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Abstract. Differential privacy has emerged as a popular model to provably limit privacy
risks associated with a given data release. However releasing high dimensional synthetic
data under differential privacy remains a challenging problem. In this paper, we study the
problem of releasing synthetic data in the form of a high dimensional histogram under
the constraint of differential privacy. We develop an (ε, δ)-differentially private categorical
data synthesizer called Stability Based Hashed Gibbs Sampler (SBHG). SBHG works by
combining a stability based sparse histogram estimation algorithm with Gibbs sampling and
feature selection to approximate the empirical joint distribution of a discrete dataset. SBHG
offers a competitive alternative to state-of-the art synthetic data generators while preserving
the sparsity structure of the original dataset, which leads to improved statistical utility as
illustrated on simulated data. Finally, to study the utility of the resulting synthetic data
sets generated by SBHG, we also perform logistic regression using the synthetic datasets
and compare the classification accuracy with those from using the original dataset.

1. Introduction

Large amounts of data help advance scientific inquiry, but they also come with growing
privacy concerns, e.g., Lane et al. [2014]. Many recent works have demonstrated that
traditional methods for data protection such as anonymization, coarsening, and releasing
aggregate data can be broken [Dwork et al., 2017]. To resolve this issue, differential privacy
(DP) has emerged as a framework that informs the design of privacy mechanisms with a
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mathematically specified disclosure risk [Dwork et al., 2006]. However, it is often criticized
for failing to maintain sufficient data utility, i.e., the accuracy loss could be large making
data unusable for valid statistical inference. Moreover, DP is primarily designed to work
in an interactive setting where users ask queries and receive noisy answers. This limits the
applicability of DP only to those queries that can be specified beforehand and for which DP
implementations exist.

In 2015, Steve and I traveled together to
Ithaca from Pittsburgh for a workshop on dif-
ferential privacy (DP). This is one of my fond-
est memories with Steve for many reasons.
The trip involved many of my favorite things,
which Steve and I both shared — statistics,
hockey, great food, and good conversation.
For me, this is one of my most memorable
trips with Steve, as I learned so much from
our conversations together.
The trip started with Steve picking me up
at my apartment in Shadyside. We started
our long journey in the afternoon. As the
car pulled out of the driveway, you could
hear the announcers yelling in the back-
ground, hockey sticks banging back and
forth, and if you knew Steve well, then you
knew of course the Penns were playing. So,
we pulled off and mostly in silence for the
first part of our journey, both hoping that the
Penns would pull out a victory. After a bit,
we stopped for a quick bite to eat and then
resumed our drive.
For the second part of the trip, we agreed
that I would drive this stretch. It was during
this part of the drive that Steve and I had
this very long discussion about record link-
age and differential privacy. We had a long
discussion regarding the history of DP, the
challenges of working in a DP framework,
and open problems in the field. This was
quite useful for me as it enabled me to un-
derstand the entire landscape of DP without
having to worry about the minute details. It’s
been even more helpful as I have worked
on trying to make DP methods work in prac-
tice for sparse contingency tables with for-
mer MS student Bai Li and my collaborators
Vishesh Karwa and Sesa Slavković.
After our research conversation, we listened
to the news and Steve read his newspaper.
It reminded me of earlier days when I would
take road trips with my father, who would

(cont.)

An alternative approach is releasing syn-
thetic data (via multiple imputations) ini-
tially proposed by Rubin [1993]. Synthetic
datasets allow a user to move beyond the in-
teractive interface and perform a larger class
of statistical analyses, potentially arbitrary,
enabling enhanced data sharing and scien-
tific reproducibility. Synthetic data methods
have shown promise of preserving statisti-
cal utility and have seen an explosion in
methodological developments and applica-
tions over the past decade, especially with
data from official statistics surveys, includ-
ing producing both fully and partially syn-
thetic data [Abowd and Woodcock, 2001,
Drechsler and Reiter, 2010, Drechsler and
Vilhuber, 2013, Kinney et al., 2011, Raghu-
nathan et al., 2003, Reiter, 2005a]. However,
the formal privacy protections offered by
synthetic datasets are not well understood.
The key caveat is the following: The utility
of synthetic data is primarily determined
by imputation models [Reiter, 2005b] and
models that are too accurate often leak sensi-
tive information [Abowd and Vilhuber, 2008].
Moreover, it is difficult to quantify the risk
of multiple synthetic data releases, whereas
in a DP framework, the risk composes.

Our approach combines the statistical
methods of synthetic data generation and
DP, similar to [Charest, 2011, Karwa et al.,
2017, Park and Ghosh, 2013], such that DP
controls the risk formally, even under mul-
tiple data releases, and the synthetic data
allow for more usability, thus combining the
best of both worlds. Practical applications of
DP synthetic data have been demonstrated
using the U.S. Census OnTheMap data that
consist of approximately one million records
with two variables [Machanavajjhala et al.,
2008]. However, generation of usable DP
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also sit in the passenger side of the car and
read the newspaper. Steve would look over
the newspaper from time to time and his
eyes would wander over the speedometer.
He would then say “watch the speed,” and
then he would go back to reading. Later on,
we listened to some music from a band that
one of his neighbors was in. They were quite
good and I remember thinking how fun the
music was to drive to. We eventually made
it from Pittsburgh to Ithaca and this is one of
my most memorable times with Steve.
All in all, it was wonderful to see this other
side of Steve. As I came to learn, he was
one of the kindest people I knew, he was
extremely trustworthy, and he was a true
friend in addition to being one of the best
researchers our field has ever seen. I feel so
fortunate each day that I was able to be
his collaborator, his mentee, and his friend.
He’s missed each and every day, but his
memory will always go on.

Beka Steorts
DOI: 10.29012/jpc.709

high-dimensional and sparse synthetic cate-
gorical data still remains a challenge. Sparse
tables are those for which the model com-
plexity is of the same order or even larger
than the sample size [Fienberg et al., 2010].
We consider a histogram (or contingency ta-
ble) to be sparse if the number of non-zero
entries is small compared to the number of
zero entries, and there is a large number
of non-zero entries with small counts. The
first issue is the choice of model used to
generate the synthetic histograms, and mod-
eling of sparse tables even without privacy
constraints is non-trivial (e.g., [Dunson and
Xing, 2009]). Second, it is well known that
support estimation under ε-DP is difficult
[Wasserman, 2012]. In fact, in ε-DP it is
necessary to add noise to non-zero entries of
the table, making accurate release of high
dimensional data impossible.

