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Abstract. Privacy protection is an important requirement in many statistical studies. A
recently proposed data collection method, triple matrix-masking, retains exact summary
statistics without exposing the raw data at any point in the process. In this paper, we
provide theoretical formulation and proofs showing that a modified version of the procedure
is strong collection obfuscating: no party in the data collection process is able to gain
knowledge of the individual level data, even with some partially masked data information
in addition to the publicly published data. This provides a theoretical foundation for the
usage of such a procedure to collect masked data that allows exact statistical inference
for linear models, while preserving a well-defined notion of privacy protection for each
individual participant in the study. This paper fits into a line of work tackling the problem
of how to create useful synthetic data without having a trustworthy data aggregator. We
achieve this by splitting the trust between two parties, the “masking service provider” and
the “data collector.”

1. Introduction

In the digital age, vast amount of data becomes available for research. At the same time,
there is increasing pressure to protect the privacy of study subjects when their data is used.
For medical research, the Health Insurance Portability and Accountability Act of 1996 and
subsequent rulings have imposed legal requirements for privacy protection on the collection
and handling of health data. Among other things, basic privacy protection measures include
the removal of all personal identifiers when releasing data for use. However, simply removing
the personal identifier variables does not prevent possible identification of the individual
from other variables. To prevent the identification of an individual record, researchers
have shown that released data should be aggregated to satisfy privacy conditions such as
k-anonymity [Sweeney, 2002], l-diversity [Machanavajjhala et al., 2007] and t-closeness [Li
et al., 2007].

However, releasing data only at aggregated levels severely restricts its usefulness in
many research studies. Alternatively, methods are designed to release obfuscated micro-data
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that allows for the usual statistical analysis while preserving the privacy at individual
levels. Some examples of such obfuscated micro-data publishing are: noise addition [Brand,
2002], multiple imputation[Rubin, 1993, Drechsler and Reiter, 2010], information preserving
statistical obfuscation [Burridge, 2003], random projection based perturbation [Liu et al.,
2006], random orthogonal matrix masking [Ting et al., 2008]. Particularly, in the random
orthogonal matrix masking scheme, a masked data set AX is published, where X denotes
the data matrix of real responses and A is a random orthogonal matrix. The published
data AX keeps the exact values for sufficient statistics of linear models, thus allowing exact
statistical inference for many standard data analysis methods [Ting et al., 2008, Wu et al.,
2017b] while protecting privacy by denying the user’s direct access to the raw data X.
While the above methods all protect the privacy of individual entries through publishing
only the random perturbed micro-data, the privacy protection can be lost when multiple
micro-data sets are combined from multiple inquires to the same database. Differential
privacy is proposed to quantify the effectiveness of privacy protection of the random noise
addition/perturbation schemes [Dwork et al., 2006, Dwork, 2006, Dwork and Naor, 2008]
against multiple inquires to the database. Then the noise level can be adjusted to achieve a
quantified tradeoff between inference efficacy and privacy preservation (measured by the
differential privacy metric).

Traditionally, there is a trustworthy data collector/manager that collects raw data and
ensure privacy protection by releasing the data sets with random perturbations. Such proce-
dures however do not protect against attacks where an unscrupulous party has unauthorized
access to the raw data set X kept by these centers. Such security breaks are becoming
more common as shown by the recent well-publicized incidences involving hacking against
databases at major retailers, banks and credit bureaus [Huffington Post, 2011, Reuters.,
2015, 2017].

This paper fits into a line of work tackling the problem of how to create useful synthetic
data without having a trustworthy data aggregator, and provides a theoretical study of
the triple matrix-masking (TM2) procedure [Wu et al., 2017b] that does not assume such a
trustworthy data collector/manager. The TM2 procedure is a multi-party collection and
masking system that aims to collect and publish the random orthogonal masked data set
AX. We prove that, assuming no collusion between parties, no party learns more than the
orbit of the data matrix under the action of the orthogonal group. More specifically, given
the view of a particular party, let S be the set of data matrices that could possibly have
resulted in that view. We show that S contains the full orbit of the data matrix and that
given any prior on the data matrix, the party’s posterior is simply their prior restricted to
S. We call data collection procedures with such properties as strong obfuscating since any
extra information beyond AX available to a party does not help in further identifying the
individual level data.

In the differential privacy literature, the issue of untrustworthy data collector can be dealt
with using local differential privacy procedures [Kasiviswanathan et al., 2011], where noises
are added to the individual data before passing to the data collector. The resulting synthetic
data from differential privacy procedures, however, does not preserve exact statistics hence
require special inference procedures designed to achieve optimal statistical inference Duchi
et al. [2017]. Our TM2 procedure provides an alternative where the published masked
data exactly preserve any statistics of the data that are preserved under the action of
the orthogonal group. This provides an useful utility that exact statistical inference for
linear models are preserved, thus standard linear statistical inference procedures can be
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applied directly on the resulting synthetic data from the TM2 procedure. On the other hand,
the TM2 procedure is only for a one-shot collection of each individual’s data. When the
individual data providers are sampled in multiple independent collections by different data
collectors, differential privacy procedures can measure and limit the privacy leakage for the
composition of the multiple collections. The TM2 procedure does not consider the privacy
leakage for the composition of the multiple collections.

