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ABSTRACT. Linear regression is one of the most prevalent techniques in machine learning; however,
it is also common to use linear regression for its explanatory capabilities rather than label prediction.
Ordinary Least Squares (OLS) is often used in statistics to establish a correlation between an attribute
(e.g. gender) and a label (e.g. income) in the presence of other (potentially correlated) features. OLS
assumes a particular model that randomly generates the data, and derives t-values — representing the
likelihood of each real value to be the true correlation. Using t-values, OLS can release a confidence
interval, which is an interval on the reals that is likely to contain the true correlation; and when this
interval does not intersect the origin, we can reject the null hypothesis as it is likely that the true
correlation is non-zero. Our work aims at achieving similar guarantees on data under differentially
private estimators. First, we show that for well-spread data, the Gaussian Johnson-Lindenstrauss
Transform (JLT) gives a very good approximation of t-values; secondly, when JLT approximates Ridge
regression (linear regression with `2-regularization) we derive, under certain conditions, confidence
intervals using the projected data; lastly, we derive, under different conditions, confidence intervals for
the “Analyze Gauss” algorithm [14].

Keywords: Differential Privacy, Ordinary Least Squares, t-Value, p-Value

1. INTRODUCTION

Since the early days of differential privacy, its main goal was to design privacy preserving versions of
existing techniques for data analysis. It is therefore no surprise that several of the first differentially
private algorithms were machine learning algorithms, with a special emphasis on the ubiquitous
problem of linear regression [21, 8, 22, 4]. However, all existing body of work on differentially
private linear regression measures utility by bounding the distance between the linear regressor
found by the standard non-private algorithm and the regressor found by the privacy-preserving
algorithm. This is motivated from a machine-learning perspective, since bounds on the difference
in the estimators translate to error bounds on prediction (or on the loss function). Such bounds
are (highly) interesting and non-trivial, yet they are of little use in situations where one uses linear
regression to establish correlations rather than predict labels.

In the statistics literature, Ordinary Least Squares (OLS) is a technique that uses linear regression
in order to infer the correlation between a variable and an outcome, especially in the presence of
other factors. And so, in this paper, we draw a distinction between “linear regression,” by which we
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refer to the machine learning technique of finding a specific estimator for a specific loss function;
and “Ordinary Least Squares,” by which we refer to the statistical inference done assuming a specific
model for generating the data and that uses linear regression. Many argue that OLS is the most
prevalent technique in social sciences [2]. Such works make no claim as to the labels of a new
unlabeled batch of samples. Rather they aim to establish the existence of a strong correlation between
the label and some feature. Needless to say, in such works, the privacy of individuals’ data is a
concern.

In order to determine that a certain variable xj is positively (resp. negatively) correlated with an
outcome y, OLS assumes a model where the outcome y is a noisy version of a linear mapping of
all variables: y = βββ · xxx+ e (with e denoting random Gaussian noise) for some predetermined and
unknown βββ. Then, given many samples (xxxi, yi), OLS establishes two things: (i) when fitting a linear
function to best predict y from xxx over the sample (via computing β̂ββ =

(∑
ixxxixxx

T
i

)−1
(
∑

i yixxxi))
the coefficient β̂j is positive (resp. negative); and (ii) inferring, based on β̂j , that the true βj is
likely to reside in R>0 (resp. R<0). In fact, the crux of OLS is by describing βj using a probability
distribution over the reals — associating each x ∈ R with a likelihood that indeed βj = x — known
as t-values. These values take into account both the variance in the data as well as the variance of the
noise e.1 Based on the t-values one can define the α-confidence interval — an interval I centered at
β̂j such that the likelihood of βj ∈ I is 1 − α. Of particular importance is the notion of rejecting
the null-hypothesis, where the interval I doesn’t contain the origin, allowing us to say with high
confidence that βj is positive (resp. negative). Further details regarding OLS appear in Section 2.

In this work we give the first analysis of statistical inference for OLS using differentially private
estimators. We emphasize that the novelty of our work does not lie in the differentially-private
algorithms, which are, as we discuss next, based on the Johnson-Lindenstrauss Transform (JLT)
and on additive Gaussian noise and are already known to be differentially private [5, 14]. Instead,
the novelty of our work lies in the analyses of the algorithms and in proving that the output of the
algorithms is useful for statistical inference.

1.1. The Algorithms. Our first algorithm (Algorithm 1) is an adaptation of Gaussian JLT. Proving
that this adaptation remains (ε, δ)-differentially private is straightforward (the proof appears in
Appendix A.1). As described, the algorithm takes as input a parameter r (in addition to the other
parameters of the problem) that indicates the number of rows in the JL-matrix. Later, we analyze
what should one set as the value of r. Our second algorithm is taken verbatim from the work of
Dwork et al [14]. We deliberately focus on algorithms that approximate the 2nd-moment matrix
of the data and then run hypothesis-testing by post-processing the output, for two reasons. First,
they enable sharing of data2 and running unboundedly many hypothesis-tests. Since, we do not
deal with OLS based on the private single-regression ERM algorithms [8, 4] as known techniques
for statistical inference in the OLS model require a more elaborated output than the output of such
techniques.3 This means that differentially-private OLS based on these ERM algorithms requires
us to devise new versions of these algorithms, making this a second step in this line of work...

1For example, imagine we run linear regression on a certain (X,yyy) which results in a vector β̂ββ with coordinates
β̂1 = β̂2 = 0.1. Yet while the column X1 contains many 1s and (−1)s, the column X2 is mostly populated with zeros. In
such a setting, OLS gives that it is likely to have β1 ≈ 0.1, whereas no such guarantees can be given for β2.

2Researcher A collects the data and uses the approximation of the 2nd-moment matrix to test some OLS hypothesis;
but once the approximation is published researcher B can use it to test for a completely different hypothesis.

3 Specifically, we refer to the Fisher-information matrix of the loss function, which the current algorithm do not
output. Input perturbation based algorithm output only the private regressor and it is unclear that publishing the perturbed
loss-function, or its Fischer Information Matrix, still preserves privacy.
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(After first understanding what we can do using existing algorithms.) We leave this approach —
as well as performing private hypothesis testing using a PTR-type algorithm [10] (output merely
reject / don’t-reject decision without justification), or releasing only relevant tests judging by their
p-values [13] — for future work.

1.2. Our Contribution and Organization. We analyze the performances of our algorithms on a
matrixA of the formA = [X;yyy], where each coordinate yi is generated according to the homoscedas-
tic model with Gaussian noise, which is a classical model in statistics. We assume the existence of a
vector βββ s.t. for every i we have yi = βββTxxxi + ei and ei is sampled i.i.d from N (0, σ2).4

We study the result of running Algorithm 1 on such data in the two cases: where A wasn’t
altered by the algorithm and when A was appended by the algorithm. In the former case, Algorithm 1
boils down to projecting the data under a Gaussian JLT. Sarlos [30] has already shown that the JLT is
useful for linear regression, yet his work bounds the `2-norm of the difference between the estimated
regression before and after the projection. Following Sarlos’ work, other works in statistics have
analyzed compressed linear regression [46, 26, 27]. However, none of these works give confidence
intervals based on the projected data, presumably for three reasons. Firstly, these works are motivated
by computational speedups, and so they use fast JLT as opposed to our analysis which leverages

4This model may seem objectionable. Assumptions like the noise independence, 0-meaned or sampled from a Gaussian
distribution have all been called into question in the past. Yet due to the prevalence of this model we see fit to initiate the
line of work on differentially private Least Squares with this Ordinary model.

Algorithm 1: Outputting a private Johnson-Lindenstrauss projection of a matrix.

Input: A matrix A ∈ Rn×d and a bound B > 0 on the `2-norm of any row in A.
Privacy parameters: ε, δ > 0.
Parameter r indicating the number of rows in the resulting matrix.

1 Set w s.t. w2 = 8B2

ε

(√
2r ln(8/δ) + 2 ln(8/δ)

)
.

2 Sample Z ∼ Lap(4B2/ε) and let σmin(A) denote the smallest singular value of A.

3 if σmin(A)2 > w2 + Z + 4B2 ln(1/δ)
ε then

4 Sample a (r × n)-matrix R whose entries are i.i.d samples from a normal Gaussian.
5 return RA and “matrix unaltered”.
6 else
7 Let A′ denote the result of appending A with the d× d-matrix wId×d.
8 Sample a (r × (n+ d))-matrix R whose entries are i.i.d samples from a normal Gaussian.
9 return RA′ and “matrix altered”.

Algorithm 2: The “Analyze Gauss” Algorithm of Dwork et al [14].

Input: A matrix A ∈ Rn×d and a bound B > 0 on the `2-norm of any row in A.
Privacy parameters: ε, δ > 0.

1 N ← symmetric (d× d)-matrix with upper triangle entries sampled i.i.d from

N
(

0, 2B4 ln(2/δ)
ε2

)
.

2 return ATA+N .



4 OR SHEFFET

on the fact that our JL-matrix is composed of i.i.d Gaussians. Secondly, the focus of these works
is not on OLS but rather on newer versions of linear regression, such as Lasso or when βββ lies in
some convex set. Lastly, it is evident that the smallest confidence interval is derived from the data
itself. Since these works do not consider differential privacy and assume the analyst has access to
the data itself, they do not give confidence intervals for the projected data. Our analysis is therefore
the first, to the best of our knowledge, to derive t-values — and therefore achieve all of the rich
expressivity one infers from t-values, such as confidence bounds and null-hypotheses rejection —
for OLS estimations without having access to X itself. We also show that, under certain conditions,
the sample complexity for correctly rejecting the null-hypothesis increases from a certain bound N0

(without privacy) to a bound of N0 + Õ(
√
N0 · κ( 1

nA
TA)/ε) with privacy (where κ(M) denotes the

condition number of the matrix M ). This appears in Section 3.
In Section 4 we analyze the case in which Algorithm 1 does append the data and the JLT

is applied to A′. In this case, solving the linear regression problem on the projected A′ ap-
proximates the solution for Ridge Regression [39, 17]. In Ridge Regression we aim to solve
minzzz

(∑
i(yi − zzzTxxxi)2 + w2‖zzz‖2

)
, which means we penalize vectors whose `2-norm is large. In

general, it is not known how to derive t-values from Ridge regression, and the literature on deriving
confidence intervals solely from Ridge regression is virtually non-existent. Indeed, prior to our work
there was no need for such calculations, as access to the data was (in general) freely given, and so
deriving confidence intervals could be done by appealing back to OLS. We too are unable to derive
approximated t-values in the general case, but under additional assumptions about the data — which
admittedly depend in part on ‖βββ‖ and so cannot be verified solely from the data — we show that
solving the linear regression problem on RA′ allows us to give confidence intervals for βj , thus
correctly determining the correlation’s sign.

In Section 5 we discuss the “Analyze Gauss” algorithm [14] that outputs a noisy version of
a covariance of a given matrix using additive noise rather than multiplicative noise. Empirical
work [45] shows that Analyze Gauss’s output might be non-PSD if the input has small singular
values, and this results in truly bad regressors. Nonetheless, under additional conditions (that imply
that the output is PSD), we derive confidence bounds for Dwork et al’s “Analyze Gauss” algorithm.
Finally, in Section 6 we experiment with the heuristic of computing the t-values directly from the
outputs of Algorithms 1 and 2. We show that Algorithm 1 is more “conservative” than Algorithm 2
in the following sense. Out of the two algorithms Algorithm 1 tends to not reject the null-hypothesis
until there is a very strong indication of rejection, which in turns requires a number of samples which
exceeds (by a multiplicative factor of at least 5) the sample complexity required for Algorithm 2
to confidently reject the null-hypothesis. However, under more modest sample size or in a setting
where the null-hypothesis is true, Algorithm 2 may declare βj to have the opposite sign or reject the
null-hypothesis whereas Algorithm 1 decides not to reject.

Discussion, Related Work and Future Work. Some works have already looked at the intersection of
differentially privacy and statistics [10, 44, 34, 7, 9, 13, 19] (especially focusing on robust statistics
and rate of convergence). But only a handful of works studied the significance and power of
hypotheses testing under differential privacy, without arguing that the noise introduced by differential
privacy vanishes asymptotically [42, 40, 43, 15]. These works are experimentally promising, yet
they (i) focus on different statistical tests (mostly Goodness-of-Fit and Independence testing), (ii)
are only able to prove results for the case of simple hypothesis-testing (a single hypothesis) with
an efficient data-generation procedure through repeated simulations — a cumbersome and time
consuming approach. In contrast, we deal with a composite hypothesis (we simultaneously reject all
βββs with sign(βj) 6= sign(β̂j)) by altering the confidence interval (or the critical region).
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One potential reason for avoiding confidence-interval analysis for differentially private hypothe-
ses testing is that it does involve re-visiting existing results. Typically, in statistical inference the
sole source of randomness lies in the underlying model of data generation, whereas the estimators
themselves are a deterministic function of the dataset. In contrast, differentially private estimators
are inherently random in their computation. Statistical inference that considers both the randomness
in the data and the randomness in the computation is highly uncommon, and this work, to the best of
our knowledge, is the first to deal with randomness in OLS hypothesis testing. We therefore strive in
our analysis to separate the two sources of randomness — as in classic hypothesis testing, we use
α to denote the bound on any bad event that depends solely on the homoscedastic model, and use
ν to bound any bad event that depends on the randomized algorithm.5 (Thus, any result which is
originally of the form “α-reject the null-hypothesis” is now converted into a result “(α+ ν)-reject
the null hypothesis”.)

2. PRELIMINARIES AND OLS BACKGROUND

Notation. Throughout this paper, we use lower-case letters to denote scalars (e.g., yi or ei); boldboldbold
characters to denote vectors; and UPPER-case letters to denote matrices. The l-dimensional all zero
vector is denoted 000l, and the l×m-matrix of all zeros is denoted 0l×m. We use eee to denote the specific
vector yyy −Xβββ in our model; and though the reader may find it a bit confusing but hopefully clear
from the context — we also use eeej and eeek to denote elements of the natural basis (unit length vector
in the direction of coordinate j or k). We use ε, δ to denote the privacy parameters of Algorithms 1
and 2, and use α and ν to denote confidence parameters (referring to bad events that hold w.p. ≤ α
and ≤ ν resp.) based on the homoscedastic model or the randomized algorithm resp. We also
stick to the notation from Algorithm 1 and use w = w(ε, δ) to denote the positive scalar for which
w2 = 8B2

ε

(√
2r ln(8/δ) + ln(8/δ)

)
throughout this paper. We use standard notation for SVD

composition of a matrix (M = UΣV T), its singular values and its Moore-Penrose inverse (M+).

The Gaussian distribution. A univariate Gaussian N (µ, σ2) denotes the Gaussian distribution whose
mean is µ and variance σ2. Standard concentration bounds on Gaussians give that for any ν ∈ (0, 1

e )

we have that Pr[x > µ+ 2σ
√

ln(2/ν)] < ν. A multivariate Gaussian N (µµµ,Σ) for some positive
semi-definite Σ denotes the multivariate Gaussian distribution where the mean of the j-th coordinate
is the µj and the covariance between coordinates j and k is Σj,k. The PDF of such Gaussian is defined
only on the subspace colspan(Σ). A matrix Gaussian distribution, denoted N (Ma×b, Ia×a, V ) has
mean M , independence among its rows and variance V for each of its columns. We also require
the following property of Gaussian random variables: Let X and Y be two random Gaussians s.t.
X ∼ N (0, σ2) and Y ∼ N (0, λ2) where 1 ≤ σ2

λ2
≤ c2 for some c, then for any S ⊂ R we have

1
cPrx←Y [x ∈ S] ≤ Prx←X [x ∈ S] ≤ cPrx←Y [x ∈ S/c] (see Proposition A.2).

5Or any randomness in generating the feature matrix X which standard OLS theory assumes to be fixed, see Theo-
rems 2.2 and 3.3.
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Additional Distributions. We denote by Lap(σ) the Laplace distribution whose mean is 0 and variance
is 2σ2. The χ2

k-distribution, where k is referred to as the degrees of freedom of the distribution, is the
distribution over the `2-norm squared of the sum of k independent normal Gaussians. That is, given
i.i.d X1, . . . , Xk ∼ N (0, 1) it holds that ζζζ def

= (X1, X2, . . . , Xk) ∼ N (000k, Ik×k), and ‖ζζζ‖2 ∼ χ2
k.

Existing tail bounds on the χ2
k distribution [23] give that

Pr
[
‖ζζζ‖2 ∈ (

√
k ±

√
2 ln(2/ν))2

]
≥ 1− ν.

The Tk-distribution, where k is referred to as the degrees of freedom of the distribution, denotes
the distribution over the reals created by independently sampling Z ∼ N (0, 1) and ‖ζ‖2 ∼ χ2

k, and

taking the quantity Z√
‖ζ‖2/k

. Its PDF is given by PDFTk(x) ∝
(

1 + x2

k

)−k+1
2 . It is a known fact

that as k increases, Tk becomes closer and closer to a normal Gaussian. The T -distribution is often
used to determine suitable bounds on the rate of convergence, as we illustrate in Section A.3. As the
T -distribution is heavy-tailed, existing tail bounds on the T -distribution (which are of the form: if
τν = C

√
k((1/ν)2/k − 1) for some constant C then

∫∞
τν

PDFTk(x)dx < ν) are often cumbersome
to work with. Therefore, in many cases in practice, it common to assume ν = Θ(1) (most commonly,
ν = 0.05) and use existing tail-bounds on normal Gaussians.

Differential Privacy. In this work, we deal with input in the form of a n× d-matrix with each row
bounded by a `2-norm of B. Two inputs A and A′ are called neighbors if they differ on a single row.

