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Abstract. We consider the problem of answering queries about a sensitive dataset subject
to differential privacy. The queries may be chosen adversarially from a larger set Q of
allowable queries in one of three ways, which we list in order from easiest to hardest to
answer:
• Offline: The queries are chosen all at once and the differentially private mechanism

answers the queries in a single batch.
• Online: The queries are chosen all at once, but the mechanism only receives the queries

in a streaming fashion and must answer each query before seeing the next query.
• Adaptive: The queries are chosen one at a time and the mechanism must answer each

query before the next query is chosen. In particular, each query may depend on the
answers given to previous queries.

Many differentially private mechanisms are just as efficient in the adaptive model as they
are in the offline model. Meanwhile, most lower bounds for differential privacy hold in the
offline setting. This suggests that the three models may be equivalent.

We prove that these models are all, in fact, distinct. Specifically, we show that there is
a family of statistical queries such that exponentially more queries from this family can
be answered in the offline model than in the online model. We also exhibit a family of
search queries such that exponentially more queries from this family can be answered in
the online model than in the adaptive model. We also investigate whether such separations
might hold for simple queries like threshold queries over the real line.
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1. Introduction

Differential privacy [Dwork et al., 2006] is a formal guarantee that an algorithm run on a
sensitive dataset does not reveal too much about any individual in that dataset. Since its
introduction, a rich literature has developed to determine what statistics can be computed
accurately subject to differential privacy. For example, suppose we wish to approximate a
real-valued query q(x) on some dataset x that consists of the private data of many individuals.
Then, this question has a clean answer—we can compute a differentially private estimate of
q(x) with error proportional to the global sensitivity of q, and we cannot have smaller error
in the worst case.

But how much error do we need to answer a large set of queries q1, . . . , qk? Before
we can answer this question, we have to define a model of how the queries are asked and
answered. The literature on differential privacy has considered three different interactive
models1 for specifying the queries:

• The Offline Model: The sequence of queries q1, . . . , qk are given to the algorithm together
in a batch and the mechanism answers them together.
• The Online Model: The sequence of queries q1, . . . , qk is chosen in advance and then the
mechanism must answer each query qj before seeing qj+1.
• The Adaptive Model: The queries are not fixed in advance, each query qj+1 may depend
on the answers to queries q1, . . . , qj .

In all three cases, we assume that q1, · · · , qk are chosen from some family of allowable queries
Q, but may be chosen adversarially from this family.

Differential privacy seems well-suited to the adaptive model. Arguably its signature
property is that any adaptively-chosen sequence of differentially private algorithms remains
collectively differentially private, with a graceful degradation of the privacy parameters
[Dwork et al., 2006, 2010b]. As a consequence, there is a simple differentially private

algorithm that takes a dataset of n individuals and answers Ω̃(n) statistical queries in the
adaptive model with error o(1/

√
n), simply by perturbing each answer independently with

carefully calibrated noise. In contrast, the seminal lower bound of Dinur and Nissim and its
later refinements [Dinur and Nissim, 2003, Dwork and Yekhanin, 2008] shows that there exists
a fixed set of O(n) queries that cannot be answered by any differentially private algorithm
with such little error, even in the easiest offline model. For an even more surprising example,
the private multiplicative weights algorithm of Hardt and Rothblum [Hardt and Rothblum,
2010] can in many cases answer an exponential number of arbitrary, adaptively-chosen
statistical queries with a strong accuracy guarantee, whereas Bun et al. [2014] show that
the accuracy guarantee of private multiplicative weights is nearly optimal even for a simple,
fixed family of queries.

These examples might give the impression that answering adaptively-chosen queries
comes “for free” in differential privacy—that everything that can be achieved in the offline
model can be matched in the adaptive model. Beyond just the lack of any separation between
the models, many of the most powerful differentially private algorithms in all of these models
use techniques from no-regret learning, which are explicitly designed for adaptive models.

1Usually, the “interactive model” refers only to what we call the “adaptive model.” We prefer to call all
of these models interactive, since they each require an interaction with a data analyst who issues the queries.
We use the term “interactive” to distinguish these models from one where the algorithm only answers a fixed
set of queries.
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Another motivation for studying the relationship between these models is the recent line
of work connecting differential privacy to statistical validity for adaptive data analysis [Hardt
and Ullman, 2014, Dwork et al., 2015a, Steinke and Ullman, 2015a, Bassily et al., 2016],
which shows that differentially private algorithms for adaptively-chosen queries in fact yield
state-of-the-art algorithms for statistical problems unrelated to privacy. This connection
further motivates studying the adaptive model and its relationship to the other models in
differential privacy.

In this work, we show for the first time that these three models are actually distinct. In
fact, we show exponential separations between each of the three models. These are the first
separations between these models in differential privacy.

1.1. Our Results. Given a dataset x whose elements come from a data universe X, a
statistical query on X is defined by a predicate ϕ on X and asks “what fraction of elements
in the dataset satisfy ϕ?” The answer to a statistical query lies in [0, 1] and our goal is to
answer these queries up to some small additive error ±α, for a suitable choice of 0 < α < 1.
If the mechanism is required to answer arbitrary statistical queries, then the offline, online,
and adaptive models are essentially equivalent — the upper bounds in the adaptive model
match the lower bounds in the offline model [Dwork et al., 2010b, Hardt and Rothblum, 2010,
Bun et al., 2014, Steinke and Ullman, 2015b]. However, we show that when the predicate ϕ
is required to take a specific form, then it becomes strictly easier to answer a set of these
queries in the offline model than it is to answer a sequence of queries presented online.

Theorem 1.1 Informal. There exists a data universe X and a family of statistical queries
Q on X such that for every n ∈ N,
(1) there is a differentially private algorithm that takes a dataset x ∈ Xn and answers any

set of k = 2Ω(
√
n) offline queries from Q up to error ±1/100 from Q, but

(2) no differentially private algorithm can take a dataset x ∈ Xn and answer an arbitrary
sequence of k = O(n2) online (but not adaptively-chosen) queries from Q up to error
±1/100.

This result establishes that the online model is strictly harder than the offline model.
We also demonstrate that the adaptive model is strictly harder than the online model. Here,
the family of queries we use in our separation is not a family of statistical queries, but is
rather a family of search queries with a specific definition of accuracy that we will define
later.

Theorem 1.2 Informal. For every n ∈ N, there is a family of “search queries” Q on datasets
in Xn such that

(1) there is a differentially private algorithm that takes a dataset x ∈ {±1}n and accurately

answers any online (but not adaptively-chosen) sequence of k = 2Ω(n) queries from Q,
but

(2) no differentially private algorithm can take a dataset x ∈ {±1}n and accurately answer
an adaptively-chosen sequence of k = O(1) queries from Q.

We leave it as an interesting open question to separate the online and adaptive models
for statistical queries, or to show that the models are equivalent for statistical queries.

Although Theorems 1.1 and 1.2 separate the three models, these results use somewhat
contrived families of queries. Thus, we also investigate whether the models are distinct for
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natural families of queries that are of use in practical applications. One very well studied
class of queries is threshold queries. These are a family of statistical queries Qthresh defined
on the universe [0, 1] and each query is specified by a point τ ∈ [0, 1] and asks “what fraction
of the elements of the dataset are at most τ?” If we restrict our attention to so-called pure
differential privacy (i.e. (ε, δ)-differential privacy with δ = 0), then we obtain an exponential
separation between the offline and online models for answering threshold queries.

Theorem 1.3 Informal. For every n ∈ N,
(1) there is a pure differentially private algorithm that takes a dataset x ∈ [0, 1]n and answers

any set of k = 2Ω(n) offline queries from Qthresh up to error ±1/100, but
(2) no pure differentially private algorithm takes a dataset x ∈ [0, 1]n and answers an

arbitrary sequence of k = O(n) online (but not adaptively-chosen) queries from Qthresh

up to error ±1/100.

We also ask whether or not such a separation exists for arbitrary differentially private
algorithms (i.e. (ε, δ)-differential privacy with δ > 0). Theorem 1.3 shows that, for pure
differential privacy, threshold queries have near-maximal sample complexity. That is, up to
constants, the lower bound for online threshold queries matches what is achieved by the
Laplace mechanism, which is applicable to arbitrary statistical queries. This may lead one
to conjecture that adaptive threshold queries also require near-maximal sample complexity
subject to approximate differential privacy. However, we show that this is not the case:

Theorem 1.4 . For every n ∈ N, there is a differentially private algorithm that takes a
dataset x ∈ [0, 1]n and answers any set of k = 2Ω(n) adaptively-chosen queries from Qthresh

up to error ±1/100.

In contrast, for any offline set of k thresholds τ1, . . . , τk, we can round each element of
the dataset up to an element in the finite universe X = {τ1, . . . , τk, 1} without changing
the answers to any of the queries. Then we can use known algorithms for answering all
threshold queries over any finite, totally ordered domain [Beimel et al., 2013, Bun et al.,

2015] to answer the queries using a very small dataset of size n = 2O(log∗ k). We leave it as
an interesting open question to settle the complexity of answering threshold queries in the
adaptive model.

1.2. Techniques.

Separating Offline and Online Queries. To prove Theorem 1.1, we construct a sequence of
queries q1, · · · , qk such that, for all j ∈ [k],

• qj “reveals” the answers to q1, · · · , qj−1, but
• q1, · · · , qj−1 do not reveal the answer to qj .

Thus, given the sequence q1, · · · , qk in the offline setting, the answers to q1, · · · , qk−1 are
revealed by qk. So only qk needs to be answered and the remaining query answers can be
inferred. However, in the online setting, each query qj−1 must be answered before qj is
presented and this approach does not work. This is the intuition for our separation.

To prove the online lower bound, we build on a lower bound for marginal queries [Bun
et al., 2014], which is based on the existence of short secure fingerprinting codes [Boneh and
Shaw, 1998, Tardos, 2008]. Consider the data universe {±1}k. Given a dataset x ∈ {±1}n×k,
a marginal query is a specific type of statistical query that asks for the mean of a given
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column of x. Bun et al. [2014] showed that unless k ≪ n2, there is no differentially private
algorithm that answers all k marginal queries with non-trivial accuracy. This was done by
showing that such an algorithm would violate the security of a short fingerprinting code due
to Tardos [2008]. We are able to “embed” k marginal queries into the sequence of online
queries q1, · · · , qk. Thus a modification of the lower bound for marginal queries applies in
the online setting.

To prove the offline upper bound, we use the fact that every query reveals information
about other queries. However, we must handle arbitrary sequences of queries, not just the
specially-constructed sequences used for the lower bound. The key property of our family of
queries is the following. Each element x of the data universe X requires k bits to specify. On
the other hand, for any set of queries q1, · · · , qk, we can specify q1(x), · · · , qk(x) using only
O(log(nk)) bits. Thus the effective size of the data universe given the queries is poly(nk),
rather than 2k. Then we can apply a differentially private algorithm that gives good accuracy
as long as the data universe has subexponential size [Blum et al., 2013]. Reducing the size of
the data universe is only possible once the queries have been specified; hence this approach
only works in the offline setting.

Separating Online and Adaptive Queries. To prove Theorem 1.2, we start with the classical
randomized response algorithm [Warner, 1965]. Specifically, given a dataset x ∈ {±1}n,
randomized response produces a new dataset y ∈ {±1}n where each coordinate yi is
independently set to +xi with probability (1 + α)/2 and is set to −xi with probability
(1− α)/2. It is easy to prove that this algorithm is (O(α), 0)-differentially private. What
accuracy guarantee does this algorithm satisfy? By design, it outputs a vector y that has
correlation approximately α with the dataset x, i.e. ⟨y, x⟩ ≈ αn. On the other hand, it is
also easy to prove that there is no differentially private algorithm (for any reasonable privacy
parameters) that can output a vector that has correlation at least 1/2 with the sensitive
dataset.