Section 2 describe the TM2 procedure and two new modifications to make it strong
obfuscating. The theoretical analysis is provided in Section 3. Section 4 provides a summary
and more detailed discussions for the relationship of the TM2 procedure to the differential
privacy and multi party computation methods.

2. The Masked Data Collection Procedure TM2nd Its Modification

The privacy-preserving data collection scheme TM2 was proposed first in Wu et al. [2017b]
and later expanded by Wu et al. [2017a]. We describe our modified basic version of the TM2

method here:

Step 1. The data collectors plan the data collection, create the database structure, program
the data collection system. They randomly generate a p× p random orthogonal matrix B,
which is distributed to the participants’ data collection devices.
Step 2. Each participant’s data x1 (a vector of dimension p1) is collected and merged with
Gaussian noise x2 (of dimension p2) into a vector x = (x1, x2) of dimension p = p1 + p2.
Then x is right multiplied by B on the participant’s device, and only the resulting masked
data xB leaves the device and is sent to the masking service provider.
Step 3. The masking service provider generates another n× n random orthogonal matrix
A2. After receiving data from all participants, it combines the individual data xB into a
n× p matrix XB, left multiplies by A2 and sends the doubly masked data A2XB to the
data collectors.
Step 4. The data collectors multiply A2XB by B−1 to get back A2X and take the
first p1 columns to get A2X1. Then the data collectors generate another n× n random
orthogonal matrix A1, left multiply it to A2X1, and publish AX1 (where A = A1A2)
which is accessible by all data users.

Detailed theoretical analysis of the privacy guarantee on the TM2 method has been
missing. This paper fills that gap by proving theoretically that this modified version of the
TM2 method is strong obfuscating. We prove the strong obfuscating guarantee by showing
that: (A) the extra information that any party in the process owns will not allow the party
to reduce the data domain (possible values of data) small enough to identify individual
level data; and (B) there is no statistical information leakage beyond the domain restriction
considered in (A).

Compared to the original TM2 scheme in Wu et al. [2017b], we make two modifications
on the TM2 procedure. For the first modification, we add random Gaussian noise in Step 2.
The data collector wants to collect p1 variables on n individuals so that the real response
matrix becomes X1 of dimensions n × p1. We ask each participant to generate p2 pure
Gaussian noise variables, on his/her device according to a fixed variance parameter σ2.
Hence, the full data matrix would be X = (X1,X2). For privacy protections proved in
later sections, we require that p1 < n ≤ p = p1 + p2. In Step 2 of this modified procedure,
Gaussian noise x2 is mingled with real response x1 to provide protection in addition to
the random mask B. In Step 4, after the collectors get back A2X = (A2X1,A2X2), they
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Masking Service Provider

data XB, mask A2

�
Step 2 Data Providers

data x1, noise x2, mask B

Data Collectors
data A2XB, masks A1,B

-
Step 3

6

Step 1

?
Step 4

Data Users (Public)

data A1A2X1

Figure 1: This diagram shows each party’s knowledge about the data and the masking matrices
in the modified TM2 method. Each party knows some masked version of the data:
XB for the masking service provider, A2X for the data collector, and A1A2X1

for everybody including the public. Nobody knows the original data X1, with each
data provider (participant) knowing only his/her row x1

separate the matrix and discard those noises. Therefore the published data set AX1 with
A = A1A2 still gives the exact summary statistic, as it is only masked by A without
containing the added noise.

For the second modification, instead of using a random invertible matrix for the right
mask B as originally proposed by Wu et al. [2017b], we use a random orthogonal matrix
for the right mask B. As we will see in the privacy analysis in the next section, using an
invertible matrix does make one part of the privacy proof easier. However, the other part of
privacy proof depends on using a uniformly distributed random matrix to avoid information
leakage that can lead to probabilistic attacks. While there is a natural uniform distribution
on all orthogonal matrices that is well studied in literature, there is no natural uniform
distribution on the set of all invertible matrices. The uniformly distributed orthogonal
matrix B does provide sufficient privacy protection when combined with the addition of
noise X2.

2.1. Privacy Analysis of TM2etup. To rigorously study the privacy protection issues in
this data collection process, we analyze the information that can be accessed by each party
and analyze whether such information allows inference of the individual level data.

First, we illustrate how to analyze the privacy protection assuming that the adversary
only has access to the publicly published left-masked data set ML = AX1 where A is a
random n × n orthogonal matrix. The issue becomes whether an adversary can identify
individual level data knowing only ML = mL.

We consider the analysis in two stages. When given ML = mL, this restricts the
possible values of X1 and can thus reveal information. In the first stage, we consider whether
this support restriction on X1 (due to ML = mL) enables the identification of individual
data. Let SX1

denote the support of X1, and let SX1
(mL) denote the restricted support of

X1 given that ML = mL. The privacy preservation depends on the size of SX1
(mL). For
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example, in an extreme case, if the SX1
(mL) contains only one matrix, then X1 is known

to everyone and data privacy cannot be protected. Generally we can show, in next section,
that this restricted support SX1

(mL) is big enough so that identification of individual data
is impossible.

In the second stage, we consider whether the adversary can learn any information beyond
the restriction on support which was analyzed in the first stage. Such information can enable
adversaries to launch probabilistic attacks [Machanavajjhala et al., 2007, Fung et al., 2010].
Fortunately, due to the independence between the mask A and the raw data X1, we can
show that the posterior density of X1 given ML = mL is the same as the prior density of
X1 restricted to the support SX1

(mL). Thus any loss of privacy is through the support
restriction already studied in stage one. Therefore, knowing ML = mL does not identify
individual level data.