Definition 2.1 [11]. An algorithm ALG which maps (n× d)-matrices into some rangeR is (ε, δ)-
differential privacy it holds that

Pr[ALG(A) ∈ S] ≤ eεPr[ALG(A′) ∈ S] + δ

for all neighboring inputs A and A′ and all subsets S ⊂ R.

It is known [12] that if ALG outputs a vector in Rd such that for any A and A′ it holds that
‖ALG(A)− ALG(A′)‖1 ≤ B, then adding Laplace noise Lap(1/ε) to each coordinate of the output
of ALG(A) satisfies ε-differential privacy. Similarly, [12] showed that if for any neighboring A and
A′ it holds that ‖ALG(A) − ALG(A′)‖22 ≤ ∆2 then adding Gaussian noise N (0,∆2 · 2 ln(2/δ)

ε2
) to

each coordinate of the output of ALG(A) satisfies (ε, δ)-differential privacy.
Another standard result [11] gives that the composition of the output of a (ε1, δ1)-differentially

private algorithm with the output of a (ε2, δ2)-differentially private algorithm results in a (ε1 +ε2, δ1 +
δ2)-differentially private algorithm.

Background on OLS. For the unfamiliar reader, we give here a very brief overview of the main points
in OLS. Further details, explanations and proofs appear in Section A.3.

We are given n observations {(xxxi, yi)}ni=1 where ∀i,xxxi ∈ Rp and yi ∈ R. We assume the
existence of βββ ∈ Rp s.t. the label yi was derived by yi = βββTxxxi + ei where ei ∼ N (0, σ2)
independently (also known as the homoscedastic Gaussian model). We use the matrix notation where
X denotes the (n× p)- feature matrix and yyy denotes the labels. We assume X has full rank.

The parameters of the model are therefore βββ and σ2, which we set to discover. To that end, we
minimize minzzz ‖yyy −Xzzz‖2 and have

β̂ββ = (XTX)−1XTyyy = (XTX)−1XT(Xβββ + eee) = βββ +X+eee (2.1)

ζζζ = yyy −Xβ̂ββ = (Xβββ + eee)−X(βββ +X+eee) = (I −XX+)eee (2.2)
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And then for any coordinate j, the t-value, which is the quantity

tβ̂j (βj)
def
=

β̂j − βj√
(XTX)−1

j,j ·
‖ζζζ‖√
n−p

=
β̂j − βj

σ
√

(XTX)−1
j,j

/ ‖ζζζ‖
σ
√
n− p

,

is distributed according to Tn−p-distribution. I.e.,

Pr

β̂ββ and ζζζ satisfying
β̂j − βj√

(XTX)−1
j,j ·

‖ζζζ‖√
n−p

∈ S

 =

∫
S
PDFTn−p(x)dx

for any measurable S ⊂ R. Thus t(βj) describes the likelihood of any βj — for any z ∈ R we can
now give an estimation of how likely it is to have βj = z (which is PDFTn−p(t(z))), and this is
known as t-test for the value z. In particular, given 0 < α < 1, we denote cα as the number for which
the interval (−cα, cα) contains a probability mass of 1− α from the Tn−p-distribution. And so we
derive a corresponding confidence interval Iα centered at β̂j where βj ∈ Iα with confidence of level
of 1− α. Using tail bounds on the Tn−p-distribution [35], we have that the length of the interval is

|Iα| = O

(√
(XTX)−1

j,j ·
‖ζζζ‖2
n−p ·

√
(n− p)(( 1

α)
2

n−p−1 − 1)

)
. Furthermore, since it is known that

as the number of degrees of freedom of a T -distribution tends to infinity then the T -distribution
becomes close to a normal Gaussian, it is common to use the PDF of a normal Gaussian instead. I.e.,

denote τα as the number of which
∫∞
τα

PDFN (0,1)(x)dx = α
2 , then Iα = βj ± τα

√
(XTX)−1

j,j ·
‖ζζζ‖2
n−p .

Of particular importance is the quantity t0
def
= t(0) =

β̂j
√
n−p

‖ζζζ‖
√

(XTX)−1
j,j

,since if there is no correla-

tion between xj and y then the likelihood of seeing β̂j depends on the ratio of its magnitude to its

standard deviation. As mentioned earlier, since Tk
k→∞→ N (0, 1), then rather than viewing this t0 as

sampled from a Tn−p-distribution, it is common to think of t0 as a sample from a normal Gaussian
N (0, 1). This allows us to associate t0 with a p-value, estimating the event “βj and β̂j have different
signs.” Formally, we define p0 =

∫∞
|t0|

1√
2π
e−x

2/2dx. It is common to reject the null hypothesis when

p0 is sufficiently small (typically, below 0.05).6 Specifically, given α ∈ (0, 1/2), we α-reject the null
hypothesis if p0 < α. Let τα be the number s.t. Φ(τα) =

∫∞
τα

1√
2π
e−x

2/2dx = α. This means we
α-reject the null hypothesis when |t0| > τα. We now lower bound the number of i.i.d sample points
needed in order to α-reject the null hypothesis. This bound is our basis for comparison between
standard OLS and the differentially private version.7

Theorem 2.2 . Fix any positive definite matrix Σ ∈ Rp×p and any ν ∈ (0, 1
2). Fix parameters

βββ ∈ Rp and σ2 and a coordinate j s.t. βj 6= 0. Let X be a matrix whose n rows are i.i.d
samples from N (000,Σ), and yyy be a vector where yi − (Xβββ)i is sampled i.i.d from N (0, σ2). Fix
α ∈ (0, 1). Then w.p. ≥ 1 − α − ν we have that OLS’s (1 − α)-confidence interval has length
O(cα

√
σ2/(nσmin(Σ))) provided n ≥ C1(p + ln(1/ν)) for some sufficiently large constant C1.

6Indeed, it is more accurate to associate with t0 the value
∫∞
|t0|

PDFTn−p(x)dx and check that this value is < α.
However, as most uses take α to be a constant (often α = 0.05), asymptotically the threshold we get for rejecting the null
hypothesis are the same.

7Theorem 2.2 also illustrates how we “separate” the two sources of privacy. In this case, ν bounds the probability
of bad events that depend to sampling the rows of X , and α bounds the probability of a bad event that depends on the
sampling of the yyy coordinates.
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Furthermore, there exists a constant C2 such that w.p. ≥ 1− α− ν OLS (correctly) rejects the null

hypothesis provided n ≥ max

{
C1(p+ ln(1/ν)), p+ C2

σ2

β2
j
· c

2
α+τ2α

σmin(Σ)

}
, where cα is the number for

which
∫ cα
−cα PDFTn−p(x)dx = 1− α.

Notation Summary. We summarize most of the notation here.
Input parameters: Throughout this paper the input matrix is denoted by A ∈ Rn×d, where A =

[X;yyy] with X ∈ Rn×p (hence p = d− 1), corresponding to the p-dimensional features and
the 1-dimensional label. B is a bound on the `2-norm of each row of A, ε, δ are the privacy
parameters. α and ν bound bad events that depend on the draw of the n input points and on
the coin-tosses of the algorithms resp. On occasion we consider the case where the input is
drawn from a multivariate Gaussian, so each row of X is sampled from N (000,Σ) and as a
result each row of A is sampled from N (000,ΣA).

OLS parameters: βββ denotes the population regressor and σ2 denotes the variance in the OLS model,
where the empirical regressor is denoted by β̂ and ζζζ denotes the loss-vector as specified
by Equations (2.1) and (2.2) resp. The 1 − α-confidence interval induced by the Tn−p-
distribution is denoted at (−cα, cα).

JL-approximation of standard regression paramters: In Section 3 we use R to denote the random
(r × n)-JL-projection matrix, and w to denote the parameter set in Algorithm 2. β̃ββ, ζ̃ζζ and σ̃2

as the resulting private regressors, vector of losses and estimation of the variance presented
in Equations (3.1) and (3.2).

JL-approximation of Ridge regression: In Section 4 A′ = [X ′;yyy′] denotes the input appended with
the matrix wI , and correspondingly R′ denotes the random (r × (n+ d))-matrix resulting
in M ′ = R′X ′. βββR denotes the non-private Ridge-regressor, and the private regressor and
private loss-vector are denoted by βββ′ and ζζζ ′ resp.

Analyze Gauss: In Section 5 the output of Algorithm 2 is denoted as

 X̃TX X̃Tyyy

ỹyyTX ỹyyTyyy

 and

the private regressor and loss-vector are denote by β̃ββ and ζ̃ζζ.

3. ORDINARY LEAST SQUARES OVER PROJECTED DATA

In this section we deal with the output of Algorithm 1 in the special case where Algorithm 1 outputs
matrix unaltered and so we work with RA.

To clarify, the setting is as follows. We denote A = [X;yyy] the column-wise concatenation of
the (n× (d− 1))-matrix X with the n-length vector yyy. (Clearly, we can denote any column of A
as yyy and any subset of the remaining columns as the matrix X .) We therefore denote the output
RA = [RX;Ryyy] and for simplicity we denote M = RX and p = d − 1. We denote the SVD
decomposition of X = UΣV T. So U is an orthonormal basis for the column-span of X and as X is
full-rank V is an orthonormal basis for Rp. Finally, in our work we examine the linear regression
problem derived from the projected data. We denote

β̃ββ = (XTRTRX)−1(RX)T(Ryyy) = βββ + (RX)+Reee (3.1)

σ̃2 =
r

r − p
‖ζ̃ζζ‖2 , with ζ̃ζζ = 1√

r
Ryyy − 1√

r
(RX)β̃ββ (3.2)
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We now give our main theorem, for estimating the t-values based on β̃ββ and σ̃.

Theorem 3.1 . Let X be a (n × p)-matrix, and parameters βββ ∈ Rp and σ2 are such that we
generate the vector yyy = Xβββ + eee with each coordinate of eee sampled independently from N (0, σ2).
Assume Algorithm 1 projects the matrix A = [X;yyy] without altering it. Fix ν ∈ (0, 1/2) and
r = p + Ω(ln(1/ν)). Fix coordinate j. Then we have that w.p. ≥ 1 − ν deriving β̃ββ and σ̃2 as in
Equations (3.1) and (3.2), the pivot quantity

t̃(βj) =
β̃j − βj

σ̃
√

(XTRTRX)−1
j,j

has a (symmetric) distribution D satisfying e−aPDFTr−p(x) ≤ PDFD(x) ≤ eaPDFTr−p(e−ax) for
any x ∈ R, where we denote a = r−p

n−p .

The implications of Theorem 3.1 are immediate: all estimations one can do based on the t-values
from the true data X,yyy, we can now do based on t̃ modulo an approximation factor of exp( r−pn−p). In

particular, Theorem 3.1 enables us to deduce a corresponding confidence interval based on β̃ββ.

Corollary 3.2 . In the same setting as in Theorem 3.1, w.p. ≥ 1− ν the following holds. Fix any
α ∈ (0, 1

2). Let c̃α be the number s.t. the interval (c̃α,∞) contains α
2 e
−a probability mass of the

Tr−p-distribution. Then

Pr[βj ∈
(
β̃j ± e

r−p
n−p c̃α · σ̃

√
(XTRTRX)−1

j,j

)
] ≥ 1− α.

Moreover, this interval is essentially optimal: denote d̃α s.t the interval (d̃α,∞) contains α
2 e

r−p
n−p

probability mass of the Tr−p-distribution. Then

Pr[βj ∈
(
β̃j ± d̃α · σ̃

√
(XTRTRX)−1

j,j

)
] ≤ 1− α.

We compare the confidence interval of Corollary 3.2 to the confidence interval of the standard

OLS model, whose length is cα
‖ζζζ‖√
n−p

√
(XTX)−1

j,j . As R is a JL-matrix, known results regarding

the JL transform (see Claim B.6) give that ‖ζ̃ζζ‖ = Θ (‖ζζζ‖), and that
√

(r − p)(XTRTRX)−1
j,j =

Θ
(√

(XTX)−1
j,j

)
. We therefore have that

σ̃
√

(XTRTRX)−1
j,j = ‖ζ̃ζζ‖√

r−p
√
r
√

(XTRTRX)−1
j,j = Θ

(√
r·(n−p)
(r−p)2 ·

‖ζζζ‖√
n−p

√
(XTX)−1

j,j

)
.

So for values of r for which r
r−p = Θ(1) we get that the confidence interval of Theorem 3.1 is

a factor of Θ
(
c̃α
cα

√
n−p
r−p

)
-larger than the standard OLS confidence interval. Observe that when

α = Θ(1), which is the common case, the dominating factor is
√

(n− p)/(r − p). This bound
intuitively makes sense: we have contracted n observations to r observations, hence our model is
based on confidence intervals derived from Tr−p rather than Tn−p. The proof of Theorem 3.1 appears
in Appendix B.
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Comparison with Existing Bounds. Sarlos’ work [30] utilizes the fact that when r, the numbers
of rows in R, is large enough, then 1√

r
R is a Johnson-Lindenstrauss matrix. Specifically, given

r and ν ∈ (0, 1) we denote η = Ω(

√
p ln(p) ln(1/ν)

r ), and so r = O(p ln(p) ln(1/ν)
η2

). Let us denote

β̃ββ = arg minzzz
1
r‖RXzzz −Ryyy‖

2. In this setting, Sarlos’ work [30] (Theorem 12(3)) guarantees that

w.p. ≥ 1− ν we have ‖β̂ββ − β̃ββ‖2 ≤ η‖ζζζ‖/σmin(X) = O
(√

p log(p) log(1/ν)
rσmin(XTX)

‖ζζζ‖
)

. Naı̈vely bounding

|β̂j − β̃j | ≤ ‖β̂ββ − β̃ββ‖ and using the confidence interval for β̂ββj − βββj from Section A.38 gives a

confidence interval of level 1 − (α + ν) centered at β̃j with length of O
(√

p ln(p) log(1/ν)
rσmin(XTX)

‖ζζζ‖
)

+

O

(√
(XTX)−1

j,j
log(1/α)
n−p ‖ζζζ‖

)
= O

(√
p ln(p) log(1/ν)+log(1/α)

rσmin(XTX)
‖ζζζ‖
)

. This implies that our confi-

dence interval has decreased its degrees of freedom from n−p to roughly r/p ln(p), and furthermore,
that it no longer depends on (XTX)−1

j,j but rather on 1/σmin(XTX). It is only due to the fact that we
rely on Gaussians and by mimicking carefully the original proof that we can deduce that the t̃-value
has (roughly) r−p degrees of freedom and depends solely on (XTX)−1

j,j . (In the worst case, we have
that (XTX)−1

j,j is proportional to σmin(XTX)−1, but it is not uncommon to have matrices where
the former is much larger than the latter.) As mentioned in the introduction, alternative techniques
([8, 4, 41]) for finding a DP estimator βββdp of the linear regression give a data-independent9 bound
of ‖βββdp − β̂ββ‖ = Õ(p/ε). Such bounds are harder to compare with the interval length given by
Corollary 3.2. Indeed, as we discuss in Section 3.1, enough samples from a multivariate Gaussian
whose covariance-matrix is well conditioned give a bound which is well below the worst-upper bound
ofO(p/ε). (Yet, it is possible that these techniques also do much better on such “well-behaved” data.)
What the works of Sarlos and alternative works regarding differentially private linear regression
do not take into account are questions such as generating a likelihood for βj nor do they discuss
rejecting the null hypothesis.

3.1. Rejecting the Null Hypothesis. Due to Theorem 3.1, we can mimic OLS’ technique for

rejecting the null hypothesis. I.e., we denote t̃0 =
β̃j

σ̃
√

(XTRTRX)−1
j,j

and reject the null-hypothesis if

indeed the associated p̃0, denoting p-value of the slightly truncated e−
r−p
n−p t̃0, is below α · e−

r−p
n−p .

Much like Theorem 2.2 we now establish a lower bound on n so that w.h.p we end up (correctly)
rejecting the null-hypothesis.

Theorem 3.3 . Fix a positive definite matrix Σ ∈ Rp×p. Fix parameters βββ ∈ Rp and σ2 > 0 and
a coordinate j s.t. βj 6= 0. Let X be a matrix whose n rows are sampled i.i.d from N (000p,Σ). Let
yyy be a vector s.t. yi − (Xβββ)i is sampled i.i.d from N (0, σ2). Fix ν ∈ (0, 1/2) and α ∈ (0, 1/2).
Then there exist constants C1, C2, C3 and C4 such that when we run Algorithm 1 over [X;yyy] with
parameter r w.p. ≥ 1− α− ν we (correctly) reject the null hypothesis using p̃0 (i.e., Algorithm 1

returns matrix unaltered and we can estimate t̃0 and verify that indeed p̃0 < α · e−
r−p
n−p ) provided

8Where we approximate cα, the tail bound of the Tn−p-distribution with the tail bound on a Gaussian, i.e., use the
approximation cα ≈ O(

√
ln(1/α)).

9In other words, independent of X,ζζζ.
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r ≥ p + max

{
C1

σ2(c̃2α+τ̃2α)
β2
j σmin(Σ)

, C2 ln(1/ν)

}
, and n ≥ max

{
r, C3

w2

min{σmin(Σ),σ2} , C4p ln(1/ν)
}

where c̃α, τ̃α defined s.t. PrX∼Tr−p [X > c̃α/e
r−p
n−p ] = PrX∼N (0,1)[X > τ̃α/e

r−p
n−p ] = α

2 e
− r−pn−p .

3.2. Setting the Value of r, Deriving a Bound on n. Comparing the lower bound on n given by

Theorem 3.3 to the bound of Theorem 2.2, we have that the data-dependent bound of Ω

(
(c̃α+τ̃α)2σ2

β2
j σmin(Σ)

)
should now hold for r rather than n. Yet, Theorem 3.3 also introduces an additional dependency
between n and r: we require n = Ω(w

2

σ2 + w2

σmin(Σ)) (since otherwise we do not have σmin(A)� w and

Algorithm 1 might alter A before projecting it) and by definition w2 is proportional to
√
r ln(1/δ)/ε.