To address the above issues, we propose
an (ε, δ)-DP algorithm, the Stability Based
Hashed Gibbs Sampler, for releasing high-
dimensional sparse histograms, by combining the (ε, δ)-DP Stability Based Algorithm
(SBA) [Bun et al., 2016, Vadhan, 2016] with feature selection and Gibbs sampling. We
address the first issue by approximating the empirical distribution, which is a good model
with high statistical utility, by a collection of conditional distributions. These are released
under DP, and a Gibbs sampler is used to generate synthetic datasets from the noisy
conditionals. The second issue is addressed because the SBA allows for release of high-
dimensional histograms without destroying their support. Incorporating feature selection
reduces the number and dimensionality of the resulting conditional histograms. As a result,
we ensure that the sparsity pattern of the joint distribution of the high-dimensional histogram
is partially preserved. These two techniques ensure impossible combinations in the data
remain impossible after privacy, and it also ensures that the histograms have enough mass to
obtain non-trivial utility. Thus, our proposed method is not just a combination of existing
methods, but a carefully thought out solution (and the first of its kind) for the issue of
high-dimensional histogram estimation. Finally, we use a Gibbs sampler to sample from
the noisy hashed conditional distributions to generate synthetic contingency tables. The
proposed framework is provably (ε, δ)-DP. In addition, for both simulated and real data, we
illustrate that both privacy and utility can be achieved. Finally, we also perform logistic
regression on the resulting output from our algorithm, comparing the classification accuracy
as a downstream task to illustrate the utility of the resulting synthetic data sets.

The rest of the paper proceeds as follows. Section 2 reviews differential privacy, the
Laplace mechanism, and the Stability Based Algorithm (SBA). Because it is well known that
statistical utility highly depends on the values of ε and δ, we propose measuring the statistical
loss in utility when SBA is applied as a function of both parameters (see Proposition 1). Via
our proposition, one can see that many choices of ε and δ are unsuitable for high-dimensional

https://doi.org/10.29012/jpc.709
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Steve has shaped the lives and careers
of many people within and outside the
statistics community, over the course of
his long career. I am very fortunate to be
one of those people. Steve was unique in
his ability to forge connections between
seemingly unrelated fields. He was the
“match maker” — connecting people and
research areas as varied as privacy and
statistical inference, algebra and statistics,
copulas and log-linear models, sampling
and design of experiments, networks and
contingency tables and so on.

My approach towards research, in general,
and in the area of privacy and statistical in-
ference in particular, has been greatly in-
fluenced by Steve. I want to give a few
examples to honor his memory. I first met
Steve when I was a graduate student at
Penn State University working with my PhD
advisor Aleksandra Slavkovic. I gave a talk
at a grant meeting explaining an idea to in-
corporate the additional randomness intro-
duced due to privacy in the likelihood func-
tion for statistical modeling. I was just a grad-
uate student, so my thoughts were not very
clear. Steve immediately knew what I was
trying to say, because he had been advo-
cating a similar approach! The key goal of
statistical inference is to make statements
about population parameters, hence one
needs to design privacy procedures with an
eye towards this goal. This philosophy, which
surrounds my work on privacy, is straight out
of Steve’s book! Another direction that I
work on, that Steve often advocated, was
the focus on finite sample inference as op-
posed to asymptotic inference. This is evi-
dent from his pioneering contributions to the
work on sparse contingency tables where
asymptotic tests don’t always make sense.
One of his pet peeves was the problem
of analyzing sparse contingency tables un-
der privacy, for which one necessarily has
to take a finite sample viewpoint. Another
point that always stays with me was Steve’s

(cont.)

histograms, which leads us to consider DP
Gibbs sampling. Section 3 reviews the suc-
cess and limitations of a recently proposed
DP Gibbs sampler. We then propose our Sta-
bility Based Hashing Gibbs (SBHG) sampler
that combines the stability based algorithm
(SBA) with feature selection to develop a
Gibbs sampler based synthesizer. In this
framework, we use feature selection meth-
ods to increase the counts in an histogram
while also reducing the dimensionality of the
histograms. Sections 4.1 and 4.2 evaluate
the performance of our proposed algorithm
using simulated data sets and real data sets,
respectively. Section 5 provides a discussion
and directions toward future work.

2. Differentially
Private Algorithms

for Releasing Histograms

In this section, we present notation, review
two DP algorithms for releasing histograms,
and propose a measure of accuracy loss for
the stability based algorithm (SBA).

2.1. Differential Privacy. Let D =
(d1, . . . ,dn) ∈ Dn be an input database
containing n observations (records), where
di ∈ D. The goal is to produce a synthetic
dataset, say Z ∈ Z, which satisfies DP. Let
ε, δ > 0. As in Wasserman and Zhou [2010]
and Hall et al. [2011], define Q(· | D) to be
a randomized mechanism that takes D as
an input data set and generates a synthetic
data set Z. Let D ∼ D′ if D′ ∈ Dn and
D and D′ differ by one record. Qn satis-
fies (ε, δ)-DP Dwork et al. [2006] if for all
measurable B ⊂ Z and all D ∼ D′ ∈ Dn,
Q(Z ∈ B | D) ≤ eεQ(Z ∈ B | D′) + δ.

For small ε, which is the privacy budget, the
value of one individual’s record has a small
effect on the output. When δ = 0, Wasser-
man and Zhou [2010] use a hypothesis test-
ing framework to show that ε-DP provides
protection against an adversary who knows
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suggestion to explore the possibility of a
“Bayesian” version of privacy. While there
are many such notions out there, I don’t
think they would have answered Steve’s
question. Quoting from my not-so-good
memory, Steve said something to the extent
that “Differential privacy requires one to
reason about all the datasets that one
would have collected, and not the one
we actually have at hand - this is similar in
spirit to what is done in a frequentist setting,
where one reasons about other datasets
one could have seen, as opposed to a
Bayesian setting where one conditions only
on the observed dataset.”