Our separation between the online and adaptive models is based on the observation that,
if we can obtain O(1/α2) “independent” vectors y1, . . . , yk that are each roughly α-correlated
with x, then we can obtain a vector z that is (1/2)-correlated with x, simply by letting z
be the coordinate-wise majority of the vectors y1, . . . , yk. Thus, no differentially private
algorithm can output such a set of vectors. More precisely, we require that ⟨yi, yj⟩ ≈ α2n
for i ̸= j, which is achieved if each yj is an independent sample from randomized response.

Based on this observation, we devise a class of queries such that, if we are allowed to
choose k of these queries adaptively, then we obtain a set of vectors y1, . . . , yk satisfying the
conditions above. This rules out differential privacy for k = O(1/α2) adaptive queries. The
key is that we can use adaptivity to ensure that each query asks for an “independent” yj by
adding the previous answers y1, · · · , yj−1 as constraints in the search query.

On the other hand, randomized response can answer each such query with high proba-
bility. If a subexponential number of these queries are fixed in advance, then, by a union
bound, the vector y output by randomized response is simultaneously an accurate answer to
every query with high probability. Since randomized response is oblivious to the queries, we
can also answer the queries in the online model, as long as they are not chosen adaptively.

At a high level, the queries that achieve this property are of the form “output a vector
y ∈ {±1}n that is approximately α-correlated with x and is approximately as uncorrelated
as possible with the vectors v1, . . . , vm.” A standard concentration argument shows that
randomized response gives an accurate answer to all the queries simulatneously with high
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probability. On the other hand, if we are allowed to choose the queries adaptively, then for
each query qi, we can ask for a vector yi that is correlated with x but is as uncorrelated as
possible with the previous answers y1, . . . , yi−1.

Threshold Queries. For pure differential privacy, our separation between offline and online
threshold queries uses a simple argument based on binary search. Our starting point is a
lower bound showing that any purely differentially private algorithm that takes a dataset
of n points x1, . . . , xn ∈ {1, . . . , T} and outputs an approximate median of these points
requires n = Ω(log T ). This lower bound follows from a standard application of the “packing”
technique of Hardt and Talwar [2010]. On the other hand, by using binary search, any
algorithm that can answer k = O(log T ) adaptively-chosen threshold queries can be used to
find an approximate median. Thus, any purely differentially private algorithm for answering
such queries requires a dataset of size n = Ω(k). We can also show that the same lower bound
holds for online non-adaptive queries as well. In contrast, using the algorithms of Dwork
et al. [2010a], Chan et al. [2011], Dwork et al. [2015b], we can answer k offline threshold
queries on a dataset with only n = O(log k) elements, giving an exponential separation.

The aforementioned separation depends on strong lower bounds for pure differential
privacy that follow from its group privacy guarantees. Approximate differential privacy,
on the other hand, does not give such strong group privacy, and is hence not susceptible
to these lower bounds. In fact, circumventing these lower bounds allows us to obtain an
improved algorithm for answering adaptively chosen threshold queries with approximate
differential privacy.

The technical basis for our improved algorithm is a generalization of the sparse vector
technique [Dwork et al., 2010a, Roth and Roughgarden, 2010, Hardt and Rothblum, 2010]
(see Dwork and Roth [2014, §3.6] for a textbook treatment). Our algorithm makes crucial
use of a stability argument similar to the propose-test-release techniques of Dwork and Lei
[2009]. To our knowledge, this is the first use of a stabiltiy argument for any online or
adaptive problem in differential privacy and may be of independent interest. In particular,
our algorithm is given an input x ∈ Xn, a threshold t ∈ (0, 1), and an adaptive sequence
of statistical (or low-sensitivity) queries q1, · · · , qk : Xn → [0, 1] and, for each query qj , it
reports (i) qj(x) ≥ t, (ii) qj(x) ≤ t, or (iii) t− α ≤ qj(x) ≤ t+ α. The sample complexity of
this algorithm is n = O(

√
c log(k/εδ)/εα), where k is the total number of queries, c is an

upper bound on the number of times (iii) may be reported, and (ε, δ)-differential privacy is
provided. We call this the Between Thresholds algorithm.

Once we have this algorithm, we can use it to answer adaptively-chosen thresholds
using an approach inspired by Bun et al. [2015]. The high-level ideal is to sort the dataset
x(1) < x(2) < · · · < x(n) and then partition it into chunks of consecutive sorted elements.
For any chunk, and a threshold τ , we can use the between thresholds algorithm to determine
(approximately) whether τ lies below all elements in the chunk, above all elements in
the chunk, or inside the chunk. Obtaining this information for every chunk is enough to
accurately estimate the answer to the threshold query τ up to an error proportional to the
size of the chunks. The sample complexity is dominated by the O(log k) sample complexity
of our Between Thresholds algorithm multiplied by the number of chunks needed, namely
O(1/α).
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2. Preliminaries

2.1. Datasets and Differential Privacy. A dataset x ∈ (x1, . . . , xn) ∈ Xn is an ordered
tuple of n elements from some data universe X. We say that two datasets x, x′ are adjacent
if they differ on only a single element and denote this relation by x ∼ x′.

Definition 2.1 (Differential Privacy [Dwork et al., 2006]). A randomized algorithm M :
Xn → R is (ε, δ)-differentially private if for every two adjacent datasets x ∼ x′, and every
R ⊆ R,

P [M(x) ∈ R] ≤ eεP
[
M(x′) ∈ R

]
+ δ.

We also use the following well known group privacy property of (ε, 0)-differential privacy.
We say that two datasets x, x′ are c-adjacent if the differ on at most c-elements, and denote
this relation by x ∼c x

′.

Lemma 2.2 [Dwork et al., 2006]. If M : Xn → R is (ε, 0)-differentially private, then for
every c ∈ N and every two c-adjacent datasets x ∼c x

′, and every R ⊆ R,
P [M(x) ∈ R] ≤ ecεP

[
M(x′) ∈ R

]
.

2.2. Queries. In this work we consider two general classes of queries on the dataset:
statistical queries, and search queries. Although statistical queries are a very special case of
search queries, we will present each of them independently to avoid having to use overly
abstract notation to describe statistical queries.

Statistical Queries. A statistical query on a data universe X is defined by a Boolean predicate
q : X → {0, 1}. Abusing notation, we define the evaluation of a statistical query q on a
dataset x = (x1, . . . , xn) to be the average of the predicate over the rows

q(x) =
1

n

n∑
i=1

q(xi) ∈ [0, 1].

For a dataset x, a statistical query q, and an answer a ∈ [0, 1], the answer is α-accurate for
q on x if

|q(x)− a| ≤ α.

Search Queries. A search query q on Xn is defined by a loss function Lq : X
n ×R → [0,∞),

where R is an arbitrary set representing the range of possible outputs. For a dataset x ∈ Xn

and an output y ∈ R, we will say that y is α-accurate for q on x if Lq(x, y) ≤ α. In some
cases the value of Lq will always be either 0 or 1. Thus we simply say that y is accurate
for q on x if Lq(x, y) = 0. For example, if Xn = {±1}n, we can define a search query by
R = {±1}n, and Lq(x, y) = 0 if ⟨x, y⟩ ≥ αn and Lq(x, y) = 1 otherwise. In this case, the
search query would ask for any vector y that has correlation α with the dataset.

To see that statistical queries are a special case of search queries, given a statistical
query q on Xn, we can define a search query Lq with R = [0, 1] and Lq(x, a) = |q(x)− a|.
Then both definitions of α-accurate align.
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2.3. Models of Interactive Queries. The goal of this work is to understand the impli-
cations of different ways to allow an adversary to query a sensitive dataset. In each of
these models there is an algorithm M that holds a dataset x ∈ Xn, and a fixed family of
(statistical or search) queries Q on Xn, and a bound k on the number of queries that M has
to answer. There is also an adversary A that chooses the queries. The models differ in how
the queries chosen by A are given to M .

Offline. In the offline model, the queries q1, . . . , qk ∈ Q are specified by the adversary A
in advance and the algorithm M is given all the queries at once and must provide answers.
Formally, we define the following function OfflineA⇋M : Xn → Qk ×Rk depending A and
M .

Input: x ∈ Xn.
A chooses q1, · · · , qk ∈ Q.
M is given x and q1, · · · , qk and outputs a1, · · · , ak ∈ R.
Output: (q1, · · · , qk, a1, · · · , ak) ∈ Qk ×Rk.

Figure 1: OfflineA⇋M : Xn → Qk ×Rk

Online Non-Adaptive. In the online non-adaptive model, the queries q1, . . . , qk ∈ Q are
again fixed in advance by the adversary, but are then given to the algorithm one at a time,
and the algorithm must give an answer to query qj before it is shown qj+1. We define a

function OnlineA⇋M : Xn → Qk ×Rk depending on the adversary A and the algorithm M
as follows.

Input: x ∈ Xn.
A chooses q1, · · · , qk ∈ Q.
M is given x.
For j = 1, . . . , k:
M is given qj and outputs aj ∈ R.2

Output: (q1, · · · , qk, a1, · · · , ak) ∈ Qk ×Rk.

Figure 2: OnlineA⇋M : Xn → Qk ×Rk

Online Adaptive. In the online adaptive model, the queries q1, . . . , qk ∈ Q are not fixed,
and the adversary may choose each qj based on the answers that the algorithm gave to the

previous queries. We define a function AdaptiveA⇋M : Xn → Qk × Rk depending on the
adversary A and the algorithm M as follows.

Definition 2.3 (Differential Privacy for Interactive Mechanisms). In each of the three cases
— Offline, Online Non-Adaptive, or Online Adaptive — we say that M is (ε, δ)-differentially
private if, for all adversaries A, respectively OfflineA⇋M , OnlineA⇋M , or AdaptiveA⇋M is
(ε, δ)-differentially private.
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Input: x ∈ Xn.
M is given x.
For j = 1, . . . , k:
A chooses a query qj ∈ Q.
M is given qj and outputs aj ∈ R.

Output: (q1, · · · , qk, a1, · · · , ak) ∈ Qk ×Rk.

Figure 3: AdaptiveA⇋M : Xn → Qk ×Rk

Definition 2.4 (Accuracy for Interactive Mechanisms). In each case — Offline, Online
Non-Adaptive, or Online Adaptive queries — we say that M is (α, β)-accurate if, for all
adversaries A and all inputs x ∈ Xn,

P
q1,··· ,qk,a1,··· ,ak

[
max
j∈[k]

Lqj (x, aj) ≤ α

]
≥ 1− β, (2.1)

where (q1, · · · , qk, a1, · · · , ak) is respectively drawn from one of OfflineA⇋M (x), OnlineA⇋M (x),
or AdaptiveA⇋M (x). We also say that M is α-accurate if the above holds with (2.1) replaced
by

E
q1,··· ,qk,a1,··· ,ak

[
max
j∈[k]

Lqj (x, aj)

]
≤ α.

3. A Separation Between Offline and Online Queries

In this section we prove that online accuracy is strictly harder to achieve than offline accuracy,
even for statistical queries. We prove our results by constructing a set of statistical queries
that we call prefix queries for which it is possible to take a dataset of size n and accurately
answer superpolynomially many offline prefix queries in a differentially private manner, but
it is impossible to answer more than O(n2) online prefix queries while satisfying differential
privacy.

We now define the family of prefix queries. These queries are defined on the universe
X = {±1}∗ =

⋃∞
j=0{±1}j consisting of all finite length binary strings.3 For x, y ∈ {±1}∗,

we use y ⪯ x to denote that y is a prefix of x. Formally

y ⪯ x ⇐⇒ |y| ≤ |x| and ∀i = 1, . . . , |y| xi = yi.

