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ABSTRACT. A new line of work, starting with Dwork et al. (STOC, 2015), demonstrates
how differential privacy can be used as a mathematical tool for guaranteeing generalization
in adaptive data analysis. Specifically, if a differentially private analysis is applied on a
sample S of i.i.d. examples to select a low-sensitivity function f, then w.h.p. f(S) is close
to its expectation, even though f is being chosen adaptively, i.e., based on the data.

Very recently, Steinke and Ullman observed that these generalization guarantees can
be used for proving concentration bounds in the non-adaptive setting, where the low-
sensitivity function is fixed beforehand. In particular, they obtain alternative proofs for
classical concentration bounds for low-sensitivity functions, such as the Chernoff bound
and McDiarmid’s Inequality. In this work, we extend this connection between differential
privacy and concentration bounds, and show that differential privacy can be used to prove
concentration of functions that are not low-sensitivity.

1. INTRODUCTION

A new line of work, starting with Dwork et al. [2015b], demonstrates how differential privacy
[Dwork et al., 2006b] can be used as a mathematical tool for guaranteeing statistical validity
in data analysis. Specifically, if a differentially private analysis is applied on a sample S
of i.i.d. examples to select a low-sensitivity function f, then w.h.p. f(5) is close to its
expectation, even when f is being chosen based on the data. Dwork et al. [2015b] showed
how to utilize this connection for the task of answering adaptively chosen queries w.r.t. an
unknown distribution using i.i.d. samples from it.

To make the setting concrete, consider a data analyst interested in learning properties
of an unknown distribution D. The analyst interacts with the distribution D via a data
curator A holding a database S containing n i.i.d. samples from D. The interaction is
adaptive, where at every round the analyst specifies a query ¢ : X™ — R and receives an
answer a,(S) that (hopefully) approximates ¢(D") £ Egr.upn[q(S’)]. As the analyst chooses
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its queries based on previous interactions with the data, we run the risk of overfitting if A
simply answers every query with its empirical value on the sample S. However, if A is a
differentially private algorithm then the interaction would not lead to overfitting;:

Theorem 1.1 ([Dwork et al., 2015b, Bassily et al., 2016], informal). A function f : X" — R
has sensitivity A if |f(S) — f(S))| < A for every pair S, 5" € X" differing in only one entry.

Define f(D") £ S’iEDn [f(S)]. Let A: X™ — Fy be (g,0)-differentially private where Fy is
45)

the class of A-sensitive functions, and n > 8% log(%5). Then for every distribution D on X,

Pr  [|f(S) — f(D")| > 18eAn] < g

In words, if A is a differentially private algorithm operating on a database containing n
ii.d. samples from the distribution D, then A cannot (with significant probability) identify
a low-sensitivity function that behaves differently on the sample S and on D".

Steinke and Ullman [2017] observed that Theorem 1.1 gives alternative proofs for
classical concentration bounds for low-sensitivity functions, such as the Chernoff bound and
McDiarmid’s Inequality: Fix a function f : X™ — R with sensitivity A and consider the
trivial mechanism A, that ignores its input and always outputs f. Such a mechanism is
(e, 9)-differentially private for any choice of £, > 0 and hence Theorem 1.1 yields (up to
constants) McDiarmid’s Inequality:

Pr [|£(S) — f(D")| > 18eAn] < = = 2~ ), (1.1)

S~Dn

[DRS)

where the last equality follows by setting n = 8% log(%—s).

In light of this result it is natural to ask if similar techniques yield concentration bounds
for more general families of functions, in particular functions that are not low-sensitivity. In
this work we derive conditions under which this is the case.

1.1. Differential Privacy and Max-Information. Let D be a fixed distribution over a
domain X, and consider a family of functions mapping databases in X" to the reals, such
that for every function f in the family we have that |f(S) — f(D™)| is small w.h.p. over
S ~ D". Specifically,
Fas®)={ f:x" R 15(8) ~ #P") > al <6 ).

That is, for every function f € F, (D) we have that its empirical value over a sample
S ~ D" is a-close to its expected value w.p. 1 — 5. Now consider a differentially private
algorithm A : X™ — F, g(D) that takes a database and returns a function from F, 3(D).
What can we say about the difference |f(S) — f(D™)| when f is chosen by .A(S) based on
the sample S itself? (Observe that f is not necessarily a low-sensitivity function.)

Using the notion of maz-information, Dwork et al. [2015a] showed that if 3 is small
enough, then w.h.p. the difference remains small. Informally, they showed that if A is
differentially private, then

Pr
S~Dmn
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So, if A is a differentially private algorithm that ranges over functions which are very
concentrated around their expected value (i.c., 8 < e~=™), then |f(S) — f(D")| remains
small (w.h.p.) even when f is chosen by A(S) based on the sample S. The results of this
article provide another piece of this puzzle, as we show that (a variant of) differential privacy
can in some cases be used to prove that a function f is in F, g(D), even for functions for
which differential privacy does not guarantee generalization under adaptive selection.

1.2. Our Results.
Notation. Throughout this article we use the convention that f(D") is the expected value of
the function f over a sample containing n i.i.d. elements drawn according to the distribution

D. That is, f(D") = E, [£(9)]
Fix a function f : X™ — R, let D be a distribution over X, and let S ~ D". Our goal is

to bound the probability that |f(S) — f(D™)| is large by some (hopefully) easy-to-analyze
quantity. To intuit our result, consider for example what we get by a simple application of
Markov’s Inequality:
1
P~ FON >N <5 E [Dgs-sompr [FS) O] (12)
We show that, using differential privacy, the term |f(S) — f(D")| in the expectation
can replaced with |f(S U {z}) — f(S U {y})|, which is sometimes easier to analyze. Our
main contribution — Theorem 1.2 — has two parts. We note that a variant of Part 1 can be
obtained by applying Azuma’s inequality, and that our emphasis here is on the new proof
technique. We are not aware of an alternative proof for Part 2, which is needed for some of
our applications (see Section B for more details).

Theorem 1.2 (Part 1). Let n,A;\,e > 0 be s.t. n > O (E.minl{lﬁ} IOg(A'miZ{l’a}))- Let D
be a distribution over a domain X, let f: X™ — R be s.t.

Viehl (B |Yrs)-r(s6en)>a !f<5>—f(5(’”))ﬂ <4, (1.3)
z~D
where SU2) s the same as S except that the it element is replaced with z. Then,
14A
P —f(DM] >1 e —
o F(8) — F(DM)] > 18ean] < 2

Observe that for a A-sensitive function f, we have that the expectation in Equation (1.3)
is zero, so the statement holds for every choice of A > 0 and n > O (E% log(%)), resulting
in McDiarmid’s Inequality (Equation (1.1)). Intuitively, Theorem 1.2 states that in order to
obtain a high probability bound on |f(S) — f(D™)| it suffices to analyze the “expectation of
the tail” of ‘f(S) —f (S(“_Z)) }, as a function of the starting point .

We also show that the above bound can be improved whenever the “expectation of the
head” of ‘f(S) —f (S(ZFZ))‘ is smaller than \. Specifically,

Theorem 1.2 (Part 2). Let n, A, \,7,e >0 be s.t. n > O (e_mm?l A IOg(T'miZ{l,E}))’ and

denote T' = L(es_?%S)TJ Let D be a distribution over a domain X, and let f: X™ — R. If,
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in addition to (1.3), for every i € [n] we have

(i+vy) (i+2)
Sl,...E?ETNDn ?el[%ﬁ}( y}ip ]l‘f(st(iey))_f<sgiez)>‘§)\- ’f(St Y- f (St )” <7, (14)

then JAA
P S)— f(D")]| > 18 —.
P [1£(8) — f(D")] > 18ern] < -
To see the potential of Part 2, consider again the case where f is a A-sensitive function,
and recall that in that case Part 1 results in McDiarmid’s Inequality (Equation (1.1)). Now,
if we can show that condition (1.4) holds for some 7 < A, then we would get the following

stronger bound:
14A T2
P — f(DM)| > 1 e LS SO
JPr (17(8) = F(D")] = 18e7n] < — |

The advantage over McDiarmid’s Inequality is that the bound on |f(.S) — f(D")| is potentially
smaller (e7n as opposed to eAn).

