)
1

k − 1

= t · pq +
1− t
k − 1

∑
q′ 6=q

pq′

= t · pq +
1− t
k − 1

(1− pq).

30 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

Solving for pq in terms of rC,q yields pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. Using the obtained data for the

query r̂C,q, we estimate pC,q as p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

.

Denoising of record probability estimates: Analogously, denote by rC,〈q,u〉 the probability
that the algorithm has received a record 〈q, u〉 as a report, and recall p〈q,u〉 is the record’s true

probability in the dataset. Then rC,〈q,u〉 = t ·tq ·p〈q,u〉+
(
t
1−tq
kq−1

)
(pq−p〈q,u〉)+

(
1−t
k−1 ·

1
kq

)
(1−pq),

recalling from the algorithm that kq is the number of URLs associated with query q and
tq is the probability of truthfully reporting u given that query q was reported. Solving for

p〈q,u〉 yields p〈q,u〉 =
rC,〈q,u〉−

(
t
1−tq
kq−1

pq+
(1−t)(1−pq)

(k−1)kq

)
t(tq−

1−tq
kq−1

)
.

Using the obtained data for the empirical report estimate r̂C,〈q,u〉 together with the

query estimate p̂C,q, we estimate p〈q,u〉 as p̂C,〈q,u〉 =
r̂C,〈q,u〉−

(
t
1−tq
kq−1

p̂C,q+
(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq−

1−tq
kq−1

)
.

Theorem 3.5 . If mO = 1 then the unbiased variance estimate for the opt-in group’s record

probabilities can be computed as: σ̂2O,〈q,u〉 = |DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT | + 2
(

bT
|DT |

)2)
.

Proof. Given the head list, the distribution of EstimateOptinProbabilities’ estimate
for a record 〈q, u〉 is given by rO,〈q,u〉 = p〈q,u〉 + Y

|DT | , where Y ∼ Laplace(bT) with bT
being the scale parameter and recalling that |DT | is the total number of records from
the opt-in users used to estimate probabilities. The empirical estimator for rO,〈q,u〉 is

r̂O,〈q,u〉 = 1
|DT |

∑|DT |
j=1 Xj +Y , where Xj ∼ Bernoulli(p〈q,u〉) is the random variable indicating

whether report j was record 〈q, u〉.
The expectation of this estimator is given by E[r̂O,〈q,u〉] = p〈q,u〉. Thus, r̂O,〈q,u〉 is an

unbiased estimator for p〈q,u〉. We denote p̂O,〈q,u〉 = r̂O,〈q,u〉 to explicitly reference it as the
estimator of p〈q,u〉. The variance for this estimator is

σ2
O,〈q,u〉 = Var[p̂O,〈q,u〉] (7.4)

= Var
[1

|DT |
(|DT |∑
j=1

Xj + Y
)]

=
1

|DT |2
(

Var
[|DT |∑
j=1

Xj
]

+ Var [Y]
)

(7.5)

=
1

|DT |2
(|DT |∑
j=1

Var [Xj] + Var [Y]
)

(7.6)

=
1

|DT |2
(
|DT | · p〈q,u〉(1− p〈q,u〉)

)
+ 2
(bT
|DT |

)2
=
p〈q,u〉(1− p〈q,u〉)

|DT |
+ 2
(bT
|DT |

)2
.

Equality 7.5 comes from the independence between Y and all Xj . Equality 7.6 relies on an
assumption of independence between Xj , Xk for all j 6= k (i.e., the iid assumption discussed
prior to the theorem statements).

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 31

To compute this variance, we need to use the data in place of the unknown p〈q,u〉. Using

p̂O,〈q,u〉 directly in place of p〈q,u〉 requires a |DT |
|DT |−1 factor correction (known as “Bessel’s

correction11”) to generate an unbiased estimate. Thus, the variance of each opt-in record

probability estimate is: σ̂2O,〈q,u〉 = |DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT | + 2
(

bT
|DT |

)2)
.