Definition 3.1. For any finite set S ⊆ {±1}∗ of finite-length binary strings, we define the
prefix query qS : {±1}∗ → {±1} by

qS(x) = 1 ⇐⇒ ∃y ∈ S y ⪯ x.

We also define

Qprefix = {qS | S ⊂ {±1}∗}
QB

prefix = {qS | S ⊂ {±1}∗, |S| ≤ B}
to be the set of all prefix queries and the set of prefix queries with sizes bounded by B,
respectively.

3All of the arguments in this section hold if we restrict to strings of length at most k+ logn. However, we
allow strings of arbitrary length to reduce notational clutter.
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3.1. Answering Offline Prefix Queries. We now prove that there is a differentially
private algorithm that answers superpolynomially many prefix queries, provided that the
queries are specified offline.

Theorem 3.2 Answering Offline Prefix Queries. For every α, ε ∈ (0, 1/10), every B ∈ N,
and every n ∈ N, there exists a

k = min
{
2Ω(

√
α3εn), 2Ω(α3εn/ logB)

}
and an (ε, 0)-differentially private algorithm Mprefix : X

n× (QB
prefix)

k → Rk that is (α, 1/100)-

accurate for k offline queries from QB
prefix.

We remark that it is possible to answer even more offline prefix queries by relaxing to
(ε, δ)-differential privacy for some negligibly small δ > 0. However, we chose to state the
results for (ε, 0)-differential privacy to emphasize the contrast with the lower bound, which
applies even when δ > 0, and to simplify the statement.

Our algorithm for answering offline queries relies on the existence of a good differentially
private algorithm for answering arbitrary offline statistical queries. For concreteness, the
so-called “BLR mechanism” of Blum et al. [2013] suffices, although different parameter
tradeoffs can be obtained using different mechanisms. Differentially private algorithms
with this type of guarantee exist only when the data universe is bounded, which is not
the case for prefix queries. However, as we show, when the queries are specified offline, we
can replace the infinite universe X = {±1}∗ with a finite, restricted universe X ′ and run
the BLR mechanism. Looking ahead, the key to our separation will be the fact that this
universe restriction is only possible in the offline setting. Before we proceed with the proof
of Theorem 3.2, we will state the guarantees of the BLR mechanism.

Theorem 3.3 [Blum et al., 2013]. For every 0 < α, ε ≤ 1/10 and every finite data universe
X, if QSQ is the set of all statistical queries on X, then for every n ∈ N, there is a

k = 2Ω(α3εn/ log |X|)

and an (ε, 0)-differentially private algorithm MBLR : Xn × Qk
SQ → Rk that is (α, 1/100)-

accurate for k offline queries from QSQ.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Suppose we are given a set of queries qS1 , . . . , qSk
∈ QB

prefix and a

dataset x ∈ Xn where X = {±1}∗. Let S =
⋃k

j=1 Sj . We define the universe XS = S ∪ {∅}
where ∅ denotes the empty string of length 0. Note that this universe depends on the choice
of queries, and that |XS | ≤ kB + 1. Since XS ⊂ X, it will be well defined to restrict the
domain of each query qSj to elements of XS .

Next, given a dataset x = (x1, . . . , xn) ∈ Xn, and a collection of sets S1, . . . , Sk ⊂ X, we
give a procedure for mapping each element of x to an element of XS to obtain a new dataset
xS = (xS1 , . . . , x

S
n) ∈ Xn

S that is equivalent to x with respect to the queries qS1 , . . . , qSk
.

Specifically, define rS : X → XS by

rS(x) = argmax
y∈XS ,y⪯x

|y|.

That is, rS(x) is the longest string in XS that is a prefix of x. We summarize the key
property of rS in the following claim
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Claim 3.4 . For every x ∈ X, and j = 1, . . . , k, qSj (rS(x)) = qSj (x).

Proof of Claim 3.4. First, we state a simple but important fact about prefixes: If y, y′ are
both prefixes of a string x with |y| ≤ |y′|, then y is a prefix of y′. Formally,

∀x, y, y′ ∈ {0, 1}∗ (y ⪯ x ∧ y′ ⪯ x ∧ |y| ≤ |y′|) =⇒ y ⪯ y′. (3.1)

Now, fix any x ∈ X and any query qSj and suppose that qSj (x) = 1. Then there exists
a string y ∈ Sj such that y ⪯ x. By construction, we have that rS(x) ⪯ x and that
|rS(x)| ≥ |y|. Thus, by (3.1), we have that y ⪯ rS(x). Thus, there exists y ∈ Sj such that
y ⪯ rS(x), which means qSj (rS(x)) = 1, as required.

Next, suppose that qSj (rS(x)) = 1. Then, there exists y ∈ Sj such that y ⪯ rS(x). By
construction, rS(x) ⪯ x, so by transitivity we have that y ⪯ x. Therefore, qSj (x) = 1, as
required.

Given this lemma, we can replace every row xi of x with xSi = rS(xi) to obtain a new
dataset xS such that for every j = 1, . . . , k,

qSj (x
S) =

1

n

n∑
i=1

qSj (x
S
i ) =

1

n

n∑
i=1

qSj (xi) = qSj (x).

Thus, we can answer qS1 , · · · , qSk
on xS ∈ Xn

S , rather than on x ∈ Xn. Note that each row of
xS depends only on the corresponding row of x. Hence, for every set of queries qS1 , . . . , qSk

,
if x ∼ x′ are adjacent datasets, then xS ∼ x′S are also adjacent datasets. Consequently,
applying a (ε, δ)-differentially private algorithm to xS yields a (ε, δ)-differentially private
algorithm as a function of x.

In particular, we can give α-accurate answers to these queries using the algorithm MBLR

as long as

k ≤ 2Ω(α3εn/ log |XS |) = 2Ω(α3εn/ log(kB+1)).

Rearranging terms gives the bound in Theorem 3.2. We specify the complete algorithm
Mprefix in Figure 4.

Mprefix(x; qS1 , . . . , qSk
):

Write x = (x1, . . . , xn) ∈ Xn, S =
⋃k

j=1 Sj , XS = S ∪ {∅}.
For i = 1, . . . , n, let xSi = rS(xi) and let xS = (xS1 , . . . , x

S
n) ∈ Xn

S .
Let (a1, . . . , ak) = MBLR(x

S ; qS1 , . . . , qSk
).

Output (a1, . . . , ak).

Figure 4: Mprefix
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3.2. A Lower Bound for Online Prefix Queries. Next, we prove a lower bound for
online queries. Our lower bound shows that the simple approach of perturbing the answer
to each query with independent noise is essentially optimal for prefix queries. Since this
approach is only able to answer k = O(n2) queries, we obtain an exponential separation
between online and offline statistical queries for a broad range of parameters.

Theorem 3.5 Lower Bound for Online Prefix Queries. There exists a function k = O(n2)
such that for every sufficiently large n ∈ N, there is no (1, 1/30n)-differentially private
algorithm M that takes a dataset x ∈ Xn and is (1/100, 1/100)-accurate for k online queries
from Qn

prefix.

In this parameter regime, our algorithm from Section 3.1 answers k = exp(Ω̃(
√
n))

offline prefix queries, so we obtain an exponential separation.
Our lower bound relies on a connection between fingerprinting codes and differential

privacy [Ullman, 2013, Bun et al., 2014, Steinke and Ullman, 2015b, Dwork et al., 2015c].
However, instead of using fingerprinting codes in a black-box way, we will make a direct use
of the main techniques. Specifically, we will rely heavily on the following key lemma. The
proof appears in Appendix A.

Lemma 3.1 (Fingerprinting Lemma). Let f : {±1}n → [−1, 1] be any function. Suppose
p is sampled from the uniform distribution over [−1, 1] and c ∈ {±1}n is a vector of n
independent bits, where each bit has expectation p. Letting c denote the coordinate-wise mean
of c, we have

E
p,c

⎡⎣f(c) ·∑
i∈[n]

(ci − p) + 2
⏐⏐f(c)− c

⏐⏐⎤⎦ ≥ 1

3
.

Roughly the fingerprinting lemma says that if we sample a vector c ∈ {±1}n in a specific
fashion, then for any bounded function f(c), we either have that f(c) has “significant”
correlation with ci for some coordinate i, or that f(c) is “far” from c on average. In our
lower bound, the vector c will represent a column of the dataset, so each coordinate ci
will correspond to the value of some row of the dataset. The function f(c) will represent
the answer to some prefix query. We will use the accuracy of a mechanism for answering
prefix queries to argue that f(c) is not far from c, and therefore conclude that f(c) must
be significantly correlated with some coordinate ci. On the other hand, if ci were excluded
from the dataset, then ci is sufficiently random that the mechanism’s answers cannot be
significantly correlated with ci. We will use this to derive a contradiction to differential
privacy.

Proof of Theorem 3.5. First we define the distribution on the input dataset x = (x1, . . . , xn)
and the queries qS1 , · · · , qSk

.

Input dataset x:

• Sample p1, · · · , pk ∈ [−1, 1] independently and uniformly at random.
• Sample c1, · · · , ck ∈ {±1}n independently, where each cj is a vector of n independent bits,
each with expectation pj .
• For i ∈ [n], define

xi = (binary(i), c1i , · · · , cki ) ∈ {±1}⌈log2 n⌉+k,
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where binary(i) ∈ {±1}⌈log2 n⌉ is the binary representation of i where 1 is mapped to +1

and 0 is mapped to −1.4 Let x = (x1, . . . , xn) ∈
(
{±1}⌈log2 n⌉+k

)n
.

Queries qS1 , · · · , qSk
:

• For i ∈ [n] and j ∈ [k], define

zi,j = (binary(i), c1i , · · · , c
j−1
i , 1) ∈ {±1}⌈log2 n⌉+j .

• For j ∈ [k], define qSj ∈ Qn
prefix by Sj = {zi,j | i ∈ [n]}.

These queries are designed so that the correct answer to each query j ∈ [k] is given by
qSj (x) = cj :

Claim 3.6 . For every j ∈ [k], if the dataset x and the queries qS1 , . . . , qSk
are constructed

as above, then with probability 1,

qSj (x) =
1

n

n∑
i=1

qSj (xi) =
1

n

n∑
i=1

cji = cj

Proof of Claim 3.6. We have

qSj (xi) = 1 ⇐⇒ ∃w ∈ Sj (w ⪯ xi) ⇐⇒ ∃ℓ ∈ [n] (zℓ,j ⪯ xi).

By construction, we have zℓ,j ⪯ xi if and only if ℓ = i and xji = cji = 1, as required. Here,
we have used the fact that the strings binary(i) are unique to ensure that zℓ,j ⪯ xi if and
only if ℓ = i.

We now show no differentially private algorithm M is capable of giving accurate answers
to these queries. Let M be an algorithm that answers k online queries from Qn

prefix. Suppose

we generate an input dataset x and queries qS1 , . . . , qSk
as above, and run M(x) on this

sequence of queries. Let a1, . . . , ak ∈ [−1, 1] denote the answers given by M .
First, we claim that, if M(x) is accurate for the given queries, then each answer aj is

close to the corresponding value cj = 1
n

∑n
i=1 c

j
i .

Claim 3.2. If M is (1/100, 1/100)-accurate for k online queries from Qn
prefix, then with

probability 1 over the choice of x and qS1 , . . . , qSk
above,

E
M

⎡⎣∑
j∈[k]

⏐⏐aj − cj
⏐⏐⎤⎦ ≤ k

10
.