There are many other instances where Steve
influenced my thinking, including other
problems that I work on in network modeling,
causal inference and algebraic statistics, all
of which were Steve’s favorites. In fact, I
still channel Steve in my work and my talks -
What would have Steve said, or done for this
problem? One thing that used to happen a
lot with me when talking to Steve was the
following - he would say something to me
about a research problem during our meet-
ings, and I would come out of the meeting
assuming that I understood what Steve was
saying. But six months later, out of nowhere,
I would suddenly realize what Steve was ac-
tually trying to say! This happens even now,
and in fact I frequently go back to re-read
his papers and my email conversations with
him to get advice and insights. I truly miss
him!

Vishesh Karwa
DOI: 10.29012/jpc.704

all but one record, when the records are
independent; this is the strongest form of
DP. The parameter δ measures the failure
probability and is generally set to be a small
value, typically negligible in n.

2.2. Differentially Private Histograms.
Assume dataset D = (d1, . . . ,dn) consists
of n independent and identically distributed
(i.i.d.) random vectors of p categorical fea-
tures. Each record di is an independent ran-
dom sample of the vector X = (X1, . . . , Xp)
with the jth feature Xj taking values in the
set Ij . For example, if all features are binary,
then Ij = {0, 1} for all j. Let I =

∏
j Ij

denote the Cartesian product of I1, . . . , Ip.
Let m = |I| denote the cardinality of I or
the number of cells in the contingency table.
Note if all features are binary, then m = 2p.
In general, as p increases, we quickly observe
m� n. The histogram representation of D
is obtained by counting the number of oc-
currences of each element in I. For each
element i ∈ I, let ci denote the number of
times i appears in D. The set of counts
c = {c1, . . . , cm} then denotes the histogram
representation of D, where

∑
i∈I ci = n. Let

S = {i ∈ I : ci > 0} denote the support of
the histogram and let s = |S| denote the
number of non-zero bins in the histograms,
which is a number of non-zero counts. For
high-dimensional and sparse histograms, s
is much smaller than n and m.

The Laplace mechanism releases a his-
togram under ε-DP by adding Laplace noise
to each cell of the histogram with the scale
parameter b = 2

ε (see Algorithm 3, Appendix B) [Dwork et al., 2006]. When the histogram
is dense (large s relative to m), the Laplace mechanism may work well. When dealing with
high-dimensional histograms such as binary contingency tables such that m = 2p >> n > s,
then there are many cells with small counts, and in particular, zero counts. The Laplace
mechanism adds noise to every cell and in such a sparse setting this leads to a great loss in
statistical utility [Fienberg et al., 2010]. In addition, the Laplace mechanism is computation-
ally inefficient, with computational complexity O(m), and the noise added to every cell is
linear in the dimension m of the histogram. However, Balcer and Vadhan [2017] recently
proposed a computationally fast approach for the Laplace mechanism for sparse settings.

https://doi.org/10.29012/jpc.704
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2.3. Stability Based Algorithm. The idea of thresholding and adding noise to bins with
non-zero counts was initially introduced by Korolova et al. [2009] and Götz et al. [2009] for
the release of search logs. Vadhan [2016] and Bun et al. [2016] provide a simplified algorithm
and coined the term stability based algorithm (SBA), tailored for sparse high-dimensional
histograms and satisfying (ε, δ)-DP. But the straightforward application of the SBA may
lead to significant statistical utility loss (i.e., accuracy loss) as explained below. In the SBA
(Algorithm 1), Laplace noise is added to every non-zero cell of the histogram. Finally, noisy
cells that are smaller than a fixed threshold t = 1 + 2

ε log 1
δ are set to zero.

Algorithm 1 Stability Based Algorithm (SBA)

Input: Non-zero counts in a histogram {ci, i ∈ S}, ε, δ
Output: An (ε, δ) DP histogram

1: Let S = {i : ci > 0} and |S| = s.
2: For each i in S, let zi = ci+ei where ei is Laplace noise with mean 0 and scale parameter

2
ε .

3: Set all noisy counts below the threshold t = 1 + 2
ε log 2

δ to 0.
4: Output the noisy histogram

Statistical utility is highly dependent on the values of ε and δ, and even more so in
the setting of high-dimensional sparse histograms. Due to this, we propose measuring the
statistical loss in utility when SBA is applied (see Proposition 2.1), in terms of the expected
L1 error as a function of ε and δ.

Proposition 2.1. For a fixed histogram of counts {c1, . . . , cs}, the expected L1 error of

Algorithm 1 is n−
∑s

i=1 pici +
2

ε
(
∑s

i=1 pi) where pi = P (zi > t) = 1
2 exp

(
−2(t−ci)

ε

)
.

Proof. Recall zi = ci + ei. Let Ii = I(zi > t), where I(.) is the indicator function and
Ii ∼ Ber(pi). The L1 error can be written as

L1 =
s∑
i=1

|ziIi − ci| =
∑
i∈I
|ei|+

∑
i∈Ic

ci

=
∑
i∈I
|ei|+

s∑
i=1

ci(1− Ii)

=
∑
i∈I
|ei|+

s∑
i=1

ci −
s∑
i=1

ciIi =
∑
i∈I
|ei|+ n−

s∑
i=1

ciIi,

(2.1)

where I = {i : zi > t}. Now note that |ei| is a exponential random variable and conditional
on |I|,

∑s
i=1 |ei| is a Gamma random variable with scale 2

ε and shape K = |I|. Thus, we
have

E

(∑
i∈I
|ei|

∣∣∣∣∣K
)

=
2K

ε
.

Also, E (K) =
∑s

i=1 E (Ii) =
∑

i pi. Similarly, it is easy to see that E (ciIi) = pici, which
gives the result.
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When data sets have many attributes, there will be fewer records that can be grouped
together and this typically leads to having the non-zero counts in their corresponding
histograms be very small. Consider when a cell count is k. Then the probability that these
counts are not thresholded to zero is

P
(
k + ei > 1 +

2

ε
log

1

δ

)
=
δ

2
exp

(
−ε(k − 1)

2

)
.