This is precisely the focus of our discussion in this subsection. We would like to set r’s value as high
as possible — the larger r is, the more observations we have in RA and the better our confidence
bounds (that depend on Tr−p) are — while satisfying n = Ω(

√
r

ε·min{σ2,σmin(Σ)}).
Recall that if each sample point is drawn i.i.dxxx ∼ N (000p,Σ), then each sample (xxxi◦yi) is sampled

fromN (000p+1,ΣA) for ΣA defined in the proof of Theorem 3.3, that is: ΣA =

(
Σ Σβββ

βββTΣ σ2+βββTΣβββ

)
.

So, Theorem 3.3 gives the lower bound r − p = Ω

(
σ2(c̃α+τ̃α)2

β2
j σmin(Σ)

)
and a lower bounds on n: n ≥ r

and n = Ω

(
B2(
√
r ln(1/δ)+ln(1/δ))

εσmin(ΣA)

)
, which means r = min

{
n,

ε2σ2
min(ΣA)

B4 ln(1/δ)
(n− ln(1/δ))2

}
. This

discussion culminates in the following corollary.

Corollary 3.4 . Denoting L̃B2.2 = σ2(c̃α+τ̃α)2

β2
j σmin(Σ)

, we thus conclude that if

n− p ≥ Ω
(
L̃B2.2

)
, and n = Ω

(
B2 ln(1/δ)

εσmin(ΣA)
·
√
L̃B2.2

)
then the result of Theorem 3.3 holds by setting r = min

{
n,

ε2σ2
min(ΣA)

B4 ln(1/δ)
(n− ln(1/δ))2

}
.

It is interesting to note that when we know ΣA, we also have a bound on B. Recall ΣA, the
variance of the Gaussian (xxx ◦ y). Since every sample is an independent draw from N (000p+1,ΣA)
then we have an upper bound of B2 ≤ log(np)σmax(ΣA). So our lower bound on n (using κ(ΣA)
to denote the condition number of ΣA) is given by

n ≥ max

{
Ω (p+ ln(1/ν)) , Ω

(
L̃B2.2

)
, Ω̃

(
κ(ΣA) ln(1/δ)

ε
·
√
L̃B2.2

)}
.

Note that if we have no apriori bound on σmin(A), then, much like it is done in Algorithm 1, we
can privately estimate λ = σmin(ATA) + Z by adding Laplace noise Z ∼ Lap(4B2/ε), since
B2 is the global sensitivity of the least eigenvalue. We now have that w.p. ≥ 1 − ν it holds that
σmin(ATA) ≥ λ− 4B2 ln(1/ν)/ε

def
= λ. We then upper bound r using n and λ replacing σmin(ΣA).

Observe, overall this result is similar in nature to many other results in differentially private learning
[4] which are of the form “without privacy, in order to achieve a total loss of ≤ η we have a sample
complexity bound of some Nη; and with differential privacy the sample complexity increases to
Nη + Ω(

√
Nη/ε).” However, there’s a subtlety here worth noting. L̃B2.2 is proportional to 1

σmin(ΣA)

but not to κ(ΣA) = σmax(ΣA)
σmin(ΣA) . The additional dependence on σmax follows from the fact that in order
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to preserve differential privacy using additive noise, the noise have to be proportional to the upper
bound on the norm of each row.

4. PROJECTED RIDGE REGRESSION

We now turn to deal with the case that our matrix does not pass the if-condition of Algorithm 1. In

this case, the matrix is appended with a d× d-matrix which is wId×d. Denoting A′ =
[

A
w · Id×d

]
we have that the algorithm’s output is RA′. Similarly to before, we are going to denote d = p+1 and
decompose A = [X;yyy] with X ∈ Rn×p and yyy ∈ Rn, with the standard assumption of yyy = Xβββ + eee
and ei sampled i.i.d from N (0, σ2). We now need to introduce some additional notation. We denote
the appended matrix and vectors X ′ and yyy′ s.t. A′ = [X ′;yyy′]. This means:

X ′ =

 X
wIp×p

000Tp

 , and yyy′ =

 yyy
000p
w

 =

 XXXβββ + eee
000p
w

 = X ′βββ +

 eee
−wβββ
w

 def
= X ′βββ + eee′.

We respectively denote R = [R1;R2;R3] with R1 ∈ Rr×n, R2 ∈ Rr×p and R3 ∈ Rr×1 (so R3 is a
vector denoted as a matrix). Hence:

M ′ = RX ′ = R1X + wR2 , and Ryyy′ = RX ′βββ +Reee′ = R1yyy + wR3 = R1Xβββ +R1eee+ wR3.

And so, using the output RA′ of Algorithm 1, we solve the linear regression problem derived from
1√
r
RX ′ and 1√

r
Ryyy′. I.e., we set

βββ′ = (X ′TRTRX ′)−1(RX ′)T(Ryyy′) (4.1)
ζζζ ′ = 1√

r
(Ryyy′ −RX ′βββ′) (4.2)

Sarlos’ results [30] regarding the Johnson Lindenstrauss transform give that, when R has sufficiently
many rows, solving the latter optimization problem gives a good approximation for the solution of
the optimization problem

βββR = arg min
zzz
‖yyy′ −X ′zzz‖2 = arg min

zzz

(
‖yyy −Xzzz‖2 + w2‖zzz‖2

)
.

The latter problem is known as the Ridge Regression problem. Invented in the 60s [39, 17], Ridge
Regression is often motivated from the perspective of penalizing linear vectors whose coefficients
are too large. It is also often applied in the case where X doesn’t have full rank or is close to not
having full-rank: one can show that the minimizer βββR = (XTX + w2Ip×p)

−1XTyyy is the unique
solution of the Ridge Regression problem and that the RHS is always well-defined.

While the solution of the Ridge Regression problem might have smaller risk than the OLS
solution, it is not known how to derive t-values and/or reject the null hypothesis under Ridge
Regression (except for using X to manipulate βββR back into β̂ββ = (XTX)−1XTyyy and relying on
OLS). In fact, prior to our work there was no need for such analysis! For confidence intervals one
could just use the standard OLS, because access to X and yyy was given.

Therefore, much for the same reason, we are unable to derive t-values under projected Ridge
Regression.10 Clearly, there are situations where such confidence bounds simply cannot be de-
rived.(Consider for example the case where X = 0n×p and yyy is just i.i.d draws from N (0, σ2), so
obviously [X; y] gives no information about βββ.) Nonetheless, under additional assumptions about

10Note: The naı̈ve approach of using RX ′ and Ryyy′ to interpolate RX and Ryyy and then apply Theorem 3.1 using these
estimations of RX and Ryyy ignores the noise added from appending the matrix A into A′, and therefore leads to inaccurate
estimations of the t-values.
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the data, our work can give confidence intervals for βj , and in the case where the interval doesn’t
intersect the origin — assure us that sign(β′j) = sign(βj) w.h.p. This is detailed in Section 4.2.

To give an overview of our analysis, we first discuss a model where eee = yyy −Xβββ is fixed (i.e.
the data is fixed and the algorithm is the sole source of randomness), and prove that in this model β′β′β′

is as an approximation to β̂ββ.

Theorem 4.1 . Fix X ∈ Rn×p and yyy ∈ R. Define β̂ββ = X+yyy and ζ = (I−XX+)yyy. Let RX ′ = M ′

and Ryyy′ denote the result of applying Algorithm 1 to the matrix A = [X;yyy] when the algorithm
appends the data with a w · I matrix. Fix a coordinate j and any α ∈ (0, 1/2). When computing βββ′

and ζζζ ′ as in (4.2), we have that

Pr
[
β̂j ∈

(
β′j ± c′α‖ζζζ ′‖

√
r
r−p · (M ′TM ′)

−1
j,j

)]
≥ 1− α

where c′α denotes the number such that the probability mass of the interval (−c′α, cα) under the
distribution Tr−p is 1− α, i.e. PrTr−p [(−c′α, c′α)] = 1− α.

However, our goal remains to argue that β′j serves as a good approximation for βj . To that
end, we combine the standard OLS confidence interval — which says that w.p. ≥ 1− α over the

randomness of picking eee in the homoscedastic model we have |βj − β̂j | ≤ cα‖ζζζ‖
√

(XTX)−1
j,j

n−p — with
the confidence interval of Theorem 4.1 above, and deduce that

Pr

[
|β′j − βj | = O

(
cα
‖ζζζ‖√
n− p

√
(XTX)−1

j,j + c′α
‖ζζζ ′‖√
r − p

√
r(M ′TM ′)−1

j,j

)]
≥ 1− α (4.3)

And so, in summary, in Section 4.2 we give conditions under which the length of the interval in

Equation (4.3) is dominated by the c′α
‖ζζζ′‖√
r−p

√
r(M ′TM ′)−1

j,j factor derived from Theorem 4.1.

Clearly, Sarlos’ work [30] gives an upper bound on the distance ‖βββ′ − βββR‖. However, such
distance bound doesn’t come with the coordinate by coordinate confidence guarantee we would like
to have. In fact, it is not even clear from Sarlos’ work that E[βββ′] = βββR (though it is obvious to see
that E[(X ′TRTRX ′)]βββR = E[(RX ′)TRyyy′]). Here, we show that E[βββ′] = β̂ββ which, more often than
not, does not equal βββR.

Comment about notation. Throughout this section we assume X is of full rank and so (XTX)−1 is
well-defined. If X isn’t full-rank, then one can simply replace any occurrence of (XTX)−1 with
X+(X+)T. This makes all our formulas well-defined in the general case.

4.1. Running OLS on the Projected Data. In this section, we analyze the projected Ridge Re-
gression, under the assumption (for now) that eee is fixed. That is, for now we assume that the only
source of randomness comes from picking the matrix R = [R1;R2;R3]. As before, we analyze the
distribution over βββ′ (see Equation (4.1)), and the value of the function we optimize at βββ′. Denoting
M ′ = RX ′, we can formally express the estimators:

βββ′ = (M ′TM ′)−1M ′TRyyy′ (4.4)
ζζζ ′ = 1√

r
(Ryyy′ −RX ′βββ′) (4.5)
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Claim 4.2 . Given that yyy = Xβββ + eee for a fixed eee, and given X and M ′ = RX ′ = R1X + wR2 we
have that

βββ′ ∼ N
(
βββ +X+eee, (w2(‖βββ +X+eee‖2 + 1) + ‖PU⊥eee‖2)(M ′TM ′)−1

)
ζζζ ′ ∼ N

(
000r,

1
r (w2(‖βββ +X+eee‖2 + 1) + ‖PU⊥eee‖2)(Ir×r −M ′M ′+)

)
and furthermore, βββ′ and ζζζ ′ are independent of one another.

Proof. First, we write βββ′ and ζζζ ′ explicitly, based on eee and projection matrices:

βββ′ = (M ′TM ′)−1M ′TRyyy′ = M ′+(R1X)βββ +M ′+(R1eee+ wR3)

ζζζ ′ = 1√
r
(Ryyy′ −RX ′βββ′) = 1√

r
(Ir×r −M ′M ′+)Reee′ = 1√

r
PU ′⊥(R1eee− wR2βββ + wR3)

with U ′ denoting colspan(M ′) and PU ′⊥ denoting the projection onto the subspace U ′⊥.
Again, we break eee into an orthogonal composition: eee = PUeee + PU⊥eee with U = colspan(X)

(hence PU = XX+) and U⊥ = colspan(X)⊥. Therefore,

βββ′ = M ′+(R1X)βββ +M ′+(R1XX
+eee+R1PU⊥eee+ wR3)

= M ′+(R1X)(βββ +X+eee) +M ′+(R1PU⊥eee+ wR3) (4.6)
ζζζ ′ = 1√

r
(Ir×r −M ′M ′+)(R1XX

+eee+R1PU⊥eee− wR2βββ + wR3)

(∗)
= 1√

r
(Ir×r −M ′M ′+)(R1XX

+eee+R1PU⊥eee+ (M ′ − wR2)βββ + wR3)

= 1√
r
(Ir×r −M ′M ′+)(R1X(βββ +X+eee) +R1PU⊥eee+ wR3) (4.7)

where equality (∗) holds because (I −M ′M ′+)M ′vvv = 000 for any vvv.
We now aim to describe the distribution of R conditioned on X ′ and M ′ = RX ′. Since

M ′ = R1X + wR2 + 0 ·R3 = R1X(X+X) + wR2 = (R1PU )X + wR2

then M ′ is independent of R3 and independent of R1PU⊥ . Therefore, given X and M ′ the induced
distribution over R3 remains R3 ∼ N (000r, Ir×r), and similarly, given X and M ′ we have R1PU⊥ ∼
N (0r×n, Ir×r, PU⊥) (rows remain independent from one another, and each row is distributed like a
spherical Gaussian in colspan(X)⊥). And so, we have that R1X = R1PUX = M ′ − wR2, which
in turn implies:

R1X ∼ N
(
M ′, Ir×r, w

2 · Ip×p
)

⇒ R1X(βββ +X+eee) ∼ N
(
M ′βββ +M ′X+eee, w2‖βββ +X+eee‖2Ir×r

)
⇒M ′+R1X(βββ +X+eee) ∼ N

(
βββ +X+eee, w2‖βββ +X+eee‖2(M ′TM)−1

)
= ‖βββ +X+eee‖ · N (uuu,w2(M ′TM)−1)

where uuu denotes a unit-length vector in the direction of βββ +X+eee.
Similar to before we have

RPU⊥ ∼ N (0r×n, Ir×r, PU⊥) ⇒M ′+(RPU⊥eee) ∼ N (000d, ‖PU⊥e‖2(M ′TM ′)−1)

wR3 ∼ N (000r, w
2Ir×r) ⇒M ′+(wR3) ∼ N (000d, w

2(M ′+M ′)−1)

Therefore, the distribution of βββ′, which is the sum of the 3 independent Gaussians, is as required.
Similarly, ζζζ ′ = 1√

r
PU ′⊥ (R1X(βββ +X+eee) +R1PU⊥eee+ wR3) is the sum of 3 independent

Gaussians, which implies its distribution is

N
(

1√
r
PU ′⊥M

′(βββ +X+eee), 1
r (w2(‖βββ +X+eee‖2 + 1) + ‖PU⊥eee‖2)PU ′⊥

)
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which is exactly N
(
000r,

1
r (w2(‖βββ +X+eee‖2 + 1) + ‖PU⊥eee‖2)PU ′⊥

)
as PU ′⊥M

′ = 0r×r.
Finally, observe that βββ′ and ζζζ ′ are independent as the former depends on the projection of the

spherical GaussianR1X(β+X+eee)+R1PU⊥eee+wR3 on U ′, and the latter depends on the projection
of the same multivariate Gaussian on U ′⊥.

Observe that Claim 4.2 assumes eee is given. This may seem somewhat strange, since without
assuming anything about eee there can be many combinations of βββ and eee for which yyy = Xβββ + eee.
However, we always have that βββ + X+eee = X+yyy = β̂ββ. Similarly, it is always the case the
PU⊥eee = (I − XX+)yyy = ζζζ. (Recall OLS definitions of β̂ββ and ζζζ in Equation (2.1) and (2.2).)
Therefore, the distribution of βββ′ and ζζζ ′ is unique (once yyy is set):

βββ′ ∼ N
(
β̂ββ, (w2(‖β̂ββ‖2 + 1) + ‖ζζζ‖2)(M ′TM ′)−1

)
ζζζ ′ ∼ N

(
000r,

1
r · (w

2(‖β̂ββ‖2 + 1) + ‖ζζζ‖2)(Ir×r −M ′M ′+)
)
.

And so for a given dataset [X;yyy] we have that βββ′ serves as an approximation for β̂ββ.

An immediate corollary of Claim 4.2 is that for a fixed eee the quantity t′(βj) =
β′j−β̂j

‖ζζζ′‖
√

r
r−p ·(M

′TM ′)−1
j,j

is distributed like a Tr−p-distribution. The following theorem is thus immediate.

Theorem 4.3 . Fix X ∈ Rn×p and yyy ∈ R. Define β̂ββ = X+yyy and ζ = (I −XX+)yyy. Let RX ′ and
Ryyy′ denote the result of applying Algorithm 1 to the matrix A = [X;yyy] when the algorithm appends
the data with a w · I matrix. Fix a coordinate j and any α ∈ (0, 1/2). When computing βββ′ and ζζζ ′ as
in Equations (4.4) it and (4.5), we have that w.p. ≥ 1− α it holds that

β̂j ∈
(
β′j − c′α‖ζζζ ′‖

√
r
r−p · (M ′TM ′)

−1
j,j , β

′
j + c′α‖ζζζ ′‖

√
r
r−p · (M ′TM ′)

−1
j,j

)
where c′α denotes the number such that (−c′α, c′α) contains 1− α mass of the Tr−p-distribution.

Note that Theorem 4.3, much like the rest of the discussion in this Section, builds on yyy being
fixed, which means β′j serves as an approximation for β̂j . Yet our goal is to argue about similarity
(or proximity) between β′j and βj . To that end, we combine the standard OLS confidence interval —
which says that w.p. ≥ 1− α over the randomness of picking eee in the homoscedastic model we have

|βj − β̂j | ≤ cα‖ζζζ‖
√

(XTX)−1
j,j

n−p — with the confidence interval of Theorem 4.3 above, and deduce
that

Pr

[
|β′j − βj | = O

(
cα
‖ζζζ‖√
n− p

√
(XTX)−1

j,j + c′α
‖ζζζ ′‖√
r − p

√
r(M ′TM ′)−1

j,j

)]
≥ 1− α (4.8)

11And so, in the next section, our goal is to give conditions under which the interval of Equation (4.8)

isn’t much larger in comparison to the interval length of c′α
‖ζζζ′‖√
r−p

√
r(M ′TM ′)−1

j,j we get from
Theorem 4.3; and more importantly — conditions that make the interval of Theorem 4.3 useful and

11Observe that w.p. ≥ 1 − α over the randomness of eee we have that |βj − β̂j | ≤ cα‖ζζζ‖
√

(XTX)−1
j,j

n−p , and w.p.