Proof of Claim 3.2. By Claim 3.6, for every j ∈ [k], qSj (x) = cj . Since, by assumption, M
is (1/100, 1/100)-accurate for k online queries from Qn

prefix, we have that with probability at

least 99/100,

∀j ∈ [k]
⏐⏐aj − qSj (x)

⏐⏐ ≤ 1

100
=⇒ ∀j ∈ [k]

⏐⏐aj − cj
⏐⏐ ≤ 1

100

By linearity of expectation, this case contributes at most k/100 to the expectation. On the
other hand, |aj − qSj (x)| ≤ 2, so by linearity of expectation the case where M is inaccurate
contributes at most 2k/100 to the expectation. This suffices to prove the claim.

4This choice is arbitrary, and is immaterial to our lower bound. The only property we need is that
binary(i) uniquely identifies i and, for notational consistency, we require binary(i) to be a string over the
alphabet {±1}.
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The next claim shows how the fingerprinting lemma (Lemma 3.1) can be applied to M .

Claim 3.3.

E
p,x,q,M

⎡⎣∑
j∈[k]

⎛⎝aj
∑
i∈[n]

(cji − pj) + 2
⏐⏐aj − cj

⏐⏐⎞⎠⎤⎦ ≥ k

3
.

Proof. By linearity of expectation, it suffices to show that, for every j ∈ [k],

E
p,x,q,M

⎡⎣aj ∑
i∈[n]

(cji − pj) + 2
⏐⏐aj − cj

⏐⏐⎤⎦ ≥ 1

3
.

Since each column cj is generated independently from the columns c1, . . . , cj−1, cj and pj

are independent from qS1 , · · · , qSj . Thus, at the time M produces the output aj , it does not

have any information about cj or pj apart from its private input. (Although M later learns
cj when it is asked qSj+1 .) For any fixed values of c1, . . . , cj−1 and the internal randomness

of M , the answer aj is a deterministic function of cj . Thus we can apply Lemma 3.1 to this
function to establish the claim.

Combining Claims 3.2 and 3.3 gives

E
p,x,q,M

⎡⎣∑
j∈[k]

aj
∑
i∈[n]

(cji − pj)

⎤⎦ ≥ 2k

15
.

In particular, there exists some i∗ ∈ [n] such that

E
p,x,q,M

⎡⎣∑
j∈[k]

aj(cji∗ − pj)

⎤⎦ ≥ 2k

15n
. (3.2)

To complete the proof, we show that (3.2) violates the differential privacy guarantee unless

n ≥ Ω(
√
k).

To this end, fix any p1, . . . , pk ∈ [−1, 1], whence c1i∗ , · · · , cki∗ ∈ {±1} are independent bits
with E

[
cj
]
= pj . Let c̃1, · · · , c̃k ∈ {±1} be independent bits with E

[
c̃j
]
= pj . The random

variables c1i∗ , · · · , cki∗ have the same marginal distribution as c̃1, · · · , c̃k. However, c̃1, · · · , c̃k
are independent from a1, · · · , ak, whereas a1, · · · , ak depend on c1i∗ , · · · , cki∗ . Consider the
quantities

Z =
∑
j∈[k]

aj(cji∗ − pj) and Z̃ =
∑
j∈[k]

aj(c̃j − pj).

Differential privacy implies that Z and Z̃ have similar distributions. Specifically, if M is
(1, 1/30n)-differentially private, then

E [|Z|] =
∫ 2k

0
P [|Z| > z] dz ≤

∫ 2k

0

(
eP
[
|Z̃| > z

]
+

1

30n

)
dz = eE

[
|Z̃|
]
+

k

15n
,

as |Z|, |Z̃| ≤ 2k with probability 1.
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Now E [|Z|] ≥ E [Z] ≥ 2k/15n, by (3.2). On the other hand, aj is independent from c̃j

and E
[
c̃j − pj

]
= 0, so E

[
Z̃
]
= 0. We now observe that

E
[
|Z̃|
]2
≤ E

[
Z̃2
]
= Var

[
Z̃
]
=
∑
j∈[k]

Var
[
aj(c̃j − pj)

]
≤
∑
j∈[k]

E
[
(c̃j − pj)2

]
≤ k.

Thus, we have
2k

15n
≤ E [|Z|] ≤ eE

[
|Z̃|
]
+

k

15n
≤ e
√
k +

k

15n
.

The condition 2k/15n ≤ e
√
k + k/15n is a contradiction unless k ≤ 225e2n2. Thus, we

can conclude that there exists a k = O(n2) such that no (1, 1/30n)-differentially private
algorithm is accurate for more than k online queries from Qn

prefix, as desired. This completes

the proof.

4. A Separation Between Adaptive and Non-Adaptive Online Queries

In this section we prove that even among online queries, answering adaptively-chosen queries
can be strictly harder than answering non-adaptively-chosen queries. Our separation applies
to a family of search queries that we call correlated vector queries. We show that for a
certain regime of parameters, it is possible to take a dataset of size n and privately answer
an exponential number of fixed correlated vector queries, even if the queries are presented
online, but it is impossible to answer more than a constant number of adaptively-chosen
correlated vector queries under differential privacy.

The queries are defined on datasets x ∈ {±1}n (hence the data universe is X = {±1}).
For every query, the range R = {±1}n is the set of n-bit vectors. We fix some parameters
0 < α < 1 and m ∈ N. A query q is specified by a set V where V =

{
v1, . . . , vm

}
⊆ {±1}n

is a set of n-bit vectors. Roughly, an accurate answer to a given search query is any vector
y ∈ {±1}n that is approximately α-correlated with the input dataset x ∈ {±1}n and has
nearly as little correlation as possible with every vj . By “as little correlation as possible with
vj” we mean that vj may itself be correlated with x, in which case y should be correlated
with vj only insofar as this correlation comes through the correlation between y and x.
Formally, for a query qV , we define the loss function LqV : Xn ×Xn → {0, 1} by

LqV (x, y) = 0 ⇐⇒ |⟨y − αx, x⟩| ≤ α2n

100
∧ ∀vj ∈ V

⏐⏐⟨y − αx, vj⟩
⏐⏐ ≤ α2n

100
.

We remark that the choice of α2n/100 is somewhat arbitrary, and we can replace this choice
with C for any

√
n ≪ C ≪ n and obtain quantitatively different results. We chose to fix

this particular choice in order to reduce notational clutter. We let

Qn,α,m
corr = {qV | V ⊆ {±1}n, |V | ≤ m}

be the set of all correlated vector queries on {±1}n for parameters α,m.



16 MARK BUN, THOMAS STEINKE, AND JONATHAN ULLMAN

4.1. Answering Online Correlated Vector Queries. Provided that all the queries are
fixed in advance, we can privately answer correlated vector queries using the randomized
response algorithm. This algorithm simply takes the input vector x ∈ {±1}n and outputs
a new vector y ∈ {±1}n where each bit yi is independent and is set to xi with probability
1/2+ρ for a suitable choice of ρ > 0. The algorithm will then answer every correlated vector
query with this same vector y. The following theorem captures the parameters that this
mechanism achieves.

Theorem 4.1 Answering Online Correlated Vector Queries. For every 0 < α < 1/2, there

exists k = 2Ω(α4n) such that, for every sufficiently large n ∈ N, there is a (3α, 0)-differentially
private algorithm Mcorr that takes a dataset x ∈ {±1}n and is (1/k)-accurate for k online

queries from Qn,α,k
corr .

Proof Theorem 4.1. Our algorithm based on randomized response is presented in Figure 5
below.

Mcorr:
Input: a dataset x ∈ {±1}n.
Parameters: 0 < α < 1/2.
For i = 1, . . . , n, independently set

yi =

{
+xi with probability 1+α

2

−xi with probability 1−α
2

.

Let y = (y1, . . . , yn) ∈ {±1}n, and answer each query with y.

Figure 5: Mcorr

To establish privacy, observe that by construction each output bit yi depends only on xi
and is independent of all xj , yj for j ̸= i. Therefore, it suffices to observe that if 0 < α < 1/2,

1 ≤ P[yi = +1 | xi = +1]

P[yi = +1 | xi = −1]
=

1 + α

1− α
≤ e3α

and similarly

1 ≥ P[yi = −1 | xi = +1]

P[yi = −1 | xi = −1]
=

1− α

1 + α
≥ e−3α.

To prove accuracy, observe that since the output y does not depend on the sequence of

queries, we can analyze the mechanism as if the queries qV1 , . . . , qVk
∈ Qn,α,k

corr were fixed and

given all at once. Let V =
⋃k

j=1 Vj , and note that |V | ≤ k2. First, observe that E [y] = αx.

Thus we have
E
y
[⟨y − αx, x⟩] = 0 and ∀v ∈ V E

y
[⟨y − αx, v⟩] = 0

Since x and every vector in V is fixed independently of y, and the coordinates of y are
independent by construction, the quantities ⟨y, x⟩ and ⟨y, v⟩ are each the sum of n independent
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{±1}-valued random variables. Thus, we can apply Hoeffding’s inequality5 and a union
bound to conclude

P
y

[
|⟨y − αx, x⟩| > α2n

100

]
≤ 2 exp

(
−α4n

20000

)
P
y

[
∃v ∈ V s.t. |⟨y − αx, v⟩| > α2n

100

]
≤ 2k2 exp

(
−α4n

20000

)
The theorem now follows by setting an appropriate choice of k = 2Ω(α4n) such that 2(k2 +

1) · exp
(
−α4n
20000

)
≤ 1/k.

4.2. A Lower Bound for Adaptive Correlated Vector Queries. We now prove a
contrasting lower bound showing that if the queries may be chosen adaptively, then no
differentially private algorithm can answer more than a constant number of correlated vector
queries. The key to our lower bound is that fact that adaptively-chosen correlated vector
queries allow an adversary to obtain many vectors y1, . . . , yk that are correlated with x
but pairwise nearly orthogonal with each other. As we prove, if k is sufficiently large, this
information is enough to recover a vector x̃ that has much larger correlation with x than
any of the vectors y1, . . . , yk have with x. By setting the parameters appropriately, we will
obtain a contradiction to differential privacy.

Theorem 4.2 Lower Bound for Correlated Vector Queries. For every 0 < α < 1/2, there is
a k = O(1/α2) such that for every sufficiently large n ∈ N, there is no (1, 1/20)-differentially
private algorithm that takes a dataset x ∈ {±1}n and is 1/100-accurate for k adaptive queries

from Qn,α,k
corr

We remark that the value of k in our lower bound is optimal up to constants, as there is
a (1, 1/20)-differentially private algorithm that can answer k = Ω(1/α2) adaptively-chosen
queries of this sort. The algorithm simply answers each query with an independent invocation
of randomized response. Randomized response is O(α)-differentially private for each query,
and we can invoke the adaptive composition theorem [Dwork et al., 2006, 2010b] to argue
differential privacy for k = Ω(1/α2)-queries.

Before proving Theorem 4.2, we state and prove the combinatorial lemma that forms
the foundation of our lower bound.

Lemma 4.1 (Reconstruction Lemma). Fix parameters 0 ≤ a, b ≤ 1. Let x ∈ {±1}n and
y1, · · · , yk ∈ {±1}n be vectors such that

∀1 ≤ j ≤ k ⟨yj , x⟩ ≥ an

∀1 ≤ j < j′ ≤ k |⟨yj , yj′⟩| ≤ bn.

5We use the following statement of Hoeffding’s Inequality: if Z1, . . . , Zn are independent {±1}-valued
random variables, and Z =

∑n
i=1 Zi, then

P
[⏐⏐⏐ Z − E [Z]

⏐⏐⏐ > C
√
n
]
≤ 2e−C2/2
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Then, if we let x̃ = sign(
∑k

j=1 y
j) ∈ {±1}n be the coordinate-wise majority of y1, . . . , yk, we

have

⟨x̃, x⟩ ≥
(
1− 2

a2k
− 2(b− a2)

a2

)
n.