Theorem 3.6 . If mC = 1 then the unbiased variance estimate for the client group’s record
probabilities can be computed as:

σ̂2
C,〈q,u〉 =

|DC |
t2
(
tq − 1−tq

kq−1

)2
(|DC | − 1)

·

(r̂C,〈q,u〉(1− r̂C,〈q,u〉)
|DC |

+
(1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ̂2
C,q + 2

(1− t
(k − 1)kq

− t
1− tq
kq − 1

) r̂C,〈q,u〉(1− r̂C,q)
|DC |(t− 1−t

k−1
)

)
.

Proof. We’ll first derive the variance estimate for the client group’s query probabilities, then
move on to the variance estimate for their record probabilities.

From the proof of Observation 3.4, the distribution of the reported query q from the
client algorithm is given by rC,q = t · pq + 1−t

k−1(1− pq), and so the true probability of query

q is distributed as pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. The empirical estimator for pq is p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

, where

r̂C,q is the empirical estimator of rC,q defined explicitly as r̂C,q = 1
|DC |

∑|DC |
j=1 Xj , where

Xj ∼ Bernoulli(rC,q) is the random variable indicating whether report j was query q and
recalling that |DC | is the total number of records from the client users.

The variance of r̂C,q is

Var[r̂C,q] = Var
[1

|DC |

|DC |∑
j=1

Xj
]

=
(1

|DC |

)2 |DC |∑
j=1

Var [Xj] (7.7)

=
(1

|DC |
)2(|DC | · rC,q(1− rC,q)) (7.8)

=
rC,q(1− rC,q)
|DC |

,

where equality 7.7 relies on an assumption of independence between Xj , Xk for all j 6= k
(i.e., the iid assumption discussed prior to the theorem statements).

Then, the variance of p̂C,q is

σ2
C,q = Var[p̂C,q] = Var

[r̂C,q − 1−t
k−1

t− 1−t
k−1

]
=

rC,q(1− rC,q)
|DC |

(
t− 1−t

k−1

)2 .
To compute this variance, we need to use the data in place of the unknown rC,q. Using

r̂C,q directly in place of rC,q requires including Bessel’s |DC |
|DC |−1 factor correction to yield

an unbiased estimate. Thus, the variance of the query probability estimates by the client

11https://en.wikipedia.org/wiki/Bessel’s_correction

https://en.wikipedia.org/wiki/Bessel's_correction

32 B. AVENT, A. KOROLOVA, D. ZEBER, T. HOVDEN, AND B. LIVSHITS

algorithm is: σ̂2C,q =

(
1

t− 1−t
k−1

)2
r̂C,q(1−r̂C,q)
|DC |−1 .

Now, we’ll derive the variance estimate for the record probabilities. For a given query q
and corresponding URL u in head list, denote Xq

i as the indicator random variable that is

1 if user i reported query q and 0 otherwise, and similarly denote X
〈q,u〉
i as the indicator

random variable that is 1 if user i reported query q and URL u and 0 otherwise. Note that

Xq
i ∼ Bern(rC,q) and X

〈q,u〉
i ∼ Bern(rC,〈q,u〉). The covariance between these two random

variables is given by

Cov[Xq
i , X

〈q,u〉
i] = E[Xq

iX
〈q,u〉
i]− E[Xq

i]E[X
〈q,u〉
i] = rC,〈q,u〉 − rC,〈q,u〉rC,q = rC,〈q,u〉(1− rC,q).

Also note that due to the iid assumption, for any other user j, we have Cov(Xq
i , X

〈q,u〉
j) = 0.

Thus, we have the covariance between our empirical query and record estimates as

Cov[r̂q, r̂〈q,u〉] = Cov

 1

|DC |
∑
i∈DC

Xq
i ,

1

|DC |
∑
i∈DC

X
〈q,u〉
i

=

1

|DC |2
Cov

 ∑
i∈DC

Xq
i ,
∑
i∈DC

X
〈q,u〉
i

=

1

|DC |2
∑

i,j∈DC

Cov[Xq
i , X

〈q,u〉
j]

=
1

|DC |2
∑
i∈DC

Cov[Xq
i , X

〈q,u〉
i]

=
rC,〈q,u〉(1− rC,q)

|DC |
.