Remark 1.3. We remark that Part 2 of Theorem 1.2 would become stronger if the parameter
T could be made smaller (ideally we would want to have T =1). We do not know if it is
possible to reduce T'. We also remark that requirement (1.4) can be replaced with

n . . (iy)\ _ (i42)
VS e X", Vieln)], yﬁ;E&D []1|f(s(iey))if(s(iﬁ))’9 F(8Gwy — ¢ (S “ )H < 7. (15)

Indeed, whenever (1.5) holds we have that the inner expectation in (1.4) is at most T, and
hence condition (1.4) holds.

In Section 4 we demonstrate how Theorem 1.2 can be used in proving a variety of
concentration bounds, such as a high probability bound on |f(S) — f(D")| for Lipschitz
functions. In addition we show that Theorem 1.2 can be applied to bound the probability that
the number of triangles in a random graph significantly exceeds the expectation. Consider a
random graph on N vertices defined by drawing each edge independently with probability
p = 0(1). The expected number of triangles is O(N3p?) = o(IV). Note that, in worst case,
adding a single edge to the graph can increase the number of triangles by N — 1, a quantity
larger than the expected number of triangles. With such a high (worst-case) Lipschitz
constant, a direct application of McDiarmid’s Inequality would not result in meaningful
bound. However, using Theorem 1.2 only requires arguing about the expected increase in
the number of triangles when resampling a single edge, which is much smaller.

In Section 5 we construct an example for a differentially private algorithm that, given
a sample S ~ D" identifies (w.h.p.) a function f such that |f(S5)] is large, even though f
is highly concentrated around zero (on a fresh sample from the underlying distribution).
We interpret this result as an indication that differential privacy can be used to prove
concentration bounds even for functions for which it does not guarantee generalization under
adaptive selection.
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2. PRELIMINARIES

2.1. Differential Privacy. Our results rely on a number of basic facts about differential
privacy. An algorithm operating on databases is said to preserve differential privacy if a
change of a single record of the database does not significantly change the output distribution
of the algorithm. Formally:

Definition 2.1. Databases S € X" and S’ € X™ over a domain X are called neighboring if
they differ in exactly one entry.

Definition 2.2 (Differential Privacy [Dwork et al., 2006b,a]). A randomized algorithm
A: X" Y is (e,8)-differentially private if for all neighboring databases S, S’ € X", and
for every set of outputs 7' C Y, we have

Pr[A(S) € T) < e - Pr[A(S') € T] +6.

The probability is taken over the random coins of A.

2.2. The Exponential Mechanism. We next describe the exponential mechanism of
McSherry and Talwar [2007].

Definition 2.3 (Sensitivity). The sensitivity (or global sensitivity) of a function f: X" — R
is the smallest A such that for every neighboring S,5" € X" we have |f(S) — f(5)] < .
We use the term “A-sensitive function” to mean a function of sensitivity < A.

Let X be a domain and H a set of solutions. Given a database S € X*, the exponential
mechanism privately chooses a “good” solution h out of the possible set of solutions H. This
“soodness” is quantified using a quality function that matches solutions to scores.

Definition 2.4 (Quality function). A quality function is a function ¢ : X* x H — R that
maps a database S € X* and a solution h € H to a real number, identified as the score of
the solution h w.r.t. the database S.

Given a quality function ¢ and a database S, the goal is to choose a solution h approxi-
mately maximizing ¢(S, h). The exponential mechanism chooses a solution probabilistically,
where the probability mass that is assigned to each solution h increases exponentially with
its quality ¢(S, h):

The Exponential Mechanism
Input: privacy parameter £ > 0, finite solution set H, database S € X", and a A-sensitive
quality function q.

exp(;j-q(s,h))
e oxp(55-a(S,h))”

(1) Randomly choose h € H with probability >
h!
(2) Output h.

Theorem 2.5 ([McSherry and Talwar, 2007]). (i) The exponential mechanism is (€,0)-
differentially private. (ii) The expected quality of the output is large, specifically,

2\
> — . .
heEH[q(S’ h)] > I})Lag?({q(s, h)} 5 In|H|
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We remark that the utility guarantees of the exponential mechanism are stronger than
the above statement, in the sense that the quality of the output is large with high probability.
However, the formulation of Theorem 2.5 will be more convenient for our application of the
mechanism (see, e.g., [Bassily et al., 2016] for an analysis).

2.3. Chernoff and Hoeffding Bounds. Let X7, ..., X, be independent random variables
where Pr[X; = 1] = p and Pr[X; = 0] =1 — p for some 0 < p < 1. Clearly, E[>"" | X;] = pn.
Chernoff and Hoeffding bounds show that the sum is concentrated around this expected
value:

Pr ZXi > (14 6)pn| <exp (fpn52/3) for 0 <o <1,
Li=1

Pr ZXi <(1- 5)pn] < exp (—pn52/2) for 0 <6 <1,

Li=1

n
Z X, —pn
i=1

The first two inequalities are known as the multiplicative Chernoff bounds [Chernoff, 1952],
and the last inequality is known as the Hoeffding bound [Hoeffding, 1963]. The next theorem
states that the Chernoff bound above is tight up to constant factors in the exponent.

Theorem 2.6 (Tightness of Chernoff bound [Klein and Young, 2015]). Let 0 < p,§ < 3,
and let n > %. Let Xy,...,X,, be independent random variables where Pr[X; = 1] = p and
Pr[X; =0] =1—p. Then,

> 0| <2exp(—26%/n) for § > 0.

Pr

Pr [Z X; <(1- 5)2971] > exp(—96%pn),
=1

> exp(—98%pn).

Pr [i X; > (1+6)pn

i=1

3. CONCENTRATION BOUNDS VIA DIFFERENTIAL PRIVACY

In this section we show how the concept of differential privacy can be used to derive conditions
under which a function f and a distribution D satisfy that |f(S) — f(D")| is small w.h.p.
when S ~ D". Our proof technique builds on the proof of Bassily et al. [2016] for the
generalization properties of a differentially private algorithm that outputs a low-sensitivity
function. The proof consists of two steps:

(1) Let Sy,..., St be T independent samples from D" (each containing n i.i.d. samples
from D). Let A be selection procedure that, given Si, ..., St, chooses an index t € [T]
with the goal of maximizing |f(S;) — f(D™)|. We show that if A satisfies (a variant of)
differential privacy then, under some conditions on the function f and the distribution
D, the expectation of |f(S;) — f(D™)] is bounded. That is, if A is differentially private,
then its ability to identify a “bad” index ¢ with large |f(S;) — f(D™)] is limited.
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(2) We show that if there is a noticeable probability (over S ~ D") that |f(S) — f(D")| is
large, then it is possible to construct an algorithm A satisfying (a variant of) differential
privacy that contradicts our expectation bound.

We begin with a few definitions.

3.1. Definitions.

Notations. We use S € (X™T to denote a multi-database consisting of 7' databases of
size n over X. Given a distribution D over a domain X we write § ~ D" to denote a
multi-database sampled i.i.d. from D.

Definition 3.1. Fix a function f : X™ — R mapping databases of size n over a domain
X to the reals. We say that two multi-databases S = (S1,...,597) € (X™)T and §' =
(S1,...,8%) € (XM are (f, \)-neighboring if for all 1 < i < T we have that

1f(Si) — f(SH] <\

Definition 3.2 ((s, (f, \))-differential privacy). Let M : (X™)T — Y be a randomized
algorithm that operates on 1" databases of size n from X. For a function f: X™ — R and
parameters £, A > 0, we say that M is (g, (f, \))-differentially private if for every set of
outputs F' € Y and for every (f, \)-neighboring S, 5" € (X™)T it holds that

Pr[M(S) € F] < ¢ - Pr[M(S) € F].