Proof of Lemma 4.1. Let

y =
1

k

k∑
j=1

yj ∈ [−1, 1]n.

By linearity, ⟨y, x⟩ ≥ an and

∥y∥22 =
1

k2

k∑
j,j′=1

⟨yj , yj′⟩ ≤ 1

k2
(
kn+ (k2 − k)bn

)
≤
(
1

k
+ b

)
n.

Define a random variable W ∈ [−1, 1] to be xiyi for a uniformly random i ∈ [n]. Then

E [W ] =
1

n
⟨x, y⟩ ≥ a and E

[
W 2
]
=

1

n

n∑
i=1

x2i y
2
i =

1

n
∥y∥22 ≤

1

k
+ b

By Chebyshev’s inequality,

P [W ≤ 0] ≤ P
[
|W − E [W ] | ≥ a

]
≤ Var[W ]

a2
=

E[W 2]− E[W ]2

a2
≤

1
k + b− a2

a2
.

Meanwhile,

P [W ≤ 0] =
1

n

n∑
i=1

I[xiyi ≤ 0] ≥ 1

n

n∑
i=1

I[sign(yi) ̸= xi] =
1

2
− 1

2n
⟨sign(y), x⟩.

Thus we conclude

⟨sign(y), x⟩ ≥ n− 2nP [W ≤ 0] ≥ n− 2n

(
1
k + b− a2

a2

)
To complete the proof, we rearrange terms and note that sign(y) = sign(

∑k
j=1 y

j).

Now we are ready to prove our lower bound for algorithms that answer adaptively-chosen
correlated vector queries.

Proof of Theorem 4.2. We will show that the output y1, . . . , yk of any algorithm M that
takes a dataset x ∈ {±1}n and answers k = 100/α2 adaptively-chosen correlated vector
queries can be used to find a vector x̃ ∈ {±1}n such that ⟨x̃, x⟩ > n/2. In light of Lemma 4.1,

this vector will simply be x̃ = sign(
∑k

j=1 y
j). We will then invoke the following elementary

fact that differentially private algorithms do not admit this sort of reconstruction of their
input dataset.

Fact 4.2. For every sufficiently large n ∈ N, there is no (1, 1/20)-differentially private
algorithm M : {±1}n → {±1}n such that for every x ∈ {±1}n, with probability at least
99/100, ⟨M(x), x⟩ > n/2.

The attack works as follows. For j = 1, . . . , k, define the set Vj =
{
y1, . . . , yj−1

}
and ask

the query qVj (x) ∈ Qn,α,k
corr to obtain some vector yj . Since M is assumed to be accurate for



MAKE UP YOUR MIND: THE PRICE OF ONLINE QUERIES IN DIFFERENTIAL PRIVACY 19

k adaptively-chosen queries, with probability 99/100, we obtain vectors y1, . . . , yk ∈ {±1}n
such that

∀1 ≤ j ≤ k ⟨yj , x⟩ ≥ ⟨αx, x⟩ − |⟨y − αx, x⟩|

≥ αn− α2n

100
≥ an,

∀1 ≤ j < j′ ≤ k |⟨yj , yj′⟩| ≤ |⟨αx, yj⟩|+ |⟨yj′ − αx, yj⟩|

≤ α|⟨yj , x⟩|+ α2n

100

≤ α
(
|⟨αx, x⟩|+ |⟨yj − αx, x⟩|

)
+

α2n

100

≤ α2n+
α3n

100
+

α2n

100

≤ 51

50
α2n

= bn,

where a = 99α/100 and b = 51α2/50. Thus, by Lemma 4.1, if x̃ = sign(
∑k

j=1 y
j), and

k = 100/α2, we have

⟨x̃, x⟩ ≥
(
1− 2

a2k
− 2(b− a2)

a2

)
n

=

(
1− 2

(99α/100)2k
− 2(51α2/50− (99α/100)2)

(99α/100)2

)
n

=

(
1− 2(100/99)2

100
− 2

(
(51/50)− (99/100)2

(99/100)2

))
n

≥ 0.89n ≥ n/2.

By Fact 4.2, this proves that M cannot be (1, 1/20)-differentially private.

5. Threshold Queries

First we define threshold queries, which are a family of statistical queries.

Definition 5.1. Let ThreshX denote the class of threshold queries over a totally ordered
domain X. That is, ThreshX = {cx : x ∈ X} where cx : X → {0, 1} is defined by cx(y) = 1
iff y ≤ x.



20 MARK BUN, THOMAS STEINKE, AND JONATHAN ULLMAN

5.1. Separation for Pure Differential Privacy. In this section, we show that the sample
complexity of answering adaptively-chosen thresholds can be exponentially larger than that
of answering thresholds offline.

Proposition 5.1 ([Dwork et al., 2010a, Chan et al., 2011, Dwork et al., 2015b]). Let X be
any totally ordered domain. Then there exists a (ε, 0)-differentially private mechanism M
that, given x ∈ Xn, gives α-accurate answers to k offline queries from ThreshX for

n = O

(
min

{
log k + log2(1/α)

αε
,
log2 k

αε

})
On the other hand, we show that answering k adaptively-chosen threshold queries can

require sample complexity as large as Ω(k) – an exponential gap. Note that this matches
the upper bound given by the Laplace mechanism [Dwork et al., 2006].

Proposition 5.2. Answering k adaptively-chosen threshold queries on X = [2k−1] to
accuracy α subject to ε-differential privacy requires sample complexity n = Ω(k/αε).

The idea for the lower bound is that an analyst may adaptively choose k threshold
queries to binary search for an “approximate median” of the dataset. However, a packing
argument shows that locating an approximate median requires sample complexity Ω(k).

Definition 5.2 (Approximate Median). Let X be a totally ordered domain, α > 0, and
x ∈ Xn. We call y ∈ X an α-approximate median of x if

1

n
|{i ∈ [n] : xi ≤ y}| ≥ 1

2
− α and

1

n
|{i ∈ [n] : xi ≥ y}| ≥ 1

2
− α.

Proposition 5.2 is obtained by combining Lemmas 5.3 and 5.4 below.

Lemma 5.3. Suppose M answers k = ⌈1+ log2 T ⌉ adaptively-chosen queries from Thresh[T ]

with ε-differential privacy and (α, β)-accuracy. Then there exists an ε-differentially private
M ′ : [T ]n → [T ] that computes an α-approximate median with probability at least 1− β.

Proof. The algorithm M ′, formalized in Figure 6, uses M to perform a binary search.

Input: x ∈ Xn.
M is given x.
Initialize ℓ1 = 0, u1 = T , and j = 1.
While uj − ℓj > 1 repeat:
Let mj = ⌈(uj + ℓj)/2⌉.
Give M the query cmj ∈ Thresh[T ] and obtain the answer aj ∈ [0, 1].

If aj ≥ 1
2 , set (ℓj+1, uj+1) = (ℓj ,mj); otherwise set (ℓj+1, uj+1) = (mj , uj).

Increment j.
Output uj .

Figure 6: M ′ : Xn → X

We have u1 − ℓ1 = T and, after every query j, uj+1 − ℓj+1 ≤ ⌈(uj − ℓj)/2⌉. Since the
process stops when uj − ℓj = 1, it is easy to verify that M ′ makes at most ⌈1 + log2(T − 1)⌉
queries to M .
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Suppose all of the answers given by M are α-accurate. This happens with probability
at least 1− β. We will show that, given this, M ′ outputs an α-approximate median, which
completes the proof.

We claim that cuj (x) ≥ 1
2 −α for all j. This is easily shown by induction. The base case

is cT (x) = 1 ≥ 1
2 − α. At each step either uj+1 = uj (in which case the induction hypothesis

can be applied) or uj+1 = mj ; in the latter case our accuracy assumption gives

cuj+1(x) = cmj (x) ≥ aj − α ≥ 1

2
− α.

We also claim that cℓj (x) <
1
2 + α for all j. This follows from a similar induction and

completes the proof.

Lemma 5.4. Let M : [T ]n → [T ] be an ε-differentially private algorithm that computes an
α-approximate median with confidence 1− β. Then

n ≥ Ω

(
log T + log(1/β)

αε

)
.

Proof. Let m = ⌈(12 −α)n⌉− 1. For each t ∈ [T ], let xt ∈ [T ]n denote the dataset containing
m copies of 1, m copies of T , and n− 2m copies of t. Then for each t ∈ [T ],

P
[
M(xt) = t

]
≥ 1− β.

On the other hand, by the pigeonhole principle, there must exist t∗ ∈ [T − 1] such that

P
[
M(xT ) = t∗

]
≤

P
[
M(xT ) ∈ [T − 1]

]
T − 1

≤ β

T − 1
.

The inputs xT and xt∗ differ in at most n− 2m ≤ 2αn+ 2 entries. By group privacy,

1− β ≤ P
[
M(xt∗) = t∗

]
≤ eε(2αn+2)P

[
M(xT ) = t∗

]
≤ eε(2αn+2) β

T − 1
.

Rearranging these inequalities gives

O(εαn) ≥ ε(2αn+ 2) ≥ log

(
(1− β)(T − 1)

β

)
≥ Ω(log(T/β)),

which yields the result.

Remark 5.3 . Proposition 5.2 can be extended to online non-adaptive queries, which yields
a separation between the online non-adaptive and offline models for pure differential privacy
and threshold queries.

The key observation behind Remark 5.3 is that, while Lemma 5.3 in general requires
making adaptive queries, for the inputs xt ∈ [T ]n (t ∈ [T ]) used in Lemma 5.4 the queries
are “predictable.” In particular, on input xt, the algorithm M ′ from the proof of Lemma 5.3
will (with probability at least 1− β) always make the same sequence queries. This allows
the queries to be specified in advance in a non-adaptive manner. More precisely, we can
produce an algorithm M ′

t that produces non-adaptive online queries by simulating M ′ on
input xt and using those queries. Given the answers to these online non-adaptive queries,
M ′

t can either accept or reject its input depending on whether the answers are consistent

with the input xt; M ′
t will accept x

t with high probability and reject xt
′
for t′ ̸= t with high

probabiliy. The proof of Lemma 5.4 can be carried out using M ′
t∗ instead of M ′ at the end.
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5.2. The BetweenThresholds Algorithm. The key technical novelty behind our algorithm
for answering adaptively-chosen threshold queries is a refinement of the “Above Threshold”
algorithm [Dwork and Roth, 2014, §3.6], which underlies the ubiquitous “sparse vector”
technique [Dwork et al., 2009, Roth and Roughgarden, 2010, Dwork et al., 2010a, Hardt
and Rothblum, 2010].

The sparse vector technique addresses a setting where we have a stream of k (adaptively-
chosen) low-sensitivity queries and a threshold parameter t. Instead of answering all k
queries accurately, we are interested in answering only the ones that are above the threshold
t – for the remaining queries, we only require a signal that they are below the threshold.
Intuitively, one would expect to only pay in privacy for the queries that are actually above
the threshold. And indeed, one can get away with sample complexity proportional to the
number of queries that are above the threshold, and to the logarithm of the total number of
queries.

We extend the sparse vector technique to settings where we demand slightly more
information about each query beyond whether it is below a single threshold. In particular,
we set two thresholds tℓ < tu, and for each query, release a signal as to whether the query is
below the lower threshold, above the upper threshold, or between the two thresholds.