Next, we consider the privacy protection for all parties involved in the whole TM2 data
collection process. That is, we conduct the above two-stage privacy protection analysis
given all information available to one party in the process. The data collector and the
masking service provider each have access to some intermediate masked data in addition to
the public data. Hence, we need to analyze privacy protection for an adversary knowing this
intermediate masked data together with the public data set ML = AX1.

The data collector knows, in addition to ML = AX1, the double masked data A2XB.
Since the data collector knows the masks A1 and B, knowing these data A1A2X1 and
A2XB are simply equivalent to knowing A2X. Due to the fact that X2 is purely noise
independent of raw data X1, the theoretical privacy analysis for the data collector knowing
A2X = (A2X1,A2X2) will have basically the same results as the analysis for the user with
access only to ML = AX1.

The masking service provider has access to the right-masked data MR = XB in addition
to the public left-masked data ML = AX1. This information results in the most severe
restriction on the support when compared to what resulted from knowledge by other parties.
Thus, this is the weakest link for privacy preservation in the whole TM2 data collection
scheme. In Section 3, we present details of the two-stage privacy protection analysis when
both ML and MR are known.

3. Theoretical Analysis of Privacy Preservation of TM2

3.1. Notations, Formalizations and Technical Preliminaries. We denote the proba-
bility densities of random matrices X1, X2, A and B as πX1

(x1), πX2
(x2), πA(a) and

πB(b) respectively. The supports of these distributions are denoted respectively as SX1
,

SX2
, SA and SB .
We want to study, based on information INFO available to one party, what this party

can infer about the individual level data. Here this INFO includes the publicly available
final left-masked data ML = AX1 and some extra information available to the particular
party. The restricted support of X1 given INFO is denoted as SX1

(INFO) which consists
of all n× p matrices that can be the value of X1 which is compatible with INFO.

For example, given only the public masked data INFO = ML, the restricted support is

SX1
(ML) = {U : ∃Ã ∈ SA such that ÃU = ML.}
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Let On denote the set consisting of all orthogonal matrices. In the case of left masking with
a random orthogonal matrix A, for any orthogonal Ā ∈ On, U = ĀX1 is compatible with

INFO = ML. That is, SX1
(ML) = OnX1. To see this, let Ã = AĀ

T
, then Ã ∈ On and

Ã(ĀX1) = ML. Here and throughout this paper, we use T to denote the transpose of a
matrix.

For the strong obfuscating guarantee, we wish to show that the extra information available
to the parties in the process does not cause any privacy loss more than the publicly released
final left-masked data ML = AX1. We want to show that: stage one (i) the restricted
support SX1

(INFO) is the same as SX1
(ML) = OnX1; stage two (ii) the conditional

probability distribution of X1 given INFO is similar to the probability distribution of X1

given support SX1
(INFO), thus there is no privacy loss through probability attacks beyond

the loss from the support restriction considered in stage one.
We now formalize the precise mathematical statements to prove in stages one and two.

More precisely for stage one, we hope that the restricted support is the same as if only the
public left-masked data is available.

(i) SX1
(INFO) = OnX1,

for INFO available to any one party in the process. For the second stage, we denote
πX1|INFO(x1|INFO) as the posterior distribution of X1 given INFO. The prior density

πX1
restricted on the support SX1

(INFO) is

πX1|SX1
(INFO)(x1) =

πX1
(x1)∫

SX1
(INFO)

πX1
(x∗1)dx

∗
1

.

To show that there is no extra privacy loss beyond the support restriction considered in
stage one, we prove that these two probability densities agree with each other. That is, we
wish to prove

(ii) πX1|INFO(x1|INFO) = πX1|SX1
(INFO)(x1).

Definition 3.1. A data collection process is strong collection obfuscating if conditions (i)
and (ii) hold for the information INFO available to any party in this process.

A slightly weaker version is that the above property holds with a high probability.
Notice that the INFO available to any party in this process can be determined from
the values of X1, X2, A and B which are generated respectively from distributions with
densities πX1

(x1), πX2
(x2), πA(a) and πB(b). Thus such INFO is generated from a

probability distribution defined by πX1
(x1), πX2

(x2), πA(a) and πB(b). We want that,
with high probability from this probability distribution, the generated values of INFO
satisfy conditions (i) and (ii).

Definition 3.2. A data collection process is ε-strong collection obfuscating if, with probability
at least 1− ε, conditions (i) and (ii) hold for the information INFO available to any party
in this process.

Our definition of the strong collection obfuscating procedure ensures that there is no
privacy loss due to observations by any party in the process beyond those contained in the
publicly released final data. This definition delineates the privacy protection in the collection
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process from the privacy protection in the publicly releasing of final data ML = AX1. The
theoretical analysis concentrates on the soundness of the collection process.

Given the public left-masked data ML = AX1, the statistics XT
1 X1 are released to

the user. The user has the first two exact statistical moments and statistical models, such
as linear regression, can be fitted exactly as if the user has the raw data set X1. And the
residuals are known up to an orthogonal matrix multiplication, therefore the usual statistical
model diagnostics methods can also be carried out as if done on the raw data set.