Claim 3.3. Fiz a function f : X™ — R and parameterse <1 and A > 0. If M : (X)) =Y
is (e, (f, N))-differentially private then for every (f, \)-neighboring databases S5 € (xmT
and every function h 1Y — R we have that

E [hyl< E _[hy)] + 4e- E Ayl

y«M(S) y+M(S") yM(S")

Claim 3.3 follows from basic arguments in differential privacy. The proof appears in the
appendix for completeness.

3.2. Multi Sample Expectation Bound. The proof of Theorem 1.2 contains somewhat
unwieldy notations. For readability, we present here a restricted version of the theorem,
tailored to the case where the function f computes the sample sum, which highlights most
of the ideas in the proof. The full proof of Theorem 1.2 is included in the appendix.

Notation. Given a sample S € X", we use f(S) to denote the sample sum, i.e., f(S) =
ZJ:ES T.

Lemma 3.1 (Simplified Expectation Bound). Let D be a distribution over a domain X
such that ED [z] =0 and ED [Lijis1y - zl]] <A Fiz0<e <1, and let A: (X™)T — [T]

be an (g, (f,1))-differentially private algorithm that operates on T databases of size n from
X, and outputs an index 1 <t <T. Then

CE [f(S)]| < 4en + 2nTA.
S~pnT

t«—A(S)
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Proof. We denote S = (S1,...,87), where every S; is itself a vector Sy = (¢1,...,%¢n).

‘We have:
=Y E [24,]
SND"T S~pnT t<—A(S)
tA(S) i€ln]
= Z E l{max |Z ] <1} E [mt,i}—l—]l{max |Z i >1}- E  [xed]] -
i) S~pnT €[1] t«—A(S) melT) t«—A(S)

(3.1)

In the case where max,,c][Tm:| > 1 we replace the expectation over ¢ « A(S)
with the deterministic choice for the maximal ¢ (this makes the expression larger). When
MaXye[7] |m,i| < 1 we can use the privacy guarantees of algorithm A. Given a multi—sample

S e (X™7T we use S_; to denote a multi-sample identical to S, except that the i element
of every sub-sample is replaced with 0. Using Claim 3.3 we get

31<ZE

~DnT
ze[n]S D

{max || < 1} ( E [zi;]+4 E [|xm|]>
me|T] tA(S_,) t—A(S )

+1 { max [Ty, i| > 1} - max ’%nz‘]
me|[T) me|[T]

<4en + Y E

1 { max |z, ;| < 1} E [zt
t—A(S_;)

ieln ]SND”T me|T] (S_;
+1 { Max [Ty, | > 1} - max ]mmz\] (3.2)
me[T) me|[T]

We next want to remove the first indicator function. This is useful as without it,
the expectation of a fresh example from D is zero. To that end we add and subtract the

expression 1 {max,,c(r] [#mi| > 1} E_ [24] to get (after replacing again E; with max;)
t—A(S_;)

(32) <4en + > E

E o] +2-1 { max [Ty, ;| > 1} - max ]xm’z]]
T me(T]

i S~ [ AGS-) me(T]
< d4en + 22 Z 11{|£Umz! > 1} [@mil]
1€[n] me(T

<4den + 2nTA.

3.3. Multi Sample Amplification.

Theorem 3.4 (Simplified High Probability Bound). Let D be a distribution over a domain
X such that ED [x] = 0. Let A > 0 be such that IED []1{‘$|>1} o] <A Fizl>e >
T~ T
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%ln (QKE) We have that
f A
SPr 17(9)] = 80en] < .

For example, observe that if D is uniform on {41} then the condition in the theorem holds
for every choice of A > 0 (since the expectation is zero). Hence, by setting ¢ = %ln (ZA—E)

we get Prg..pn Uf(S)\ > 30571] < 2e7"” for every 0 < e < 1. We next present the proof
idea of Theorem 3.4. Any informalities made herein are removed in Section A.

Proof sketch. We only analyze the probability that f(S) is large. The analysis is symmetric
for when f(S) is small. Assume towards contradiction that with probability at least 2%
over S ~ D™ we have that f(S) > 30en. We now construct the following algorithm B that
contradicts our expectation bound.

Algorithm 1: B

Input: T databases of size n each: S = (S1,...,S7), where T' 2 |2¢/A|.
(1) For i € [T], define ¢(S,i) = £(S;).

(2) Sample t* € [T] with probability proportional to exp (%q(g, t))

Output: t*.

The fact that algorithm B is (g, (f,1))-differentially private follows from the standard
analysis of the Exponential Mechanism of McSherry and Talwar [2007]. The analysis appears
in the full version of this proof (Section A) for completeness.

Now consider applying B on a multi-database S = (S1,...,S7) containing i.i.d. samples
from D. By our assumption on D, for every ¢ we have that f(S;) > 30en with probability at
least 2%. By our choice of T'= [2¢/A], we therefore get

Pr max{fS }>30€n >1- 1—é T>1
GpnT | te[T) 2 2¢ -2

The probability is taken over the random choice of the examples in S according to D. Had
it been the case that the random variable max; ¢ { f (St)} is non-negative, we could have
used Markov’s inequality to get

E |ma { S_",t } E |ma Se) | > 1ben. 3.3
S~DnT [tE[T)‘]: (1) ] S~DrT [té[ﬁ s }] B (3.3)

Even though it is not the case that max;¢cr) { f(Sy) } is non-negative, we now proceed
as if Equation (3.3) holds. As described in the full version of this proof (Section A), this
technical issue has an easy fix. So, in expectation, max;c(p) (q(g , t)) is large. In order to

contradict the expectation bound of Lemma 3.1, we need to show that this is also the case
for the index t* that is sampled in Step 2. Indeed, by the properties of the exponential
mechanism (Theorem 2.5) we have that

E_[q(S.t)] = [f(st*>}>max{f st}—fln 7).

t*egr([T) t*eR (1] te[T]
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Taking the expectation also over S ~ DT we get that

S [f (St*)] Z gl [?Q?T}T{f (St)}} _glnm
t*<—8(§)

2
> 15en — Z In(T).

This contradicts Lemma 3.1 whenever ¢ > \/% In(T") = \/% In(2e/A). []

4. APPLICATIONS

In this section we demonstrate how Theorem 1.2 can be used in proving a variety of
concentration bounds.

4.1. Example: Subgaussian Diameter and Beyond. Recall that for a low-sensitivity
function f, one could use McDiarmid’s Inequality to obtain a high probability bound on the
difference |f(S) — f(D")|, and this bound is distribution-independent. That is, the bound
does not depend on D. Over the last few years, there has been some work on providing
distribution-dependent refinements to McDiarmid’s Inequality, that hold even for functions
with high worst-case sensitivity, but with low “average-case” sensitivity, where “average”
is with respect to the underlying distribution D. The following is one such refinement, by
Kontorovich [2014].

Definition 4.1 ([Kontorovich, 2014]). Let D be a distribution over a domain X, and let
p: X% — R3O The symmetrized distance of (X, p, D) is the random variable = = ¢ - p(z, 2')
where x,2' ~ D are independent and ¢ is uniform on {£1} independent of z,z’. The
subgaussian diameter of (X, p, D), denoted Agg(X, p, D), is the smallest o > 0 such that

E [e)‘E] < N2 A eR.
Kontorovich [2014] showed the following theorem:

Theorem 4.2 ([Kontorovich, 2014], informal). Let f : X" — R be a function mapping
databases of size n over a domain X to the reals. Assume that there exists a function
p: X2 =5 R20 st for everyi € [n], every S € X", and every y,z € X we have that

[ (859) = £ (592)| < plw, 2),

where SU%) s the same as S except that the i™ element is replaced with x. Then,

() = 0" = 1)< 200~ o).