As long as the thresholds are sufficiently far apart, whether (the noisy answer to) a query
is below the lower threshold or above the upper threshold is stable, in that it is extremely
unlikely to change on neighboring datasets. As a result, we obtain an (ε, δ)-differentially
private algorithm that achieves the same accuracy guarantees as the traditional sparse vector
technique, i.e. sample complexity proportional to log k.

Our algorithm is summarised by the following theorem.6

Theorem 5.5. Let α, β, ε, δ, t ∈ (0, 1) and n, k ∈ N satisfy

n ≥ 1

αε
max {12 log(30/εδ), 16 log((k + 1)/β)} .

Then there exists a (ε, δ)-differentially private algorithm that takes as input x ∈ Xn and
answers a sequence of adaptively-chosen queries q1, · · · , qk : Xn → [0, 1] of sensitivity 1/n
with a1, · · · , a≤k ∈ {L,R,⊤} such that, with probability at least 1− β,

• aj = L =⇒ qj(x) ≤ t,
• aj = R =⇒ qj(x) ≥ t, and
• aj = ⊤ =⇒ t− α ≤ qj(x) ≤ t+ α.

The algorithm may halt before answering all k queries; however, it only halts after outputting
⊤.

Our algorithm is given in Figure 7. The analysis is split into Lemmas 5.6 and 5.7.

Lemma 5.6 (Privacy for BetweenThresholds). Let ε, δ ∈ (0, 1) and n ∈ N. Then Between
Thresholds (Figure 7) is (ε, δ)-differentially private for any adaptively-chosen sequence of
queries as long as the gap between the thresholds tℓ, tu satisfies

tu − tℓ ≥
12

εn
(log(10/ε) + log(1/δ) + 1) .

6In Theorem 5.5, only one threshold is allowed. However, our algorithm is more general and permits the
setting of two thresholds. We have chosen this statement for simplicity.
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Input: x ∈ Xn.
Parameters: ε, tℓ, tu ∈ (0, 1) and n, k ∈ N.
Sample µ ∼ Lap(2/εn) and initialize noisy thresholds t̂ℓ = tℓ + µ and t̂u = tu − µ.
For j = 1, 2, · · · , k:

Receive query qj : X
n → [0, 1].

Set cj = qj(x) + νj where νj ∼ Lap(6/εn).

If cj < t̂ℓ, output L and continue.

If cj > t̂u, output R and continue.

If cj ∈ [t̂ℓ, t̂u], output ⊤ and halt.

Figure 7: BetweenThresholds

Lemma 5.7 (Accuracy for BetweenThresholds). Let α, β, ε, tℓ, tu ∈ (0, 1) and n, k ∈ N
satisfy

n ≥ 8

αε
(log(k + 1) + log(1/β)) .

Then, for any input x ∈ Xn and any adaptively-chosen sequence of queries q1, q2, · · · , qk,
the answers a1, a2, · · · a≤k produced by BetweenThresholds (Figure 7) on input x satisfy the
following with probability at least 1 − β. For any j ∈ [k] such that aj is returned before
BetweenThresholds halts,

• aj = L =⇒ qj(x) ≤ tℓ + α,
• aj = R =⇒ qj(x) ≥ tu − α, and
• aj = ⊤ =⇒ tℓ − α ≤ qj(x) ≤ tu + α.

Combining Lemmas 5.6 and 5.7 and setting tℓ = t−α/2 and tu = t+α/2 yields Theorem
5.5.

Proof of Lemma 5.6. Our analysis is an adaptation of Dwork and Roth [2014, §3.6]’s
analysis of the AboveThreshold algorithm. Recall that a transcript of the execution of
BetweenThresholds is given by a ∈ {L,R,⊤}∗. LetM : Xn → {L,R,⊤}∗ denote the function
that simulates BetweenThresholds interacting with a given adaptive adversary (cf. Figure 3)
and returns the transcript.

Let S ⊂ {L,R,⊤}∗ be a set of transcripts. Our goal is to show that for adjacent datasets
x ∼ x′,

P [M(x) ∈ S] ≤ eεP
[
M(x′) ∈ S

]
+ δ.

Let

z∗ =
1

2
(tu − tℓ)−

6

εn
log(10/ε)− 1/n ≥ 2

εn
log(1/δ).

Our strategy will be to show that as long as the noise value µ is under control, in particular if
µ ≤ z∗, then the algorithm behaves in essentially the same way as the standard AboveThresh-
old algorithm. Meanwhile, the event µ > z∗ which corresponds to the (catastrophic) event
where the upper and lower thresholds are too close or overlap, happens with probability at
most δ.

The following claim reduces the privacy analysis to examining the probability of obtaining
any single transcript a:
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Claim 5.8. Suppose that for any transcript a ∈ {L,R,⊤}∗, and any z ≤ z∗, that

P [M(x) = a|µ = z] ≤ eε/2P
[
M(x′) = a|µ = z + 1/n

]
.

ThenM is (ε, δ)-differentially private.

Proof. By properties of the Laplace distribution, since µ ∼ Lap(2/εn), for any z ∈ R, we
have

P [µ = z] ≤ eε/2P [µ = z + 1/n] ,

and

P [µ > z∗] =
1

2
e−εnz∗/2 ≤ δ.

Fix a set of transcripts S. Combining these properties allows us to write

P [M(x) ∈ S] =

∫
R
P [M(x) ∈ S|µ = z]P [µ = z] dz

≤

(∫ z∗

−∞
P [M(x) ∈ S|µ = z]P [µ = z] dz

)
+ P [µ > z∗]

≤

(
eε/2

∫ z∗

−∞
P
[
M(x′) ∈ S|µ = z + 1/n

]
P [µ = z] dz

)
+ δ

≤

(
eε
∫ z∗

−∞
P
[
M(x′) ∈ S|µ = z + 1/n

]
P [µ = z + 1/n] dz

)
+ δ

≤ eεP
[
M(x′) ∈ S

]
+ δ

Returning to the proof of Lemma 5.6, fix a transcript a ∈ {L,R,⊤}∗. Our goal is now
to show thatM satisfies the hypotheses of Claim 5.8, namely that for any z ≤ z∗,

P [M(x) = a|µ = z] ≤ eε/2P
[
M(x′) = a|µ = z + 1/n

]
. (5.1)

For some k ≥ 1, we can write the transcript a as (a1, a2, . . . , ak), where aj ∈ {L,R} for each
j < k, and ak = ⊤.

For convenience, let A =M(x) and A′ =M(x′). We may decompose

P [M(x) = a|µ = z] = P
[
(∀j < k,Aj = aj) ∧ qk(x) + νk ∈ [t̂ℓ, t̂u]|µ = z

]
= P [(∀j < k,Aj = aj)|µ = z]

· P
[
qk(x) + νk ∈ [t̂ℓ, t̂u]|µ = z ∧ (∀j < k,Aj = aj)

]
. (5.2)

We upper bound each factor on the right-hand side separately.

Claim 5.9.

P [(∀i < k,Ai = ai)|µ = z] ≤ P
[
(∀i < k,A′

i = ai)|µ = z + 1/n
]

Proof. For fixed z, let Az(x) denote the set of noise vectors (ν1, . . . , νk−1) for which
(A1, . . . , Ak−1) = (a1, . . . , ak−1) when ν = z. We claim that as long as z ≤ z∗, then
Az(x) ⊆ Az+1/n(x

′). To argue this, let (ν1, . . . , νk−1) ∈ Az(x). Fix an index j ∈ {1, . . . , k−1}
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and suppose aj = L. Then qj(x) + νj < tℓ + z, but since qj has sensitivity 1/n, we also have
qj(x

′) + νj < tℓ + (z + 1/n). Likewise, if aj = R, then qj(x) + νj > tu − z, so

qj(x
′) + νj > tu − z − 1/n ≥ tℓ + (z + 1/n)

as long as z ≤ z∗ ≤ 1
2(tu − tℓ)− 1/n. (This ensures thatM(x′) does not output L on the

first branch of the “if” statement, and proceeds to output R.)
Since Az(x) ⊆ Az+1/n(x

′), this proves that

P [(∀i < k,Ai = ai)|µ = z] = P [(ν1, . . . , νk−1) ∈ Az(x)]

≤ P
[
(ν1, . . . , νk−1) ∈ Az+1/n(x

′)
]

= P
[
(∀i < k,A′

i = ai)|µ = z + 1/n
]
.

Given Claim 5.9, all that is needed to prove (5.1) and, thereby, prove Lemma 5.6 is to
bound the second factor in (5.2) — that is, we must only show that

P
[
qk(x) + νk ∈ [t̂ℓ, t̂u]|µ = z ∧ (∀j < k,Aj = aj)

]
≤ eε/2P

[
qk(x

′) + νk ∈ [t̂ℓ, t̂u]|µ = z + 1/n ∧ (∀j < k,A′
j = aj)

]
.

Let ∆ = (qk(x
′)− qk(x)) ∈ [−1/n, 1/n]. Then

P
[
qk(x) + νk ∈ [t̂ℓ, t̂u]|µ = z ∧ (∀j < k,Aj = aj)

]
= P [tℓ + z ≤ qk(x) + νk ≤ tu − z]

= P
[
tℓ + z +∆ ≤ qk(x

′) + νk ≤ tu − z +∆
]

= P
[
tℓ + (z + 1/n) + (∆− 1/n) ≤ qk(x

′) + νk ≤ tu − (z + 1/n) + (∆ + 1/n)
]

= P
[
qk(x

′) + νk ∈ [t̂ℓ +∆− 1/n, t̂u +∆+ 1/n]|µ = z + 1/n
]

≤ eε/2P
[
qk(x

′) + νk ∈ [t̂ℓ, t̂u]|µ = z + 1/n
]

= eε/2P
[
qk(x

′) + νk ∈ [t̂ℓ, t̂u]|µ = z + 1/n ∧ (∀j < k,A′
j = aj)

]
where the last inequality follows from Claim 5.10 below (setting η = 2/n, λ = 6/εn,
[a, b] = [t̂ℓ, t̂u], and [a′, b′] = [t̂ℓ + ∆ − 1/n, t̂u + ∆ + 1/n]) and the fact that z ≤ z∗ =
1
2(tu − tℓ)− 6

εn log(10/ε)− 1/n implies

b− a = t̂u − t̂ℓ = tu − tℓ − 2µ ≥ 12

εn
log

(
10

ε

)
≥ 2λ log

(
1

1− e−ε/6

)
whenever 0 ≤ ε ≤ 1.

Claim 5.10. Let ν ∼ Lap(λ) and let [a, b], [a′, b′] ⊂ R be intervals satisfying [a, b] ⊂ [a′, b′].
If η ≥ (b′ − a′)− (b− a), then

P
[
ν ∈ [a′, b′]

]
≤ eη/λ

1− e−(b−a)/2λ
· P [ν ∈ [a, b]] .
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Proof. Recall that the probability density function of the Laplace distribution is given by
fλ(x) =

1
2λe

−|x|/λ. There are four cases to consider: In the first case, a < b ≤ 0. In the
second case, a < 0 < b with |a| ≤ |b|. In the third case, 0 ≤ a < b. Finally, in the fourth
case, a < 0 < b with |a| ≥ |b|. Since the Laplace distribution is symmetric, it suffices to
analyze the first two cases.

Case 1: Suppose a < b ≤ 0. Then

P
[
ν ∈ [a′, b′]

]
≤ P [ν ∈ [a, b]] +

∫ b+η

b

1

2λ
ex/λdx

=
1

2
(e(b+η)/λ − ea/λ)

=
1

2
·

(
eη/λ − e(a−b)/λ

1− e(a−b)/λ

)
· (eb/λ − ea/λ)

=

(
eη/λ − e−(b−a)/λ

1− e−(b−a)/λ

)
· P [ν ∈ [a, b]] .

