APPENDIX TO: DIFFERENTIALLY PRIVATE CONFIDENCE INTERVALS FOR EMPIRICAL RISK MINIMIZATION

YUE WANG, DANIEL KIFER, AND JAEWOO LEE

The main manuscript is available at https://doi.org/10.29012/jpc.660.

APPENDIX B. COMPLETE EXPERIMENTAL RESULTS

B.1. **Allocation for the Privacy Budget.** See Figures 1 to 12.

B.2. **Empirical Sample Complexity of Private Confidence Intervals.** See Figures 13 to 20.

Key words and phrases: Differential Privacy, Objective Perturbation, Output Perturbation, Confidence Intervals.
Figure 1: [\(\epsilon\text{-DP, objective perturbation, logistic regression}\)] Coverage percentage and average length of confidence intervals vs. \(\epsilon_1/\epsilon\) for objective perturbation based \(\epsilon\text{-DP confidence intervals}\) for linear regression with a total privacy budget of \(\epsilon = 1.0\). \(\epsilon_2 = \epsilon_3 = (\epsilon - \epsilon_1)/2\), \(c = 0.001\).
Figure 2: \([\epsilon\text{-DP, objective perturbation, SVM}]\) Coverage percentage and average length of confidence intervals vs. \(\epsilon_1/\epsilon\) for objective perturbation based \(\epsilon\text{-DP} \) confidence intervals for SVM with a total privacy budget of \(\epsilon = 1.0\). \(\epsilon_2 = \epsilon_3 = (\epsilon - \epsilon_1)/2, c = 0.001, h = 1.0.\)
Figure 3: [zCDP, objective perturbation, logistic regression] Coverage percentage and average length of confidence intervals vs. ρ_1/ρ for objective perturbation based zCDP confidence intervals for linear regression with a total privacy budget of $\rho = 0.5$. $\rho_2 = \rho_3 = (\rho - \rho_1)/2$, $c = 0.001$.
<table>
<thead>
<tr>
<th>Coverage Percentage</th>
<th>CI Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.90</td>
</tr>
<tr>
<td>0.50</td>
<td>0.92</td>
</tr>
<tr>
<td>0.75</td>
<td>0.94</td>
</tr>
<tr>
<td>1.00</td>
<td>0.96</td>
</tr>
</tbody>
</table>

- (a) Adult, n = 5,000, d = 1
- (b) Adult, n = 5,000, d = 5
- (c) Adult, n = 10,000, d = 10
- (d) US, n = 5,000, d = 1
- (e) US, n = 5,000, d = 5
- (f) US, n = 10,000, d = 10

Figure 4: [zCDP, objective perturbation, SVM] Coverage percentage and average length of confidence intervals vs. ρ_1/ρ for objective perturbation based zCDP confidence intervals for SVM with a total privacy budget of $\rho = 0.5$. $\rho_2 = \rho_3 = (\rho - \rho_1)/2$, $c = 0.001$, $h = 1.0$.
Figure 5: [\(\epsilon\)-DP, output perturbation, logistic regression] Coverage percentage and average length of confidence intervals vs. \(\epsilon_1/\epsilon\) for output perturbation based \(\epsilon\)-DP confidence intervals for linear regression with a total privacy budget of \(\epsilon = 1.0\). \(\epsilon_2 = \epsilon_3 = (\epsilon - \epsilon_1)/2\), \(c = 0.001\).
Figure 6: [\(\epsilon\text{-DP, output perturbation, SVM}\)] Coverage percentage and average length of confidence intervals vs. \(\epsilon_1/\epsilon\) for output perturbation based \(\epsilon\)-DP confidence intervals for SVM with a total privacy budget of \(\epsilon = 1.0\). \(\epsilon_2 = \epsilon_3 = (\epsilon - \epsilon_1)/2\), \(c = 0.001\), \(h = 1.0\).
Figure 7: [zCDP, output perturbation, logistic regression] Coverage percentage and average length of confidence intervals vs. ρ_1/ρ for output perturbation based zCDP confidence intervals for linear regression with a total privacy budget of $\rho = 0.5$. $\rho_2 = \rho_3 = (\rho - \rho_1)/2$, $c = 0.001$.

(A) KDDCUP99, $n = 5,000$, $d = 1$

(B) KDDCUP99, $n = 5,000$, $d = 5$

(C) KDDCUP99, $n = 10,000$, $d = 10$

(D) Banking, $n = 5,000$, $d = 1$

(E) Banking, $n = 5,000$, $d = 5$

(F) Banking, $n = 10,000$, $d = 10$
Figure 8: [zCDP, output perturbation, SVM] Coverage percentage and average length of confidence intervals vs. ρ_1/ρ for output perturbation based zCDP confidence intervals for SVM with a total privacy budget of $\rho = 0.5$. $\rho_2 = \rho_3 = (\rho - \rho_1)/2$, $c = 0.001$, $h = 1.0$.