Informally, using the above theorem it is possible to obtain concentration bounds
for functions with unbounded sensitivity (in worst case), provided that the sensitivity
(as a random variable) is subgaussian. In this section we show that our result implies a
similar version of this theorem. While the bound we obtain is weaker than Theorem 4.2,
our techniques can be extended to obtain concentration bounds even in cases where the
sensitivity is not subgaussian (that is, in cases where the subgaussian diameter is unbounded,
and hence, Theorem 4.2 could not be applied).



CONCENTRATION BOUNDS THROUGH DIFFERENTIAL PRIVACY 11

Let us denote o = Agg (X, p, D). Now for ¢t > 0,

Pr [p(z,y) >t] <2 Pr [£-p(x,y) >t =2Pr[E>t] = 2P1r[eai2'E > eo? g
z,y~D z,yeD
cef+1)
+2 t = +2 o2 42 t2
<2 2 .-E [672'“] <2e o2 .e2 0% =2exp (— 2) ) (4.1)
o

So,

5. [l 1 (507 >3} Loy (5
z'~D

< E

o [1{p(z,y) > A} p(z,9)]

A 0o
= [ Pr (o) > M plep e+ [ Pr[Lp(ey) > A} play) >t
0 Ty~ A Ty~

A 00
=/ Pr_[p(z,y) > A dt +/ Pr [p(x,y) > t]dt
0 z,y~D bY z,y~D

— A Pr_[p(x,y) > A +/ Pr [p(e,y) > 1 dt
IryND A I,yND

< \-2ex —)\—2 —|—/002X —i dt =)\ 2ex —)\—2 + V27 rf L
< exp 552 A exp 552 = exp 552 V2mo - erfc oo

2 2

A A A2
< \-2exp <_M> + V270 - exp <_%c2> <3(A+o0)-exp <— > 2 A.

202

In order to apply Theorem 1.2 we need to ensure that n > O ( L In (A'miz{l’g}))

e-min{l,e}

For our choice of A, it suffices to set £g = © (ﬁ), assuming that % < 1. Otherwise, if

Vno
ﬁ > 1, we will choose 61 = © (%) Plugging (g9, A) or (e1,A) into Theorem 1.2, and
simplifying, we get
e_Q(\/%“) , t<o-n'd
Prllf(8) = f(D)| =2 1] < 273 (4.2)
79(02/3) t>cg.-nld

Clearly, the bound of Theorem 4.2 is stronger. Note, however, that the only assumption
we used here is that [{° Pryyplp(z,y) > t]dt is small. Hence, as the following section shows,
this argument could be extended to obtain concentration bounds even when Agg (X, p, D)
is unbounded. We remark that Inequality 4.2 can be slightly improved by using part 2 of
Theorem 1.2. This will be illustrated in the following section.

4.2. Example: Concentration Under Infinite Variance. Let f : X — R be a function
mapping databases of size n over a domain X to the reals. Assume that there exists a
function p : X? — R20 s.t. for every i € [n], every S € X", and every y,z € X we have that

[ (85) = £ (552)] < ol 2),
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where S(%) is the same as S except that the i element is replaced with x.

As stated in the previous section, the results of [Kontorovich, 2014] can be used to obtain
a high probability bound on |f(S) — f (D™)| whenever Pryyplp(z,y) > t] < exp (—t?/c?)
for some ¢ > 0. In contrast, our bound can be used whenever [\* Pry . p[p(z,y) > t|dt
is finite. In particular, we now use it to obtain a concentration bound for a case where
the probability distribution of p(x,y) is heavy tailed, and in fact, has infinite variance.
Specifically, assume that all we know on p(z,y) is that Pr[p(z,y) > ¢] < 1/t% for every t > 1
(this is a special case of the Pareto distribution, with infinite variance). Let A > 1. We
calculate:

o [14]509) =1 (8°7) [ >} [118) =1 (56|
' ~D

< E_[1{p(x,y) >N} pla,y)]

x?y

A 0o
- /0 Pr [1{p(z.y) > A} - p(,) > f]dt + /A Pr [1{p(z.y) > A} - plar,y) > 1] dt

x,y~D z,y~D

A 0o
— [ Pr ey =Nt [ Pr ) = gt
0 z,y~D A z,y~D

=X Pr ) =N 4 [ Pr o) 2 de
z,y~D A zy~D

1 <1 2
<A —dt =2 A,
- )\2+/A 2 A

In order to apply Theorem 1.2 we need to ensure that n > O ( 1 In (A'miz{l’s} =+ 1) ) .

e-min{l,e}
Assuming that n > In()), with our choice of A it suffices to set € = © ( %ln(/\)). Plugging
¢ and A into Theorem 1.2, and simplifying, we get

_ (32
— M| >t < — | . .
Prllf(8) = fDY) 21 <0 | — (4.3)

Observe that the above bound decays as 1/t2. This should be contrasted with Markov’s
Inequality, which would decay as 1/t. Recall the assumption that the variance of p(z,y) is
unbounded. Hence, the variance of f(.S) can also be unbounded, and Chebyshev’s inequality
could not be applied.

As we now explain, Inequality 4.3 can be improved using part 2 of Theorem 1.2. To
that end, for a fixed database S € X™, we calculate:

JEp [0 =1 (s99) | <A friston - (s

1 001
< E [p(y,Z)]S/ 1dt+/ t—zdtzzém
0 1

y,2~D
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In order to apply part 2 of Theorem 1.2 we need to ensure that n > O (E —= {1 T In (‘%)) .

For our choice of A and 7, if n > Aln(\) then it suffices to set ¢g = (\/ n(A) ).
A

Otherwise, if n < AIn(\) then it suffices to set 1 = © (% In())). Plugging (g0, A) or (e1,4)
into Theorem 1.2, and simplifying, we get

3

O(t%) , t>n

O("—2> , t<n
S~D

Pr [|f(S) - f(D")] = 1] S{

4.3. Example: Triangles in Random Graphs. A random graph G(N,p) on N vertices
1,2,..., N is defined by drawing an edge between each pair 1 < ¢ < j < N independently
with probability p. There are n = (gf ) Li.d. random variables zy; ;; representing the
choices: xy; ;1 = xg;;3 = 1 if the edge {i,j} is drawn, and O otherwise. We will use
D to denote the probability Pry.p[z = 1] = p and Pryop[z = 0] = 1 — p, and let
S = (I‘{LQ}, cen ax{n—l,n}) ~ D",

We say that three vertices i, j, £ form a triangle if there is an edge between any pair
of them. Denote fg,(S) the number of triangles in the graph defined by S. For a small
constant «, we would like to have an exponential bound on the following probability

Pr{fr;(S) = (1+a) - fi,(D")].
Ny, 3 _

Specifically, we are interested in small values of p = o(1) such that fx,(D") = (3)p* =
) (N 3p3) = o(N). The difficulty with this choice of p is that (in worst-case) adding a single
edge to the graph can increase the number of triangles by (N — 2), which is much larger
then the expected number of triangles. Indeed, until the breakthrough work of Vu [2002], no
general exponential bounds were known. After the work of Vu, the following sharp bound
was presented by Kim and Vu [2004]:

Theorem 4.3 ([Kim and Vu, 2004], informal). Let o be a small constant. It holds that
exp (-0 (*N?108(1/p)) € Py [fx,(8) 2 (1 +0) - fi,(D")] < exp (-0 (1°N?)).