Case 2: Suppose a < 0 < b and |a| ≤ |b|. Note that this implies b ≥ (b− a)/2. Then

P
[
ν ∈ [a′, b′]

]
≤ P [ν ∈ [a, b]] + η · 1

2λ
ea/λ

≤ P [ν ∈ [a, b]]

(
1 +

η

2λ

ea/λ

P [ν ∈ [0, b]]

)

= P [ν ∈ [a, b]]
1− e−b/λ + η

λe
a/λ

1− e−b/λ

≤ P [ν ∈ [a, b]]
1 + η/λ

1− e−b/λ

≤ P [ν ∈ [a, b]]
eη/λ

1− e−(b−a)/2λ
.

Proof of Lemma 5.7. We claim that it suffices to show that with probability at least 1− β
we have

∀1 ≤ j ≤ k |νj |+ |µ| ≤ α.

To see this, suppose |νj |+ |µ| ≤ α for every j. Then, if aj = L, we have

cj = qj(x) + νj < t̂ℓ = tℓ + µ, whence qj(x) < tℓ + |µ|+ |νj | ≤ tℓ + α.

Similarly, if aj = R, then

cj = qj(x) + νj > t̂u = tu − µ, whence qj(x) > tu − (|µ|+ |νj |) ≥ tu − α.

Finally, if aj = ⊤, then
cj = qj(x) + νj ∈ [t̂ℓ, t̂u] = [tℓ + µ, tu − µ], whence tℓ − α ≤ qj(x) ≤ tu + α.
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We now show that indeed |νj |+ |µ| ≤ α for every j with high probability. By tail bounds
for the Laplace distribution,

P [|µ| > α/4] = exp
(
−εαn

8

)
and P [|νj | > 3α/4] = exp

(
−εαn

8

)
for all j. By a union bound,

P [|µ| > α/4 ∨ ∃j ∈ [k] |νj | > 3α/4] ≤ (k + 1) · exp
(
−εαn

8

)
≤ β,

as required.

5.3. The Adaptive Interior Point Problem. Our algorithm extends a result of Bun
et al. [2015] showing how to reduce the problem of privately releasing thresholds to the
much simpler interior point problem. By analogy, our algorithm for answering adaptively-
chosen thresholds relies on solving multiple instances of an online variant of the interior
point problem in parallel. In this section, we present the AIP problem and give an (ε, δ)-
differentially private solution that can handle k adaptively-chosen queries with sample
complexity O(log k). Our AIP algorithm is a direct application of the BetweenThresholds
algorithm from Section 5.2.

Definition 5.4 (Adaptive Interior Point Problem). An algorithm M solves the Adaptive
Interior Point (AIP) Problem for k queries with confidence β if, when given as input any
private dataset x ∈ [0, 1]n and any adaptively-chosen sequence of real numbers y1, · · · , yk ∈
[0, 1], with probability at least 1− β it produces a sequence of answers a1, · · · , ak ∈ {L,R}
such that

∀j ∈ {1, 2, · · · , k} yj < min
i∈[n]

xi =⇒ aj = L, yj ≥ max
i∈[n]

xi =⇒ aj = R .

(If mini∈[n] xi ≤ yj < maxi∈[n] xi, then M may output either symbol L or R.)

Input: Dataset x ∈ [0, 1]n.
Initialize a BetweenThresholds instance (Figure 7) B on dataset x with thresholds
tℓ =

1
3 , tu = 2

3 .
For j = 1, 2, · · · , k:

Receive query yj ∈ [0, 1].
If B already halted on some query qy∗ , output L if yj < y∗ and output R if yj ≥ y∗.

Otherwise, give B the query cyj ∈ Thresh[0,1].
If B returns ⊤, output R. Otherwise, output the answer produced by B.

Figure 8: Adaptive Interior Point Algorithm

Proposition 5.11. The algorithm in Figure 8 is (ε, δ)-differentially private and solves the
AIP Problem with confidence β as long as

n ≥ 36

ε
(log(k + 1) + log(1/β) + log(10/ε) + log(1/δ) + 1) .
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Proof. Privacy follows immediately from Lemma 5.6, since Algorithm 8 is obtained by
post-processing Algorithm 7, run using thresholds with a gap of size 1/3.

To argue utility, let α = 1/3 so that

n ≥ 8

εα
(log(k + 1) + log(1/β)).

By Lemma 5.7, with probability at least 1− β, the following events occur:

• If the BetweenThresholds instance B halts when it is queried on cy∗ , then mini∈[n] xi ≤
y∗ < maxi∈[n] xi.
• If B has not yet halted and yj < mini∈[n] xi, its answer to cyj is L.
• If B has not yet halted and yj ≥ maxi∈[n] xi, its answer to cyj is R.

Thus, if B has not yet halted, the answers provided are accurate answers for the AIP Problem.
On the other hand, when B halts, it has successfully identified an “interior point” of the
dataset x, i.e. a y∗ such that mini∈[n] xi ≤ y∗ < maxi∈[n] xi. Thus, for any subsequent query
y, we have that

y < min
i∈[n]

xi =⇒ y < y∗,

so Algorithm 8 correctly outputs L. Similarly,

y ≥ max
i∈[n]

xi =⇒ y ≥ y∗,

so Algorithm 8 correctly outputs R on such a query.

5.4. Releasing Adaptive Thresholds with Approximate Differential Privacy. We
are now ready to state our reduction from releasing thresholds to solving the AIP Problem.

Theorem 5.5 . If there exists an (ε, δ)-differentially private algorithm solving the AIP
problem for k queries with confidence αβ/8 and sample complexity n′, then there is a
(4ε, (1 + eε)δ)-differentially private algorithm for releasing k threshold queries with (α, β)-
accuracy and sample complexity

n = max

{
6n′

α
,
24 log2.5(4/α) · log(2/β)

αε

}
.

Combining this reduction with our algorithm for the AIP Problem (Proposition 5.11)
yields:

Corollary 5.6 . There is an (ε, δ)-differentially private algorithm for releasing k adaptively-
chosen threshold queries with (α, β)-accuracy for

n = O

(
log k + log2.5(1/α) + log(1/βεδ)

αε

)
.

Proof of Theorem 5.5. Our algorithm and its analysis follow the reduction of Bun et al.
[2015] for reducing the (offline) query release problem for thresholds to the offline interior
point problem.

Let T be an (ε, δ)-differentially private algorithm solving the AIP Problem with confi-
dence αβ/8 and sample complexity n′. Without loss of generality, we may assume that T is dif-
ferentially private in “add-or-remove-an-item sense”—i.e. if x ∈ [0, 1]∗ and x′ differs from x up
to the addition or removal of a row, then for every adversary A and set S of outcomes of the in-
teraction between A and T , we have P [AdaptiveA⇋T (x) ∈ S] ≤ eεP [AdaptiveA⇋T (x

′) ∈ S]+δ.
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Moreover, T provides accurate answers to the AIP Problem with probability at least 1−αβ/8
whenever its input is of size at least n′. To force an algorithm T to have these properties,
we may pad any dataset of size less than n′ with an arbitrary fixed element. On the other
hand, we may subsample the first n′ elements from any dataset with more than this many
elements.

Consider the algorithm AdaptiveThresholdsT in Figures 9 and 10.

Input: Dataset x ∈ [0, 1]n.
Parameter: α ∈ (0, 1).

Let (x(1), . . . , x(M))←R Partition(x1, . . . , xn, α).
Initialize an instance of the AIP algorithm T (m) on each chunk x(m) ∈ [0, 1]∗, for
m ∈ [M ].
For each j = 1, · · · , k:

Receive query cyj ∈ Thresh[0,1].

Give query yj ∈ [0, 1] to every AIP instance T (m), receiving answers a
(1)
j , · · · , a(M)

j ∈
{L,R}.

Return aj =
1
M ·

⏐⏐⏐{m ∈ [M ] : a
(m)
j = R

}⏐⏐⏐.
Figure 9: AdaptiveThresholdsT

Input: Dataset x ∈ [0, 1]n.
Parameter: α ∈ (0, 1).

Output: (Random) partition (x(1), . . . , x(M)) ∈ ([0, 1]∗)M of x, where 2/α ≤M < 4/α.

Let M = 2⌈log2(2/α)⌉.
Sort x in nondecreasing order x1 ≤ x2 ≤ · · · ≤ xn.
For each 0 ≤ ℓ ≤ log2M and s ∈ {0, 1}ℓ, sample νs ∼ Lap((log2M)/ε) independently.

For each 1 ≤ m ≤M − 1, let ηm =
∑

s∈P (m) νs, where P (m) is the set of all prefixes

of the binary representation of m.
Let t0 = 1, t1 =

⌊
n
M + η1

⌋
, · · · , tm =

⌊
m·n
M + ηm

⌋
, · · · , tM = n+ 1.

Let x(m) = (xtm−1 , . . . , xtm−1) for all m ∈ [M ].

Figure 10: Partition

The proof of Theorem 5.5 relies on the following two claims about the Partition subroutine,
both of which are implicit in the work of Bun et al. [2015, Appendix C] and are based on
ideas of Dwork et al. [2010a]. Claim 5.12 shows that for neighboring databases x ∼ x′, the
behaviors of the Partition subroutine on x and x′ are “similar” the following sense: for any
fixed partition of x, one is roughly as likely (over the randomness of the partition algorithm)
to obtain a partition of x′ that differs on at most two chunks, where the different chunks
themselves differ only up to the addition or removal of a single item. This will allow us to
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show that running M parallel copies of the AIP algorithm on the chunks remains roughly
(ε, δ)-differentially private. Claim 5.13 shows that, with high probability, each chunk is
simultaneously large enough for the corresponding AIP algorithm to succeed, but also small
enough so that treating all of the elements in a chunk as if they were the same element still
permits us to get α-accurate answers to arbitrary threshold queries.

Claim 5.12. Fix neighboring datasets x, x′ ∈ [0, 1]n. Then there exists a (measurable)
bijection φ : R2M → R2M with the following properties:

(1) Let z ∈ R2M be any noise vector. Let x(1), . . . , x(M) denote the partition of x obtained

with random noise set to ν = z. Similarly, let x′(1), . . . , x′(M) denote the partition of
x′ obtained under noise ν = φ(z). Then there exist indices i1, i2 such that: 1) For

i ∈ {i1, i2}, the chunks x(i) and x′(i) differ up to the addition or removal of at most one

item and 2) For every index i /∈ {i1, i2}, we have x(i) = x′(i).
(2) For every noise vector z ∈ R2M , we have P [ν = φ(z)] ≤ e2εP [ν = z].

Claim 5.13. With probability at least 1− β/2, we have that |tm −m · n/M | ≤ αn/24 for
all m ∈ [M ].

Privacy of Algorithm 9. We first show how to use Claim 5.12 to show that Algorithm 9 is
differentially private. Fix an adversary A, and let B = AdaptiveA⇋AdaptiveThresholdsT

simulate
the interaction between A and Algorithm 9. Let S be a subset of the range of B. Then, by
Property (1) of Claim 5.12 and group privacy, we have that for any z ∈ R2M :

P [B(x) ∈ S|ν = z] ≤ e2εP
[
B(x′) ∈ S|ν = φ(z)

]
+ (1 + eε)δ.

By Property (2) of Claim 5.12, we also have Pr[ν = z] ≤ e2ε Pr[ν = φ(z)] for every z ∈ R2M .
Therefore,

P [B(x) ∈ S] =

∫
R2M

P [B(x) ∈ S|ν = z] · P [ν = z] dz

≤
∫
R2M

(
e2εP

[
B(x′) ∈ S|ν = φ(z)

]
+ (1 + eε)δ

)
· P [ν = z] dz

≤ (1 + eε)δ +

∫
R2M

e2εP
[
B(x′) ∈ S|ν = φ(z)

]
· e2εP [ν = φ(z)] dz

≤ (1 + eε)δ + e4εP
[
B(x′) ∈ S

]
.