For continuous data, the user cannot recover the individual level data since the user
only sees a linear combination of all individuals’ data, and there is no utilizable statistical
distributional information other than the prior (population) density πX1

. This ensures the
privacy of individual data.

In practice, the types of elements in X1 may also be known to the user. This can further
restrict the support. We assume that the elements in data matrix X1 are all encoded as
numerical values (e.g., “yes/no” answer to a question may be encoded as 1 and 0). We
consider that the type of data in each column, either as continuous/discrete/binary, is public
knowledge. Let Sj denote the support of the type of data in the j-th column of X1. For
example, if data are continuous, then Sj = R; if the data are binary, then Sj = {0, 1}; if
the data are positive integers, then Sj = {1, 2, ...} = N+. Knowing the type of data in each
column would restrict the support of X1 to

S̃X1
= {U : (all entries of j-th column in U) ∈ Sj j = 1, ..., p1.}.

Then with knowledge of both INFO and types of data, the restricted support becomes
the intersection of S̃X1

and SX1
(INFO),

SX1
(INFO;TY PE) = S̃X1

∩ SX1
(INFO).

Let Pn denote the set of all permutation matrix P . Since all permutation matrices are
orthogonal and permutation does not change the type of elements, we have the following
Lemma:

Lemma 3.3. For any strong obfuscating data collection process,

PnX1 ⊆ [S̃X1
∩ OnX1] = SX1

(INFO;TY PE).

Lemma 3.3 indicates that a strong collection obfuscating data collection process offers
some privacy protection even when the data types are known. Since all permutations are
in the SX1

(INFO;TY PE), any individual cannot be identified here without extra side
information. It is not clear whether the type can be combined with some side information
(such as data that a particular individual is a smoker) to reveal other individual level data.
However, notice that any weakness in this aspect is inherently due to releasing the public
data AX1. Our strong collection obfuscating procedure ensures that no extra privacy loss
is added during the process beyond the privacy loss in releasing AX1.

As we discussed in the previous section, the party with the most information during the
TM2 process is the masking service provider who knows INFO = (ML,MR). Therefore,
in the next section, we study when (i) and (ii) hold for INFO = (ML,MR). Here we first
state some technical preliminary results on the characterization of the uniform distribution
on orthogonal matrices. These preliminary results are used in studying the second stage
condition (ii) later.

Under the matrix multiplication, the orthogonal matrices form a compact Hausdorff
topological group On. Therefore, there is a unique Haar measure µ(·) on On such that
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the measure of the whole sample space On equals one. Then this Haar measure induces a
natural uniform distribution on On. See Chapter 2 of Zhang [2014] for a detailed technical
equivalent characterization of the uniform distribution on On. Since a Haar measure µ(·) is
invariant under the matrix multiplication, the uniform distribution is also invariant under
the matrix multiplication.

Lemma 3.4. Let π0(·) denote the probability density function of the uniform distribution
on On. Then for any orthogonal matrix A0 ∈ On,

π0(a) = π0(A0a) = π0(aA0), for all a ∈ On. (3.1)

Also, the product of two uniformly distributed orthogonal matrices is also uniformly
distributed.

Lemma 3.5. If A1 ∼ π0 and A2 ∼ π0 are independent of each other, then their product
A = A1A2 also follows the uniform distribution π0 on On.

The proof is straightforward and can be found in Chapter 2 of Zhang [2014].
In the TM2 scheme, when the masking service provider and the data collector each

generate a random orthogonal matrix A1 and A2 respectively according to π0, then the
mask A = A1A2 for the publicly released data set is also uniformly distributed. In practice,
the uniformly distributed random orthogonal matrices can be generated using algorithms
described in Heiberger [1978], Anderson et al. [1987], Wu et al. [2017b].

3.2. Restricted Support Given Knowledge of Masked Data Sets. We first prove
that condition (i) holds for INFO = (ML,MR) when invertible matrices are used for right
mask B as originally proposed by Wu et al. [2017b]. That is, B ∈ In, where In denote
the set of all n × n invertible matrices. Condition (i) then becomes that all orthogonal
transformations of X1 are contained in the restricted support

SX1
(ML,MR) = {U : ∃Ã ∈ SA, B̃ ∈ SB and Ũ ∈ SX2

such that

ÃU = ML and (U , Ũ)B̃ = MR}.
(3.2)

Theorem 3.6. Suppose SA = On and SB = Ip, p1 ≤ n ≤ p and X is full rank
(i.e., rank(X) = n), then for any P ∈ On, PX1 ∈ SX1

(ML,MR). In other words,

SX1
(ML,MR) = OnX1 = OnML.

Proof. We need to show that, for any P ∈ On, U = PX1 ∈ SX1
(ML,MR).

Since P ∈ On and A ∈ On, then Ã = AP T ∈ On. Then we have

ÃU = AP TPX1 = AX1 = ML. (3.3)

Since X is full-rank and n ≤ p, there exists a (p− n)× p matrix X∗ such that

(
X
X∗

)
is full-rank and thus invertible. Since P ∈ On,

(
P TX
X∗

)
is also full-rank and invertible.