In this section we show that our result can be used to analyze this problem. While the
bound we obtain is weaker than Theorem 4.3, we find it interesting that the same technique
from the last sections can also be applied here. To make things more concrete, we fix

p= N34,

In order to use our concentration bound, we start by analyzing the expected difference
incurred to fg, by resampling a single edge. We will denote A;;(S) as the number of
triangles that are created (or deleted) by adding (or removing) the edge {7,j}. That is,

Aiﬂ'(S) = HE *14,5 T = 1 and T} = 1}‘ .
Observe that A;;(S) does not depend on zy; ;. Moreover, observe that for every fixture
of i < j we have that A;;(S) is the sum of (N — 2) i.i.d. indicators, each equal to 1 with
probability p?.
Fix S = (212} Z{n_1,n}) € {0,1}" and 2’ € {0,1}. We have that

o= (51 ={ g | T 27
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where S{#717) s the same as S except with z(; 1 replaced with 2. Fix i < j. We can
now calculate

oy [1{]t8) = g (80 70) [ 2} () = e (01)
z'~D
= B, oz} - 1{ai;(5) > A} 4iy(9)]

z'~D

= it [z # 2] (B (1{Ai () > A Aiy(9)]
N
— _ . . .. > . >
2p(1— p) <)\ P [is(8) > X+ /A Pr [4i(9) > t]dt)

<2pN- P i > )| 4.4
S 4p swén[Az’J(S) > A (4.4)
Recall that A; ;(.S) is the sum of (/N —2) i.i.d. indicators, each equal to 1 with probability
p?. We can upper bound the probability that A; j(S) > X\ with the probability that a sum

of N such random variables is at least A. We will use the following variant of the Chernoff
bound, known as the Chernoff-Hoeffding theorem:

Theorem 4.4 ([Hoeffding, 1963]). Let Xi,..., X, be independent random variables where
Pr[X; =1 =p and Pr[X; =0] =1 —p for some 0 <p < 1. Let k be s.t. p < % < 1. Then,

] con (00 (1))

i=1

Pr

where D(al|p) is the relative entropy between an a-coin and a p-coin (i.e. between the
Bernoulli(a) and Bernoulli(p) distribution):

Diallp) = a- log <Z> +(1—a)-log (1 _“> .

L—=p
Using the Chernoff-Hoeffding theorem, for p? N < A < N, we have

]ﬂ p2>) . (4.5)

Recall that we fixed p = N~3/4, and let us denote A = N7 for some constant 0 < v < 1.
We get:

(4.4) < 2pN - exp <—N D (

(4.5) = 2pN - exp (=N - D (N[ N1} (4.6)
We will use the following claim:

Claim 4.5. Fiz constants ¢ > b > 0. For N > max{2'/? 28/(¢=9} we have that

C=b N log(N).

(1)



CONCENTRATION BOUNDS THROUGH DIFFERENTIAL PRIVACY 15

Using Claim 4.5, for large enough N, we have that

(4.6) < exp (—; N log(N)> . (4.7)
So, denoting A = exp (—% - N7log(N)), we get that
o [1{170(9) = 7 (SO70) | > 2 - |1 (5) = s (517 [ <
@/ ~D

In order to obtain a meaningful bound, we will need to use part 2 of Theorem 1.2. To
that end, for every fixture of S € X™ and ¢ < j we can compute

B[ {7 () g (SUNI) | <A} i (SUI) — fi, (86D9) |

< ED[]l{y#z}~)\] =2p(1 —p)A < 2pA 2 7.
Y.z~

in{l,e}r .
Eminf{\l’a}_r In (mm{A e )) in order to apply

Finally, we need to ensure that n > O(
Theorem 1.2. With our choices for A and 7, it suffices to set ¢ = © (, / %p) Plugging ¢, A
and 7 into Theorem 1.2, and simplifying, we get that there exists a constant ¢ > 0 s.t.

Pr[1£1(8) = fiea(DM)] = ¢ N2 < exp (=), (48)

Recall that for our choice of p = N~3/4 we have that fx,(D") = ©(N?*), and hence,
Inequality (4.8) gives an exponential bound on the probability that the number of triangles
deviates from its expectation. For example, setting v = 1/13 we have

Pr [1fica(8) = fica(D")] = 0/ fica(D"))] < exp (~NY/19).
It remains to prove Claim 4.5:

Claim 4.5. Fiz constants ¢ > b > 0. For N > max{2'/? 28/(c=)} we have that

D (N—bH N—C) > C;b Nt log(N).

Proof of Claim 4.5.

1-N~°
—b —c\ _ n—b . c—b b
D(N HN )_N 1og(N )+(1 N- ) log<1_NC>
Nc_chb
b c—b b
=V tog (8e) 4 (1 N g (T2
Neb—1
_ b c—b
=N~ log(N ) ( >log<1— Nc_1> (4.9)
Using the fact that log(1l — z) > —2x for everyOSxS% and assuming that N > 21/,

we have that



16 K. NISSIM AND U. STEMMER

Ne=b 1
—b —b —-b
(4.9)> N log<Nc )—2(1—N ) N
chb -1 c—b _ 1
— Nt (Nc—b) _9. ON~b
°8 Ne—1 T Ne—1
Ne=b 1
b b
> NP log (V) 2. ———
c—b
> N log <Nc_b) -2 ]Yi
3 Ve
> N~b.log (Nc—b) _ AN (4.10)
Assuming that N > 28/(¢=b) we get

(4.10) > = - N~° . log (Nc—b)

>

5. PRIVATELY IDENTIFYING A HIGH-SENSITIVITY FUNCTION

In this section we construct an example for a differentially private algorithm that, given a
sample S, identifies a function f such that |f(S)| is arbitrarily large, even though f is highly
concentrated around zero (for a fresh sample from the underlying distribution). We interpret
this result as an indication that differential privacy can be used to prove concentration
bounds even for functions for which it does not guarantee generalization under adaptive
selection.

Theorem 5.1. Fiz ,,B > 0, let U be the uniform distribution over X = {+1}% where
d = poly(1/B), and let n > O(%1n(1/8)). There exists an (c,0)-differentially private

algorithm A that operates on a database S € ({£1}%)" and returns a function mapping
({£1})™ to R, s.t. the following hold.

(1) For every f in the range of A it holds that Prgiyn[f(S) # f(U™)] < B.
(2) Pl‘fijt(’;)[!f(s) —fum)| =Bl =1/2.

Proof. For t € [d], define f; : ({£1}%)" = R as
0 | Xiem CUi,t) < v/2nn(2/p)
Je@i,an) =3 B, Y i > /2nn(2/B)
*B y Z’LE[’H} SUi’t < — 2n 111(2//8)

That is, given a database S of n rows from {£1}¢, we define f;(S) as 0 if the sum of
column ¢ (in absolute value) is less than some threshold, and otherwise set f;(S) to be =B
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(depending on the sign of the sum). Observe that the global sensitivity of f; is B, and that
fr(uUm) = S'EL{" [f:(S))] = 0. Also, by the Hoeffding bound, we have that

551;” [f:(S) # 0] < B.

So, for every fixed ¢, with high probability over sampling S ~ U™ we have that f;(S) =
0 = fy(U™). Nevertheless, as we now explain, if d is large enough, then an (g, 0)-differentially
private algorithm can easily identify a “bad” index t* such that |fi=(S)| = B.

Consider the algorithm that on input S = (x1,x2,...,x,) samples an index ¢ € [d] with

probability proportional to exp (% ‘Zie[n] x”D We will call it algorithm BadIndex.

By the properties of the exponential mechanism, algorithm BadIndex is (g, 0)-differentially
private. Moreover, with probability at least 3/4, the output ¢* satisfies

4
Zwi,t* > max Z:cm - gln (4d) . (5.1)

i€[n] teld] i€[n]

In addition, by Theorem 2.6 (tightness of Chernoff bound), for every fixed ¢ it holds that

45
Pr| Y iy > 111-/2n1n(2/B) 2@) :

i€[n]

45
As the columns are independent, taking d = 2 (%) , we get that

Pr | max xip p > 1.11-+/2nn(2/8)| > 3/4. 5.2
| 2 G| >3/ (5.2

Combining (5.1) and (5.2) we get that with probability at least 1/2 algorithm BadIndex
identifies an index t* such that

> @il = 111-/2nn(2/8) — gln(zld).

i€[n]
Assuming that n > O(E%ln(l /B)) we get that with probability at least 1/2 algorithm
BadIndex outputs an index t* s.t. fi=(S) = B. []

5.1. Max-Information. In this section we show that algorithm BadIndex has relatively
high maz-information: Given two (correlated) random variables Y, Z, we use Y ® Z denote
the random variable obtained by drawing independent copies of Y and Z from their respective
marginal distributions.