≥ 1 − α over the randomness of R we have that |β′j − β̂j | ≤ c′α‖ζζζ′‖
√

r
r−p · (M ′TM ′)

−1
j,j . So technically, to give a

(1− α)-confidence interval around β′j that contains βj w.p. ≥ 1− α, we need to use cα/2 and c′α/2 instead of cα and c′α
resp. We avoid overburdening the reader with what we already see as too many parameters, by using asymptotic notation —
making cα and cα/2 comparable.



16 OR SHEFFET

not too large. (Note, in expectation ‖ζζζ′‖√
r−p is about

√
(w2 + w2‖β̂ββ‖2 + ‖ζζζ‖2)/r. So, for example, in

situations where ‖β̂ββ‖ is very large, this interval isn’t likely to inform us as to the sign of βj .)

Motivating Example. A good motivating example for the discussion in the following section is when
[X;yyy] is a strict submatrix of the dataset A. That is, our data contains many variables for each entry
(i.e., the dimensionality d of each entry is large), yet our regression is made only over a modest
subset of variables out of the d. In this case, the least singular value of A might be too small,
causing the algorithm to alter A; however, σmin(XTX) could be sufficiently large so that had we
run Algorithm 1 only on [X;yyy] we would not alter the input. (Indeed, a differentially private way
for finding a subset of the variables that induce a submatrix with high σmin is an interesting open
question, partially answered — for a single regression — in the work of Thakurta and Smith [38].)
Indeed, the conditions we specify in the following section depend on σmin( 1

nX
TX), which, for a

zero-mean data, the minimal variance of the data in any direction. For this motivating example,
indeed such variance isn’t necessarily small.

4.2. Conditions for Deriving a Confidence Interval for Ridge Regression. Looking at the inter-
val specified in Equation (4.8), we now give an upper bound on the the random quantities in this
interval: ‖ζζζ‖, ‖ζζζ ′‖, and (M ′TM ′)−1

j,j . First, we give bound that are dependent on the randomness in
R (i.e., we continue to view eee as fixed).

Proposition 4.4 . For any ν ∈ (0, 1/2), if we have r = p + Ω(ln(1/ν)) then with probability
≥ 1− ν over the randomness of R we have (r − p)(M ′TM)−1

j,j = Θ
(

(w2Ip×p +XTX)−1
j,j

)
and

‖ζζζ′‖2
r−p = Θ(w

2+w2‖β̂ββ‖2+‖ζζζ‖2
r ).

Proof. The former bound follows from known results on the Johnson-Lindenstrauss transform (as
were shown in the proof of Claim B.6). The latter bound follows from standard concentration bounds
of the χ2-distribution.

Plugging in the result of Proposition 4.4 to Equation (4.8) we get that w.p. ≥ 1− ν

|β′j − βj | = O

cα ‖ζζζ‖√
n− p

√
(XTX)−1

j,j + c′α

√
w2 + w2‖β̂ββ‖2 + ‖ζζζ‖2

r − p

√
(w2Ip×p +XTX)−1

j,j


(4.9)

We will also use the following proposition.

Proposition 4.5 .

(XTX)−1
j,j ≤

(
1 +

w2

σmin(XTX)

)
(w2Ip×p +XTX)−1

j,j

Proof. We have that

(XTX)−1 = (XTX)−1(XTX + w2Ip×p)(X
TX + w2Ip×p)

−1

= (Ip×p + w2(XTX)−1)(XTX + w2Ip×p)
−1

= (XTX + w2Ip×p)
−1/2(Ip×p + w2(XTX)−1)(XTX + w2Ip×p)

−1/2

where the latter holds because (Ip×p + w2(XTX)−1) and (XTX + w2Ip×p)
−1 are diagonalizable

by the same matrix V (the same matrix for which (XTX) = V S−1V T). Since we have ‖Ip×p +
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w2(XTX)−1‖ = 1 + w2

σ2
min(X)

, it is clear that (Ip×p + w2(XTX)−1) � (1 + w2

σ2
min(X)

)Ip×p. We

deduce that (XTX)−1
j,j = eeeTj (XTX)−1eeej ≤ (1 + w2

σ2
min(X)

)(XTX + w2Ip×p)
−1
j,j .

Based on Proposition 4.5 we get from Equation (4.9) that

|β′j−βj | = O(

cα
√
‖ζζζ‖2(1+

w2

σmin(XTX)
)

n−p + c′α

√
w2 + w2‖β̂ββ‖2 + ‖ζζζ‖2

r − p

√(w2Ip×p +XTX)−1
j,j ).

(4.10)
And so, if it happens to be the case that exists some small η > 0 for which β̂ββ,ζζζ and w2 satisfy

‖ζζζ‖2(1 + w2

σmin(XTX)
)

n− p
≤ η2

(
w2 + w2‖β̂ββ‖2 + ‖ζζζ‖2

r − p

)
(4.11)

then we have that Pr[βj ∈
(
β′j ±O((1 + η) · c′α‖ζζζ ′‖

√
r
r−p · (M ′TM ′)

−1
j,j )
)

] ≥ 1−α.12 Moreover,

if in this case |βj | > c′α(1 + η)

√
w2+w2‖β̂ββ‖2+‖ζζζ‖2

r−p

√
(w2Ip×p +XTX)−1

j,j then Pr[sign(β′j) =

sign(βj)] ≥ 1 − α. Indeed, Claims 4.6 gives conditions under which Equation (4.11) holds and
Claim 4.7 give conditions under which sign(β′j) = sign(βj).

Claim 4.6 . If there exists η > 0 s.t. n−p ≥ 2
η2

(r−p) and n2 = Ω

(
r3/2 · B

2 ln(1/δ)
ε · 1

η2σmin(
1
nX

TX)

)
,

then Pr[βj ∈
(
β′j ±O((1 + η) · c′α‖ζζζ ′‖

√
r
r−p · (M ′TM ′)

−1
j,j )
)

] ≥ 1− α.

Proof. Based on the above discussion, it is enough to argue that under the conditions of the claim, the
constraint of Equation (4.11) holds. Since we require η2

2 ≥
r−p
n−p then it is evident that ‖ζζζ‖

2

n−p ≤
η2‖ζζζ‖2
2(r−p) .

So we now show that ‖ζζζ‖
2

n−p ·
w2

σmin(XTX)
≤ η2‖ζζζ‖2

2(r−p) under the conditions of the claim, and this will
show the required. All that is left is some algebraic manipulations. It suffices to have:

η2

2 ·
n−p
r−pσmin(XTX) ≥ η2

2 ·
n2

r σmin( 1
nX

TX) ≥ 32B2√r ln(8/δ)

ε
≥ w2

which holds for n2 ≥ r3/2 · 64B2 ln(1/δ)
εη2

σmin( 1
nX

TX)−1, as we assume to hold.

Claim 4.7 . Fix ν ∈ (0, 1
2). If (i) n = p + Ω(ln(1/ν)), (ii) ‖βββ‖2 = Ω(σ2‖X+‖2F ln( pν )) and (iii)

r − p = Ω

(
(c′α)2(1+η)2

β2
j

(
1 + ‖βββ‖2 + σ2

σmin(
1
nX

TX)

))
, then in the homoscedastic model we have

that Pr[sign(βj) = sign(β′j)] ≥ 1− α− ν.

Proof. Based on the above discussion, we aim to show that in the homoscedastic model (where each
coordinate ei ∼ N (0, σ2) independently) w.p. ≥ 1− ν it holds that

|βj | > c′α(1 + η)

√
w2 + w2‖β̂ββ‖2 + ‖ζζζ‖2

r − p

√
(w2Ip×p +XTX)−1

j,j .

To show this, we invoke Claim A.4 to argue that w.p. ≥ 1 − ν we have (i) ‖ζζζ‖2 ≤ 2σ2(n − p)
(since n = p+ Ω(ln(1/ν))), and (ii) ‖β̂ββ‖2 ≤ 2‖βββ‖2 (since ‖βββ − β̂ββ‖2 ≤ σ2‖X+‖2F ln( pν ) whereas

12We assume n ≥ r so cα < c′α as the Tn−p-distribution is closer to a normal Gaussian than the Tr−p-distribution.
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‖βββ‖2 = Ω(σ2‖X+‖2F ln( pν ))). We also use the fact that (w2Ip×p+XTX)−1
j,j ≤ (w2 +σ−1

min(XTX)),
and then deduce that

(1 + η)c′α

√
w2 + w2‖β̂ββ‖2 + ‖ζζζ‖2

r − p

√
(w2Ip×p +XTX)−1

j,j

≤ (1 + η)c′α√
r − p

√
2
w2(1 + ‖βββ‖2) + σ2(n− p)

w2 + σmin(XTX)
≤ (1 + η)c′α√

r − p

√
2(1 + ‖βββ‖2) +

2σ2(n− p)
σmin(XTX)

≤ |βj |

due to our requirement on r − p.

Observe that, out of the 3 conditions specified in Claim 4.7, condition (i) merely guarantees that
the sample is large enough to argue that estimations are close to their expect value; and condition
(ii) is there merely to guarantee that ‖β̂ββ‖ ≈ ‖βββ‖. It is condition (iii) which is non-trivial to hold,
especially together with the conditions of Claim 4.6 that pose other constraints in regards to r, n, η
and the various other parameters in play. It is interesting to compare the requirements on r to the
lower bound we get in Theorem 3.3 — especially the latter bound. The two bounds are strikingly
similar, with the exception that here we also require r − p to be greater than 1+‖βββ‖2

β2
j

. This is part

of the unfortunate effect of altering the matrix A: we cannot give confidence bounds only for the
coordinates j for which β2

j is very small relative to ‖βββ‖2.
In summary, we require to have n = p+ Ω(ln(1/ν)) and that X contains enough sample points

to have ‖β̂ββ‖ comparable to ‖βββ‖, and then set r and η such that (we think of η as a small constant,
say, η = 0.1)
• r − p = O(η2(n− p)) (which implies r = O(n))

• r = O(
(
η2 εn2

B2 ln(1/δ)
σmin( 1

nX
TX)

)2
3
)

• r − p = Ω(1+‖βββ‖2
β2
j

+ σ2

β2
j
· σ−1

min( 1
nX

TX))

to have that the (1 − α)-confidence interval around β′j does not intersect the origin. Again, we
comment that these conditions are sufficient but not necessary, and furthermore — even with these
conditions holding — we do not claim the optimality of our confidence bound. That is because our
discussion from Proposition 4.5 onwards uses upper bounds that, to the best of our knowledge, don’t
have corresponding lower bounds.

5. CONFIDENCE INTERVALS FOR “ANALYZE GAUSS”

In this section we analyze the “Analyze Gauss” algorithm of Dwork et al [14]. Algorithm 2 works by
adding random Gaussian noise to ATA, where the noise is symmetric with each coordinate above the
diagonal sampled i.i.d from N (0,∆2) with ∆2 = O

(
B4 log(1/δ)

ε2

)
. Using the same notation for a

sub-matrix of A as [X;yyy] as before, we denote the output of Algorithm 2 as

 X̃TX X̃Tyyy

ỹyyTX ỹyyTyyy

.

Thus, we approximateβββ and ‖ζζζ‖ by β̃ββ =
(
X̃TX

)−1

X̃Tyyy and ‖̃ζζζ‖2 = ỹyyTyyy−2 ỹyyTX β̃ββ+β̃ββ
T
X̃TX β̃ββ
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resp. We now argue that it is possible to use β̃j and ‖̃ζζζ‖2 to get a confidence interval for βj under
certain conditions.

Theorem 5.1 . Fix α, ν ∈ (0, 1
2). Assume that there exists η ∈ (0, 1

2) s.t. σmin(XTX) >

∆
√
p ln(1/ν)/η. Under the homoscedastic model, given βββ and σ2, if we assume also that ‖βββ‖ ≤ B

and ‖β̂ββ‖ = ‖(XTX)−1XTyyy‖ ≤ B, then w.p. ≥ 1− α− ν it holds that
∣∣∣βj − β̃j∣∣∣ is at most

O
(
ρ ·

√(
X̃TX

−1

j,j + ∆
√
p ln(1/ν) · X̃TX

−2

j,j

)
ln(1/α) + ∆

√
X̃TX

−2

j,j · ln(1/ν) · (B√p+ 1)
)

where ρ is such that ρ2 is w.h.p an upper bound on σ2, defined (using some large constant C) as

ρ2 def
=

(
1√

n−p−2
√

ln(4/α)

)2

·
(
‖̃ζζζ‖2 − C ·

(
∆
B2√p
1−η

√
ln(1/ν) + ∆2‖X̃TX

−1

‖F · ln(p/ν)

))
Note that the assumptions that ‖βββ‖ ≤ B and ‖β̂ββ‖ ≤ B are fairly benign once we assume each

row has bounded `2-norm. The key assumption is that XTX is well-spread. Yet in the model where
each row in X is sampled i.i.d fromN (000,Σ), this assumption merely means that n is large enough —

namely, that n = Ω̃(
∆
√
p ln(1/ν)

η·σmin(Σ) ).The proof of Theorem 5.1 appears in Section C.

6. EXPERIMENT: t-VALUES OF OUTPUT

Goal. We set to experiment with the outputs of Algorithms 1 and 2. These two algorithms have
existed in the literature prior to our work and approximate the 2nd-moment matrix. Following
the paradigm of Johnson and Shmatikov [18], one may argue that the noise introduced by these
algorithms vanishes as n→∞ (an assumption often made in statistical analyses), and so — rather
than following the lengthy computation of confidence intervals presented in our work — it should be
possible to compute t-values directly from the outputs of these two algorithms and those ought to
yield good approximations to the non-private t-values. Therefore our experiments are centered at the
following question: should we compute the t-value directly from the output of either algorithm, can
we (a) get a good approximation of the true (non-private) t-value and (b) get the same “high-level
conclusion” of rejecting the null-hypothesis?

Setting. Both algorithms were applied in two settings. The first is over synthetic data. Much like
the setting in Theorems 2.2 and 3.3, X was generated using p = 3 independent normal Gaussian
features, and yyy was generated using the homoscedastic model. βββ is set as (0.5,−0.25, 0) so the first
coordinate is twice as big a the second but of opposite sign, and moreover, yyy is independent of the
3rd feature. The variance of the label is also set to 1, and so the variance of the homoscedastic noise
equals to σ2 = 1 − (0.5)2 − (−0.25)2. The number of observations n ranges from n = 1000 to
n = 100000.

The second setting is over real-life data, a diabetes dataset collected over ten years (1999-2008)
taken from the UCI repository [36]. Only 4 attributes of the data were used: sex (binary), age (in
buckets of 10 years), number medications (numeric, 0-100), and a diagnosis (numeric, 0-1000),
with an additional 5th column of all-1 (intercept). Omitting any entry with missing or non-numeric
values on these attributes we were left with N = 91842 entries, which we permuted randomly
and fed to the algorithm in varying sizes — from n = 30, 000 to n = 90, 000. Running (non-
private) OLS over the entire N observation yields βββ ≈ (14.07, 0.54,−0.22, 482.59), and t-Values
of (10.48, 1.25,−2.66, 157.55), which were treated as the “true population” baseline.



20 OR SHEFFET

The Algorithms. Algorithm 1 was ran by first finding a DP-estimation of σmin and then the largest
possible r without altering the input, unless r < 25 in which case the input is altered and the
algorithm approximates Ridge regression. Algorithm 2 was ran verbatim. Both had ε = 1

4 and
δ = 10−6, and were repeated 100 independent times.

Results. Our plots show the empirical distribution of the t-values observed from Algorithms 1 and 2
and the decision whether to reject the null-hypothesis or not based on t-value larger than 2.8 (which
corresponds to a fairly conservative p-value of 0.005). Figures 1 and 2 present those for coordinates
under which the null-hypothesis ought to be rejected, whereas Figures 3 and 4 show the results for
coordinates under which the null-hypothesis should not be rejected.

First we comment that, not surprisingly, the t-values become closer to their expected value as n
increases, where — as clearly shown in Figure 3 — the t-values of Analyze Gauss are significantly
closer to the non-private t-value. This emanates from two factors — the fact that some of the
privacy budget of Algorithm 1 is spent on estimating the lowest singular value whereas all of the
privacy budget of Algorthm 2 is spent on outputting the 2nd-moment matrix; and the fact that the
t-values from Algorithm 1 are derived as though there are r samples rather than n. As a result, when
the null-hypothesis is false, Analyze Gauss tends to produce larger t-values (and thus reject the
null-hypothesis) for values of n under which Algorithm 1 still does not reject, as shown in Figure 2a.
This is exacerbated in real data setting, where its actual least singular value (≈ 500) is fairly small in
comparison to its size (N = 91842).

However, what is fairly surprising is the case where the null-hypothesis should not be rejected —
since βj = 0 (in the synthetic case) or its non-private t-value is close to 0 (in the real-data case).
Here, the Analyze Gauss’ t-values are of significantly larger variance than the t-values outputted by
Algorithm 1, as shown in Figure 3. As the result, we falsely reject the null-hypothesis based on the
t-value of Analyze Gauss quite often, even for very large values of n, as shown in Figures 4a and 4b.