Hence we can define an invertible matrix

B̃ =

(
X
X∗

)−1(
P TX
X∗

)
B.
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Also let Ũ = PX2 thus (U , Ũ) = PX, we have(
(U , Ũ)
X∗

)
B̃ =

(
P 0
0 I

)(
X
X∗

)
B̃ =

(
P 0
0 I

)(
P TX
X∗

)
B =

(
X
X∗

)
B,

where I is the identity matrix of size (p− n)× (p− n). The first p rows in the last equation
are

(U , Ũ)B̃ = XB = MR. (3.4)

(3.3) and (3.4) together means that U satisfies (3.2), thus U belongs to SX1
(ML,MR).

Theorem 3.6 states that condition (i) is satisfied when the X is full rank. In the original
TM2 scheme proposal, the full rank condition may or may not be satisfied because it is
determined by the underlying probability distribution of X1 which is outside the control
of the designer of this procedure. With the modification of extra noise matrix X2, we can
ensure the full rank condition by specifying the noise generation mechanism. Particularly,
we specify that each individual data provider generates a p2-dimension noise vector with
i.i.d. elements from a Gaussian distribution with p2 ≥ n. This will ensure with probability
one that X is indeed full rank.

Remark 1. (Size of the right mask) For privacy preservation, the size of right mask p
has to be bigger than the data size n as assumed in Theorem 3.6. When p < n, some rows
of MR are linear dependent which provides further restriction on the support. We provide
such a counter example in Appendix A to illustrate that such a restriction together with
knowledge of data type can reveal individual level data.

Above we considered the support restriction under the original TM2 scheme proposal [Wu
et al., 2017b] of invertible right mask, SB = Ip. However, unlike Op, Ip does not form a
compact Hausdorff topological group. Therefore, there exists no uniform distribution on Ip.
Due to the non-uniformity of B, the posterior distribution of X1 given (ML,MR) leaks
information beyond the support restriction, thus the second stage condition (ii) no longer
holds. This makes the usage of random invertible right masks in the TM2 scheme very tricky.
It is unclear what distribution on Ip should be used to generate the random invertible B.

Here, we consider the modification of the TM2 scheme where the right mask B is a
random orthogonal matrix generated from the uniform distribution π0 on Op. We show that
if the random noise X2 is large enough, then condition (i) still holds when the orthogonal
right mask B is used.

Let λmin(M) and λmax(M) denotes the minimum and the maximum eigenvalues of a
semi-positive definite matrix M . The restricted support will remain big if the noise is large
enough:

λmin(MRM
T
R −X1X

T
1 ) = λmin(X2X

T
2 ) > λmax(X1X

T
1 ). (3.5)

Now we have a result similar to Theorem 3.6.

Theorem 3.7. Suppose SA = On and SB = Op, p1 ≤ n ≤ p. If condition(3.5) holds, then
SX1

(ML,MR) = OnX1.

The proof is provided in Appendix B.
Next, we show that condition (ii) also holds when under condition(3.5). Then we discuss

how achievable the technical condition(3.5) is in practice.
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3.3. Information Leakage Beyond the Support Restriction. We now study the sec-
ond stage condition (ii) by checking the amount of information an adversary can get from the
posterior distribution of X1 given (ML,MR) beyond their restriction on the support of X1.
Given INFO = (ML,MR), the posterior density is denoted as πX1|(ML,MR)

(x1|mL,mR).

The prior density πX1
restricted on the support SX1

(mL,mR) is denoted as πX1|SX1
(mL,mR)

.

Theorem 3.8. Let X1 be a random matrix with probability density πX1
. We assume that

the elements in X2 are generated i.i.d. from a Gaussian distribution with mean zero. When
condition (3.5) holds, given ML and MR, the posterior density of X1 is the same as the
prior density restricted on SX1

(ML,MR). That is,

πX1|(ML,MR)
(x1|mL,mR) = πX1|SX1

(mL,mR)
(x1). (3.6)

The proof of Theorem 3.8 is provided in Appendix D.

3.4. ε-strong obfuscating TM2. Theorem 3.7 and Theorem 3.8 states, respectively, that
conditions (i) and (ii) hold under condition (3.5). Combining them, we have the following
Theorem.

Theorem 3.9. If
Pr[λmin(X2X

T
2 ) > λmax(X1X

T
1 )] ≥ 1− ε, (3.7)

then the proposed TM2 procedure is ε-strong collection obfuscating by Definition 3.2.

The ε-strong collection privacy property ensures that there is at most ε probability for
the process to leak any privacy information beyond the public released data AX1. TM2

achieves this property when the technical condition (3.7) holds. To achieve the technical
condition (3.7), we generate the p2-dimensional noise vector x2 with i.i.d. Gaussian elements
of mean zero and a sufficiently large variance σ2. We present a technical probability bound
in Appendix C, where the probability of violating condition (3.5) is decreasing exponentially
and specifics a σ2 value which ensures condition (3.7). Larger variance σ2 always increases
the probability that condition (3.5) holds. In practice, the variance σ2 is only limited due to
the computation accuracy. That is, σ should not exceed raw data values by the orders of
magnitude allowed by the machine precision.

3.5. Extension to Alleviate Collusion Risks. We have shown that the privacy of in-
dividual data can be protected when no party in the TM2 scheme knows all the masks.
However, there are also risks of collusion among different parties in the procedure. Since
the right mask B is known to the data collector and all individual data providers, if one of
them share this info with the masking services provider, then the privacy protection can be
broken.