For example, if k = 1, the probability that the count is not thresholded to zero is δ/2. To
guarantee privacy, we often choose small δ in practice, which means most of the one-counts
are thresholded to zero, causing a loss of statistical utility that can potentially lead to the
wrong statistical inference. More generally, when k = O(2/ε), the probability that the count
is not thresholded is O(δ). In an extreme example, suppose that in a histogram, every
non-zero count is exactly one. Then the SBA needs to threshold 1− δ

2 of non-zero counts to
zero to ensure (ε, δ)-DP, which leads to an almost empty histogram. Such resulting data are
potentially unusable for any statistical analysis.

3. Differentially Private Gibbs Sampling and feature selection

To address the aforementioned drawbacks of SBA for releasing of high-dimensional, sparse
histograms, we propose the Stability Based Hashed Gibbs Sampler (SBHG). This sampler
combines the SBA with Gibbs sampling and feature selection, reduces the dimensionality of
the histograms and most importantly improves statistical utility. We first provide background
on our inspiration for this sampler and the components needed for its composition.

3.1. Gibbs sampling. Gibbs sampling is a powerful way to sample from the joint distri-
bution of a dataset. A generic Gibbs sampler works by iteratively sampling from the full
conditional distributions P (Xi|X−i), where X−i denotes the vector of all features except
Xi; see Appendix C for a review of the Gibbs sampler. The Gibbs sampler requires the
computation of the set of conditional distributions for each feature i. When all the features
are categorical, the conditional distributions can be represented by a collection of histograms.
Thus, to generate synthetic data using Gibbs sampling, it is sufficient to release the collection
of histograms that represent these conditional distributions. Based on this idea, Park and
Ghosh [2013] proposed a Perturbed Gibbs Sampler (PeGS) that satisfies DP and allows
for the release of synthetic histograms of categorical data. PeGS, however, has several
limitations, leading to poor performance specifically on the release of high-dimensional,
sparse histograms.

3.2. Overview of the Perturbed Gibbs Sampler. The PeGS is a three-step categorical
data synthesizer that draws samples from perturbed conditional distributions to construct
a synthesized data set, which satisfies ε-DP. First, it generates empirical full conditional
distributions P (Xj |X−j) from the original histogram. Second, it perturbs the empirical full
conditional distributions to obtain perturbed conditional distributions Pα (Xj |X−j), where α
is a privacy controlled parameter that satisfies DP (or l-diversity). More specifically, suppose
the empirical conditional distribution satisfies

P (Xj = i|X−j) =
nij
Nj

,
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where nij is the count of the ith category, Nj is the total number of records that have the
same X−j . Then the perturbed conditional distribution is

Pα (Xj = i|X−j) = (nij + α)/(Nj + Cjα),

where Cj is the number of categories. This perturbation is equivalent to adding α “virtual
samples” to each category as n̂ij = nij + α. Finally, a synthetic data set is generated by
iteratively sampling from these perturbed conditional distributions similar to the process of
a Gibbs sampler.

Feature selection. The number of possible combinations for X−j can be large, i.e., there can
be too many conditional histograms leading to computational inefficiency. Feature selection
reduces the number of conditional distributions, improving computational efficiency. Park
and Ghosh [2013] proposed replacing P (Xj |X−j) for j = 1, . . . , p with hashed conditional
distributions P (Xj |h(X−j)) for some hash function h, where the choice of h depends on the
data used.

A feature hash h ranks all the elements of a feature vector

X−j = (X1, . . . , Xj−1, Xj+1, . . . , Xp)

based on their mutual information with Xj , retaining the top R features. More precisely,
h(X−j) = (Xh1 , Xh2 , . . . , XhR), denotes the highest mutual information of the jth feature
Xj , where R is a tuning parameter. By applying the feature hash h, instead of using
P (Xj |X−j), we compute P (Xj |h(X−j)) = P (Xj |Xh1 , . . . , XhR). As a result, the conditional
distributions with the same hash key are combined into one conditional distribution, leading
to a compressed feature space.

Feature selection reduces the sparsity issue (zero or low counts in many cells relative to
the total number of cells and the sample size n) as it increases the number of samples in
each conditional histogram. Suppose for the ith feature, there are k different combinations
X1
−j , . . . , X

k
−j that have the same hash key h(X1

−j) = h(X2
−j) = · · · = h(Xk

−j) = h0, and

suppose their histograms are H(Xj |Xi
−j) = {c1i, . . . , cpi}, for i = 1, . . . , k. The hashed

conditional distribution corresponding to h0 is given by

P (Xj |h(X−j) = h0) =
{
∑k

i=1 c1i, . . . ,
∑k

i=1 cpi}∑p
j=1

∑k
`=1 cj`

.

Feature selection pulls all the conditional distributions with the same hash key into one
and re-weights them to form a new histogram. Thus, the hashed conditional distributions
contain more non-zero entries, and each cell contains more samples.

Limitations. In practice, the PeGS often performs poorly due to several limitations. Within
each step of Gibbs sampler, the synthetic sample costs an ε-privacy budget, which means
after N iterations, the samples only satisfy (Nε)-DP, which is not practically useful. Park and
Ghosh [2013] suggested the following modification: within each step of the Gibbs sampler,
draw B > 1 times iteratively and only release the last sample. At the beginning of each
iteration, reset the visited conditional distributions Pε (xi|h(x−i)) to uniform distributions.
Unfortunately, in order to satisfy ε-DP, this extra step requires the lower bound for α being
α ≥ 1/(exp{εB/p} − 1), where p is the number of features. When ε and p are fixed, at
least one of α and B must be large to satisfy this inequality. If either α or B is too large,
the utility of the synthetic sample is reduced. More precisely, a large α implies that many
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“virtual samples” are added to the conditional histograms, while a large B implies that many
conditional histograms are reset to uniform distributions.