(a) Adult, $n = 5,000$, $d = 1$

(b) Adult, $n = 5,000$, $d = 5$

(c) Adult, $n = 10,000$, $d = 10$

(d) KDDCUP99, $n = 5,000$, $d = 1$

(e) KDDCUP99, $n = 5,000$, $d = 5$

(f) KDDCUP99, $n = 10,000$, $d = 10$
Figure 9: [ε-DP, objective perturbation] Coverage percentage and average length of confidence intervals vs. $\varepsilon_2/(\varepsilon - \varepsilon_1)$ for objective perturbation based ε-DP confidence intervals with a total privacy budget of $\varepsilon = 1.0$. $\varepsilon_1 = 0.65$, $c = 0.001$, $h = 1.0$.

(A) Adult, $n = 5,000$, $d = 1$, logistic regression

(B) Adult, $n = 5,000$, $d = 5$, logistic regression

(C) Adult, $n = 10,000$, $d = 10$, logistic regression

(D) Banking, $n = 5,000$, $d = 1$, SVM

(E) Banking, $n = 5,000$, $d = 5$, SVM

(F) Banking, $n = 10,000$, $d = 10$, SVM
Figure 10: [zCDP, objective perturbation] Coverage percentage and average length of confidence intervals vs. $\rho_2/(\rho - \rho_1)$ for objective perturbation based zCDP confidence intervals with a total privacy budget of $\rho = 0.5$. $\rho_1 = 0.45$, $c = 0.001$, $h = 1.0$.

(A) Banking, $n = 5,000$, $d = 1$, logistic regression

(B) Banking, $n = 5,000$, $d = 5$, logistic regression

(C) Banking, $n = 10,000$, $d = 10$, logistic regression

(D) Adult, $n = 5,000$, $d = 1$, SVM

(E) Adult, $n = 5,000$, $d = 5$, SVM

(F) Adult, $n = 10,000$, $d = 10$, SVM
Figure 11: [\epsilon\text{-DP, output perturbation}] Coverage percentage and average length of confidence intervals vs. $\epsilon_2/(\epsilon - \epsilon_1)$ for output perturbation based ϵ-DP confidence intervals with a total privacy budget of $\epsilon = 1.0$. $\epsilon_1 = 0.8$, $c = 0.001$, $h = 1.0$.

(a) BR, $n = 5,000$, $d = 1$, logistic regression
(b) BR, $n = 5,000$, $d = 5$, logistic regression
(c) BR, $n = 10,000$, $d = 10$, logistic regression
(d) US, $n = 5,000$, $d = 1$, SVM
(e) US, $n = 5,000$, $d = 5$, SVM
(f) US, $n = 10,000$, $d = 10$, SVM
Figure 12: \([\text{zCDP, output perturbation}]\) Coverage percentage and average length of confidence intervals vs. \(\rho_2/(\rho - \rho_1)\) for output perturbation based zCDP confidence intervals with a total privacy budget of \(\rho = 0.5\). \(\rho_1 = 0.45\), \(c = 0.001\), \(h = 1.0\).
Figure 13: Coverage percentage from 1000 confidence intervals as a function of the sample size \(n \) and the dimensionality \(d \) on Adult dataset for logistic regression. \(\epsilon = 1.0, \rho = \epsilon^2/2 = 0.5, c = 0.001 \).

Figure 14: Average length from 1000 confidence intervals as a function of the sample size \(n \) and the dimensionality \(d \) on Adult dataset for logistic regression. \(\epsilon = 1.0, \rho = \epsilon^2/2 = 0.5, c = 0.001 \).
Figure 15: Coverage percentage from 1000 confidence intervals as a function of the sample size \(n \) and dimensionality \(d \) on Banking dataset for SVM. \(\epsilon = 1.0, \rho = \epsilon^2/2 = 0.5, c = 0.001, h = 1.0 \).

Figure 16: Average length from 1000 confidence intervals as a function of the sample size \(n \) and dimensionality \(d \) on Banking dataset for SVM. \(\epsilon = 1.0, \rho = \epsilon^2/2 = 0.5, c = 0.001, h = 1.0 \).
Figure 17: Coverage percentage from 1000 confidence intervals as a function of the sample size n and the total privacy budget ϵ (or ρ where $\rho = \epsilon^2/2$) on KDDCUP99 dataset for logistic regression. $d = 10, c = 0.001$.

Figure 18: Average length from 1000 confidence intervals as a function of the sample size n and the total privacy budget ϵ (or ρ where $\rho = \epsilon^2/2$) on KDDCUP99 dataset for logistic regression. $d = 10, c = 0.001$.
Figure 19: Coverage percentage from 1000 confidence intervals as a function of the sample size n and the total privacy budget ϵ (or ρ where $\rho = \epsilon^2/2$) on US dataset for SVM. $d = 10$, $c = 0.001$, $h = 1.0$.