Wu et al. [2017a] proposed ideas to protect against this collusion risk using the ideas
of multiparty computation. For each individual, the data vector x can be broken up as K1

random components x1,...,xK1 where x = x1+...+xK1 . Then such components are sent to K1

right masking service providers, one to each. The resulting masked data xiBi, i = 1, ...,K1,
are then sent to the left masking service provider to be merged and created the double
masked data AXiBi, i = 1, ...,K1. For further protection, they can be passed through K2

left masking service providers to generate AK2 ...A1X
iBi. Let A = AK2AK2−1...A1. Then

the masked data AXiBi, i = 1, ...,K1, are sent to the corresponding right masking service
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providers to remove the right masking. Then the resulting AXi, i = 1, ...,K1, are sent to
the data collector to generate AX = AX1 + ...+AXK1 . Unless all K1 right (or all K2 left)
masking service providers collude, they cannot find values of all components X1, ...,XK1 .

The stage one theoretical analysis on this extended TM2 scheme can be analyzed
similarly as before, where the restricted support condition (i*) holds given condition (3.5).
The stage two analysis is more involved, as the posterior distribution of X1 given some
shares, depends on the distribution of the shares. Which random distributions should the
shares be generated from to effect no additional privacy loss remains an open question, and
will be investigated in future work.

4. Discussions and Conclusions

This paper conducts a theoretical analysis of privacy preservation in a modified TM2 scheme.
Random noises were used with uniformly distributed orthogonal matrix masks to hide
individual data during the data collection process. The noise addition in the first step of
the TM2 scheme is similar to the idea of noise perturbed response schemes. However, the
critical difference is that our noise addition is only intended to help mask data during the
transition, and is in fact removed after the right mask removal. The resulting published
data set is a left masked data set with exact summary statistics, unlike many other noise
addition schemes where the summary statistics are randomly approximated.

This work is aimed to protect against unscrupulous access to the raw data X1 tradi-
tionally hold by a trusted operator. We would like to further clarify the relationship to
differential privacy methods [Dwork et al., 2006] which aims to provide a strong privacy
protection and closure under composition of multiple accesses to the database. There are
two types of differential privacy models. In the central model, a trusted database operator
holds the raw data, and releases noise perturbed summary statistics for inquires. In the
local model [Evfimievski et al., 2003, Dwork et al., 2006, Kasiviswanathan et al., 2011,
Cormode et al., 2018], noise is added at the individual level based on the idea of randomized
response methods [Warner, 1965, Blair et al., 2015]. The local differential privacy procedures
similarly addresses the issue of untrustworthy central database operator. In recent years,
Goolge [Erlingsson et al., 2014], Apple [Thakurta et al., 2017] and Microsoft [Ding et al.,
2017] have all developed and deployed local differential privacy procedures in data collection.

There are two type of possible unscrupulous access to the raw data X1 to be addressed.
The first is that the data collector is untrustworthy. The second is that an unscrupulous
party might break in to the server containing data collected by an honest data collector. In
the differential privacy literature, the first type is handled by using local differential privacy
procedures, while the second type is addressed via pan-private data analysis [Dwork et al.,
2010]. Our TM2 scheme protects against both type of unscrupulous accesses, but only allow
for a one-shot collection for each individual’s data.

While both the local differential privacy procedures and the TM2 scheme can provide
protection against unscrupulous accesses, the goals are somewhat different. The TM2 scheme
aims to collect a masked data set that preserves the first two statistical moments of the
variables (note that XT

1 X1 is knowable from the publicly available AX1). This allows
exact statistical inferences on quantities depending on these statistical moments. The local
differential privacy methods, on the other hand, aims to provide a stronger privacy protection
under composition of multiple data collections/accesses.
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The idea of the TM2 scheme is similar to secure multi-party computation (SMC)
procedures, in that this scheme tries to distribute information among parties so that each
party does not get access to individual level data other than its own. There are also important
differences between TM2 and SMC. They differ in their designed purposes even though both
want parties to cooperate in a joint task while keeping privacy. SMC is designed to conduct
joint statistical analysis without the parties revealing their data to each other. TM2 wants
to collect the masked data set, which enables statistical analysis, without parties revealing
the actual data to the data collector. Operationally, SMC requires distributed storage of
data as well as distributed computation. Specifically, if we require that the private data
of parties never leave their devices, then SMC needs the parties to stand by ready for any
statistical analysis that may occur much later in the future. In contrast, the TM2 method is
only distributive in the data collection stage. The private data leaves the parties’ devices in
a masked form, and later is centrally stored in masked form AX1. Since all future statistical
analysis is conducted on the publicly released AX1, there is no need for the parties to be
available for future analysis.