Furthermore, for sparse data sets, the support of the noisy conditional histograms may
not be close to the non-noisy ones, i.e., the conditional histograms may contain many sampling
zeros even after applying feature selection. Since the perturbation in PeGS adds α “virtual
samples” to each cell category, it will add many “virtual samples” to cell counts that do not
exist in the original data set. In this case, there are no corresponding conditional histograms
for these samples, and the Gibbs sampler becomes stuck, running into convergence issues.
It should be noted that because of this issue in particular, we are not able to compare the
performance of our proposed algorithm directly with PeGS on synthesis of high-dimensional
sparse histograms.

3.3. The Stability Based Hashed Gibbs Sampler. Due to the aforementioned draw-
backs of PeGS with high-dimensional sparse histograms, we propose the the Stability Based
Hashed Gibbs Sampler (SBHG), which is described in Algorithm 2. The SBHG first gener-
ates the empirical hashed conditional distributions from the original histogram. We next
apply the SBA to each hashed conditional histogram (instead of adding “virtual samples”
as done in PeGS.) SBA is more practical because it requires no extra perturbations and
preserves more utility for the hashed conditional histograms (see Section 2.3). Finally, we
synthesize a new histogram by running a Gibbs sampler on the noisy hashed conditional
histograms. We avoid the problem of adding noise at each step of the Gibbs sampler by
releasing the conditional histograms just one time, instead of releasing a sample at each
iteration. In addition, the use of SBA allows us to ensure that the support of the noisy
conditional histograms remains close to the non-noisy conditional histograms, limiting the
sampler from generating synthetic samples that typically do not occur in the original dataset.
Our algorithm guarantees (ε, δ)-DP as we show in Theorem 3.1. By applying hashing, we
assume that the compressed conditional distribution is a good approximation to the original
full conditional distribution.

Before introducing our algorithm below or proving Theorem 3.1, we first provide some
notation. Consider a feature Xj ∈ Ij , where without loss of generality Ij = {1, . . . ,Kj}. Let
the hash function h(X−j) ∈ {h1, . . . , hM} have M levels. This implies that feature Xj has
M conditional hashed histograms. Then for the hashed value hm, the histogram is given by
the vector of counts

Cj,m = (ckj |hm)
Kj

kj=1

where
ckj |hm = #I(Xj = kj |h(X−j) = hm).

Theorem 3.1. Algorithm 2 guarantees (ε, δ)-DP if the hash function h is chosen independent
of the data.

Proof. It suffices to show that Algorithm 2 is (ε, δ)-DP through step 6 of Algorithm 2
since the rest of the steps are post processing. To be more precise, consider a feature
Xj ∈ Ij , where without loss of generality Ij = {1, . . . ,Kj}. Consider a hash function
h(X−j) ∈ {h1, . . . , hM}, which implies that feature Xj has M conditional hashed histograms.
As already mentioned, for each hashed value hm, the histogram is denoted by a vector of
counts Cj,m. Now consider the query that collects the vector of counts Cj = (Cj,m)mm=1.
This query has global sensitivity (see Dwork et al. [2006]) of 2. To see this, observe that
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each record dk ∈ D appears in one and only one hashed histogram Cj,m. Thus, replacing a
record can change at most two counts in collection of M counts. Therefore, we can release
the query Cj using SBA with privacy budget (ε/p, δ/p). By composition, the overall privacy
is (ε, δ). First, we note that in order for improvements from advanced composition to take
effect, one needs p ≈ 10, as can be seen in our experimental analysis. Second, we note that
due to stability, empty conditional histograms remain empty after privacy.

Remark 3.2. Theorem 3.1 ensures that the SBHG is differentially private only if the hash
function does not depend on the data. However, in some of the experiments that we conduct,
the hash function of feature j that we use is data dependent, as we need to compute the
top R features that have highest mutual information with Xj . One can make the SBHG
fully DP by using the Exponential Mechanism in [Jung et al., 2014] at the feature selection
step of the algorithm. By the adaptive composition property of differential privacy, if the
hash function is chosen in a differentially private manner, and then used as an input to the
SBHG, the overall algorithm remains differentially private (with additive loss in privacy).
Note that selecting the correct features to define h is akin to choosing a model that best
describes the data, e.g., [Lei et al., 2016]. In our experiments, SBHG+EM referrs to the
Gibbs sampler where the hash function is chosen using the exponential mechanism and
SBHG refers to the case where we use a data-dependent hash function without privacy. Even
though the latter case is not fully differentially private, we consider this case to understand
the trade-off between privacy and utility as a function of the synthetic data
generation method and not due to error in selecting an inferior set of features,
i.e., given the best set of features, how well can we generate synthetic data. We further use
SBHG with Exponential Mechanism (SBHG+EM) to achieve full privacy, then compare it
to SBA and also a recent method (PrivBayes), showing that our method is, in fact, preferred
or has competitive performance in high-dimensional, sparse settings.

Remark 3.3. While SBA greatly reduces the problem that the support of the noisy
conditional histograms may not be close to the non-noisy ones, it does not eliminate the
issue completely. In fact, there can be samples produced by the Gibbs sampler which hash
to features that do not have a conditional histogram. We address this issue by allowing the
sampler to reject samples. When the sampler encounters a sample x∗ whose conditional
distribution is not available, i.e., we do not have the corresponding conditional distribution
for Pε

(
x∗i |h(x∗−i)

)
, the sampler rejects this sample by simply keeping the value from the last

iteration. This is essentially a Metropolis-Hasting procedure as we regard x∗ as a proposed
sample that has zero likelihood in terms of the empirical distribution.

4. Experiments

We apply our algorithm to both simulated and real data sets and use L1 error given by the
distance between the true counts and the noisy counts to measure the loss of utility. Our
choice to consider the L1 distance is motivated by Proposition 2.1, where we derive the L1

error of SBA. In addition, we also use the L1 distance as half of L1 distance between two
contingency tables is proportional to the total variation distance, and hence is a natural
measure to compare two joint distributions. Our goal is to measure the utility in terms
of the entire joint distribution. Using a performance of a downstream task such as model
building is also a useful alternative, but such a metric depends very specifically on the type
of task and model that one aims to build with the synthetic data. On the other hand, the
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Algorithm 2 Stability Based Hashed Gibbs Sampler

Input: Data D with n records and p features and p a hash function h. DP parameters ε
and δ.