B.3. The Overhead on Sample Complexity for Differential Privacy. See Figures 21 and 22.

B.4. Comparison among the Private Confidence Intervals and the Variability Intervals. See Figures 23 to 28.

B.5. Modeling the Relationship between Length of the Intervals and Other Parameters. See Figures 29 to 34.
Figure 20: Average length from 1000 confidence intervals as a function of the sample size n and the total privacy budget ϵ (or ρ where $\rho = \epsilon^2/2$) on US dataset for SVM. $d = 10$, $c = 0.001$, $h = 1.0$.

Figure 21: The mapping between sample complexities such that the average length of the non-private confidence intervals is equivalent to that of the private confidence intervals for logistic regression. $\epsilon = 1.0$ (corresponds to $\rho = 0.5$), $d = 10$, $c = 0.001$.
APPENDIX TO: DIFFERENTIALLY PRIVATE CONFIDENCE INTERVALS

Figure 22: The mapping between sample complexities such that the average length of the non-private confidence intervals is equivalent to that of the private confidence intervals for SVM. \(\epsilon = 1.0 \) (corresponds to \(\rho = 0.5 \)), \(d = 10 \), \(c = 0.001 \), \(h = 1.0 \).

Figure 23: Comparison among length of intervals with varying \(n \) for logistic regression on Adult dataset. \(d = 10 \), \(\epsilon = 1.0 \) (corresponds to \(\rho = 0.5 \)), \(c = 0.001 \).

Figure 24: Comparison among length of intervals with varying \(n \) for SVM on Banking dataset. \(d = 10 \), \(\epsilon = 1.0 \) (corresponds to \(\rho = 0.5 \)), \(c = 0.001 \), \(h = 1.0 \).
Figure 25: Comparison among length of intervals with varying d for logistic regression on Adult dataset. $n = 15,000$, $\epsilon = 1.0$ (corresponds to $\rho = 0.5$), $c = 0.001$.

Figure 26: Comparison among length of intervals with varying d for SVM on Banking dataset. $n = 15,000$, $\epsilon = 1.0$ (corresponds to $\rho = 0.5$), $c = 0.001$, $h = 1.0$.

Figure 27: Comparison among length of intervals with varying ϵ (or ρ with $\rho = \epsilon^2/2$) for logistic regression on KDDCUP99 dataset. $n = 15,000$, $d = 10$, $c = 0.001$.
Figure 28: Comparison among length of intervals with varying \(\epsilon \) (or \(\rho \) with \(\rho = \epsilon^2/2 \)) for SVM on US dataset. \(n = 15,000, d = 10, c = 0.001, h = 1.0 \).

Figure 29: Relationship between average length of the confidence intervals and the sample size \(n \) for logistic regression. \(d = 5, c = 0.001, \epsilon = 1.0 \) (corresponds to \(\rho = 0.5 \)). The fitted curve is \(\frac{c_0}{n} \frac{c_1}{\sqrt{n}} \).
Figure 30: Relationship between average length of the confidence intervals and the sample size \(n \) for logistic regression. \(d = 5, c = 0.001, \epsilon = 1.0 \) (corresponds to \(\rho = 0.5 \)). The fitted curve is \(\frac{c}{\sqrt{n}} \), that shows the length for the privacy-preserving confidence intervals is not proportional to \(\frac{1}{\sqrt{n}} \) as in the non-private case.
Figure 31: Relationship between average length of the confidence intervals and the sample size n for SVM. $d = 5$, $c = 0.001$, $\epsilon = 1.0$ (corresponds to $\rho = 0.5$), $h = 1.0$. The fitted curve is $\frac{c_0}{n} + \frac{c_1}{\sqrt{n}}$.
Figure 32: Relationship between average length of the confidence intervals and the sample size n for SVM. $d = 5$, $c = 0.001$, $\epsilon = 1.0$ (corresponds to $\rho = 0.5$), $h = 1.0$. The fitted curve is $\frac{c}{\sqrt{n}}$, that shows the length for the privacy-preserving confidence intervals is not proportional to $\frac{1}{\sqrt{n}}$ as in the non-private case.
Figure 33: Relationship between average length of the confidence intervals and the total privacy budget ϵ (or $\rho = \epsilon^2/2$) for logistic regression. $n = 10000$, $d = 5$, $c = 0.001$. The fitted curve is $\sqrt{\frac{2c}{\epsilon}} + c_1$ for ϵ-DP, $\sqrt{\frac{2\rho}{\rho}} + c_1$ for zCDP.
Figure 34: Relationship between average length of the confidence intervals and the total privacy budget ϵ (or $\rho = \epsilon^2/2$) for SVM. $n = 10000$, $d = 5$, $c = 0.001$, $h = 1.0$. The fitted curve is $\sqrt{\frac{\epsilon^2}{c^2}} + c_1$ for ϵ-DP, $\sqrt{\frac{\epsilon^2}{\rho}} + c_1$ for zCDP.