The results show that t-value approximations that do not take into account the inherent random-
ness in the DP-algorithms lead to erroneous conclusions. Our experiments show that, as opposed to
the approach of Johnson and Shamtikov [18], the randomness of the DP-algorithm doesn’t simply
vanishes as n → ∞, especially when the null-hypothesis holds. To overcome this, the approach
advocated in this work is to reject the null-hypothesis only based on the confidence interval or 2)
not intersecting the origin. A different approach (left as future work) is to replace the T -distribution
with a new distribution, one that takes into account the randomness in the estimator as well. This,
however, has been an open and long-standing challenge since the first works on DP and statistics
(see [42, 10]) and requires we move into non-asymptotic hypothesis testing.

7. CONCLUSIONS AND FUTURE DIRECTIONS

This work is the first, to the best of our knowledge, to provide an analysis of a differentially private
technique for statistical inference using OLS. We believe this work should be applicable in practice
and curious to see its performance over real datasets. (Initial investigation was done in [31], however,
the experiments there look at the distance ‖β̃ββ − βββ‖ rather than t-values and p-values.) In particular,
we are curious to see whether the conditions posed in Section 4 hold in practice, and if indeed one is
able to use the JLT version of Ridge Regression without having βββ′ far from βββ or β̂ββ. We are curious
also to see if one is able to give a better characterization of the distances between of any pair of
the following 4 vectors: βββ (the true coefficients), β̂ββ (the linear regression estimator from the data),
βββR (the Ridge Regression estimator) and βββ′ (the estimator from the projected Ridge Regression
problem). Also, observe that the statistical analysis in our work follows the frequentist approach.
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(A) Synthetic data, coordinate β1 = 0.5

(B) Synthetic data, coordinate β2 = −0.25

(C) real-life data, coordinate β1 = 14.07

FIGURE 1. The distribution of the t-value
approximations from selected experiments
on synthetic and real-life data where the
null hypothesis should be rejected.

(A) Synthetic data, coordinate β1 = 0.5

(B) Synthetic data, coordinate β2 = −0.25

(C) real-life data, coordinate β1 = 14.07

FIGURE 2. The correctness of our deci-
sion to reject the null-hypothesis based on
the approximated t-value where the null
hypothesis should be rejected
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(A) Synthetic data, coordinate β3 = 0

(B) Real-life data, coordinate β2 = 0.57

FIGURE 3. The distribution of the t-value
approximations from selected experiments
on synthetic and real-life data when the null
hypothesis is (essentially) true

(A) Synthetic data, coordinate β3 = 0

(B) Real-life data, coordinate β2 = 0.57

FIGURE 4. The correctness of our deci-
sion to reject the null-hypothesis based on
the approximated t-value when the null hy-
pothesis is (essentially) true

However, Ridge Regression is also motivated from a Bayesian perspective (where βββ has a prior of a
spherical Gaussian). Deriving a Bayesian analysis of private least squares seems to be both important
and challenging. As ever, the question of matching lower bounds is of importance. Does there exist a
sample of points from a multivariate Gaussian for which, without privacy we are likely to α-reject
the null-hypothesis, but no differentially private algorithm is likely to α-reject the null-hypothesis?

We believe there is much work to be done in order to bridge the gap between TCS’ standard
utility analysis of differentially private algorithms and the statistical inference techniques used in
practice in data analysis. Statistical inference is often done using deterministic estimators, where the
sole source of randomness lies in the underlying model of data generation. In contrast, differentially
private estimators are inherently random in their computation. Statistical inference that considers
both the randomness in the data and the randomness in the computation is highly uncommon, and
this work deals solely with one particular analysis. As noted before, OLS is just the first out of many
variants of linear regression applied in data analysis, for which confidence estimations should be
derived. And even beyond linear regression — OLS is only one of many MLE techniques which can
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be associated with confidence estimations, based on the general recipe of estimating the information
matrix of the loss function (the expected Hessian of the loss function, whose computation is often
fairly complicated even without privacy). Computing confidence estimations for other differentially
private estimators poses a difficult and challenging problem.

A preliminary version of this work has already been published [32], yet it only contains a
high-level overview of the proofs and in particular lacks many of the details presented in Section 4 of
this full version. In addition, the full scope of our experiments was never previously detailed. In the
time passed since the original presentation of our work several new works have discussed concrete
sample complexity bounds for private hypothesis testing, both in the curated-model [6, 1, 3] and
in the local-model [16, 33]; and we believe there is much more work to be done in order to bridge
the gap between TCS’ standard utility analysis of differentially private algorithms and the statistical
inference techniques used in practice in data analysis. Specifically, to the best of our knowledge,
there are no additional works dealing with private OLS. We therefore propose below a few concrete
questions as a direct follow-up work.

First, we wonder as to the sample-complexity bounds that result from the more straight-forward
techniques that deal with with one particular regression (and don’t first approximate the entire 2nd-
moment matrix). It is unclear how to revise classic Private ERM-algorithms [8, 4] and incorporate
their uncertainty (or randomness) into the sample based error; and it is even more unclear (to us)
how to derive lower-bounds on the sample complexity of private OLS (aside from the ones given for
mean-estimation [20] which can be viewed as a 0-feature regression). Second, private OLS in the
local model seems to be a formidable challenge. Here is one possible baseline: use each datapoint to
estimate just the correlation between feature i and feature j and add suitable Gaussian noise so that
for each pair the error is . 1/

√
d, allowing for a constant error in each direction. What is the sample

complexity of this algorithm? What OLS bounds can one derive from it? Lastly, the generalized least
squares model extends the OLS-model by alleviating the noise independence assumption, yet this
extension is often reduced to the OLS-model by altering the label vector yyy in a way which is either
known in advance or by using some trial-and-error paradigm. We pose the question of providing a
private technique for generalized least-square analysis as an open problem.
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APPENDIX A. EXTENDED INTRODUCTORY DISCUSSION

Due to space constraint, a few details from the introductory parts (Sections 1 and 2) were omitted.
We bring them in this appendix. We especially recommend the uninformed reader to go over the
extended OLS background we provide in Appendix A.3.

A.1. Proof Of Privacy of Algorithm 1.

Theorem A.1 . Algorithm 1 is (ε, δ)-differentially private.

http://repository.cmu.edu/jpc/vol5/iss1/6 
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Proof. The proof of the theorem is based on the fact the Algorithm 1 is the result of composing the
differentially private Propose-Test-Release algorithm of [10] with the differentially private analysis
of the Johnson-Lindenstrauss transform of [31].

More specifically, we use Theorem B.1 from [31] that states that given a matrix A whose all
of its singular values at greater than T (ε, δ) where T (ε, δ)2 = 2B2

ε

(√
2r ln(4/δ) + 2 ln(4/δ)

)
,

publishing RA is (ε, δ)-differentially private for a r-row matrix R whose entries sampled are i.i.d
normal Gaussians. Since we have that all of the singular values of A′ are greater than w (as specified
in Algorithm 1), outputting RA′ is (ε/2, δ/2)-differentially private. The rest of the proof boils down
to showing that (i) the if-else-condition is (ε/2, 0)-differentially private and that (ii) w.p. ≤ δ/2 any
matrix A whose smallest singular value is smaller than w passes the if-condition (step 3). If both
these facts hold, then knowing whether we pass the if-condition or not is (ε/2)-differentially private
and the output of the algorithm is (ε/2, δ)-differentially private, hence basic composition gives the
overall bound of (ε, δ)-differential privacy.

To prove (i) we have that for any pair of neighboring matrices A and B that differ only on the
i-th row, denoted aaai and bbbi resp., we have BTB − bbbibbbTi = ATA− aaaiaaaTi . Applying Weyl’s inequality
we have

σmin(BTB) ≤ σmin(BTB − bbbibbbTi ) + σmax(bbbibbb
T
i )

≤ σmin(ATA) + σmax(aaaiaaa
T
i ) + σmax(bbbibbb

T
i ) ≤ σmin(ATA) + 2B2

hence |σmin(A)2 − σmin(B)2| ≤ 2B2, so adding Lap(4B2

ε ) is (ε/2)-differentially private.
To prove (ii), note that by standard tail-bounds on the Laplace distribution we have that

Pr[Z < −4B2 ln(1/δ)
ε ] ≤ δ

2 . Therefore, w.p. 1 − δ/2 it holds that any matrix A that passes
the if-test of the algorithm must have σmin(A)2 > w2. Also note that a similar argument shows that
for any 0 < β < 1, any matrix A s.t. σmin(A)2 > w2 + 4B2 ln(1/β)

ε passes the if-condition of the
algorithm w.p. 1− β.

A.2. Omitted Preliminary Details.
Linear Algebra and Pseudo-Inverses. Given a matrix M we denote its SVD as M = USV T with
U and V being orthonormal matrices and S being a non-negative diagonal matrix whose entries
are the singular values of M . We use σmax(M) and σmin(M) to denote the largest and smallest
singular value resp. Despite the risk of confusion, we stick to the standard notation of using σ2

to denote the variance of a Gaussian, and use σj(M) to denote the j-th singular value of M . We
use M+ to denote the Moore-Penrose inverse of M , defined as M+ = V S−1UT where S−1 is a
matrix with S−1

j,j = 1/Sj,j for any j s.t. Sj,j > 0. It is known that when M ∈ Ra×b with a ≥ b

and b = rank(M), then M+ = (MTM)−1MT (and when a = b then M+ = M−1). In such a

case it holds that M+(M+)T = (MTM)−1, and that M+M = Ib×b. The matrix PU
def
= MM+ is

a projection matrix that fixes any vector uuu ∈ colspan(U) and nullifies any vector in (colspan(U))⊥.
A m×m-matrix M is said to be positive semi-definite (PSD) if xxxTMxxx ≥ 0 for any xxx ∈ Rm, and
positive definite if xxxTMxxx > 0 for any xxx ∈ Rm. For two PSD matrices M and N we use the notation
M � N to denote the fact that xxxTMxxx ≤ xxxTNxxx for any xxx. For a given matrix, ‖M‖ denotes the
spectral norm (= σmax(M)) and ‖M‖F denotes the Frobenious norm (

∑
j,kM

2
j,k)

1/2. It is known
that ‖M‖2F = trace(MTM) =

∑
j σ

2
j (M).
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The Gaussian Distribution. A univariate Gaussian N (µ, σ2) denotes the Gaussian distribution whose
mean is µ and variance σ2, with PDF(x) = (

√
2πσ2)−1 exp(−x−µ

2σ2 ). Standard concentration
bounds on Gaussians give that Pr[x > µ + 2σ

√
ln(1/ν)] < ν for any ν ∈ (0, 1

e ). A multivariate
Gaussian N (µµµ,Σ) for some positive semi-definite Σ denotes the multivariate Gaussian distribution
where the mean of the j-th coordinate is the µj and the co-variance between coordinates j and k
is Σj,k. The PDF of such Gaussian is defined only on the subspace colspan(Σ), where for every

x ∈ colspan(Σ) we have PDF(xxx) =
(

(2π)rank(Σ) · d̃et(Σ)
)−1/2

exp
(
−1

2(xxx−µµµ)TΣ+(xxx−µµµ)
)

and d̃et(Σ) is the multiplication of all non-zero singular values of Σ. A matrix Gaussian distribution
denoted N (Ma×b, U, V ) has mean M , variance U on its rows and variance V on its columns.
For full rank U and V it holds that PDFN (M,U,V )(X) = (2π)−ab/2(det(U))−b/2(det(V ))−a/2 ·
exp(−1

2trace
(
V −1(X −M)TU−1(X −M)

)
). In our case, we will only use matrix Gaussian

distributions with N (Ma×b, Ia×a, V ) and so each row in this matrix is an i.i.d sample from a
b-dimensional multivariate Gaussian N ((M)j→, V ).

We will repeatedly use the rules regarding linear operations on Gaussians. That in, for any c, it
holds that cN (µ, σ2) = N (c ·µ, c2σ2). For any C it holds that C ·N (µµµ,Σ) = N (Cµµµ,CΣCT). And
for any C is holds that N (M,U, V ) · C = N (MC,U,CTV C). In particular, for any ccc (which can
be viewed as a b× 1-matrix) it holds thatN (M,U, V ) ·ccc = N (Mccc, U,cccTV ccc) = N (Mccc,cccTV ccc ·U).

We will also require the following proposition.

Proposition A.2 . Given σ2, λ2 s.t. 1 ≤ σ2

λ2
≤ c2 for some constant c, let X and Y be two random

Gaussians s.t. X ∼ N (0, σ2) and Y ∼ N (0, λ2). It follows that 1
cPDFY (x) ≤ PDFX(x) ≤

cPDFcY (x) for any x.

Corollary A.3 . Under the same notation as in Proposition A.2, for any set S ⊂ R it holds that
1
cPrx←Y [x ∈ S] ≤ Prx←X [x ∈ S] ≤ cPrx←cY [x ∈ S] = cPrx←Y [x ∈ S/c]

Proof. The proof is mere calculation.

PDFX(x)

PDFcY (x)
=

√
c2λ2

σ2
·

exp(− x2

2σ2 )

exp(− x2

2c2λ2
)
≤ c · exp(

x2

2
(

1

c2λ2
− 1

σ2
)) ≤ c · exp(0) = c

PDFX(x)

PDFY (x)
=

√
λ2

σ2
·

exp(− x2

2σ2 )

exp(− x2

2λ2
)
≥ c−1 exp(x

2

2 ( 1
λ2
− 1

σ2 )) ≥ c−1 exp(0) = c−1

The Tk-Distribution. The Tk-distribution, where k is referred to as the degrees of freedom of the
distribution, denotes the distribution over the reals created by independently sampling Z ∼ N (0, 1)

and ‖ζ‖2 ∼ χ2
k, and taking the quantity Z√

‖ζ‖2/k
. Its PDF is given by PDFTk(x) ∝

(
1 + x2

k

)−k+1
2 .

It is a known fact that as k increases, Tk becomes closer and closer to a normal Gaussian. The T -
distribution is often used to determine suitable bounds on the rate of convergence, as we illustrate in
Section A.3. As the T -distribution is heavy-tailed, existing tail bounds on the T -distribution (which
are of the form: if τν = C

√
k((1/ν)2/k − 1) for some constant C then

∫∞
τν

PDFTk(x)dx < ν)
are often cumbersome to work with. Therefore, in many cases in practice, it common to assume
ν = Θ(1) (most commonly, ν = 0.05) and use existing tail-bounds on normal Gaussians.
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Differential Privacy facts. It is known [12] that if ALG outputs a vector in Rd such that for any A
and A′ it holds that ‖ALG(A) − ALG(A′)‖1 ≤ B, then adding Laplace noise Lap(1/ε) to each
coordinate of the output of ALG(A) satisfies ε-differential privacy. Similarly, [12] showed that if for
any neighboring A and A′ it holds that ‖ALG(A)− ALG(A′)‖22 ≤ ∆2 then adding Gaussian noise
N (0,∆2 · 2 ln(2/δ)

ε2
) to each coordinate of the output of ALG(A) satisfies (ε, δ)-differential privacy.

Another standard result [11] gives that the composition of the output of a (ε1, δ1)-differentially
private algorithm with the output of a (ε2, δ2)-differentially private algorithm results in a (ε1 +ε2, δ1 +
δ2)-differentially private algorithm.

A.3. Detailed Background on Ordinary Least Squares. For the unfamiliar reader, we give a short
description of the model under which OLS operates as well as the confidence bounds one derives
using OLS. This is by no means an exhaustive account of OLS and we refer the interested reader
to [28, 25].

Given n observations {(xxxi, yi)}ni=1 where for all i we have xxxi ∈ Rp and yi ∈ R, we assume the
existence of a p-dimensional vector βββ ∈ Rp s.t. the label yi was derived by yi = βββTxxxi + ei where
ei ∼ N (0, σ2) independently (also known as the homoscedastic Gaussian model). We use the matrix
notation where X denotes the (n× p)-matrix whose rows are xxxi, and use yyy,eee ∈ Rn to denote the
vectors whose i-th entry is yi and ei resp. To simplify the discussion, we assume X has full rank.

The parameters of the model are therefore βββ and σ2, which we set to discover. To that end, we
minimize minzzz ‖yyy −Xzzz‖2 and solve

β̂ββ = (XTX)−1XTyyy = (XTX)−1XT(Xβββ + eee) = βββ +X+eee.

As eee ∼ N (000n, σ
2In×n), it holds that β̂ββ ∼ N (βββ, σ2(XTX)−1), or alternatively, that for every

coordinate j it holds that β̂j = eeeTj β̂ββ ∼ N (βj , σ
2(XTX)−1

j,j ). Hence we get β̂j−βj
σ
√

(XTX)−1
j,j

∼ N (0, 1).

In addition, we denote the vector

ζζζ = y −Xβ̂ββ = (Xβββ + eee)−X(βββ +X+eee) = (I −XX+)eee

and since XX+ is a rank-p (symmetric) projection matrix, we have ζζζ ∼ N (0, σ2(I − XX+)).
Therefore, ‖ζζζ‖2 is equivalent to summing the squares of (n − p) i.i.d samples from N (0, σ2). In
other words, the quantity ‖ζζζ‖2/σ2 is sampled from a χ2-distribution with (n−p) degrees of freedom.

We sidetrack from the OLS discussion to give the following bounds on the `2-distance between
βββ and β̂ββ, as the next claim shows.