Definition 5.2 (Max-Information [Dwork et al., 2015a]). Let Y and Z be jointly distributed
random variables over the domain (Y, Z). The g-approximate max-information between Y
and Z is defined as

Pr[(Y,Z) € O] —
I5(Y;Z)=1lo su
( ) : Og(yEZ), PrlY ® Z € O]
Pr[(Y,2)e0O]>8



18 K. NISSIM AND U. STEMMER

An algorithm A : X" — F has S-approximate max-information of k over product distribu-
tions, written Ifo p(A,n) <k, if for every distribution D over X, we have 15,(S: A(S)) < k
when S ~ D".

It follows immediately from the definition that approximate max-information controls
the probability of “bad events” that can happen as a result of the dependence of A(S) on S:
for every event O, we have Pr[(S,.A(S)) € O] < 2*Pr[S ® A(S) € O] + B.

Consider again algorithm BadIndex : ({+1})"™ — F that operates on database S of size
n = O(E%ln(l/ﬁ)) and identifies, with probability 1/2, a function f s.t. f(S) # 0, even
though f(S") =0 w.p. 1 — 3 for a fresh sample S’. Let us define O as the set of all pairs
(S, f), where S is a database and f is a function in the range of algorithm BadIndex such
that f(S) # 0. That is,

O={(5f) e (£1})" x F = f(5) # 0}.

If we assume that I;{%D(Badlndex, n) < k, then by Definition 5.2 we have:
L _ P (S, f) e O] <e* P [(Sf)60}+1<kﬁ+1
= r e’ - r - : -.
2= s ’ - S U™ ’ 1= 4
f<BadIndex(S) T~U™
f+«BadIndex(T)

So k > ln(ﬁ) = Q(e%n).
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APPENDIX A. MISSING DETAILS

Claim 3.3. Fiz a function f : X™ — R and parameters e, X > 0. If M : (X™)T =Y is

(e, (f, \))-differentially private then for every (f,\)-neighboring databases S, 5" € (X™)T and
every function h : Y — R we have that

E [h<er E _[ay] + (—e)- E [yl

y«M(S) yM(S") y«M(S")
Proof.
) 0
B (b= [ Pzl — [ Pro(ay) < s
y«M(S) 0 y«M(S) —oo y+M(S)
o0 0
<e€f / Pr [h(y) > 2ldz — e °- / Pr  [h(y) < z]dz
0 y«M(S") —oo y+M(S")
o0 0
=e ° [/ Pr [h(y) > z]ldz — / Pr [h(y) < z]dz]
0 yeM(S) — 00y M(S")
+(ef—e %) / Pr  [h(y) > z]dz
0 yM(S)

=e - E [hy)] + (=€) / Pr [h(y) > z]dz
y«—M(S") 0 y«M(S)

<e- E _[n(y)] + (65—6_6)'/00o Pr _{lh(y)] = z]dz

yeM(S") yeM(S)
—e. E [y + (- E _ [h@)
yeM(S") y«M(S")

[l

Remark A.1. To get the version of Claim 3.3 stated in the main body of the paper (that
is, without the e factor) observe that if ~E  [h(y)] > 0 thene™®- E [h(y)] <

y+M(S) yM(S)
E  [h(y)]. Otherwise, for every 0 < e <1 we have
yM(S")
E _[ayl<e™- E _[hy] + (€-e7)- E _[h@y)ll
y«—M(S) y«M(S") y«M(S")
<(-e)- E _[o(y)] + 3¢ E _fla< E [a@y)] + 4 E Ayl
y=M(S") y=M(S") yM(S') y—M(S")

A.1. Multi Sample Expectation Bound.

Lemma A.1 (Expectation Bound). Let D be a distribution over a domain X, let f : X™ —
R, and let A, \, T be s.t.
; : . - (i4=2)
el B, [Lpis-ssoemfor - [18) = £ (577 [ < &
and,

. (i<-y) (i+—2)
Vi € [Tl], Sl,...,AISETND" ?61%2]( y,;E;/D [llf(sﬁiey))_f(sgiez))‘SA : )f(St Y ) - f (St )’:| <,
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where SU<2) is the same as S except that the i element is replaced with z. Let A : (X™)T —
([TTU L) be an (e, (f, \))-differentially private algorithm that operates on T databases of size
n from X, and outputs an index 1 <t < T or L. Then

E [1{t# L} - (f(D") — f(S))]| < (e —e F)-mn + 6AnT.
ngnT
t«—A(S)
Proof. Let §' = (S4,...,5,) ~ D" be independent of S. Recall that each element S; of
S is itself a vector (t1,-..,2tn), and the same is true for each element S; of 5. We will
sometimes refer to the vectors Sy, ..., St as the subsamples of S,
We define a sequence of intermediate samples that allow us to interpolate between
S and S’. Formally, for £ € {0,1,...,n} define S* = (S%,...,5%) € (X™)T where S} =

(xﬁl, e ,xf’n) and

¢ Ti 1>/
That is, every subsample Sf of St is identical to S} on the first ¢ elements, and identical to
S; thereafter. By construction we have S° = S and S™ = S’. Moreover, for every ¢ we have

that S{ and Sf_l differ in exactly one element. In terms of these intermediate samples we
can write:

= E _[{t# L} (f(D") - f(St))]‘

S~DnT  t+A(S)

| E E [ﬂ{t#L}-( E [f(Sé)]—f(St>>H

S~DnT 1 A(S) S/ ~DnT

~-| E E E []l{t#J_}-(f(SD—f(Stm‘

S~DrT 1 A(S)  §'~DnT

=3 _E E )[ﬂ{tﬂ}-(ﬂsf)f(sfl))}

_‘_‘/N nT g
(e 58/~ 1 AGS

<3 E[1{t# 13- (£(sH - £(5I7)]

e S,8'~DnT  t A(S)

=2 E E_[1{t# 1} (f(5h- f(sfl))}‘ (A1)

§ S'apnT Z~DT
€] S,S'~Dn t«—A(S)

Given a multisample S = (S1,...,57) € (X™)T, a vector Z = (21...,2r) € XT, and
an index 1 < k < n, we define Sk<2) t6 be the same as S except that the Ett element of

every subsample S; is replaced with z;. Observe that by construction, for every ¢, Z we have
§€,(€<—Z) _ 51’4—1,(€<—Z)' Thus,
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(A= > _ E E

J JropnT Z~DT <
¢€[n] S, D t«A(S)

It # L1} (f(Sf) ACE )

—1{t# 1} <f(Sfl) —f(sH?) )] ' (A:2)

Observe that the pairs (5, S¢) and (§ , S%W_Z)) are identically distributed. Namely,

both S¢ and S4(“%) agree with S on the last (n — £) entries of every subsample, and

otherwise contain i.i.d. samples from D. Hence, the expectation of ( f(SH —f (Sf ’(&_Z)>>

is zero, and we get

0—1,(6—2 _
(A2)=3 | E E_E_|1{t£1} (f(st D) — pst 1))
fep) |88/ ~DrT ZaDT 1 A(S)

Observe that the pair (5’7_1, 5’) has the same distribution as (§, 5’6—1)' Specifically, the
first component is nT" independent samples from D and the second component is equal to
the first component with a subset of the entries replaced by fresh independent samples from
D. Thus,

‘. (a9

(A3)= > E E

3 GrpnT Z~DT Je—1
te[n] S,S5'~Dn t—A(S1)

I{t # 1} (f (s17) - f<st>)

max,err] |f(S5 1) — F(SE) < A

and

maxueiry |f (S67) = F(Sm)] < A

AN
&=
=

~
m
=

E
t—A(Se-1)