In this paper, we presented a privacy analysis clearly separating the risks coming from
support restriction and the risks of probabilistic attacks beyond the support restriction.
With the analysis, we show that the TM2 scheme is safe to collect a synthetic data set AX1

which is a random orthogonal transformation of the raw data set X1. All information during
the data collection procedure is masked, and no one during the procedure can access the raw
data set. This removes the issue of trusting a data record keeper and provides a new tool for
researchers to collect data allowing exact statistical inference for linear models while provide
a privacy protection: no hacking attack against a party in the data collection procedure can
access real individual level data since all parties do not have enough information to infer the
private individual data.
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Appendix A. A Counter Example

We illustrate that p ≥ n and the full rank condition on X are needed for the privacy
preservation in the TM2 scheme through a simple counter example here. We consider a
3× 2 matrix X, where the first column X1 contains binary sensitive information and the
second column X2 contains continuous random noise. Suppose that only one of the three
individuals answered “1” on the sensitive question, so that the data matrix is

X =

x11 x12
x21 x22
x31 x32

 =

1 a1
0 a2
0 a3

 . (A.1)

We decompose X =

(
Xa

Xb

)
with the first two rows as Xa and the last row as Xb.

Without loss of generality, we assume that a2 6= 0 so that

(
1 a1
0 a2

)
is non-singular, and we

assume that a3/a2 is not an integer. Then the first column X1 = (1, 0, 0)T can be uniquely
determined from the masked data MR.

To see this, we decompose MR =

(
Ma

M b

)
similarly as in the decomposition of X =(

Xa

Xb

)
. Then M bM

−1
a = (XbB)(XaB)−1 = XbBB−1X−1a = XbX

−1
a is known to

anyone with access to MR. Using (A.1), this means XbX
−1
a = (0, a3/a2) is determined

http://search.proquest.com/docview/1876889174/
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from the masked data MR. Then the first element in (XbX
−1
a )Xa = Xb indicates that

(0, a3/a2)(x11, x21)
T = x31. That is, (a3/a2)x21 = x31.

Since x21 and x31 are binary entries in X1 and a3/a2 is not an integer, the attacker can
infer from (a3/a2)x21 = x31 that x21 = x31 = 0. Then we must have x11 = 1 due to MR

(and thus X) being full-rank. That is, we now know every entry in X1 = (1, 0, 0)T from the
masked data MR.

Notice that according to Lemma 3.3, a strong collection obfuscating procedure would
not have allowed this identification of individual data from the random permutation. There
is indeed additional privacy loss without assuming p < n. In general, when p < n and MR

is full rank, (M bM
−1
a )Xa = Xb along with knowledge of the data type may leak sensitive

information about original data X.

Appendix B. Proof of Theorem 3.7.

Proof. Same arguments in proof of Theorem 3.6 shows that (3.3) holds. Therefore we only

need to show that there exist X̃2 and B̃ satisfying (3.4): (PX1, Ũ)B̃ = XB = MR.
Using condition (3.5), we have

λmin(X1X
T
1 + X2X

T
2 − PX1X

T
1 P

T ) ≥ λmin(X1X
T
1 ) + λmin(X2X

T
2 )− λmax(PX1X

T
1 P

T )

≥ λmin(X2X
T
2 )− λmax(X1X

T
1 )

> 0.

Hence X1X
T
1 + X2X

T
2 − PX1X

T
1 P

T is a positive definite matrix. Therefore, there exists

a matrix Ũ such that

ŨŨ
T

= X1X
T
1 + X2X

T
2 − PX1X

T
1 P

T . (B.1)

This is equivalent to

(PX1, Ũ)(PX1, Ũ)T = ŨŨ
T

+ PX1X
T
1 P

T = X1X
T
1 + X2X

T
2 = XXT = MRM

T
R.

(B.2)
Now we apply a singular value decomposition on MR = SDV where S ∈ On, V ∈ Op and
D is a diagonal matrix with nonincreasing nonnegative diagonal elements. Then, due to

(B.2), the singular decomposition of (PX1, Ũ ) is SDṼ for a Ṽ ∈ Op. Therefore B̃ = Ṽ
T
V

is the orthogonal matrix satisfies (3.4).

Appendix C. Bound on condition (3.7).

To achieve the condition (3.7) we can specify the noise distribution to have large noise values.
Let xmax denote the largest possible absolute value of entries in X1. Then

λmax(X1X
T
1 ) = ‖X1‖22 ≤ ‖X1‖2F =

n∑
i=1

p1∑
j=1

x21,ij ≤ np1x2max = Cn,

where ‖ · ‖2 and ‖ · ‖F are the operator norm and Frobenius norm respectively. Note that
Cn = np1x

2
max is a known constant to the designer of the TM2 scheme. Condition (3.5)

holds when λmin(X2X
T
2 ) exceeds this constant.

We require each data provider to generate a p2-dimensional random noise vector with i.i.d.
Gaussian elements of mean zero and variance σ2. Assume that γ = p2/n > 1, when n→∞,
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Corollary 13 in Ledoux et al. [2010] provides a probability bound on the λmin(X2X
T
2 ) for

any δ > 0:

Pr[λmin(X2X
T
2 ) ≤ (

√
γ − 1)2nσ2(1− δ)] ≤ C0e

−nδ3/2/C0 ,

for some constant C0. The bound on the right side decrease exponentially in n so that, for
large n, it can be made smaller than ε for a δ < 1. Choosing σ2 > Cn/[(

√
γ − 1)2n(1− δ)]

will ensure that (3.7) holds.

Appendix D. Proof of Theorem 3.8.