Output: An (ε, δ) differentially private synthetic data set
1: for j ← 1 TO p do
2: Let Xj ∈ {1, . . .Kj} and h(X−j) ∈ {h1, . . . , hM}.
3: Let Cj,m = (ckj |hm)

Kj

kj=1 where ckj |hm = #I(Xj = kj |h(X−j) = hm).

4: Apply SBA with (ε/p, δ/p) to counts Cj = (Cj,m)Mj=1 to get noisy counts Cεj,m.

5: Construct the conditional hashed distributions Pε (Xj |h(X−j) = hm) ∝ Cεj,m.
6: end for
7: Initialize an empty data set Dε,δ with n rows and p columns.
8: for i← 1 TO n do
9: At row i of Dε,δ, let x0i = {(x01i, . . . , x0pi)} with Pε

(
x0ij |h(xi(−j))

)
> 0 for j = 1, . . . , p.

10: for t← 1 TO S do
11: for j ← 1 TO p do

12: Sample a point xprop from Pε
(
Xj |h(X−j) = h(xt−1i(−j))

)
.

13: Let hprop = h
((
xti1, . . . , x

t
i(j−1), x

t
ij , x

t−1
i(j+1), . . . , x

t−1
ip

))
14: if Pε (Xj |h(X−j) = hprop) is empty then
15: Accept the proposed value. Set xtij = xprop.
16: else
17: Reject the proposed value. Set xtij = xt−1ij .
18: end if
19: end for
20: end for
21: end for

Return Dε,δ.

L1 distance is independent of such a task, since it measures the distance between the full
joint distributions. Thus, this particular distance is preferred over others when we consider
the downstream task of logistic regression (see Section 4.2).

In our experimental analyses, we provide a comparison of our proposed methodology
to the performance of our method to PrivBayes [Zhang et al., 2014]. Before presenting
our experimental studies, we first briefly review the PrivBayes methods, providing crucial
differences to our proposed approach. The PrivBayes algorithm synthesizes a data set by
first constructing a Bayes network, then perturbing the network, and finally releasing a
new data set sampled from the perturbed Bayes network. Specifically, in PrivBayes, first,
a set of noisy marginal distributions are released. Next, these noisy marginals are used to
approximate the joint distribution of the data as specified by a directed acyclic graph (DAG).
In contrast, our approach works by writing the joint distribution of the data as the product
of full conditional distributions. Note that there is no approximation in this step, unlike
the first step of PrivBayes, where the joint distribution is approximated by the product of
marginals. Thus, under our proposed method, we work directly with the joint distribution.
In the next step, we approximate the full conditionals with the hashed conditionals, and



12 B. LI, V. KARWA, A. SLAVKOVIC, AND R.C. STEORTS

release the hashed conditionals under differential privacy. The PrivBayes method also
contains a feature hashing step, however, the major difference is being able to work with the
joint distribution. In fact, working with the conditional distributions instead of marginal
distributions allows us to approximate the joint distribution with a larger class of models
than DAGs alone [Fienberg and Slavkovic, 2005, Gelman and Speed, 1999, Slavkovic, 2010].
Hence, we utilize a broader and more flexible class of models, while PrivBayes itself works
with a small class of graphical models, restricting itself to DAGs that have a corresponding
undirected graph for which the starting marginals are sufficient statistics. Another major
difference between the two proposed methods is the fact that PrivBayes uses the Laplace
mechanism to release conditional histograms. When the dimension of histograms is high, it
will add too much noise that leads to great loss of utility as we pointed out in section 2.2.
We illustrate this issue by running both methods on the sparse synthetic data set.

4.1. Simulation Studies. In this section, we consider two simulated data sets, one dense
and one sparse. The dense dataset contains n = 3, 000 records with p = 3 features; each
feature has 10 categories. There are 1,000 possible distinct records in this data set, which
occur at least once. The sparse dataset contains n = 3, 000 records with p = 10 features;
each feature has 10 categories. There are 1010 possible distinct records in this data set,
noting that this is much larger than the number of records. Appendix A provides histograms
of the dense data set. Note that the sparse data sets (synthetic and real) are too sparse
to visualize. We use this data set to show how (i) the sparsity of data set, (ii) the privacy
parameters, and (iii) different feature hashing settings affect our algorithm; see Appendix D
for the settings of our simulation studies. While the L1 error of our method is relatively
large in our experiments, we show that it is not possible to obtain a small L1 distance with
a completely non-private method (due to the fixed choice of the feature hashing).

For the first set of experiments, we compare a naive application of SBA directly on
the joint distribution to the SBHG+EM for the dense and the sparse datasets. We fix
δ = 10−4 and vary ε from 0.1 to 10. We also compare the performance of our method to
PrivBayes [Zhang et al., 2014]. Figures 1 (a) (ε = 0.1 to 1) and (b) (ε = 1 to 10) illustrate
the theoretical L1 errors from Proposition 2.1, and the empirical L1 errors of SBA and
SBHG+EM for the dense dataset. The plots suggest that theoretical and empirical L1 error
of SBA match, validating Proposition 2.1. The plots also show that SBHG+EM preserves
greater utility than SBA on sparse histograms and that SBHG+EM offers stable utility
over varying values of ε. Figures 1 (c) and (d) illustrate that when the data set is sparse,
SBA offers no utility (L1 error is equal to n), even for very large values of ε. On the other
hand, SBHG+EM still preserves a significant amount of utility. Finally, when SBHG+EM
preserves more utility compared to PrivBayes.