I{t # 1} (f (517 - f<st>)

maxerr] | f(Sh 1) — F(S5) > A
+ Z E E |1 or

S,§'~pnT  Z~DT
" maxeir | (S57) = F(Sm)l > A

- max ‘f (S%HZU — f(Sm)‘ (A.4)

me|[T|
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When max,, (7 |F(SE1) — £(SE)| < X we now use the properties of algorithm A to
argue that A(S1) ~ A(S%). Be Claim 3.3 we get that

max,err | £ (S5 1) — F(SE)] <A
. < and
(Ad) < > soEn 2 |1 e
maXer |f <Sm ) — f(Sm)[ <A

- E_ [M#H-(f (sﬁf“”)—f(st))]
t+A(SY)

max,eir) [f(Sh ) — F(S5)] < A
_‘_(ea_e—s)‘ Z E E 1 and

§7§/ND"T Z~DT
ten] maX,er) | f (S%HZU = f(Sm) <A

LB [me Ly (s577) - s
maxperr) | £ (S ') = F(Sh)] > A

E 1 or
PP o Z~Dh (t2)
maxperr [ (857 ) = £(Sm)l > A

max £ (84D) — £(S) (A.5)

We can remove one of the two requirements in the indicator function in the middle row
(this makes the expression bigger), to get:
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max e | £ (S 1) — F(SE)] < A
(A5 < ) | E E |1 and

§7§/N'D”T Z~DT
ten] maX,e 7] | f <S££<_Z)) — f(Sm)[ <A

- E
t—A(50)

MMAQ~O($“”)—ﬂ&0]

4+ (ef —e7°) - E E E []1 { max 57(752<—Z) — (S| < )\}'
( ) gez[n] §7§/N'D"T Z~DT t(fA(gf) me[T] |f< ) f( )|

e 13- |7 (57) - )]

max,,eir) | f(Sh ) — F(S5)1 > A
+ Z E E |1 or

§’§/ND7LT Z~DT
teln max,,e(r | f <Sr(r€HZ)> = f(Sm)[ > A

. max ‘f (sﬁf*@) - f(Sm)‘ (A.6)

me|[T]

Furthermore, we can replace 1 {maxmem |f (S,%_Z)) — f(Sm)| < /\} in the middle row

with the weaker requirement — just for the specific ¢ that was selected by algorithm A. This
yields:
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max,,err) | £ (S5 1) — F(SE)] < A
A.6) < E |1 and
o= eez[;z} S,§i~pnt 2D (-2
maxpeqr |f (S7) = £(Sm)] < A

- E_ [ﬂ{mu}- <f (si?) —f(&))]
t+A(S)

Ly

_ (t—2)

At A L} |7 ($E0) = resn]]|

maxer) | f (S ') = F(Sp)] > A

+ > E |1 or
T DY pg yis
maXp,err) | f | Sm f(Sm)| >

L

Ny
95}

2

- max £ (85) = (S (A7)

Using the fact that the pairs (S, S%) and (S, S) are identically distributed, we can
switch them in the middle row, to get
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max e | £ (S 1) — F(SE) < A
A7N< Y | E E |1 and

§7§/N'D”T Z~DT
ten] maX,e 7] | f <S'r<£<_Z)) — f(Sm)[ <A

- E
t—A(S59)

1t # L} (f (s - f(&))]

F(E =)
L€n]

sopmt te%) %:I%LTT [1 {|f (Sf’(kz)) — f(SP)] < A}'

At A LY |7 ($EP) = s

max e | £ (S 1) — F(SE) > A
+> | E E |1 or

§7§/N’D”T Z~DT
teln] MaX ;[T | f <S££<_Z)> — f(Sm)[ > A

- max £ (5D = 1(Sm)] (A8)

Using our assumptions on the function f and the distribution D, the middle row is at
most (e — e~ ¢)n7. This brings us to:
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maxerr] [f(Sh 1) — (S5 < A
(A8)< > | E E |1 and
ief [SS~DT 2T (t2)
maxpeqr [ (S5 ) = F(Sm)l < A

E—‘

t+—A(SY)

1t A L} (f (s17) - f<st>)

max,eir) [f(Sh 1) — F(S5)1 > A
+ (e —e )t + Z E |1 or
maxeir | (S5%7) = F(Sm)l > A

. max ’ f (sﬁ,{%@) - f(Sm)’ (A.9)

me[T]

Our next task is to remove the indicator function in the first row. This is useful as the
pairs (Sﬁ , Sz )> and (S*, S) are identically distributed, and hence, if we were to remove

the indicator function, the first row would be equal to zero. To that end we add and subtract
the first row with the complementary indicator function (this amounts to multiplying the
last summation by 2). We get

(A.9) <
Len]

E E
§7,§"~DRT Z~DT

E
t—A(S0)

1{t # 1} (f (si7) - f(&))” ‘

max,,er) | f(Sh ) — F(S5) > A
+ (e —e “)nr+2- Z E E |1 or

§.§~pnt Z~DT
teln] max,,e(r | f (S%HZ)> — f(Sm)[ > A

. max } f (ng*@) - f(Sm)‘ (A.10)

Now the first row is 0, so
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maxerr) [ f(Sh 1) — F(S5) > A
(Al0)=(eF—e“mr+2-> | E E |1 or

§§~pnT  Z~DT
fetr maxerr |f (7)) = S(Sm)l > A

- max £ (5D = 1 (Sm)| (A.11)

We can replace the or condition in the indicator function with the sum of the two
conditions:

2 E |1 Sy — p(st >A}, geez)) Sm]
+ e;w - MT[ {gggs]!f< )~ £(S5)] ngﬂ;ﬁ‘f( (D) = 1 (Sm)|
2 E |1 SE=2)) — £(S,, >,\}. g2)) _ Sm]
+ gg[;l] 5,5/ ~DnT ZNDT[ {;ne?%{]u( ) f(Sm)] T{lﬂe%%(]‘f( Ay ) f( )‘
(A.12)
In the third row, we can replace max,,c(r) with »_ cpr)» to get

(A.12) < (ef —e “)nT

o]t 5 [ a0 gl (567) - |
+2g;]m%;] SSNDHT Z~ DT { {‘f< MZ) F(Sm)l > /\} : ’f <S,(ffz)> - f(Sm)H

(A.13)
Applying our assumptions on f and D to the third row brings us to

(A.13) < (e° —e °)nT + 2nTA

+ 2
Le[n]

E E [1{maxyf(s€ - (Sf;b)\>/\}-max ‘f(S%“Z))—f(Sm)]H

5 G1~pnT  Z~DT me[T] me(T]

(A.14)

The issue now is that the expression inside the indicator function is different from the
expression outside of it. To that end, we split the indicator function as follows:
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(A.14) < (e° — e °)nT + 2nTA
max,,er) | (S 1) — f(S5)1 > A
+2y | B E |1 and

~ |8,§'~pnT  Z~DT — ‘f( e<—Z)> f(Sm)‘ <A

maxy,err) [f(Sp ') = F(SR)] > X
+2-) | E E |1 and

teln] S§pnt DY max,,e[7] ‘f (ST%_Z)) - f(Sm)‘ <A

< (e —e “)nt 4+ 2nTA

+23 | E E |1 { max ‘f (Sf,f*@) - f(sm)) > )\} . max ‘f (S#Z)) - f(Sm)H |

§§prt  Z~DT | | melT] me(T)

w2 | BB ) £S5 > 0] ma (85 - f(an)lH

S,§'~pnT  Z~DT | (me[T] me[T]

< (e° —e °)nT + 6nTA.

A.2. Multi Sample Amplification.

Theorem A.2 (High Probability Bound). Let D be a distribution over a domain X, let
X" >R, and let A, \, 7 be s.t. for every 1 <1i < n it holds that

5! %n[ {75) = £ (809)| > 2} | (8) - 7 (592)[] < &,

and, furthermore, ¥S € X™ and V1 <1i <n we have

JEp [t g (st [ <)

f(S(i<—y)) _f (S(z«—z)m <
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where SU<2) is the same as S except that the i™ element is replaced with z. Then for every
€ > 0 we have that

JPr [17(8) = F(D")] 2 6(eF — )] <

provided that n > O <W log (M))

(e —e=8)7’

Proof. We only analyze the probability that (f(S) — f(D")) is large. The analysis for
(f(D™) — £(S5)) is symmetric. Assume towards contradiction that with probability at least
ﬁ we have that f(S) — f(D") > 6(ef — e ¢)rn. We now construct the following
algorithm B that contradicts our expectation bound.