Hence, B is (e4ε, (1 + eε)δ)-differentially private, as claimed.

Accuracy of Algorithm 9. We now show how to use Claim 5.13 to show that Algorithm 9
produces (α, β)-accurate answers. By a union bound, the following three events occur with
probability at least 1− β:

(1) For all m ∈ [M ],
⏐⏐m
M −

tm
n

⏐⏐ ≤ α
6 .

(2) Every chunk x(m) has size |x(m)| = tm − tm−1 ∈ [αn/6, 2αn/3].
(3) Every instance of T succeeds.

Now we need to show that if these three events occur, we can produce α-accurate answers to
every threshold query cy1 , . . . , cyk . Write the sorted input database as x1 ≤ x2 ≤ · · · ≤ xn.

We consider two cases for the jth query: As our first case, suppose xn ≤ yj . Then for every
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chunk x(m), we have max{x(m)} ≤ yj . Then the success condition of T (m) guarantees that

a
(m)
j = R. Thus, the answer aj = 1 is (exactly) accurate for the query cj .

As our second case, let i be the smallest index for which xi > yj , and suppose the

item xi is in some chunk x(mi). Note that this means that the true answer to the query
cyj is (i − 1)/n and that tmi−1 ≤ i ≤ tmi − 1. Then again, for every m < mi we have

max{x(m)} ≤ yj , so every such T (m) instance yields a
(m)
j = R. Thus,

aj =
1

M
·
⏐⏐⏐{m ∈ [M ] : a

(m)
j = R

}⏐⏐⏐ ≥ mi − 1

M
≥ tmi

n
− α

6
− α

2
≥ (i− 1)

n
− α,

since M ≥ 2/α.

On the other hand, for every m > mi, we have min{x(m)} > yj , so every such T (m)

instance instead yields a
(m)
j = L.

aj ≤
mi

M
≤ tmi

n
+

α

6
≤ tmi−1 + 2αn/3

n
+

α

6
≤ i

n
+

2α

3
+

α

6
≤ i− 1

n
+ α,

since n ≥ 6/α.

Acknowledgements. We thank Salil Vadhan for many helpful discussions. We also thank
the anonymous reviewers for suggestions on the presentation of this work.

References

R. Bassily, K. Nissim, A. D. Smith, T. Steinke, U. Stemmer, and J. Ullman. Algorithmic
stability for adaptive data analysis. In Proceedings of the Forty-Eighth Annual ACM on
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 2016.

A. Beimel, K. Nissim, and U. Stemmer. Private learning and sanitization: Pure vs. ap-
proximate differential privacy. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques - 16th International Workshop, APPROX 2013,
and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23,
2013. Proceedings, pages 363–378, 2013.

A. Blum, K. Ligett, and A. Roth. A learning theory approach to noninteractive database
privacy. J. ACM, 60(2):12, 2013. doi: 10.1145/2450142.2450148. URL http://doi.acm.

org/10.1145/2450142.2450148.
D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. IEEE Trans.
Information Theory, 44(5):1897–1905, 1998.

M. Bun, J. Ullman, and S. P. Vadhan. Fingerprinting codes and the price of approximate
differential privacy. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 1–10, 2014.

M. Bun, K. Nissim, U. Stemmer, and S. P. Vadhan. Differentially private release and learning
of threshold functions. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 634–649, 2015.

T. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM Trans.
Inf. Syst. Secur., 14(3):26, 2011.

http://doi.acm.org/10.1145/2450142.2450148
http://doi.acm.org/10.1145/2450142.2450148


32 MARK BUN, THOMAS STEINKE, AND JONATHAN ULLMAN

I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings
of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 9-12, 2003, San Diego, CA, USA, pages 202–210, 2003.

C. Dwork and J. Lei. Differential privacy and robust statistics. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 371–380, 2009.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3–4):211–407, Aug. 2014. ISSN 1551-305X. doi:
10.1561/0400000042. URL http://dx.doi.org/10.1561/0400000042.

C. Dwork and S. Yekhanin. New efficient attacks on statistical disclosure control mecha-
nisms. In Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 469–480,
2008.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography, Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, pages 265–284, 2006.

C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P. Vadhan. On the complexity of
differentially private data release: efficient algorithms and hardness results. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 381–390, 2009.

C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual
observation. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 715–724, 2010a.

C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and differential privacy. In IEEE
Symposium on Foundations of Computer Science (FOCS ’10), pages 51–60. IEEE, 23–26
October 2010b.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. L. Roth. Preserving
statistical validity in adaptive data analysis. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 117–126, 2015a.

C. Dwork, M. Naor, O. Reingold, and G. N. Rothblum. Pure differential privacy for rectangle
queries via private partitions. In Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and Information
Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
pages 735–751, 2015b.

C. Dwork, A. D. Smith, T. Steinke, J. Ullman, and S. P. Vadhan. Robust traceability
from trace amounts. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 650–669, 2015c.
doi: 10.1109/FOCS.2015.46. URL http://dx.doi.org/10.1109/FOCS.2015.46.

M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving
data analysis. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 61–70, 2010.

M. Hardt and K. Talwar. On the geometry of differential privacy. In Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 705–714, 2010.

M. Hardt and J. Ullman. Preventing false discovery in interactive data analysis is hard.
In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,

http://dx.doi.org/10.1561/0400000042
http://dx.doi.org/10.1109/FOCS.2015.46


MAKE UP YOUR MIND: THE PRICE OF ONLINE QUERIES IN DIFFERENTIAL PRIVACY 33

Philadelphia, PA, USA, October 18-21, 2014, pages 454–463, 2014.
A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC,
pages 765–774. ACM, June 5–8 2010.

T. Steinke and J. Ullman. Interactive fingerprinting codes and the hardness of preventing
false discovery. In Proceedings of The 28th Conference on Learning Theory, COLT 2015,
Paris, France, July 3-6, 2015, pages 1588–1628, 2015a.

T. Steinke and J. Ullman. Between pure and approximate differential privacy. CoRR,
abs/1501.06095, 2015b. URL http://arxiv.org/abs/1501.06095.

G. Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2), 2008.

J. Ullman. Answering n2+o(1) counting queries with differential privacy is hard. In Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013,
pages 361–370, 2013.

S. L. Warner. Randomized response: A survey technique for eliminating evasive answer bias.
Journal of the American Statistical Association, 60(309):63–69, 1965.

Appendix A. The Fingerprinting Lemma

In this section we prove the fingerprinting lemma (Lemma 3.1). The proof is broken into
several lemmata.

Lemma A.1. Let f : {±1}n → R. Define g : [±1]→ R by

g(p) = E
x1···n∼p

[f(x)] .

Then

E
x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p)

⎤⎦ = g′(p) · (1− p2).

A rescaling of this lemma appears in Steinke and Ullman [2015a]. The following proof is
taken from Dwork et al. [2015c].

Proof. We begin by establishing several identities.
Since x2 = 1 for x ∈ {±1}, we have the identity

d

dp

1 + xp

2
=

x

2
=

1 + xp

2

x− p

1− p2

for all x ∈ {±1} and p ∈ (−1, 1). By the product rule, we have

d

dp

∏
i∈[n]

1 + xip

2
=
∑
i∈[n]

(
d

dp

1 + xip

2

) ∏
k∈[n]\{i}

1 + xkp

2
=
∑
i∈[n]

xi − p

1− p2

∏
k∈[n]

1 + xkp

2

for all x ∈ {±1}n and p ∈ (−1, 1).
Sampling x ∼ p samples each x ∈ {±1} with probability 1+xp

2 . Thus sampling x1···n ∼ p,

samples each x ∈ {±1}n with probability
∏

i∈[n]
1+xip

2 .

Now we can write

g(p) = E
x1···n∼p

[f(x)] =
∑

x∈{±1}n
f(x)

∏
i∈[n]

1 + xip

2
.

http://arxiv.org/abs/1501.06095
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Using the above identities gives

g′(p) =
∑

x∈{±1}n
f(x)

d

dp

∏
i∈[n]

1 + xip

2

=
∑

x∈{±1}n
f(x)

∑
i∈[n]

xi − p

1− p2

∏
k∈[n]

1 + xkp

2

= E
x1···n∼p

⎡⎣f(x)∑
i∈[n]

xi − p

1− p2

⎤⎦

Lemma A.2. Let g : [±1]→ R be a polynomial. Then

E
p∈[±1]

[
g′(p) · (1− p2)

]
= 2 E

p∈[±1]
[g(p) · p] .

Proof. Let u(p) = 1− p2. By integration by parts and the fundamental theorem of calculus,

E
p∈[±1]

[
g′(p) · (1− p2)

]
=
1

2

∫ 1

−1
g′(p)(1− p2)dp

=
1

2

∫ 1

−1
g′(p)u(p)dp

=
1

2

∫ 1

−1

(
d

dp
g(p)u(p)

)
− g(p)u′(p)dp

=
1

2
(g(1)u(1)− g(−1)u(−1))− 1

2

∫ 1

−1
g(p)(−2p)dp

=0 +

∫ 1

−1
g(p)pdp

=2 E
p∈[±1]

[g(p) · p] .

Proposition A.3. Let f : {±1}n → R. Then

E
p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p) + (f(x)− x)2

⎤⎦ ≥ 1

3
.

Proof. Define g : [±1]→ R by
g(p) = E

x1···n∼p
[f(x)] .

By Lemmas A.1 and A.2,

E
p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p)

⎤⎦ = E
p∈[±1]

[
g′(p)(1− p2)

]
= E

p∈[±1]
[2g(p)p] .
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Moreover, by Jensen’s inequality,

E
p∈[±1],x1···n∼p

[
(f(x)− x)2

]
≥ E

p∈[±1]

[(
E

x1···n∼p
[f(x)− x]

)2
]

= E
p∈[±1]

[
(g(p)− p)2

]
= E

p∈[±1]

[
g(p)2 − 2g(p)p+ p2

]
= E

p∈[±1]

[
g(p)2

]
− E

p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p)

⎤⎦+
1

3
.

Rearranging yields the result:

E
p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p) + (f(x)− x)2

⎤⎦ ≥ E
p∈[±1]

[
g(p)2

]
+

1

3
≥ 1

3
.

We also have an alternative version of Proposition A.3:

Proposition A.4. Let f : {±1}n → R. Then

E
p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p) + (f(x)− p)2

⎤⎦ ≥ 1

3
.

Proof. Define g : [±1]→ R by
g(p) = E

x1···n∼p
[f(x)] .

By Lemmas A.1 and A.2,

E
p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p)

⎤⎦ = E
p∈[±1]

[
g′(p)(1− p2)

]
= E

p∈[±1]
[2g(p)p] .

Moreover,

E
p∈[±1],x1···n∼p

[
(f(x)− p)2

]
= E

p∈[±1],x1···n∼p

[
f(x)2 − 2g(p)p+ p2

]
≥ 0− E

p∈[±1]
[2g(p)p] +

1

3
.

The result follows by combining the above equality and inequality.

Finally we restate and prove Lemma 3.1

Lemma A.5 (Fingerprinting Lemma). Let f : {±1}n → [±1]. Then

E
p∈[±1],x1···n∼p

⎡⎣f(x) ·∑
i∈[n]

(xi − p) + 2 |f(x)− x|

⎤⎦ ≥ 1

3
.

Proof. Since |f(x)− x| ≤ 2, we have |f(x)− x|2 ≤ 2 |f(x)− x|. The result thus follows from
Proposition A.3.
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