In the second set of experiments, we compare the performance of SBHG to two baseline
(non-private) methods—an empirical sampler, drawing from the empirical distribution
function and a Gibbs sampler (GS), drawing from the full conditional distributions. We
use SBHG instead of SBHG+EM as we are interested in the trade-off between privacy and
utility as a function of the data generation method. We begin by evaluating the performance
of SBHG on the sparse dataset. In Figures 3 (a) and (b), we fix ε = 0.5, and δ = 10−4 and
vary the number of features R that are used in hashing. Figure 3 (a) shows the average
L1 error and Figure 3 (b) shows the running time, as a function of R. As R increases, the
running time increases and the dimensionality reduction offered by hashing degrades. For
example, R = 9 is equivalent to using a full conditional distribution because the data set
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Figure 1: We apply SBA and SBHG+EM and PrivBayes on the dense (a and b) and sparse (c
and d) simulated sets. The empirical L1 errors between the original and synthetic
histograms are plotted versus ε, where ε varies from 0.1 to 1 (a and c) and 1 to
10 (b and d) while δ = 10−4 fixed. In each plot, we also show the theoretical L1

errors calculated from Proposition 2.1.

has 10 features. Figure 3 (a) suggests that the utility is maximized when we use only three
features and the performance is closest to the non-private baseline samplers.

In Figures 3 (c) and (d), we study the trade-off between privacy and utility by evaluating
how the choices of DP parameters ε and δ affect the L1 error of our method on the sparse
dataset. In Figure 3 (c) we vary ε from 0.1 to 1 while keeping δ fixed at 5× 10−4. In Figure
3 (d) we vary δ from 0.1 to 10−4, while keeping ε fixed at 0.5. For each setting, we run
the SBHG algorithm 40 times on the sparse data. R is optimally fixed at 3 for the sparse
data set and 2 for the dense data set. We compare these results with empirical and Gibbs
sampling. Figures 3 (c)–(d) show that data utility rapidly increases as we increase both
parameters, and it becomes stable when they are relatively large.1 Given the sparseness of
the tested data set, these are promising results that we further validate with real data in
the next section.

Finally, we compare the SBHG with an optimally chosen R to the baseline Gibbs and
empirical samplers. In this simulation, we fix ε = 0.5, δ = 10−4. We report the numerical
values of the average L1 error, (along with the standard error) for the dense and sparse
datasets.

Tables 1 and 2 show that applying SBHG to a sparse data set leads to a lower utility
and more unstable performance in comparison to a dense data set, as expected. The
corresponding histograms for sparse data sets have small counts that are more likely to be
thresholded to zero. This may introduce too many sampling zeros, and in general, SBHG
always rejects the sample when it encounters sampling zeros, leading to a slowly mixing
sampler. On the other hand, using an optimal R in SBHG leads to improved performance
for both the dense and sparse data sets. This matches our analysis in section 3.2, where
we point out that feature hashing essentially pools different conditional histograms with

1By the algorithm becoming stable, we mean that there is a low standard deviation of the L1 error across
multiple runs.
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L1 SD
Empirical Sampling 978.25 81.82

Gibbs Sampling 1302.44 87.23
SBHG 1461.92 104.62

SBHG+EM (R=2) 1323.81 93.67

Table 1: The average L1 error and its standard deviation for different data synthesizing
methods applied to a dense data set. For each setting, we run 20 simulation tests.

L1 SD
Empirical Sampling 1101.24 101.71

Gibbs Sampling 1337.21 146.83
SBHG 1531.72 171.27

SBHG+EM (R=3) 1429.84 147.90

Table 2: The average L1 error and its standard deviation for different data synthesizing
methods applied to a sparse data set. For each setting, we run 20 simulation tests.

the same hash key together, which moderates the sparsity problem. Therefore, carefully
choosing an optimal feature hashing parameter can improve the data utility.

Finally, we conclude our simulation studies with investigating how to decouple the effect
of privacy on accuracy. To be more specific, implicit in the problem formulation is the
constraint that the number of samples in the synthetic dataset (S) needs to be the same
as the number of samples in the real dataset (n). This constraint can in fact be relaxed in
many settings and we look at this small example to make it easier to interpret our paper’s
empirical results. First, we note that as S →∞, the error of empirical sampling will go to 0.
Under SBHG, as S →∞, we find that the utility (L1 distance) of the sampler is roughly
the same as in our initial simulation studies (see Figure 2).
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Figure 2: Under SBHG, as m→∞, we find that the utility (L1 distance) of the sampler is
roughly the same as in our initial simulation studies
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Figure 3: We apply SBHG to the simulated sparse data set with different settings. Plot (a)
and (b) show the loss of utility and running time for different hashing settings.
We fix ε = 0.5 and δ = 5× 10−4 for each setting. The x-axes represent number
of features kept in the feature hashing method. Plot (c) shows the loss of utility
for ε varying from 0.1 to 1, while fixing δ = 5× 10−4. Plot (d) shows the loss of
utility for δ varying from 10−4 to 0.1, while fixing ε = 0.1.

4.2. Real Data Experiments. Next, we evaluate our algorithm on two real data sets. First,
we consider the Adult data set from the UCI Machine Learning Repository [Ronny Kohavi,
1996], which contains 48,842 records regarding individual’s personal information. Twelve
categorical features are used such as age, work class, educational level, and others2. The
total number of possible distinct records is ≈ 5.5 × 1012. Second, we consider the public
use microdata files from the 2012 American Community Survey (ACS) from the United
States Bureau of the Census3. Each record in this data set represents a household in the
United States. The covariates include answers to questions sent to these households for
estimating housing characteristics. The public data set includes approximately 1.5 million
housing units; after pre-processing we use 200,000 records from this data set. In addition,
there are 35 categorical variables, resulting in 1.85× 1025 possible distinct records. In both
data sets, the number of possible distinct records is much larger than the number of records,
indicating highly sparse data sets.

Since the PeGS method is not directly comparable, as discussed in Section 3, we compare
PrivBayes [Zhang et al., 2014]. Since PrivBayes satisfies ε-DP, we evaluate the performance
of our algorithm by releasing a synthetic histogram with varying DP parameter ε while
fixing δ = 10−6. In order to make a fully fair comparison, we incorporate the exponential
mechanism from Remark 3.2 for releasing the mutual information, which ensures that our
algorithm is DP throughout. In addition, we compare our proposed algorithms with the
exponential mechanism (SBHG+EM) and without the exponential mechanism (SBHG) to
SBA and PrivBayes on both data sets in Figure 4.