Claim A.4 . For any 0 < ν < 1/2, the following holds w.p. ≥ 1 − ν over the randomness of the
model (the randomness over eee)

‖βββ − β̂ββ‖2 = ‖X+eee‖2

= O
(
σ2 log(p/ν) · ‖X+‖2F

)
(A.1)

‖β̂ββ‖2 = ‖βββ +X+eee‖2

= O(
(
‖βββ‖+ σ · ‖X+‖F ·

√
log(p/ν)

)2
)∣∣∣ 1

n−p‖ζζζ‖
2 − σ2

∣∣∣ = O(
√

ln(1/ν)
n−p )

Proof. Since eee ∼ N (000n, σ
2In×n) then X+eee ∼ N (000n, σ

2(XTX)−1). Denoting the SVD decompo-
sition (XTX)−1 = V SV T with S denoting the diagonal matrix whose entries are σ−2

max(X), . . . ,
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σ−2
min(X), we have that V TX+eee ∼ N (000n, σ

2S). And so, each coordinate of V TX+eee is distributed
like an i.i.d Gaussian. So w.p. ≥ 1 − ν/2 none of these Gaussians is a factor of O(σ

√
ln(p/ν))

greater than its standard deviation. And so w.p. ≥ 1− ν/2 it holds that ‖X+eee‖2 = ‖V TX+eee‖2 ≤
O(σ2 log(p/ν)

(∑
i σ
−2
i (X)

)
). Since

∑
i σ
−2
i (X) = trace((XTX)−1) = trace(X+(X+)T) =

‖X+‖2F , the bound of (A.1) is proven.
The bound on ‖β̂ββ‖2 is an immediate corollary of (A.1) using the triangle inequality.13 The bound

on ‖ζζζ‖2 follows from tail bounds on the χ2
n−p distribution, as detailed in Section 2.

Returning to OLS, it is important to note that β̂ββ and ζζζ are independent of one another. (Note, β̂ββ
depends solely on X+eee = (X+X)X+eee = X+PUeee, whereas ζζζ depends on (I −XX+)eee = PU⊥eee.
As eee is spherically symmetric, the two projections are independent of one another and so β̂ββ is
independent of ζζζ.) As a result of the above two calculations, we have that the quantity

tβ̂j (βj)
def
=

β̂j−βj√
(XTX)−1

j,j ·
‖ζζζ‖√
n−p

=
β̂j−βj

σ
√

(XTX)−1
j,j

/
‖ζζζ‖

σ
√
n−p

is distributed like a T -distribution with (n− p) degrees of freedom. Therefore, we can compute an
exact probability estimation for this quantity. That is, for any measurable S ⊂ R we have

Pr

β̂ββ and ζζζ satisfying
β̂j − βj√

(XTX)−1
j,j ·

‖ζζζ‖√
n−p

∈ S

 =

∫
S
PDFTn−p(x)dx.

The importance of the t-value t(βj) lies in the fact that it can be fully estimated from the observed
data X and y (for any value of βj), which makes it a pivotal quantity. Therefore, given X and yyy, we
can use t(βj) to describe the likelihood of any βj — for any z ∈ R we can now give an estimation
of how likely it is to have βj = z (which is PDFTn−p(t(z))). The t-values enable us to perform
multitude of statistical inferences. For example, we can say which of two hypotheses is more likely
and by how much (e.g., we are 5-times more likely that the hypothesis βj = 3 is true than the
hypothesis βj = 14 is true); we can compare between two coordinates j and j′ and report we are
more confident that βj > 0 than βj′ > 0; or even compare among the t-values we get across multiple
datasets (such as the datasets we get from subsampling rows from a single dataset).

In particular, we can use t(βj) to α-reject unlikely values of βj . Given 0 < α < 1, we denote
cα as the number for which the interval (−cα, cα) contains a probability mass of 1 − α from the
Tn−p-distribution. And so we derive a corresponding confidence interval Iα centered at β̂j where
βj ∈ Iα with confidence of level of 1 − α. Using tail bounds on the Tn−p-distribution [35], we

have that the length of the interval is |Iα| = O

(√
(XTX)−1

j,j ·
‖ζζζ‖2
n−p ·

√
(n− p)(( 1

α)
2

n−p−1 − 1)

)
.

Furthermore, since it is known that as the number of degrees of freedom of a T -distribution tends to
infinity then the T -distribution becomes close to a normal Gaussian, it is common to use the PDF of
a normal Gaussian instead. I.e., denote τα as the number of which

∫∞
τα

PDFN (0,1)(x)dx = α
2 , then

Iα = βj ± τα
√

(XTX)−1
j,j ·

‖ζζζ‖2
n−p .

We comment as to the actual meaning of this confidence interval. Our analysis thus far applied
w.h.p to a vector yyy derived according to this model. Such X and yyy will result in the quantity tβ̂j (βj)

13Observe, though eee is spherically symmetric, and is likely to be approximately-orthogonal to βββ, this does not
necessarily hold for X+eee which isn’t spherically symmetric. Therefore, we result to bounding the `2-norm of β̂ββ using the
triangle bound.
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being distributed like a Tn−p-distribution — where βj is given as the model parameters and β̂j is
the random variable. We therefore have that guarantee that for X and yyy derived according to this

model, the event Eα
def
= β̂j ∈

(
βj ± cα ·

√
(XTX)−1

j,j ·
‖ζζζ‖2
n−p

)
happens w.p. 1 − α. However, the

analysis done over a given dataset X and yyy (once yyy has been drawn) views the quantity tβ̂j (βj) with

β̂j given and βj unknown. Therefore the event Eα either holds or does not hold. That is why the
alternative terms of likelihood or confidence are used, instead of probability. We have a confidence

level of 1 − α that indeed βj ∈ β̂j ± cα ·
√

(XTX)−1
j,j ·

‖ζζζ‖2
n−p , because this event does happen in

1− α fraction of all datasets generated according to our model.

Rejecting the Null Hypothesis. One important implication of the quantity t(βj) is that we can refer

specifically to the hypothesis that βj = 0, called the null hypothesis. This quantity, t0
def
= tβ̂j (0) =

β̂j
√
n−p

‖ζζζ‖
√

(XTX)−1
j,j

, represents how large is β̂j relatively to the empirical estimation of standard deviation

σ. Since it is known that as the number of degrees of freedom of a T -distribution tends to infinity
then the T -distribution becomes a normal Gaussian, it is common to think of t0 as a sample from
a normal Gaussian N (0, 1). This allows us to associate t0 with a p-value, estimating the event “βj
and β̂j have different signs.” Formally, we define p0 =

∫∞
|t0|

1√
2π
e−x

2/2dx. It is common to reject

the null hypothesis when p0 is sufficiently small (typically, below 0.05).14

Specifically, given α ∈ (0, 1/2), we say we α-reject the null hypothesis if p0 < α. Let
τα be the number s.t. Φ(τα) =

∫∞
τα

1√
2π
e−x

2/2dx = α. (Standard bounds give that τα <

2
√

ln(1/α).) This means we α-reject the null hypothesis if t0 > τα or t0 < −τα, meaning if

|β̂j | > τα

√
(XTX)−1

j,j
‖ζζζ‖√
n−p .

We can now lower bound the number of i.i.d sample points needed in order to α-reject the
null hypothesis. This bound will be our basis for comparison — between standard OLS and the
differentially private version.15

Theorem A.5 Theorem 2.2 restated.. Fix any positive definite matrix Σ ∈ Rp×p and any ν ∈ (0, 1
2).

Fix parameters βββ ∈ Rp and σ2 and a coordinate j s.t. βj 6= 0. Let X be a matrix whose n rows
are i.i.d samples from N (000,Σ), and yyy be a vector where yi − (Xβββ)i is sampled i.i.d from N (0, σ2).
Fix α ∈ (0, 1). Then w.p. ≥ 1 − ν we have that the (1 − α)-confidence interval is of length
O(cα

√
σ2/(nσmin(Σ))) provided n ≥ C1(p + ln(1/ν)) for some sufficiently large constant C1.

Furthermore, there exists a constant C2 such that w.p. ≥ 1 − α − ν we (correctly) reject the null
hypothesis provided

n ≥ max

{
C1(p+ ln(1/ν)), C2

σ2

β2
j

· c
2
α + τ2

α

σmin(Σ)

}
.

14Indeed, it is more accurate to associate with t0 the value
∫∞
|t0|

PDFTn−p(x)dx and check that this value is < α.
However, as most uses take α to be a constant (often α = 0.05), asymptotically the threshold we get for rejecting the null
hypothesis are the same.

15This theorem is far from being new (except for maybe focusing on the setting where every row in X is sampled from
an i.i.d multivariate Gaussians), it is just stated in a non-standard way, discussing solely the power of the t-test in OLS. For
further discussions on sample size calculations see [25].
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Here cα denotes the number for which
∫ cα
−cα PDFTn−p(x)dx = 1 − α. (If we are content with

approximating Tn−p with a normal Gaussian than one can set cα ≈ τα < 2
√

ln(1/α).)

Proof. The discussion above shows that w.p. ≥ 1 − α we have |βj − β̂j | ≤ cα

√
(XTX)−1

j,j
‖ζζζ‖2
n−p ;

and in order to α-reject the null hypothesis we must have |β̂j | > τα

√
(XTX)−1

j,j
‖ζζζ‖2
n−p . Therefore,

a sufficient condition for OLS to α-reject the null-hypothesis is to have n large enough s.t. |βj | >
(cα + τα)

√
(XTX)−1

j,j
‖ζζζ‖2
n−p . We therefore argue that w.p.≥ 1− ν this inequality indeed holds.

We assume each row of X i.i.d vector xxxi ∼ N (000p,Σ), and recall that according to the model
‖ζζζ‖2 ∼ σ2χ2(n− p). Straightforward concentration bounds on Gaussians and on the χ2-distribution
give:

(i) W.p. ≤ α it holds that ‖ζζζ‖ > σ (
√
n− p+ 2 ln(2/α))). (This is part of the standard OLS

analysis.)
(ii) W.p. ≤ ν it holds that σmin(XTX) ≤ σmin(Σ)(

√
n− (

√
p+

√
2 ln(2/ν)))2. [29]

Therefore, due to the lower bound n = Ω(p + ln(1/ν)), w.p.≥ 1 − ν − α we have that none of

these events hold. In such a case we have
√

(XTX)−1
j,j ≤

√
σmax((XTX)−1) = O( 1√

nσmin(Σ)
)

and ‖ζζζ‖ = O(σ
√
n− p). This implies that the confidence interval of level 1 − α has length of

cα

√
(XTX)−1

j,j ·
‖ζζζ‖2
n−p = O

(
cα

√
σ2

nσmin(Σ)

)
; and that in order to α-reject that null-hypothesis it

suffices to have |βj | = Ω
(

(cα + τα)
√

σ2

nσmin(Σ)

)
. Plugging in the lower bound on n, we see that

this inequality holds.
We comment that for sufficiently large constants C1, C2, it holds that all the constants hidden in

the O- and Ω-notations of the proof are close to 1. I.e., they are all within the interval (1± η) for
some small η > 0 given C1, C2 ∈ Ω(η−2).

APPENDIX B. PROJECTING THE DATA USING GAUSSIAN JOHNSON-LINDENSTRAUSS
TRANSFORM

B.1. Main Theorem Restated and Further Discussion.

Theorem B.1 Theorem 3.1 restated.. Let X be a n× p matrix, and parameters βββ ∈ Rp and σ2 are
such that we generate the vector yyy = Xβββ + eee with each coordinate of eee sampled independently from
N (0, σ2). Assume σmin(X) ≥ C · w and that n is sufficiently large s.t. all of the singular values of
the matrix [X;yyy] are greater than C · w for some large constant C, and so Algorithm 1 projects the
matrix A = [X;yyy] without altering it, and publishes [RX;Ryyy].
Fix ν ∈ (0, 1/2) and r = p+Ω(ln(1/ν)). Fix coordinate j. Then w.p. ≥ 1−ν we have that deriving
β̃ββ, ζ̃ζζ and σ̃2 as follows

β̃ββ = (XTRTRX)−1(RX)T(Ryyy) = βββ + (RX)+Reee

ζ̃ζζ = 1√
r
Ryyy − 1√

r
(RX)β̃ββ

= 1√
r

(
I − (RX)(XTRTRX)−1(RX)T)

)
Reee

σ̃2 =
r

r − p
‖ζ̃ζζ‖2
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then the pivot quantity

t̃(βj) =
β̃j − βj

σ̃
√

(XTRTRX)−1
j,j

has a distribution D satisfying e−aPDFTr−p(x) ≤ PDFD(x) ≤ eaPDFTr−p(e
−ax) for any x ∈ R,

where we denote a = r−p
n−p .

B.2. Proof of Theorem 3.1. We now turn to our analysis of β̃ββ and ζ̃ζζ, where our goal is to show
that the distribution of the t̃-values as specified in Theorem 3.1 is well-approximated by the Tr−p-
distribution. For now, we assume the existence of fixed vectors βββ ∈ Rp and eee ∈ Rn s.t. yyy = Xβββ + eee.
(Later, we will return to the homoscedastic model where each coordinate of eee is sampled i.i.d from
N (0, σ2) for some σ2.) In other words, we first examine the case where R is the sole source of
randomness in our estimation. Based on the assumption that eee is fixed, we argue the following.

Claim B.2 . In our model, given X and the output M = RX , we have that

β̃ββ ∼ N
(
βββ +X+eee, ‖PU⊥eee‖2(MTM)−1

)
ζ̃ζζ ∼ N

(
000n,

‖P
U⊥eee‖

2

r (I −M(MTM)−1MT)
)

where PU⊥ denotes the projection operator onto the subspace orthogonal to colspan(X); i.e.,
PU = XX+ and PU⊥ = (Ir×r −XX+).

Proof. The matrix R is sampled from N (0r×p, Ir×r, Ip×p). Given X and RX = M , we learn the
projection of each row in R onto the subspace spanned by the columns of X . That is, denoting
uuuT as the i-th row of R and vvvT as the i-th row of M , we have that XTuuu = vvv. Recall, initially
uuu ∼ N (000n, In×n) – a spherically symmetric Gaussian. As a result, we can denote uuu = PUuuu×PU⊥uuu
where the two projections are independent samples fromN (000n, PU ) andN (000n, PU⊥) resp. However,
once we know that vvv = XTuuu we have that PUuuu = X(XTX)−1XTuuu = X(XTX)−1vvv so we learn
PUuuu exactly, whereas we get no information about PU⊥ so PU⊥uuu is still sampled from a Gaussian
N (000n, PU⊥). As we know for each row of R that uuuTPU = vvvTX+, we therefore have that

R = RPU +RPU⊥ = MX+ +RPU⊥ , where RPU⊥ ∼ N (0r×n, Ir×r, PU⊥).

From here on, we just rely on the existing results about the linearity of Gaussians.

R ∼ N (MX+, Ir×r, PU⊥)

⇒ Reee ∼ N (MX+eee, ‖PU⊥eee‖2Ir×r)

⇒M+Reee ∼ N (X+eee, ‖PU⊥eee‖2(MTM)−1)

so β̃ββ = βββ + M+Reee implies β̃ββ ∼ N (βββ + X+eee, ‖PU⊥eee‖2(MTM)−1). And as

ζ̃ζζ = 1√
r
(Ir×r − M(MTM)−1MT)Reee then we have ζ̃ζζ ∼ N (000r,

‖P
U⊥eee‖

2

r (Ir×r − MM+)) as
(Ir×r −MM+)M = 0r×p.
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Claim B.2 was based on the assumption that eee is fixed. However, given X and yyy there are
many different ways to assign vectors βββ and eee s.t. yyy = Xβββ + eee. However, the distributions we
get in Claim B.2 are unique. To see that, recall Equations (2.1) and (2.2): βββ + X+eee = X+yyy = β̂ββ

and PU⊥eee = PU⊥yyy = (I − XX+)yyy = ζζζ. We therefore have β̃ββ ∼ N (β̂ββ, ‖ζζζ‖2(MTM)−1) and
ζ̃ζζ ∼ N (000n,

‖ζζζ‖2
r (I −MM+)). We will discuss this further, in Section 4, where we will not be able

to better analyze the explicit distributions of our estimators. But in this section, we are able to argue
more about the distributions of β̃ββ and ζ̃ζζ.

So far we have considered the case that eee is fixed, whereas our goal is to argue about the
case where each coordinate of eee is sampled i.i.d from N (0, σ2). To that end, we now switch to an
intermediate model, in which PUeee is sampled from a multivariate Gaussian while PU⊥eee is fixed as
some arbitrary vector of length l. Formally, let Dl denote the distribution where PUeee ∼ N (0, σ2PU )
and PU⊥eee is fixed as some specific vector whose length is denoted by ‖PU⊥eee‖ = l.

Claim B.3 . Under the same assumptions as in Claim B.2, given that eee ∼ Dl, we have that
β̃ββ ∼ N

(
βββ, σ2(XTX)−1 + l2(MTM)−1

)
and ζ̃ζζ ∼ N

(
000n,

l2

r (I −MM+)
)

.

Proof. Recall, β̃ββ = βββ +M+Reee = βββ +M+(MX+ +RPU⊥)eee = βββ +X+eee+M+R(PU⊥eee). Now,
under the assumption eee ∼ Dl we have that β is the sum of two independent Gaussians:

βββ +X+eee ∼ N (βββ, σ2
(
X+ · PU · (X+)T

)
)

= N (βββ, σ2(XTX)−1)
RPU⊥eee ∼ N (000r, ‖PU⊥eee‖2Ir×r)
⇒M+Reee ∼ N (000p, ‖PU⊥eee‖2(MTM)−1).

Summing the two independent Gaussians’ means and variances gives the distribution of β̃ββ. Further-
more, in Claim B.2 we have already established that for any fixed eee we have

ζ̃ζζ ∼ N
(
000n,

‖P
U⊥eee‖

2

r (I −MM+)
)

. Hence, for eee ∼ Dl we still have ζ̃ζζ ∼ N
(
000n,

l2

r (I −MM+)
)

.
(It is easy to verify that the same chain of derivations is applicable when eee ∼ Dl.)

Corollary B.4 . Given that eee ∼ Dl we have that β̃j ∼ N (βj , σ
2(XTX)−1

j,j + l2(MTM)−1
j,j ) for any

coordinate j, and that ‖ζ̃ζζ‖2 ∼ l2

r · χ
2
r−p.