Proof. We study the posterior density

πX1|(ML,MR)
(x1|mL,mR) =

π(X1,ML,MR)
(x1,mL,mR)∫

SX1
(mL,mR)

π(X1,ML,MR)
(x∗1,mL,mR)dx∗1

, (D.1)

and compare it with the prior density πX1
(x1) restricted on the support SX1

(ML,MR).
Recall that the probability densities for X1, X2, A and B at values X1 = x1, X2 = x2,

A = a and B = b are denoted respectively as πX1
(x1), πX2

(x2), πA(a) and πB(b). Due
to the independence of the generation mechanism of these quantities, their joint density is

π(X1,X2,A,B)(x1,x2,a, b) = πX1
(x1)πX2

(x2)πA(a)πB(b), (D.2)

for (X1,X2,A,B) ∈ SX1
× SX2

× SA × SB .

Since the elements of X2 are i.i.d. from the Gaussian distribution N(0, σ2),

πX2
(x2) =

1

(
√

2πσ)np2
e−

∑
1≤i≤n,1≤j≤p2 x

2
2,ij

2σ2 = f(‖x2‖2F ),

where f(x) = 1
(
√
2πσ)np2

e−
x

2σ2 and ‖x2‖2F =
∑

1≤i≤n,1≤j≤p2 x
2
2,ij with ‖ · ‖F denote the

Frobenius norm. Thus the joint density becomes

π(X1,X2,A,B)(x1,x2,a, b) = πX1
(x1)f(‖x2‖2F )πA(a)πB(b). (D.3)

We now plug (D.3) into (D.1) for calculation.
First, we calculate the numerator π(X1,ML,MR)

(x1,mL,mR) in (D.1). We denote the

restricted sample spaces of random variables A and B respectively given knowledge of some
other quantities as:

SA(x1,mL) = {a : ax1 = mL},
SB(x1,mR) = {b : ∃x2 such that (x1,x2)b = mR}.

(D.4)

Notice that given A = a and ML = mL, then X1 = aTmL. Also, given B = b and
MR = mR, then (X1,X2) = mRb

T so that

‖X2‖2F = trace(X2X
T
2 ) = trace[mRb

TbmT
R −X1X

T
1 ] = trace(mRm

T
R)− trace(X1X

T
1 ).

Hence given A = a, ML = mL and B = b, we have

‖X2‖2F = trace(mRm
T
R)− trace(aTmLm

T
La) = trace(mRm

T
R)− trace(mLm

T
L).
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Then using this and equation (D.3), we have

π(X1,ML,MR)
(x1,mL,mR)

=
∫

SA(x1,mL)

{
∫

SB(x1,mR)

πX1
(x1)f [trace(mRm

T
R)− trace(mLm

T
L)]πA(a)πB(b)db}da

= πX1
(x1)f [trace(mRm

T
R)− trace(mLm

T
L)]

∫
SA(x1,mL)

{
∫

SB(x1,mR)

πA(a)πB(b)db}da

= πX1
(x1)f [trace(mRm

T
R)− trace(mLm

T
L)]

∫
SA(x1,mL)

[
∫

SB(x1,mR)

πB(b)db]πA(a)da

= πX1
(x1)f [trace(mRm

T
R)− trace(mLm

T
L)][

∫
SA(x1,mL)

πA(a)da][
∫

SB(x1,mR)

πB(b)db].

(D.5)
Now for any pair of x1 and x∗1 that both belongs to SX1

(mL,mR), there exist (a,a∗)

such that ax1 = mL = a∗x∗1. Denote A0 = (a)−1a∗. Then A0x
∗
1 = (a)−1mL = x1 and

A−10 x1 = x∗1. Hence for any ã ∈ SA(x1,mL) we have

ãA0x
∗
1 = ãx1 = mL,

i.e., ãA0 ∈ SA(x∗1,mL). On the other hand, for any ā ∈ SA(x∗1,mL), āA−10 x1 = āx∗1 = mL,

i.e., āA−10 ∈ SA(x1,mL). Taken together, we have a one-to-one mapping between the two
sets SA(x1,mL) and SA(x∗1,mL). Particularly,

SA(x∗1,mL) = SA(x1,mL)A0. (D.6)

Hence for uniform density πA = π0, (D.6) and Lemma 3.4 implies that∫
SA(x1,mL)

πA(a)da =

∫
SA(x∗1,mL)

πA(a)da. (D.7)

Plug (D.5) and (D.7) into (D.1) and cancel the common factors, we get

πX1|(ML,MR)
(x1|mL,mR)

=

πX1
(x1)[

∫
SB(x1,mR)

πB (b)db]∫
SX1

(mL,mR)

πX1
(x∗1)[

∫
SB(x∗1,mR)

πB (b)db]dx∗1
, (D.8)

Next, for any pair of x1 and x∗1 that both belongs to SX1
(mL,mR), there exist

(x2, b) and (x∗2, b
∗) such that (x1,x2)b = mR = (x∗1,x

∗
2)b
∗. Let B0 = b(b∗)−1. Then

(x1,x2)B0 = (x∗1,x
∗
2). Similar to (D.6), we have

SB(x1,mR) = B0SB(x∗1,mR). (D.9)

For uniform density πB = π0, using (D.9), Lemma 3.4 implies that∫
SB(x1,mR)

πB(b)db =

∫
SB(x∗1,mR)

πB(b)db (D.10)

Plug-in (D.10) into equation (D.8), we have

πX1|(ML,MR)
(x1|mL,mR) =

πX1
(x1)∫

SX1
(mL,mR)

πX1
(x∗1)dx

∗
1

.
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