The loss of utility, as measured by the proposed L1 error for SBA grows very quickly
when ε becomes small, while the others methods are relatively stable for small ε. Compared
to PrivBayes, the SBHG algorithm performs better than PrivBayes while SBHG+EM
algorithm has similar performance to PrivBayes. In fact, these results are expected since

2Integer features such as age are treated as categorical features.
3http://www2.census.gov/acs2012_1yr/pums/

http://www2.census.gov/acs2012_1yr/pums/
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Figure 4: Comparison analysis of the Adult (upper) and ACS (lower) data sets. We set
ε = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 and test SBA, PrivBayes, and SBHG methods with
optimal k. For SBA and SBGH+EM, we fix δ = 10−6.

both PrivBayes and SBHG utilize the conditional distributions as the basis for reconstructing
histograms. That is, when the privacy risk is less restricted (larger ε), the two algorithms
perform similarly in terms of utility. While SBHG always preserves the utility better, we
cannot claim that SBHG is always better because from a privacy perspective the PrivBayes
achieves ε-DP, while SBHG achieves (ε, δ)-DP. Nevertheless, in cases that are very difficult
in practical data, SBHG does outperform PrivBayes much better. More specifically, when
the data are significantly sparser, for example, in the case of the ACS versus the Adult data
set, the SBHG performs much better from the utility perspective. In addition, it achieves
the better utility risk trade-off, given that there is a low privacy cost, with δ = 10−6.

To study the utility of the synthetic datasets generated by SBHG for downstream tasks,
we perform logistic regression on the resulting output from our algorithm and compare the
classification accuracy. For the Adult dataset, we predict the income level as a binary variable
(< 50, 000 or > 50, 000) with all the other features. For the ACS dataset, we predict the
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Figure 5: We perform logistic regression on the synthetic Adult (upper) and ACS (lower) data
sets generated by SBA, SBHG+EM, PrivBayes, where ε = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6;
δ = 10−6. We compare each method’s test accuracy to logistic regression (non-
private) applied to the original data sets.

Housing-Unit-level outcome variables FS, which is the indicator of receiving Food Stamps.
Figure 5 for the Adult data set illustrates that SBHG+EM is either the same or outperform
PrivBayes for certain values of ε, namely when ε decreases. For the ACS data set, we see
that SBHG+EM performs roughly the same as PrivBayes. In short, as expected, we see
better performance for smaller values of ε and when the data are sparse.

5. Discussion

In this paper, we have proposed the SBHG sampler, which releases high-dimensional sparse
histograms and is provably (ε, δ)-DP and makes five major contributions to the literature.
First, we propose an algorithm that approximates the empirical distribution, which is
a good model with high statistical utility, and is made up of a collection of conditional
distributions. Second, we propose an algorithm that handles support estimation under
ε-DP, which is a well known and difficult problem [Wasserman, 2012]. We are able to do
so by combining the SBA algorithm, which partially solves the support issue because the
SBA allows for release of high-dimensional histograms without destroying their support.
Any other issues regarding support are handled using a rejection type sampler via Gibbs
sampling. Third, incorporating feature selection reduces the number and dimensionality of
the resulting conditional histograms. As a result, we ensure that the sparsity pattern of
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the joint distribution of the high-dimensional histogram is partially preserved. Fourth, we
illustrate our proposed methodology in both simulated and real experiments. Finally, we
also perform logistic regression on the resulting output from our algorithm, comparing the
classification accuracy as a downstream task of logistic regression to illustrate the utility of
the resulting synthetic data sets.

Our paper has raised many important questions regarding future directions in releasing
high dimensional sparse histograms. First, we have used a simplistic form of feature hashing
in this paper. Future directions may wish to look at more optimal ways of including the
feature selections step to further maximize the amount of dimension reduction. We suspect
that looking at complex feature hashing would require relaxing DP, however, looking at
this regime and the tradeoffs would be very useful in practice. Another point of future
research would be investigation of the distribution of the hashed Gibbs sampler. In fact, it
is unclear what the stationary distribution is and what the price to pay is from using such
dimension reduction methods. Finally, a very important and open question in the privacy
literature is the price to pay of estimating high dimensional sparse histograms without
privacy. We have made some contributions to this in our empirical analysis in our paper,
however, quantifying this price regarding theoretical and optimality guarantees regarding
private versus non-private histogram release for sparse histograms would further solidify
our proposed methodology and push forward an important area of DP [Valiant and Valiant,
2016].
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Appendix A. Simulated Data

In this section, we provide the histogram of the simulated dense data set. In this histogram,
each bar corresponds one type of record in the original data set. The height of the bar
indicates the frequency of that specific type of record. The histogram suggests that each
type of record appears at least once in the simulated data set, which forms a dense set.

Appendix B. The Laplace Mechanism

In this section, we give the algorithm for the Laplace Mechanism in Algorithm 3.

Algorithm 3 Laplace Mechanism

Input: c1, . . . , cm, ε
Output: ε differentially private histogram

1: To each count ci, add Laplace noise with mean 0 and scale parameter 2
ε

2: Output the noisy histogram.

Appendix C. The Gibbs Sampler

In this section, we review the standard Gibbs sampler.

(1) Construct the conditional distribution of each feature, i.e., P (Xj |X−j = x−j), j =
1, . . . , p.

(2) Let x0 = {x01, . . . , x0p} be any initial point.
(3) For t = 1, 2, . . . , N repeat the following:

(a) Set xtj = xt−1j .

(b) For each j = 1, . . . , p, sample a point xtj from P
(
Xj |X−j = xt−1−j

)
.
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Figure 6: Histogram of the simulated dense data set.

Appendix D. Simulation Settings

In this section, we describe our overall setup for our simulation studies. For both our
simulation studies, we randomly generate records by first drawing samples from a 10
dimensional multivariate normal distribution. Next, we bin each feature into 10 categories.
Then we set the correlations between each pair of features to be 0.3 from the multivariate
normal distribution. This assumption is made as it allows us to study the effect of feature
selection given that it depends on the mutual information between the features.
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