Proof. The corollary follows immediately from the fact that βj = eeeTj β̃ββ, and from the definition of
the χ2-distribution, as ζ̃ζζ is a spherically symmetric Gaussian defined on the subspace colspan(M)⊥

of dimension r − p.

To continue, we need the following claim.

Claim B.5 . Given X and M = RX , and given that eee ∼ Dl we have that β̃ββ and ζ̃ζζ are independent.

Proof. Recall, β̃ββ = βββ + X+eee + M+R(PU⊥eee). And so, given X , M and a specific vector PU⊥eee
we have that the distribution of β̃ββ depends on (i) the projection of eee on U = colspan(X) and on
(ii) the projection of each row in R onto Ũ = colspan(M). The distribution of ζ̃ζζ = 1√

r
PŨ⊥Reee =

1√
r
PŨ⊥(MX+ + RPU⊥)eee = 1√

r
PŨ⊥RPU⊥eee depends on (i) the projection of eee onto U⊥ (which

for the time being is fix to some specific vector of length l) and on (ii) the projection of each row
in R onto Ũ⊥. Since PUeee is independent from PU⊥eee, and since for any row uuuT of R we have that
PŨuuu is independent of PŨ⊥uuu, and since eee and R are chosen independently, we have that β̃ββ and ζ̃ζζ are
independent.
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Formally, consider any pair of coordinates β̃j and ζ̃k, we have

β̃j − βj = eeeTj X
+eee+ eeeTjM

+(RPU⊥eee)

ζ̃k = eeeTkPŨ⊥(RPU⊥eee).

Recall, we are given X and M = RX . Therefore, we know PU and PŨ . And so

Cov[β̃j , ζ̃k] = E[(β̃j − βj)(ζ̃k − 0)]

= E[eeeTj X
+eee(RPU⊥eee)

TPŨ⊥eeek] + E[eeeTjM
+(RPU⊥eee)(RPU⊥eee)

TPŨ⊥eeek]

= eeeTj X
+E[eeeeeeTPU⊥ ]E[RT]PŨ⊥eeek + eeeTjM

+E[(RPU⊥eee)(RPU⊥eee)
T]PŨ⊥eeek

= eeeTj X
+E[eeeeeeTPU⊥ ]

(
(MX+)T + E[(RPU⊥)T]

)
PŨ⊥eeek + eeeTjM

+
(
‖PU⊥eee‖2Ir×r

)
PŨ⊥eeek

= eeeTj X
+E[eeeeeeTPU⊥ ](X+)T

(
MTPŨ⊥

)
eeek + 0 + l2 · eeeTj

(
M+PŨ⊥

)
eeek = 0 + 0 + 0 = 0,

and as β̃ββ and ζ̃ζζ are Gaussians, having their covariance = 0 implies independence.

Having established that β̃ββ and ζ̃ζζ are independent Gaussians and specified their distributions, we
continue with the proof of Theorem 3.1. We assume for now that there exists some small a > 0 s.t.

l2(MTM)−1
j,j ≤ σ

2(XTX)−1
j,j + l2(MTM)−1

j,j ≤ e
2a · l2(MTM)−1

j,j . (B.1)

Then, due to Corollary A.3, denoting the distributions N1 = N (0, l2(MTM)−1
j,j ) and N2 =

N (0, σ2(XTX)−1
j,j + l2(MTM)−1

j,j ), we have that for any S ⊂ R it holds that16

e−aPrβ̃j∼N1
[S] ≤ Prβ̃j∼N2

[S] ≤ eaPrβ̃j∼N1
[S/ea]. (B.2)

More specifically, denote the function

t̃(ψ, ‖ξξξ‖, βj) =
ψ − βj

‖ξξξ‖
√

r
r−p(MTM)−1

j,j

=
ψ − βj

l
√

(MTM)−1
j,j

/‖ξξξ‖√ r
r−p

l

and observe that when we sample ψ,ξξξ independently s.t. ψ ∼ N (βj , l
2(MTM)−1

j,j ) and ‖ξξξ‖2 ∼
l2

r χ
2
r−p then t̃(ψ, ‖ξξξ‖, βj) is distributed like a T -distribution with r − p degrees of freedom. And

so, for any τ > 0 we have that under such way to sample ψ,ξξξ we have Pr[t̃(ψ, ‖ξξξ‖, βj) > τ ] =
1− CDFTr−p(τ).

For any τ ≥ 0 and for any non-negative real value z let Sτz denote the suitable set of values s.t.

Prψ∼N (βj , l
2(MTM)−1

j,j )

‖ξξξ‖2∼ l
2

r χ
2
r−p


[t̃(ψ, ‖ξξξ‖, βj) > τ ] =

∞∫
0

PDF l2
r χ

2
r−p

(z)· Pr
{ψ−βj∼N (0, l2(MTM)−1

j,j )}
[Sτz ] dz.

That is, Sτz =
(
τ · z

√
r
r−p(MTM)−1

j,j , ∞
)

.

16In fact, it is possible to use standard techniques from differential privacy, and argue a similar result — that the
probabilities of any event that depends on some function f(βj) under βj ∼ N1 and under βj ∼ N2 are close in the
differential privacy sense.
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We now use Equation (B.2) (Since N (0, l2(MTM)−1
j,j ) is precisely N1) to deduce that

Prψ∼N (βj , l
2(MTM)−1

j,j+σ2(XTX)−1
j,j )

‖ξξξ‖2∼ l
2

r χ
2
r−p


[t̃(ψ, ‖ξξξ‖, βj) > τ ]

=

∫ ∞
0

PDF l2
r χ

2
r−p

(z)Prψ−βj∼N (0, l2(MTM)−1
j,j+σ2(XTX)−1

j,j )[S
τ
z ]dz

≤ ea
∫ ∞

0
PDF l2

r χ
2
r−p

(z)Prψ−βj∼N (0, l2(MTM)−1
j,j )[S

τ
z /ea]dz

(∗)
= ea

∫ ∞
0

PDF l2
r χ

2
r−p

(z)Prψ−βj∼N (0, l2(MTM)−1
j,j )[S

τ/ea

z ]dz

= eaPrψ∼N (βj , l
2(MTM)−1

j,j )

‖ξξξ‖2∼ l
2

r χ
2
r−p


[t̃(ψ, ‖ξξξ‖, βj) > τ/ea] = ea

(
1− CDFTr−p(τ/e

a)
)

where the equality (∗) follows from the fact that Sτz /c = S
τ/c
z for any c > 0, since it is a non-negative

interval. Analogously, we can also show that

Prψ∼N (βj , l
2(MTM)−1

j,j+σ2(XTX)−1
j,j )

‖ξξξ‖2∼ l
2

r χ
2
r−p


[t̃(ψ, ‖ξξξ‖, βj) > τ ]

≥ e−aPrψ∼N (βj , l
2(MTM)−1

j,j )

‖ξξξ‖2∼ l
2

r χ
2
r−p


[t̃(ψ, ‖ξξξ‖, βj) > τ ] = e−a

(
1− CDFTr−p(τ)

)
.

In other words, we have just shown that for any interval I = (τ,∞) with τ ≥ 0 we have

e−a
∫
I

PDFTr−p(z)dz ≤ Prψ∼N (βj , l
2(MTM)−1

j,j+σ2(XTX)−1
j,j )

‖ξξξ‖2∼ l
2

r χ
2
r−p


[t̃(ψ, ‖ξξξ‖, βj) ∈ I]

≤ ea
∫
I/ea

PDFTr−p(z)dz.

We can now repeat the same argument for I = (τ1, τ2) with 0 ≤ τ1 < τ2 (using an analogous
definition of Sτ1,τ2z ), and again for any I = (τ1, τ2) with τ1 < τ2 ≤ 0, and deduce that the PDF of
the function t̃(ψ, ‖ξξξ‖, βj) at x — where we sample ψ ∼ N (βj , l

2(MTM)−1
j,j + σ2(XTX)−1

j,j ) and

‖ξξξ‖2 ∼ l2

r χ
2
r−p independently — lies in the range

(
e−aPDFTr−p(x), eaPDFTr−p(x/e

a)
)
. And so,

using Corollary B.4 and Claim B.5, we have that when eee ∼ Dl, the distributions of β̃j and ‖ζ̃ζζ‖2 are

precisely as stated above, and so we have that the distribution of t̃(βj)
def
= t̃(β̃j , ‖ζ̃ζζ‖, βj) has a PDF

that at the point x is “sandwiched” between e−aPDFTr−p(x) and eaPDFTr−p(x/e
a).

Next, we aim to argue that this characterization of the PDF of t̃(βj) still holds when
e ∼ N (000n, σ

2In×n). It would be convenient to think of eee as a sample in N (000n, σ
2PU ) ×

N (000n, σ
2PU⊥). (So while in Dl we have PUeee ∼ N (000n, σ

2PU ) but PU⊥eee is fixed, now both
PUeee and PU⊥eee are sampled from spherical Gaussians.) The reason why the above still holds lies in
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the fact that t̃(βj) does not depend on l. In more details:

Preee∼N (000n,σ2In×n)

[
t̃(βj) ∈ I

]
=

∫
vvv
Preee∼N (000n,σ2In×n)

[
t̃(βj) ∈ I | PU⊥eee = vvv

]
PDFP

U⊥eee
(vvv)dvvv

=

∫
vvv
Preee∼Dl

[
t̃(βj) ∈ I | l = ‖vvv‖

]
PDFP

U⊥eee
(vvv)dvvv

≤
∫
vvv

(
ea
∫
I/ea

PDFTr−p(z)dz

)
PDFP

U⊥eee
(vvv)dvvv

=

(
ea
∫
I/ea

PDFTr−p(z)dz

)∫
vvv
PDFP

U⊥eee
(vvv)dvvv

= ea
∫
I/ea

PDFTr−p(z)dz

where the last transition is possible precisely because t̃ is independent of l (or ‖vvv‖) — which is
precisely what makes this t-value a pivot quantity. The proof of the lower bound is symmetric.

To conclude, we have shown that if Equation (B.1) holds, then for every interval I ⊂ R we have

e−aPrz∼Tr−p [z ∈ I] ≤ Preee∼N (000n,σ2In×n)

[
t̃(βj) ∈ I

]
≤ eaPrz∼Tr−p [z ∈ (I/ea)] .

So to conclude the proof of Theorem 3.1, we need to show that w.h.p such a as in Equation (B.1)
exists.

Claim B.6 . In the homoscedastic model with Gaussian noise, if both n and r satisfy
n, r ≥ p + Ω(log(1/ν)), then we have that

l2(MTM)−1
j,j ≤ σ

2(XTX)−1
j,j +l2(MTM)−1

j,j ≤ (1+ 2(r−p)
n−p )·l2(MTM)−1

j,j ≤ e
2(r−p)
n−p ·l2(MTM)−1

j,j

Theorem 3.1 now follows from plugging a = r−p
n−p to our above discussion.

Proof. The lower bound is immediate from non-negativity of σ2 and of (XTX)−1
j,j = ‖(XTX)−1/2eeej‖2.

We therefore prove the upper bound.
First, observe that l2 = ‖PU⊥eee‖2 is sampled from σ2 · χ2

n−p as U⊥ is of dimension n − p.
Therefore, it holds that w.p. ≥ 1− ν/2 that

σ2
(√

n− p−
√

2 ln(2/ν)
)2
≤ l2

and assuming n > p+ 100 ln(2/ν) we therefore have σ2 ≤ 4
3(n−p) l

2.
Secondly, we argue that when r > p + 300 ln(4/ν) we have that w.p. ≥ 1 − ν/2 it holds

that 3
4(XTX)−1

j,j ≤ (r − p)(XTRTRX)−1
j,j . To see this, first observe that by picking R ∼

N (0r×n, Ir×r, In×n) the distribution of the product RX ∼ N (0r×d, Ir×r, X
TX) is identical

to picking Q ∼ N (0r×d, Ir×r, Id×d) and taking the product Q(XTX)1/2. Thus the distribu-
tion of (XTRTRX)−1 is precisely the same distribution as

(
(XTX)1/2QTQ(XTX)1/2

)−1
=

(XTX)−1/2(QTQ)−1(XTX)−1/2. Denoting vvv = (XTX)−1/2eeej we have ‖vvv‖2 = (XTX)−1
j,j .

Claim A.1 from [31] gives that w.p. ≥ 1− ν/2 we have

(r − p) · eeeTj
(

(XTX)1/2QTQ(XTX)1/2
)−1

eeej = vvvT( 1
r−pQ

TQ)−1vvv ≥ 3
4vvv

Tvvv = 3
4(XTX)−1

j,j

which implies the required.
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Combining the two inequalities we get:

σ2(XTX)−1
j,j ≤

16l2(r−p)
n−p (XTRTRX)−1

j,j ≤
2(r−p)
n−p l2(XTRTRX)−1

j,j

and as we denote M = RX we are done.

We comment that our analysis in the proof of Claim B.6 implicitly assumes r � n (as we
do think of the projection R as dimensionality reduction), and so the ratio r−p

n−p is small. How-
ever, a similar analysis holds for r which is comparable to n — in which we would argue that
σ2(XTX)−1

j,j+l2(MTM)−1
j,j

σ2(XTX)−1 ∈ [1, 1 + η] for some small η.

B.3. Proof of Theorem 3.3.

Theorem B.7 Theorem 3.3 restated.. Fix a positive definite matrix Σ ∈ Rp×p. Fix parameters
βββ ∈ Rp and σ2 > 0 and a coordinate j s.t. βj 6= 0. Let X be a matrix whose n rows are sampled
i.i.d fromN (000p,Σ). Let yyy be a vector s.t. yi−(Xβββ)i is sampled i.i.d fromN (0, σ2). Fix ν ∈ (0, 1/2)
and α ∈ (0, 1/2). Then there exist constants C1, C2, C3 and C4 such that when we run Algorithm 1
over [X;yyy] with parameter r w.p. ≥ 1− ν we correctly α-reject the null hypothesis using p̃0 (i.e.,
w.p. ≥ 1− ν Algorithm 1 returns matrix unaltered and we can estimate t̃0 and verify that indeed

p̃0 < α · e−
r−p
n−p ) provided

r ≥ p+ max

{
C1
σ2(c̃2

α + τ̃2
α)

β2
j σmin(Σ)

, C2 ln(1/ν)

}
and

n ≥ max

{
r, C3

w2

min{σmin(Σ), σ2}
, C4(p+ ln(1/ν))

}
where c̃α, τ̃α denote the real numbers for which it holds that

∞∫
c̃α/e

r−p
n−p

PDFTr−p(x)dx = α
2 e
− r−pn−p

and
∞∫

τ̃α/e

r−p
n−p

PDFN (0,1)(x)dx = α
2 e
− r−pn−p resp.

Proof. First we need to use the lower bound on n to show that indeed Algorithm 1 does not alter A,
and that various quantities are not far from their expected values. Formally, we claim the following.

Proposition B.8 . Under the same lower bounds on n and r as in Theorem 3.3, w.p. 1− α− ν we
have that Theorem 3.1 holds and also that

‖ζ̃ζζ‖2 = Θ( r−pr ‖PU⊥eee‖
2) = Θ( r−pr (n− p)σ2) , and (XTRTRX)−1

j,j = Θ( 1
r−p(XTX)−1

j,j ).

Proof of Proposition B.8. First, we need to argue that we have enough samples as to have the gap
σ2

min([X; y])− w2 sufficiently large.
Since xxxi ∼ N (0,Σ), and yi = βββTxxxi + ei with ei ∼ N (0, σ2), we have that the concatenation

(xxxi ◦ yi) is also sampled from a Gaussian. Clearly, E[yi] = βββTE[xxxi] + E[ei] = 0. Similarly,
E[xi,jyi] = E[xi,j · (βββTxxxi+ei)] = (Σβββ)j and E[y2

i ] = E[e2
i ]+E[‖Xβββ‖2] = σ2 +E[βββTXTXβββ] =

σ2 + βββTΣβββ. Therefore, each row of A is an i.i.d sample of N (000p+1,ΣA), with

ΣA =

(
Σ Σβββ

βββTΣ σ2+βββTΣβββ

)
.
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Denote λ2 = σmin(Σ). Then, to argue that σmin(ΣA) is large we use the lower bound from [24]
(Theorem 3.1) to argue that:

σmin(ΣA)

≥ (βββTΣβββ + σ2) + λ2

2
−
√

((βββTΣβββ + σ2) + λ2)2

4
−
(

(βββTΣβββ + σ2)− (βββTΣ)Σ−1(Σβββ)
)
λ2

=
βββTΣβββ + σ2 + λ2

2
−
√

(βββTΣβββ + σ2 + λ2)2 − 4λ2(βββTΣβββ + σ2 − βββTΣβββ)

4

=
βββTΣβββ + σ2 + λ2

2
−
√

(βββTΣβββ)2 + 2βββTΣβββ(σ2 + λ2) + (σ2 + λ2)2 − 4λ2σ2

4

=
βββTΣβββ + σ2 + λ2

2
−
√

(βββTΣβββ)2 + 2βββTΣβββ(σ2 + λ2) + (σ2 − λ2)2

4

=
βββTΣβββ + σ2 + λ2

2
−
√

(βββTΣβββ)2 + 2βββTΣβββ|σ2 − λ2|+ (σ2 − λ2)2 + 4βββTΣβββmin{λ2, σ2}
4

≥ βββTΣβββ + σ2 + λ2

2
−
√

(βββTΣβββ)2 + 2βββTΣβββ|σ2 − λ2|+ (σ2 − λ2)2

4

=
βββTΣβββ + σ2 + λ2

2
−
√

(βββTΣβββ + |σ2 − λ2|)2

4

=
βββTΣβββ + σ2 + λ2

2
− βββTΣβββ + |σ2 − λ2|

2
≥ min{λ2, σ2} = min{σmin(Σ), σ2}.