Algorithm 2: 5B

(1) Set H = {L,1,2,...,T}.
(2) For i =1,...,T, define ¢(S,i) = f(S;) — f(D"). Also set q(S,
(3) Sample t* € H with probability proportional to exp (2/\q(§ t))

Input: T databases of size n each: S = (S1,...,87), where T = L(ef—?ﬂJ
1

Output: t*.

The fact that algorithm B is (e, (f, \))-differentially private follows from the standard
analysis of the Exponential Mechanism of McSherry and Talwar [2007]. The proof appears
in Claim A.3 for completeness.

Now consider applying B on databases S = (S1,...,S7) containing i.i.d. samples from
D. By our assumption on D and f, for every t we have that f(S;) — f(D") > 6(e° — e ¢)tn
with probability at least ﬁ By our choice of T' = [(6 ;‘Z )TJ, we therefore get

P (S0~ FDM} 2 6 — ey 21— (1 1A ) 51
SIS 20— 2o (- m g ) 2y
The probability is taken over the random choice of the examples in S according to D. Thus,
by Markov’s inequality,

E {max{q(g,t)}]— E [max{O,max(f(St)—f(D))H23(65—6_5)7n.

§NDHT teH §NDnT te [T}
(A.15)

So, in expectation, max;c g (q(g ) t)) is large. In order to contradict the expectation
bound of Theorem A.2, we need to show that this is also the case for the index t* that is
sampled in Step 3. To that end, we now use the following technical claim, stating that the
expected quality of a solution sampled as in Step 3 is high. Indeed, by the properties of the
exponential mechanism (Theorem 2.5) we have that

E [q(S,t")] = [l{t*#l} (f(Se-) = F(D"))}

t*epH t*

> max{0, max(f(S) ~ F(D")} ~ = In(T + 1),
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Taking the expectation also over S ~ DT we get that

E - [1{t # 1} (f(Se) - F(D")}]

S~pnT
t*+B(S)
" 2
> E |max<0, max(f(S:) — f(D"))¢| — —In(T+1)
S~pnT te[T] 2
- . 2
>3(ef —e )tn— —In(T + 1).
€
This contradicts Theorem A.2 whenever n > ﬁ In(T+1) = 6(6532,5)7 In( (65—72—5)74_1).

Claim A.3. Algorithm B is (g, (f, \))-differentially private.

Proof. Fix two (f, A)-neighboring databases S and S, and let b € {L,1,2,...,T} be a
possible output. We have that

= £ .q(S,b
Pr[B(5) = b] = exP(2x g( ) (A.16)
2 aen exP(ax - 4(S, a))
Using the fact that S and §' are (f, A)-neighboring, for every a € H we get that
Q(Slaa) - A < q<§7 a) < Q(Sl7a) + A Hence7

(A.16) < exp( - [a(F,b) + A])
[q

)+
Yaen (55 - [a(S",a) = A))
e/ - exp( - q(9,b))
<23 e exp(s5 - a(S', )
=" - Pr[B(5") =1).

For any possible set of outputs B C {1,1,2,...,T} we now have that

Pr[B(S) € Bl =Y Pr[B(S) =b] <> e Pr[B(S) = b] = Pr[B(S) € B].
beB beB

APPENDIX B. A SIMILAR STATEMENT OF PART 1 OF THEOREM 1.2!

Let D be a distribution over a domain X, and let f : X™ — R. Our goal is to derive
conditions on f and D s.t. w.h.p. over S ~ D™ we have that |f(S) — f(D)| is small. To
that end, let S,T ~ D" be independent, each containing n examples from D. We denote
S =(s1,...,8,) and T = (t1,...,t,). For i € [n] we define

fl(S) = TiEDn [f(sl, .. .,Si,tH_l, N ,tn) — f(sl, .. '7Si—17ti) e ,tn)] .

IThis strategy was suggested by an anonymous reviewer of an earlier version of this paper.
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We get that

; fi(8)=_E [f(9)-_E [f(T))=F(S) - (D)
So, our goal is to show a high probability bound on ’Zie[n] fZ(S)‘ Let us decompose:
fi(S) = ai(S)+ hi(S), where:

9i(5) = Lygs)a - filS),
hi(S) = Lygs)=a - filS).
Observe that for every i € [n] we have that Egpn[fi(S)] = 0. Hence,

5 581 = 3 (405) - B, ()

1€[n] 1€[n]

=3 (51 - B las0)) + X ()~ B, futs))

i€[n] i€[n]

Mz

Expression 1 Expression 2

Next we bound Expression 1 using Azuma’s inequality and Expression 2 using Markov’s
inequality. Recall Azuma’s inequality:

Theorem B.1 (Azuma’s Inequality). Let ¢ > 0 be a constant, and let Xq,...,X,, be
random variables s.t. for every j we have that E |X;| < oo, and E[X;41|X1,...,X;] = X},
and | X1 — Xj| < c. Then for every o > 0,

o2
Pr| X, — X1 > o] < — .
r[ X, 1> a) <exp < 2’m62>

Bounding Expression 1. In our case, we apply Azuma’s inequality to the random variables

X0, X1,..., Xy, where X; = >7_, (9i(S) — Egopn[gi(S)]). Indeed, for every j it holds that

‘Xj-l—l — XJ‘ < QA, and
EX;|X1,...,X;4] =

Epn [le + (gj(S) +

o [gj(S)])‘Xl,...,le] — X,

E
S~Dn

Hence, by Azuma’s Inequality, for every e, A > 0 satisfying n > 6126)\ In (K/\)’ we have

Pr|) (gi(S) —SNIEDn[gi(S)]> > eln| <exp <—€12g‘> < %.

i€[n]
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Bounding Expression 2. In order to obtain a high probability bound on Expression 2,
we make the following assumption on the function f and the distribution D. Let A > 0 be
such that for every ¢ we have

> .
Az B [h(S)

- SNEDn [Lgrs)say - £ ()]

E |1 :
S~Dn {|ET~Dn [f(sl7~~~7S¢,ti+1,~~~,tn)—f(81,.~~,Si—1,ti,~~,tn)]\>/\}

[f(Sl,...,Si,ti+1,...,tn) _f(51)°"7Si—17ti7"'7tn)]

E
T~Dr

Using this assumption we get that

(S) — ; > < (S) >
Pr Z(h,(g) Sg@)n[m(S)])_aAnJrnA b Zh,(S)_eAn
i€[n] | i€[n]
< P > |hi(S)] = exn

- | i€[n]

1 A
< —- - E ; < —.
~ eAn S~Dn Z“L ()] T eA

i€[n]
2A

To conclude, under our assumption on f and D, with probability at least 1 — =3, we
have that Expression 1 is at most eAn and that Expression 2 is at most eAn + nA. That is,

Theorem B.2. Let D be a distribution over a domain X, let f : X™ — R, and let A, A >0
be s.t. for every 1 < i <n it holds that

E |1 .
S~Dn { ‘ET,\,Dn [f(sl,...,Si,ti+1,...,tn)ff(sl,...,Sifl,ti,u.,tn)} ‘>)\}

E_[f(s1,--+,8itix1s - stn) _f(517~--aSi—lvtiw“atn)]‘

] <A
~Dr

Then for every € > 0 we have that

JPr [f(S) = J(D") 2 2eMn + nA] < %7

provided that n > 512—61\ In (%)

Observe that Theorem B.2 is “similar in spirit” to Part 1 of Theorem 1.2 (even though
they are syntactically different). We do not know if a similar analogue for exists for Part 2
of Theorem 1.2 (recall that Part 2 was needed for analyzing some of our applications in
Section 4).
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