BLENDER: ENABLING LOCAL SEARCH WITH A HYBRID DIFFERENTIAL PRIVACY MODEL 33

Utilizing this covariance expression, we can now compute the desired variance estimate
as:

σ2
C,〈q,u〉 = Var[p̂C,〈q,u〉]

= Var

 r̂C,〈q,u〉 − (t 1−tqkq−1
p̂C,q +

(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq − 1−tq

kq−1
)

=

1

t2(tq − 1−tq
kq−1

)2
Var

[
r̂C,〈q,u〉 −

(
t

1− tq
kq − 1

p̂C,q +
(1− t)(1− p̂C,q)

(k − 1)kq

)]

=
1

t2(tq − 1−tq
kq−1

)2
Var

[
r̂C,〈q,u〉 − p̂C,q

(1− t
(k − 1)kq

− t 1− tq
kq − 1

)]
=

1

t2(tq − 1−tq
kq−1

)2
·

(
Var

[
r̂C,〈q,u〉

]
+
(1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
Var [p̂C,q] + 2

(1− t
(k − 1)kq

− t 1− tq
kq − 1

)
Cov[p̂C,q, r̂C,〈q,u〉]

)
=

1

t2(tq − 1−tq
kq−1

)2
·

(
rC,〈q,u〉(1− rC,〈q,u〉)

|DC |
+
(1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ2
C,q + 2

(1− t
(k − 1)kq

− t 1− tq
kq − 1

) 1

t− 1−t
k−1

Cov[r̂C,q, r̂C,〈q,u〉]

)

=
1

t2(tq − 1−tq
kq−1

)2
·

(
rC,〈q,u〉(1− rC,〈q,u〉)

|DC |
+
(1− t

(k − 1)kq
− t 1− tq

kq − 1

)2
σ2
C,q + 2

(1− t
(k − 1)kq

− t 1− tq
kq − 1

) 1

t− 1−t
k−1

rC,〈q,u〉(1− rC,q)
|DC |

)
.

Using our already-computed estimates r̂C,q, r̂C,〈q,u〉, and σ̂2C,〈q,u〉 (in place of rC,q, rC,〈q,u〉,

and σ2C,〈q,u〉 respectively) and applying Bessel’s correction, we obtain the stated result.

Theorem 3.7 . If σ̂2O,〈q,u〉 and σ̂2C,〈q,u〉 are sample variances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respec-

tively, and the blended estimate is the convex combination p̂〈q,u〉 = w〈q,u〉 ·p̂O,〈q,u〉+(1−w〈q,u〉)·

p̂C,〈q,u〉, then the sample variance optimal weighting is given by w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

.

Proof. With the record probability and variance estimates for each group fully computed,
the blended estimate of p〈q,u〉 is given by p̂〈q,u〉 = w〈q,u〉 · p̂O,〈q,u〉 + (1− w〈q,u〉) · p̂C,〈q,u〉. The

sample variance of p̂〈q,u〉 is given by σ̂2〈q,u〉 = w2
〈q,u〉 · σ̂

2
O,〈q,u〉+(1−w〈q,u〉)2 · σ̂2C,〈q,u〉. Minimizing

σ̂2〈q,u〉 with respect to w〈q,u〉 yields the stated result.

This work is licensed under the Creative Commons License Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0). To view a copy of this license, visit https://creativecommons.
org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, 171 Second St, Suite
300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	1.1. Contributions

	2. Overview
	2.1. Differential Privacy and Curator Models
	2.2. An Algorithm for the Hybrid Model

	3. Technical Details
	3.1. Opt-in Data Algorithms
	3.2. Client Data Algorithms
	3.3. Blending
	3.4. Discussion

	4. Experimental Evaluation
	4.1. Utility Metrics
	4.2. Experimental Setup
	4.3. Experimental Results

	5. Related Work
	6. Conclusions
	References
	7. Appendix