Having established a lower bound on σmin(ΣA), it follows that with n = Ω(p ln(1/ν)) i.i.d
draws from N (000p+1,ΣA) we have w.p. ≤ ν/4 that σmin(ATA) = o(n) · min{σmin(Σ), σ2}.
Conditioned on σmin(ATA) = Ω(nσmin(ΣA)) = Ω(w2) being large enough, we have that w.p.
≤ ν/4 over the randomness of Algorithm 1 the matrix A does not pass the if-condition and the
output of the algorithm is not RA. Conditioned on Algorithm 1 outputting RA, and due to the lower
bound r = p+ Ω(ln(1/ν)), we have that the result of Theorem 3.1 does not hold w.p. ≤ α+ ν/4.
All in all we deduce that w.p. ≥ 1− α− 3ν/4 the result of Theorem 3.1 holds. And since we argue
Theorem 3.1 holds, then the following two bounds that are used in the proof17 also hold:

(XTRTRX)−1
j,j = Θ( 1

r−p(XTX)−1
j,j )

‖PU⊥eee‖2 = Θ((n− p)σ2).

Lastly, in the proof of Theorem 3.1 we argue that for a given PU⊥eee the length ‖ζ̃ζζ‖2 is distributed

like ‖PU⊥e
ee‖2

r χ2
r−p. Appealing again to the fact that r = p+ Ω(ln(1/ν) we have that w.p. ≥ ν/4 it

holds that ‖ζ̃ζζ‖2 > 2(r − p)‖PU⊥eee‖
2

r . Plugging in the value of ‖PU⊥eee‖2 concludes the proof of the
proposition.

Based on Proposition B.8, we now show that we indeed reject the null-hypothesis (as we should).

When Theorem 3.1 holds, reject the null-hypothesis iff p̃0 < α·e−
r−p
n−p which holds iff |t̃0| > e

r−p
n−p τ̃α.

This implies we reject that null-hypothesis when |β̃j | > e
r−p
n−p τ̃α · σ̃

√
(XTRTRX)−1

j,j ). Note that this

bound is based on Corollary 3.2 that determines that |β̃j−βj | = O

(
e
r−p
n−p c̃α · σ̃

√
(XTRTRX)−1

j,j )

)
.

And so we have that w.p. ≥ 1 − ν we α-reject the null hypothesis when it holds that |βj | >

17More accurately, both are bounds shown in Claim B.6.
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3(c̃α + τ̃α) · σ̃
√

(XTRTRX)−1
j,j ) ≥ e

r−p
n−p (c̃α + τ̃α)σ̃

√
(XTRTRX)−1

j,j ) (due to the lower bound
n ≥ r).

Based on the bounds stated above we have that

σ̃ = ‖ζ̃ζζ‖
√

r
r−p = Θ(σ

√
n− p

√
r−p
r

√
r
r−p) = Θ(σ

√
n− p)

and that
(XTRTRX)−1

j,j = Θ( 1
r−p(XTX)−1

j,j ) = O
(

1
r−p ·

1
nσmin(Σ)

)
.

And so, a sufficient condition for rejecting the null-hypothesis is to have

|βj | = Ω

(
(c̃α + τ̃α)σ

√
n− p
r − p

·
√

1
nσmin(Σ)

)
= Ω(e

r−p
n−p (c̃α + τ̃α)σ̃

√
(XTRTRX)−1

j,j ))

which, given the lower bound r = p+ Ω

(
(c̃α+τ̃α)2σ2

β2
j σmin(Σ)

)
indeed holds.

APPENDIX C. CONFIDENCE INTERVALS FOR “ANALYZE GAUSS” ALGORITHM

To complete the picture, we now analyze the “Analyze Gauss” algorithm of Dwork et al [14].
Algorithm 2 works by adding random Gaussian noise to ATA, where the noise is symmetric with
each coordinate above the diagonal sampled i.i.d from N (0,∆2) with ∆2 = O

(
B4 log(1/δ)

ε2

)
.18

Using the same notation for a sub-matrix of A as [X;yyy] as before, with X ∈ Rn×p and y ∈ Rn, we
denote the output of Algorithm 2 as X̃TX X̃Tyyy

ỹyyTX ỹyyTyyy

 =

 XTX +N XTyyy +nnn

yyyTX +nnnT yyyTyyy +m

 (C.1)

whereN is a symmetric p×p-matrix,nnn is a p-dimensional vector andm is a scalar, whose coordinates
are sampled i.i.d from N (0,∆2).

Using the output of Algorithm 2, it is simple to derive analogues of β̂ββ and ‖ζζζ‖2 (Equations (2.1)
and (2.2))

β̃ββ =
(
X̃TX

)−1

X̃Tyyy =
(
XTX +N

)−1
(XTyyy +nnn) (C.2)

‖̃ζζζ‖2 = ỹyyTyyy − 2 ỹyyTX β̃ββ + β̃ββ
T
X̃TX β̃ββ = ỹyyTyyy − ỹyyTX X̃TX

−1

X̃Tyyy (C.3)

We now argue that it is possible to use β̃j and ‖̃ζζζ‖2 to get a confidence interval for βj under certain
conditions.

18It is easy to see that the `2-global sensitivity of the mapping A 7→ ATA is ∝ B4. Fix any A1, A2 that differ on
one row which is some vector vvv with ‖vvv‖ = B in A1 and the all zero vector in A2. Then GS2

2 = ‖AT
1A1 −AT

2A2‖2F =
‖vvvvvvT ‖2F = trace(vvvvvvT · vvvvvvT) = (vvvTvvv)2 = B4.
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Theorem C.1 . Fix α, ν ∈ (0, 1
2). Assume that there exists η ∈ (0, 1

2) s.t. σmin(XTX) >

∆
√
p ln(1/ν)/η. Under the homoscedastic model, given βββ and σ2, if we assume also that ‖βββ‖ ≤ B

and ‖β̂ββ‖ = ‖(XTX)−1XTyyy‖ ≤ B, then w.p. ≥ 1− α− ν it holds that |βj − β̃j | it at most

O
(
ρ ·

√(
X̃TX

−1

j,j + ∆
√
p ln(1/ν) · X̃TX

−2

j,j

)
ln(1/α)

+∆

√
X̃TX

−2

j,j · ln(1/ν) · (B√p+ 1)
)

where ρ is such that ρ2 is w.h.p an upper bound on σ2, defined as

ρ2 def
=

(
1√

n−p−2
√

ln(4/α)

)2

·
(
‖̃ζζζ‖2 − C ·

(
∆
B2√p
1−η

√
ln(1/ν) + ∆2‖X̃TX

−1

‖F · ln(p/ν)

))
.

for some large constant C.

We comment that in practice, instead of using ρ, it might be better to use the MLE of σ2, namely:

σ2 def
= 1

n−p

(
‖̃ζζζ‖2 + ∆2‖X̃TX

−1

‖F
)

instead of ρ2, the upper bound we derived for σ2. (Replacing an unknown variable with its MLE
estimator is a common approach in applied statistics.) Note that the assumption that ‖βββ‖ ≤ B is
fairly benign once we assume each row has bounded `2-norm. The assumption ‖β̂ββ‖ ≤ B simply
assumes that β̂ββ is a reasonable estimation of βββ, which is likely to hold if we assume that XTX is
well-spread. The assumption about the magnitude of the least singular value of XTX is therefore
the major one. Nonetheless, in the case we considered before where each row in X is sampled i.i.d

from N (000,Σ), this assumption merely means that n is large enough s.t. n = Ω̃(
∆
√
p ln(1/ν)

η·σmin(Σ) ).
In order to prove Theorem C.1, we require the following proposition.

Proposition C.2 . Fix any ν ∈ (0, 1
2). Fix any matrix M ∈ Rp×p. Let vvv ∈ Rp be a vector

with each coordinate sampled independently from a Gaussian N (0,∆2). Then we have that
Pr
[
‖Mvvv‖ > ∆ · ‖M‖F

√
2 ln(2p/ν)

]
< ν.

Proof. Given M , we have that Mvvv ∼ N (000,∆2 · MMT). Denoting M ’s singular values as
sv1, . . . , svp, we can rotate Mvvv without affecting its `2-norm and infer that ‖Mvvv|2 is distributed like
a sum on p independent Gaussians, each sampled from N (0,∆2 · sv2

i ). Standard union bound gives
that w.p. ≥ 1− ν non of the p Gaussians exceeds its standard deviation by a factor of

√
2 ln(2p/ν).

Hence, w.p. ≥ 1−ν it holds that ‖Mvvv‖2 ≤ 2∆2
∑

i sv
2
i ln(2p/ν) = 2∆2 ·trace(MMT)·ln(2p/ν).

Our proof also requires the use of the following equality, that holds for any invertible A and any
matrix B s.t. I +B ·A−1 is invertible:

(A+B)−1 = A−1 −A−1
(
I +BA−1

)−1
BA−1

In our case, we have

X̃TX
−1

= (XTX +N)−1 = (XTX)−1 − (XTX)−1
(
I +N(XTX)−1

)−1
N(XTX)−1

= (XTX)−1

(
I −

(
I +N(XTX)−1

)−1
N(XTX)−1

)
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def
= (XTX)−1

(
I − Z · (XTX)−1

)
(C.4)

Proof of Theorem C.1. Fix ν > 0. First, we apply standard results about Gaussian matrices,
such as [37] (used also by [14] in their analysis), to see that w.p. ≥ 1 − ν/6 we have ‖N‖ =

O(∆
√
p ln(1/ν)). And so, for the remainder of the proof we fix N subject to having bounded

operator norm. Note that by fixing N we fix X̃TX .
Recall that in the homoscedastic model, yyy = Xβββ + eee with each coordinate of eee sampled i.i.d

from N (0, σ2). We therefore have that

β̃ββ = X̃TX
−1

(XTyyy +nnn) = X̃TX
−1

(XTXβββ +XTeee+nnn)

= X̃TX
−1

(X̃TX −N)βββ + X̃TX
−1

XTeee+ X̃TX
−1

nnn

= βββ − X̃TX
−1

Nβββ + X̃TX
−1

XTeee+ X̃TX
−1

nnn.

Denoting the j-th row of X̃TX
−1

as X̃TX
−1

j→ we deduce:

β̃j = βj − X̃TX
−1

j→Nβββ + X̃TX
−1

j→X
Teee+ X̃TX

−1

j→nnn (C.5)

We naı̈vely bound the size of the term X̃TX
−1

j→Nβββ by∥∥∥∥X̃TX
−1

j→

∥∥∥∥ ‖N‖‖βββ‖ = O

(∥∥∥∥X̃TX
−1

j→

∥∥∥∥ ·B∆
√
p ln(1/ν)

)
.

To bound X̃TX
−1

j→X
Teee note that eee is chosen independently of X̃TX and since eee ∼ N (000, σ2I)

we have X̃TX
−1

j→X
Teee ∼ N

(
000, σ2 · eeeTj X̃TX

−1

·XTX · X̃TX
−1

eeej

)
. Since we have

X̃TX
−1

·XTX ·X̃TX
−1

= X̃TX
−1

·(X̃TX−N) ·X̃TX
−1

= X̃TX
−1

−X̃TX
−1

·N ·X̃TX
−1

we can bound the variance of X̃TX
−1

j→X
Teee by σ2

(
X̃TX

−1

j,j + ‖N‖ ·
∥∥∥∥X̃TX

−1

j→

∥∥∥∥2
)

. Appealing to

Gaussian concentration bounds, we have that w.p. ≥ 1− α/2 the absolute value of this Gaussian is

at most O

√√√√(X̃TX
−1

j,j + ∆
√
p ln(1/ν) ·

∥∥∥∥X̃TX
−1

j→

∥∥∥∥2
)
σ2 ln(1/α)

.

To bound X̃TX
−1

j→nnn note that nnn ∼ N (000,∆2I) is sampled independently of X̃TX . We therefore

have that X̃TX
−1

j→nnn ∼ N (0,∆2

∥∥∥∥X̃TX
−1

j→

∥∥∥∥2

). Gaussian concentration bounds give that w.p ≥

1− ν/6 we have |X̃TX
−1

j→nnn| = O

(
∆

∥∥∥∥X̃TX
−1

j→

∥∥∥∥√ln(1/ν)

)
.
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Plugging this into our above bounds on all terms that appear in Equation (C.5) we have that w.p.
≥ 1− ν/2− α/2 we have that

∣∣∣β̃j − βj∣∣∣ is at most

O

(∥∥∥∥X̃TX
−1

j→

∥∥∥∥ ·B∆
√
p ln(1/ν)

)

+O

σ
√√√√(X̃TX

−1

j,j + ∆
√
p ln(1/ν) ·

∥∥∥∥X̃TX
−1

j→

∥∥∥∥2
)

ln(1/α)


+O

(
∆

∥∥∥∥X̃TX
−1

j→

∥∥∥∥√ln(1/ν)

)
.

Note that due to the symmetry of X̃TX we have
∥∥∥∥X̃TX

−1

j→

∥∥∥∥2

= X̃TX
−2

j,j (the (j, j)-coordinate of

the matrix X̃TX
−2

), thus∣∣∣β̃j − βj∣∣∣ = O
(
σ ·

√(
X̃TX

−1

j,j + ∆
√
p ln(1/ν) · X̃TX

−2

j,j

)
ln(1/α)

+ ∆

√
X̃TX

−2

j,j · ln(1/ν) · (B√p+ 1)
)

(C.6)

All of the terms appearing in Equation (C.6) are known given X̃TX , except for σ — which
is a parameter of the model. Next, we derive an upper bound on σ which we can then plug into
Equation (C.6) to complete the proof of the theorem and derive a confidence interval for βj .

Recall Equation (C.3), according to which we have

‖̃ζζζ‖2 = ỹyyTyyy − ỹyyTX X̃TX
−1

X̃Tyyy

Eq(C.4)
= yyyTyyy +m− (yyyTX +nnnT)(XTX)−1(I − Z · (XTX)−1)(XTyyy +nnn)

= yyyTyyy +m− yyyTX(XTX)−1XTyyy + yyyTX(XTX)−1Z(XTX)−1XTyyy

− 2yyyTX(XTX)−1nnn+ 2yyyTX(XTX)−1Z(XTX)−1nnn−nnnT(XTX)−1(I − Z · (XTX)−1)nnn.

Recall that β̂ββ = (XTX)−1XTyyy, and so we have

= yyyT
(
I −X(XTX)−1XT

)
yyy +m− β̂ββ

T
Zβ̂ββ − 2β̂ββ

T
(I − Z(XTX)−1)nnn−nnnTX̃TX

−1

nnn

(C.7)

and of course, both nnn and m are chosen independently of X̃TX and yyy.
Before we bound each term in Equation (C.7), we first give a bound on ‖Z‖. Recall, Z =(

I +N(XTX)−1
)−1

N . Recall our assumption (given in the statement of Theorem C.1) that
σmin(XTX) ≥ ∆

η

√
p ln(1/ν). This implies that ‖N(XTX)−1‖ ≤ ‖N‖ · σmin(XTX)−1 = O(η).

Hence

‖Z‖ ≤ (‖I +N(XTX)−1‖)−1 · ‖N‖ = O

(
∆
√
p ln(1/ν)

1−η

)
.

Moreover, this implies that ‖Z(XTX)−1‖ ≤ O
(

η
1−η

)
and that ‖I − Z(XTX)−1‖ ≤ O

(
1

1−η

)
.
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Armed with these bounds on the operator norms of Z and (I − Z(XTX)−1) we bound the
magnitude of the different terms in Equation (C.7).
• The term yyyT (I −XX+)yyy is the exact term from the standard OLS, and we know it is distributed

like σ2 · χ2
n−p distribution. Therefore, it is greater than σ2(

√
n− p − 2

√
ln(4/α))2 w.p. ≥

1− α/2.
• The scalar m sampled from m ∼ N (0,∆2) is bounded by O(∆

√
ln(1/ν)) w.p. ≥ 1− ν/8.

• Since we assume ‖β̂ββ‖ ≤ B, the term β̂ββ
T
Zβ̂ββ is upper bounded by B2‖Z‖ = O

(
B2∆
√
p ln(1/ν)

1−η

)
.

• Denote zzzTnnn = 2β̂ββ
T

(I − Z(XTX)−1)nnn.
We thus have that zzzTnnn ∼ N (0,∆2‖zzz‖2) and that its magnitude is at most O(∆ · ‖zzz‖

√
ln(1/ν))

w.p. ≥ 1− ν/8. We can upper bound ‖zzz‖ ≤ 2‖β̂ββ‖ ‖I − Z(XTX)−1‖ = O( B
1−η ), and so this

term’s magnitude is upper bounded by O
(

∆·B
√

ln(1/ν)

1−η

)
.

• Given our assumption about the least singular value of XTX and with the bound on ‖N‖, we

have that σmin(X̃TX) ≥ σmin(XTX)− ‖N‖ > 0 and so the symmetric matrix X̃TX is a PSD.

Therefore, the term nnnTX̃TX
−1

nnn = ‖X̃TX
−1/2

nnn‖2 is strictly positive. Applying Proposition C.2

we have that w.p. ≥ 1− ν/8 it holds that nnnTX̃TX
−1

nnn ≤ O
(

∆2‖X̃TX
−1

‖F · ln(p/ν)

)
.

Plugging all of the above bounds into Equation (C.7) we get that w.p. ≥ 1− ν/2− α/2 it holds that

σ2 ≤
(

1√
n−p−2

√
ln(4/α)

)2(
‖̃ζζζ‖2 +O

(
(1 +

B2√p+B
1−η )∆

√
ln( 1

ν ) + ∆2‖X̃TX
−1

‖F · ln( pν )

))
and indeed, the RHS is the definition of ρ2 in the statement of Theorem C.1.
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